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Abstract. Dynamic test generation approach consists of executing a
program while gathering symbolic constraints on inputs from predicates
encountered in branch statements, and of using a constraint solver to
infer new program inputs from previous constraints in order to steer
next executions towards new program paths. Variants of this technique
have recently been adopted in finding security vulnerabilities in binary
level software. However, such existing approaches and tools are not retar-
getable: on the one hand, they can only find vulnerabilities in the binaries
for a specific ISA; on the other hand, they can only find vulnerabilities
over a specific OS because the execution trace is totally OS-dependently
recorded in these tools. This paper presents a new dynamic test gener-
ation technique and a tool, ReTBLDTG, short for ReTargetable Binary-
Level Dynamic Test Generation, that implements this technique. Unlike
other such techniques, ReTBLDTG can deal with binaries for any ISAs
over any OSes. ReTBLDTG is based on the whole system virtual machine
that provides OS-independent and fast concrete execution of the target
program. And which thread the executing instruction belongs to is OS-
independently identified by analyzing the registers’ value and hardware
events over the virtual machine. Thus, the execution trace is recorded,
without knowing the internal structure of the guest OS. At the same
time, ReTBLDTG defines a Meta Instruction Set Architecture (MetaISA);
ReTBLDTG maps the execution information, which is collected during
the binary source code execution, to MetaISA; and symbolic execution,
constraint collection and constraint solver operates on MetaISA, thus
making these tasks ISA-independent. We have implemented our ReT-
BLDTG, retargeted it to 32-bit x86, PowerPC and Sparc ISAs, and used
it to automatically find the six known bugs in the six benchmarks over
Linux and Windows. Our results indicate that our ReTBLDTG can be
easily retargeted to any ISA with only a few overheads; and ReTBLDTG
can effectively find bugs located deep within large applications over any
OS.

1 Introduction

Dynamic test generation approach, like DART [6], EXE [3] and SAGE [7], is be-
coming increasingly popular to find security vulnerabilities in software. Starting
with a fixed input, the approach symbolically executes the program, gather-
ing input constraints from conditional statements encountered along the way.
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The collected constraints are then systematically negated and solved with a
constraint solver, yielding new inputs that exercise different execution paths in
the program. For example, symbolic execution of the conditional statement “if
(x==10) then” on the input x = 0 generates the constraint x != 10. Once this
constraint is negated and solved, it yields x = 10, which gives us a new input that
causes the program to follow the then branch of the given conditional statement.
This allows us to exercise and test additional code for security bugs, even without
specific knowledge of the input format. Furthermore, this approach automati-
cally discovers and tests corner cases where programmers may fail to properly
allocate memory or manipulate buffers, leading to security vulnerabilities.

More and more research institutes and groups use this approach to find security
vulnerabilities in the pre-release software, which is usually shipped in binary code,
after it has been heavily tested using a combination of code review, manual and
random testing, dynamic tools and static analysis, because it finds security vul-
nerabilities without generating false alarms and requires no domain knowledge.

However, existing such tools are not retargetable. On the one hand, they
can only find vulnerabilities in the binaries for a specific ISA, due to specific
architecture details of different Instruction Set Architectures (ISAs).

On the other hand, they can only find vulnerabilities over a specific OS be-
cause the execution trace is totally OS-independently recorded in these tools.
The execution trace, made up of the instruction flow, of the target program
run with the initial input, should be recorded for the following constraint gen-
eration and solver. Currently, the execution trace is recorded as the program
is executed either by statically injected instrumentation code or with the help
of binary instrumentation tools such as Nirvana [2] or Valgrind [12]. However,
these instrumentation tools strongly depend on the OS (Operation System), thus
make existing dynamic test generation un-retargetable. These instrumentation
tools run over the guest OS and call OS-dependent Application Programming
Interfaces (APIs) to identify the process and its threads of the target program,
and monitor its thread switch. Because the process and thread management are
totally defined by the OS, the instrumentation tools must know the internal
structure of guest OS.

The coupling of binary-level dynamic test generation with specific architecture
or OS details creates an interoperability problem that hinders the wide adoption
of binary-level dynamic test generation. To adopt this approach to find security
vulnerabilities for any other ISAs or over any other OSes, one has to develop
another separate tool for the specific ISA or OS.

This paper presents a new binary-level dynamic test generation technique and
a tool, ReTBLDTG, short for ReTargetable Binary-Level Dynamic Test Gener-
ation, that implements this technique. Unlike other dynamic test generation
techniques that operate only on binaries for a specific ISA, ReTBLDTG can pro-
cess binaries for any ISAs over any OSes and dynamically generates new inputs
that exercise different control paths in the program, which may lead to security
vulnerabilities.
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To mask the difference of the CPU ISAs, ReTBLDTG defines a Meta Instruc-
tion Set Architecture (MetaISA). When working, ReTBLDTG maps the execution
information, collected during the execution of binary source code, to MetaISA.
And symbolic execution, constraint collection and constraint solver operate on
the code in our MetaISA, thus making the three processes ISA-independent. As
shown in Section 2, ReTBLDTG consists of 208KLOC and these three processes
represent over 94% of our code base. Thanks to MetaISA, ReTBLDTG is retar-
getable with only a few overheads. To port ReTBLDTG to a new CPU platform,
we only need to implement a new decoder and an ISA mapper for it.

Because symbolic execution, constraint collection and constraint solver oper-
ate on the code in our MetaISA, the following key issues must be considered
when MetaISA is designed:

– The MetaISA should be as simple and uniform as possible in order to facili-
tate the following three processes. This requires all meta instructions should
be arithmetic instructions. The conditional instructions, such as cmp, should
be transformed to the change to flag bit, including ZF, OF, and CF, and so
on; the branch instructions, such as Jnz, should be transformed to the se-
lection of PC based on some registers’ value; the complex instructions, such
as bsf (Bit Scan Forward) that searches the source operand for the least
significant set bit, and rep movsd that copies data from source to destina-
tion until ecx == 0 from x-86 ISA, should be expressed by the combination
of simple arithmetic instructions. Thus, the constraints expressed in simple
meta arithmetic instructions can be mapped to the SMT solver smoothly.
Additionally, this can also simplify the symbolic execution.

– Each instruction operation of the MetaISA should be bit-precision. This
requires how each bit of each variable of the left-hand side (LHS) of a meta
instruction is computed from every bit of the right-hand side (RHS) must
be precisely expressed. This is because the SMT solver, used to generate
a new input excising to a different control path based on the gathering
constraints, adopts bit-vector theory that demands all constraints expressed
as bit-precision .

– The design for MetaISA should consider its effect on performance and mem-
ory consuming of ReTBLDTG. In 32-bit x86 ISA, for example, most instruc-
tions operate on 32-bit data and only a few, such as mul, div and mod, gen-
erated 64-bit medium data. When 32-bit x86 ISA is mapped to MetaISA, it
is easy to map all operands to 64-bit registers. However, when ReTBLDTG
deals with very large real applications with millions of instructions, the to-
tal memory requirement of symbolic execution, constraint collection and
constraint solver would be huge. However, if all 32-bit x86 instructions are
mapped to meta instructions operating on 32-bit registers, the total memory
requirement can be reduced to nearly half, and improve the efficiency of the
SMT solver.

To mask the difference of the OSes, the execution trace of the target program
should be under the OSes or over the naked CPU. Otherwise, the identification of
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the process and its thread must call the OS API. Fortunately, running the target
program on the whole system simulator is a good choice to address the above
problem: on the one hand, the registers and hardware events can be monitored
over the whole system virtual machine, without any help of OSes; on the other
hand, the whole system virtual machine can execute the target program over
the guest OS with quite fast and acceptable speed compared with the time-
consuming constraint collection and solver.

ReTBLDTG is based on the whole system virtual machine Simics but is not
dependent on it. The whole system virtual machine provides OS-independent and
fast concrete execution of the target program. And which thread the executing
instruction belongs to is OS-independently identified by analyzing the registers’
value and hardware events over the virtual machine. Thus, the execution trace
is recorded, without knowing the internal structure of guest OS.

The main contributions of this paper are as follows.

– We design a meta ISA;
– We present a method to online identify the process;
– We present, for the fist time to the best of our knowledge, a method to online

identify the thread;
– We build, for the first time, a new binary-level dynamic test generation

technique and a tool, ReTBLDTG, that can find bugs from binaries for any
ISA over any OSes, based on a whole system virtual machine;

– We have retargeted ReTBLDTG to 32-bit x86, PowerPC and Sparc ISAs by
now;

– We have retargeted ReTBLDTG for the Linux and Windows binaries by now;
– Our ReTBLDTG efficiently found the bugs from the Linux and Windows the

binaries for 32-bit x86, PowerPC and Sparc ISAs.

The rest of this paper is organized as follows. The ReTBLDTG system architec-
ture is given in Section 2. Section 3 identifies the process and its thread of the
running target program based on the execution of virtual machine. In Section
4, we show how MetaISA is designed in order to make ReTBLDTG architecture-
independent. Our experiments and performance evaluation appear in Section 5.
The related work is discussed in Section 6 and we conclude in Section 7.

2 The ReTBLDTG System Architecture

As shown in Figure 1, ReTBLDTG is built around four levels of abstraction
to make it architecture- and OS-independent. Presently, ReTBLDTG consists
of 208KLOC with 0.6% in the Virtual Execution Layer (VEL), 5.0% in the
Process/Thread Identification Layer (PTIL), 1% in the MetaISA Layer (ML)
and 94% in the Constraint Analysis Layer (CAL). We describe each layer only
briefly in the rest of this section and focus mostly on introducing how PTIL as
well as VEL make CAL OS-independent in Section 3, and how ML makes CAL
ISA-independent in Section 4.



202 G. Li et al.

CPU
Memory Netcard

Constraint
Analysis Layer

(Symbolic Execution)

Virtual
Execution Layer

(Concrete Execution)

Process/Thread 
Identification Layer

Generic Process/Thread Tracker

ISA Dependent Decoder(x86)
Meta Instruction Mapper

Symbolic Execution

Constraint Collection

 SMT Solver

Test Case 
Database

ISA-Dependent Decoder
MetaISA Layer

Virtual Machine 

Fig. 1. ReTBLDTG system architecture

2.1 Virtual Execution Layer

VEL is essentially a virtual machine (VM) or a whole system emulator like
VMware, Simics or QEMU. Presently, ReTBLDTG is based on Simics but is not
dependent on it. VEL provides OS-independent and fast concrete execution of
an application.

As a VM, ReTBLDTG is equipped with the capability of analyzing applica-
tions that are time-sensitive or protected by anti-debugging techniques. ReT-
BLDTG can freeze the entire system, including the clock when performing time-
consuming tasks like points-to analysis at a higher layer. As a result, the OS
and the application are not even aware of the elapse of the time. Furthermore,
all test cases can be restarted from exactly the same system state.

2.2 Process/Thread Identification Layer

PTIL distinguishes different processes and segments the instructions flowing
through the CPU in the same process into different instruction sequences be-
longing to different threads. This is necessary since different threads in a process
should have their own sets of registers associated with them.

The principle behind PTIL is based on some hardware events, independent
of the OS. For example, in x86 ISA, process switching is recognized by listening
to the CR3-Changed-Event as in [8]. Thread identification appears to be novel
(to the best of our knowledge). Thread starting or stopping is recognized by
identifying a thread using its stack pointer (ESP) and by monitoring the CPU
privilege level transitions between Ring0 and Ring3. These ideas generalize to
other architectures.

2.3 The Meta Instruction Set Architecture

One key motivation for introducing a MetaISA is to make CAL ISA-independent.
Another is to facilitate our symbolic execution, constraint collection and con-
straint solver on a simple and uniform MetaISA. The entire CAL layer represents
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over 94% of our code base. Thanks to MetaISA, CAL is now retargetable. To
port ReTBLDTG to a new CPU platform, we only need to implement a new
decoder and an ISA mapper for it.

2.4 Constraint Analysis Layer

As shown in Figure 1, CAL is responsible for performing symbolic execution,
constraint collection and constraint solver. This layer focuses on a process being
analyzed and ignores the instruction sequences from the other processes and the
OS kernel, which is made possible by the PTIL layer below. This layer represents
over 94% of our code base and performs the most time-consuming tasks of our
ReTBLDTG as evaluated in Section 5. Our CAL is like the of SAGE. Refer to [7]
for more details.

3 Making CAL OS-Indepedent

The VEL and PITL work together to make CAL OS-independent. The VEL
in ReTBLDTG has two tasks that: 1. VEL fast executes the instruction flow,
mixed by guest operating system and destination application; 2. it also submits
the specific hardware events like Page Table Switch (In x86, it is CR3-Changed-
Event) and CPU Privilege Switch events and allows PTIL to listen to. Based on
these hardware events, PTIL splits the single instruction sequence, flowing CPU,
into instruction sequences belonging to different threads of the target process.

It is a meticulous consideration that ReTBLDTG adopts a whole system vir-
tual machine based online approach, instead of an instrumentation as existing
dynamic test generation systems. Thus, ReTBLDTG has more flexibility, inde-
pendent on any specific OS. As discussed before, the instrumentation tools, like
Valgrind and iDNA, strongly depend on the OS API. ReTBLDTG is based on
the virtual machine and can transparently monitor the registers and hardware
events of the virtual machine. Thus, ReTBLDTG records the execution trace by
analyzing the CPU behavior, without knowing the internal structure of guest
OS. Recording the execution trace will not be affected by the operating sys-
tem protection or application self-protection. The instrumentation tools, like
iDNA [2] and Valgrind, will be disturbed by the software protections, such as
Anti-Debug. These protections should not be removed during systemic test be-
cause these protections are also part of the software under test. VEL watches
the guest OS execution in the view of CPU. Thus, the target running program
cannot feel the existence of ReTBLDTG. Therefore, VEL can not be disturbed
by software self-protection. ReTBLDTG can effectively process the time-sensitive
applications, particularly network applications. For time-sensitive applications,
like network applications, the time-pause caused by CAL may lead a timeout for
receiving/sending a packet. When ReTBLDTG does time-consuming task, such
as constraint collection and solver, ReTBLDTG freeze the whole system clock,
without the guest OS and target program aware of it. But the existing dynamic
test generation tools, based on instrumentation tools, can not correctly process
time-sensitive applications.
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Fig. 2. A case showing that the thread switch interferes with the symbolic execution

The PTIL, as shown in Figure 1, precisely OS-independently tracks the target
process and its threads. It dynamically filters the instructions flowing through
CPU and segments them into different instruction sequences belonging to differ-
ent threads of processes, and ReTBLDTG binds each instance of thread trackers
to track the instruction sequence for each thread.

We must accurately identify each thread of the target process because each
thread has its own register space. As shown in Figure 2, when thread 1 is execut-
ing instruction 1, eax=input=0x100. Assuming that thread 1 switches to thread
2 before executing its next instruction. The concrete execution of the guest OS
has switched to the register context of thread 2 , with eax updated to 0x200,
before thread 2 runs. Because the symbolic execution of CAL is independent on
the concrete execution, the real register status, maintained by virtual machine,
must be kept for the following CAL analysis. Otherwise, when the instruction
mem [eax] = 0 is executed in thread 2, the symbolic execution will be diverged
from the concrete execution.

Identifying target process/thread. Segmenting the single instruction sequence
flowing through CPU into different instruction sequences, belonging to different
threads of each process, can accurately track each process and its threads.

Identifying the processes. Nowadays, according to the implementation of the
mainstream OSes, every process has its own page table, pointed by CR3 register
and used to isolate virtual address resource by MMU. When the CR3-Changed-
Event happens, we can identify that the process must be switched. In Figure 3,
the CR3 is changed to 0x1000, ReTBLDTG looks at the new value of CR3 as the
PID of the switched-in process.

Identifying the threads. We can find that every process-switch event must hap-
pen in the CPU privilege level of Ring0. After the privilege level is dropped
to Ring3, the instruction sequence to be executed must belong to one of the
current process’s threads. Generally, the stack pointer (ESP) can be used to ef-
fectively distinguish and identify the threads of the same process because each
thread has its own stack. Different from the CR3 register, ESP is changed along
with the execution of the current thread. ReTBLDTG records the value of ESP
into the thread ID (TID) list when the CPU privilege level raised to Ring0; and
ReTBLDTG checks whether the current ESP has been recorded in the TID list
when the CPU privilege level drops to Ring3 in the same process. If yes, ReT-
BLDTG appends the instruction sequence to be executed before next switching
to the execution trace of the found thread; otherwise, ReTBLDTG identifies a
new thread.
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Fig. 3. Tracking generic process/thread

Figure 3 describes how to track generic threads. When the CPU privilege goes
to Ring3 in the process 0x1000 for the first time, ReTBLDTG identifies that
T1 is the current thread. The instruction sequence from T1 Start to T1 End
belongs to T1 . After T1 End, the CPU privilege rises to Ring0. Before entering
Ring0, ReTBLDTG reads 0x2000 from the current stack pointer (ESP), and
makes the value map to T1: 0x1000 �→T1. When CPU returns to Ring 3 in the
same process, ReTBLDTG examines whether the value of ESP has been mapped.
In this case, the current ESP equal to 0x9000, there is no thread mapped to
0x9000. ReTBLDTGjustifies the current thread is not T1, and identifies it as T2.

4 Making CAL ISA-Independent

One key motivation for introducing a MetaISA is to make CAL ISA-independent.
Another is to facilitate our symbolic execution, constraint collection and con-
straint solver on a simple and uniform MetaISA. The entire CAL layer represents
over 94% of our code base. Thanks to MetaISA, CAL is now retargetable. To
port ReTBLDTG to a new CPU platform, we only need to implement a new
decoder and an ISA mapper for it.

As shown in Table 1, MetaISA adopts the little endian format and defines
four types of registers with 128 non-aliased and interchangeable registers in each
category. Our meta instructions are specified using the Semantic Specification
Language (SSL) [13].

To facilitate the constraint collection, MetaISA has the following features.

Every meta instruction is a bit-precision assignment and the bit-width
of RHS and LHS of a meta instruction is equal. In dynamic test gener-
ation systems, the conditional constraints are first collected from the symbolic
execution, and then the constraints in meta instructions are transformed into
logic conditional constraints and putted into the SMT solver. Therefore, the
constraints in meta assignment instructions can be smoothly transformed into
the logic == constraints. At the same time, bit-precision assignment instructions
can precisely depicts how the left variable is computed from the right variables.
Thus, the derived logic constraints can bit-precisely show how the collected con-
straints are affected by the input or medium variables. Additionally, SMT solver,
used to generate a new input excising to a different control path based on the
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Table 1. Meta Instruction Set Architecture

Endian Little endian
32bits Regs R0,R1,. . . ,R100

64bits Regs A0,A1,. . . ,A100

80bits Float Regs F0,F1,. . . ,F100

128bits Float Regs X0,X1,. . . ,X100

Instuctions i Reg = f(Reg,mem [g(Reg)])
mem [g1(Reg)] = f(Reg,mem [g2(Reg)])

Operands v Reg, Imm, mem8,16,32,64 [g(Reg)]
Operations �t exact,sigext,zeroext,(. . . ) ? (. . . ):(. . . )

�b +,-,*,/,⊕,&,—,<<,>>,==,<,≤
�s ¬

gathered constraints, adopts bit-vector theory which demands all constraints ex-
pressed as bit-precision.

Every flag bit is defined as a register. Because input constraints are gath-
ered from conditional statements encountered along the way, the branch in-
struction and the condition instruction pair should be recognized. The existing
binary-level dynamic test generation tools, such as SAGE [7], search the most re-
cent conditional instruction when meeting a branch instruction, in order to find
the pair. However, compilation optimization of prefetching might insert a block
of instructions between the pair [1], which makes it not an easy thing to recog-
nize the branch instruction and the condition instruction pair. In our MetaISA,
we define each flag bit, including ZF (Zero Flag), OF (Overflow Flag), CF (Carry
Flag), and so on, as a register, called FLAG REG, and assign conditional con-
straints to corresponding FLAG REGs. Thus, how conditional instructions change
the flag bit is kept in these registers. Searching the FLAG REGs we can get how
the conditional constraints are affected from input or medium variables when
meeting a branch instruction.

All general-purpose registers are non-aliased. If some register bits have
alias, which causes two register identifiers point to the same register bits, it brings
difficulty to the analysis, collection and solver of the conditional constraints.
Therefore, it is a smart choice that the registers in the MetaISA are independent
without any alias. And skillful work should be done for the CPU ISA that has
aliased register bits.

All registers have the same width. Some source binary instructions, such as
mul, div and mod, may involve registers of double-size. For example, the registers,
used to hold the result of a 32-bit integer multiplied by a 32-bit integer, is of 64-bit
width. And in 32-bit x86 ISA, the lower 32 bits of the result are kept in the destina-
tion register as the multiplication result; the higher 32 bits is used to compute the
Carry Flag (CF) and Overflow Flag(OF), according to whether the multiplication
operation is overflow or not. As discussed before, registers of the MetaISA with
large width might bring about bad performance for SMT solver and huge memory
requirement. Therefore, in our MetaISA, all instructions operate on the data with
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the same width and all registers have the same bit-width. For the instructions in-
volved with double-size registers, we use exact, sigext or zeroext operation to
extend the intermediate results to necessary size.

Table 2 lists the map of imul and idiv, the representative instructions in-
volved with the results of double-size, to our MetaISA.

Table 2. Mapping the instructions imul and idiv to our MetaISA

Ins. Map to our MetaISA 

imul ebx,edi tmp1 := ebx   ebx := edi *! tmp1   CF := (((zeroext(edi,32,64) *! zeroext(tmp1,32,64)) == zeroext(ebx,32,64)) ? 0x0 : 0x1)[31:0] & 0x1   OF := (((zeroext(edi,32,64) *! zeroext(tmp1,32,64)) == zeroext(ebx,32,64)) ? 0x0 : 0x1)[31:0] & 0x1   idiv ecx tmp1 := eax   eax := (((zeroext(edx,32,64) << 0x20) | zeroext(tmp1,32,64)) /! zeroext(ecx,32,64))[31:0]  edx := (((zeroext(edx,32,64) << 0x20) | zeroext(tmp1,32,64)) %! zeroext(ecx,32,64))[31:0]   
 

5 Experimental Evaluation and Results

We have implemented our ReTBLDTG system in 208KLOC (Kilo Lines Of Code).
And in order to demonstrate the effectiveness of our new approach on decoupling
binary-level dynamic test generation from specific architecture details, we have
retargeted ReTBLDTG to three different architectures, including 32-bit x86 ISA,
PowerPC ISA and Sparc ISA by now. 32-bit x86 ISA falls into CISC; while
PowerPC ISA and Sparc ISA belong to RISC.

We first demonstrate the importance of our ReTBLDTG on decoupling binary-
level dynamic test generation from specific architecture details. Table 3 shows
the workload for retargeting our ReTBLDTG to a new ISA, quantified with the
number of LOC of the MetaISA Layer for each ISA. To retarget our ReTBLDTG
to 32-bt x86 ISA, 2483 LOC are needed; to PowerPC ISA, 647 LOC are needed;
and to Sparc ISA, 835 LOC are needed. Because 32-bt x86 ISA is CISC, a lot
of work is needed for the complex instructions. At the same time, compared
with the other two ISAs, 32-bt x86 ISA has more instructions. PowerPC ISA
and Sparc ISA both belong to RISC. Sparc ISA has more instructions, and
retargeting our ReTBLDTG to Sparc ISA needs more work.

The column%RetargetOverheads equals #LOCRetargeted/ #LOCReTBLDTG×
100%, where #LOCRetargeted is the number of LOC for retargeting our ReTBLDTG
to a ISA and #LOCReTBLDTG × 100% is the total number of LOC for building
ReTBLDTG, nearly equal to 208K. This column demonstrates the easiness to re-
target our binary-level dynamic test generation tool, ReTBLDTG, to a new ISA.

Table 3. Overheads for retargeting our ReTBLDTG to 32-bit x86 ISA, PowerPC ISA
and Sparc ISA

ISA #LOC Retarget Overheads32-bit X86 2483 1.19% PowerPC 647 0.30% Sparc 835 0.40% 
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Only 1.19% of the system has to be rewritten when our system is retargeted to the
32-bit x86 ISA, the most complex ISA of them. However, without the MetaISA,
nearly the whole system has to be revised or rewritten. Therefore, our ReTBLDTG
can be easily retargeted to any ISA with only a few overheads.

We then demonstrate the effectiveness of our new approach for hunting fatal
bugs in benchmark and real-application binaries (without knowing their symbol
tables). They are binaries for x86, PowerPC and Sparc ISA respectively and
tested over Linux, Windows Vista and Windows Vista.

We show that ReTBLDTG can find 6 classic known bugs and we analyze the
performance of ReTBLDTG. All experiments are carried out on an Intel 3.0 GHZ
E8400 host PC running 32-bit Windows Vista with 4GB RAM. The VEL (i.e.
virtual machine layer) of ReTBLDTG is an essentially wrapper for Simics 3.0.31,
a high performance full-system simulator.

Table 4 shows the 6 benchmarks, Apache1, Apache2, OpenSER, MADWiFi,
ANI and OldWINS. They are known to have one bug each. The first four small
benchmarks are selected from the Verisec Security Benchmark suite [9] represent-
ing four different common scenarios causing buffer overflow errors. The binaries
of Apache1 and Apache2 for PowerPC ISA are tested over Linux2.6; and the bi-
naries of OpenSER and MADWiFi for Sparc ISA are tested over Linux2.6. The last
two are real applications with one known security bug each, MS07-017 for the
animated icons (ANI) parser in user32.dll of Windows Vista and MS04-045
in WINS Service in Windows 2000. The binaries of these two applications for
32-bit x86 ISA are tested over Windows Vista and Windows 2000, respectively.

ReTBLDTG has succeeded in finding all 6 known bugs in the six benchmarks.
The results show that our ReTBLDTG can effectively find bugs for any ISAs over
any OSes.

Table 5 gives the performance data for these applications. The first two rows
show the generated and executed test cases. Only 3 to 1487 test cases are ex-
ecuted to find all these bugs. The third row gives the time for our ReTBLDTG

Table 4. Benchmarks. IoF stands for Integer Overflow and BoF stands for Buffer
Overflow.

 Benchmark ISA OS Bug Type
Verisec 
Security 

Benchmark 
Suite 

Apache1: Apache-CVE-200-4 0940 (Full_Ptr_Bad) PPC Linux2.6 BoF by an Infinite Loop
Apache2: Apache-CVE-2006-3747 Iter2 prefixLong_ptr_bad PPC Linux2.6 Off-by-One

OpenSER: OpenSER-CVE-2006-6749 (Complete_Bad) Sparc Linux2.6 Lack of Bounds Checking 
MADWiFi: MADWiFi-CVE-2006-6332e (Ncode_Ie) Sparc Linux2.6 Unchecked Bounds in sprintf 

Large Real 
Apps 

ANI: User32.dll-MS-07-017 X86 Windows Vista Failure to Validate Parameter 
OldWINS: WINS with MS04-045 X86 Windows 2000 Using Input as Pointer 

 
Table 5. Performance results of the benchmarks

 Verisec Security Benchmark Large Real Apps 
Apache1 Apache2 OpenSER MADWiFi ANI OldWINS#Generated Test Cases 476 192 2125 5 797 807 #Executed Test Cases 131 192 1487 3 82 4 Total Time 4m12s 4m40s 29m47s 3m6s 2h3m29s 2m18s Symbolic Execution 1m15s 16s 18s 1m35s 1m12s 5s Concrete Execution 21s 46s 11m8s <1s 7s <1s Constraint Solving 1m35s 2m27s 14m53s 55s 1h26m10s 1m32s MetaISA Decoding 35s 46s 12s 1s 5m28s 8s Test Case Database 26s 23s 3m18s 33s 32m32s 14s 
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to find the bugs. It only takes from 2m18 to 2h3m29s for our ReTBLDTG to
find the bugs. The last five rows list the time distribution, which shows that
our ReTBLDTG spends most time on symbolic execution, constraint collection
and constraint solver. Our ReTBLDTG makes these time-consuming tasks ISA-
and OS-independent, thus making dynamic test generation approaches efficiently
find bugs from binaries for any ISAs over any OSes with only a few overheads.

6 Related Work

We refrain from discussing a large body of work done on static analysis, program
verification, fuzz testing [5], dynamic taint analysis and model checking since
good reviews are available in [6, 3, 14, 4, 7, 12, 10]. Instead, we focus mainly on a
few techniques that are closely related to our work and that can also be used to
test pre-release software in binary code.

Systematic dynamic test generation is becoming increasingly popular because
it can find bugs by automatically generating test cases without false positives.
DART [6], EXE [3], CUTE [14] and KLEE [4] are a few representatives. By
operating on the source code only, these tools do not reason well about bugs that
depend on, for example, heap layout at runtime. They represent tainted arrays
symbolically (rather than with real addresses) and handle only some limited form
of tainted pointers (e.g., scalar pointers only). Our ReTBLDTG has the similar
working mechanism as them. But these techniques do not pay their attention to
find bugs in binaries, but source code.

SAGE [7] is a dynamic test generation tool that works on Windows binaries.
Research group from Berkeley [11] also works hard on finding integer bugs.
However, they can only find a specific OS binaries for a specific ISA. And it
is a hard and time-consuming work to retarget their techniques to other OSes
or ISAs.

7 Conclusion

In this paper, we have introduced the problem of decoupling dynamic test gener-
ation from specific architecture and operating system details. We have presented
a new binary-level dynamic test generation technique and a tool, ReTBLDTG.
ReTBLDTG is based on the whole system virtual machine that provides OS-
independent and fast concrete execution of the target program. And the execu-
tion trace is recorded, even without knowing the internal structure of guest OSes.
We also design the MetaISA and map the execution trace to the MetaISA, thus
making ReTBLDTG ISA-independent. We have implemented our ReTBLDTG,
retargeted it to 32-bit x86, PowerPC, Sparc ISAs and Linux, Windows Vista,
Windows Vista OSes, and used it to automatically find the six known bugs in
the six benchmarks. Our results indicate that our ReTBLDTG can be easily re-
targeted to any ISA with only a few overheads and operate on any OSes; and
ReTBLDTG can effectively expose bugs located deep within large applications
for any ISAs over any OSes.
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