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Abstract. One of the most important objectives within the scope of current
cartography is the creation of system controlling the process of geographical
data generalisation. Firstly, it requires selection of the features crucial from the
point of view of the decision making process. Such tools as reducts and fuzzy
reducts, though useful, are still insufficient for the quantitative decisions,
common in cartographical generalization. Thus the author proposed a modifi-
cation in fuzzy reducts calculating, which can allow to calculate them with
regard to a continuous decision variable. The proposed method is based on the t-
norm of fuzzy indiscernibility based on attribute value and fuzzy indiscernibility
based on decision, which is calculated for each pair of objects. The solution
seems to be more intuitive than the ones established previously.
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1 Introduction

One of the most important challenges of modern cartography is the automation of the
geographical information generalisation processes [1, 4, 9, 10]. It requires acquisition
of data’s crucial information, general patterns, and tendencies and their subsequent
retaining on the lower levels of detail (LoD), which corresponds to lower map scales.
This task up to now has been tackled manually by the skilled cartographers and it
seems to be difficult to algorithmize. Even though there is an array of algorithms of
generalisation, which address particular generalisation operators (such as: objects
selection, simplification, smoothing, aggregation, amplification, etc.), what still poses
the problem is the control of the entire process of generalisation – starting from the
decision, “whether to generalise at all’’, through the choice of the appropriate operator
and algorithm, up to the final selection of parameters of the latter [1, 4, 9, 10].

The facts described above point to the conclusion that, apart from the particular
tools employed in the process of generalisation, the decision-making system is required
in order to manage the operations on many different levels. Such system should possess
and utilise the skilled cartographer’s knowledge. However, such skills usually result
from years of practice and experience along with refined aesthetic taste, and therefore
they are not available explicitly. Taking the above into consideration, according to the
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author, the methods of knowledge data discovery (KDD) might be used to convert this
hidden knowledge into an explicit form [5, 10].

Therefore the author’s ultimate aim is to create a base of fuzzy rules governing the
process of generalisation. The step prior to that, then, will be to choose the features
crucial for the process of generalisation itself, which will lead to simplification of the
decision system. The following paper addresses the problem of attribute choice meth-
odology (using the reducts) which takes into consideration the specific data features.
While in the previous work [10] the classical rough set approach for categorical data was
used, this paper focuses on the problem of numeric feature selection based on numeric
decisions – it discusses and provides some new extensions for fuzzy rough set (FRST)
approach. The rough set approaches are chosen for the feature selection as they are
easily understandable and give good intuition about why certain attribute is selected.

2 Data Specifics

The currently developed geospatial databases provide an array of information - in the
form of attributes (projected in database structure), as well as more implicit features
(connected with objects’ geometry and their topography) - which can be used in the
process of generalisation of geographical information. In that way the data is specified
by a number of attributes that can potentially be used in the further generalisation
process management.

What is worth emphasising, is the fact that the attributes can be expressed in
different measurement scales: qualitative (ranging from binary scale, through classi-
fying scale, to ordinal scale) as well as quantitative. Thus, the decision attribute can
also be represented in different measurement scales.

In this article selection generalisation operator is considered, with decision
expressed in two measurement scales (Table 1):

1. Binary – for the systems created on one particular data level of detail (corre-
sponding with the scale 1:20 000): 1 - the object is selected, 0 - object is not
selected;

2. Quantitative – for the system with universal character allowing to choose objects on
any map scale (within assumed range) – the attribute’s value is a corresponding
scale denominator.

However, the second above is strongly preferred. Firstly it does not require designing
separate systems for each of the desired scales. In the past, when analogue maps
prevailed, it was possible to distinguish the scales in which the data were to be gen-
erated (they corresponded to the scales in which the maps were printed). However,
nowadays most maps are accessible interactively via the Internet and the end user can
choose any scale, thus the generalisation to all levels of detail is useful.

The test dataset corresponds to the topographical data collected at the 1:10 0000
level of detail, which is available for the whole Poland’s area in National Carto-
graphical Database (pl. Państwowy Zasób Kartograficzny) and known as BDOT10 k
(pl. Baza Danych Obiektów Topograficznych - Topographical Objects Database).
However the data are strongly simplified (Fig. 1).

Fuzzy Rough Sets Theory Reducts for Quantitative Decisions 315



Table 1. Attributes values of test dataset (buildings): a1 – building function (r – residential, o –

office, s – shops & services, g – religious), a2 – public function (1 – yes, 0 – no), a3 – area (in
square meters), a4 – shortest distance to the river, a5 – shortest distance to the road, a6 – shortest
distance to another building, a7 – shortest distance to the forest, a8 – shortest distance to built-up
area; attributes a3 to a8 are calculated basing on objects geometry, a4 to a8 are expressed in
meters; decision attributes (established by an expert) in different scales: dec1 – quantitative scale,
dec2 – binary scale (for the LoD 1: 20 000 – dec2 = 1 for dec1 ≥ 20 000)

ID a1 a2 a3 a4 a5 a6 a7 a8 dec1 dec2
1 r 0 101 304 35 43 126 0 0 15000
2 r 0 149 275 33 43 156 0 0 15000
3 r 0 93 252 37 41 200 0 0 15000
4 r 0 284 222 40 41 238 0 0 15000
8 r 0 892 216 124 76 212 0 0 17000
5 g 1 1721 32 53 420 537 0 1 50000
6 s 0 796 114 26 26 327 0 1 25000
7 s 0 585 122 26 26 321 0 1 25000
9 s 1 5174 70 94 143 234 0 1 40000
10 o 1 2840 69 54 95 140 0 1 35000
11 o 0 2015 19 19 46 394 0 1 27000
12 r 0 130 855 327 581 20 542 1 23000

Fig. 1. Graphical representation of test dataset (numbered buildings) with other objects assuring
spatial context: forests, roads, river, built-up area
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3 Rough Set Based Feature Selection

3.1 Rough Sets

The rough sets theory allows to reduce the complexity of a system by searching of
reduct B – the subset of the entire attribute A set [6–8, 11]. The following search is
based on the discernibility relation, which can be defined as:

RB ¼ x; yð Þ 2 X2 and 8a 2 Bð Þða xð Þ ¼ a yð ÞÞ
� �

The so called decision reduct ensure the preservation of the original discernibility
towards the decision: If the objects from different decision classes are discernible on the
attribute set A, they are also discernible on its subset B 2 A, being a reduct. The reduct
has a minimal character, which means that none of the reduct’s attributes can be
omitted without losing of discernibility mentioned above [6–8].

The approach described is connected with particular constraint: attributes as well as
the decisions should be expressed in the classification (not orderly) scale. Other ways, a
discretisation is required, what entails a partial loss of information (including e.g. the
order of distinguished classes).

One of the extensions for this approach considers graded indiscernibility between
objects. Thus, the classes of attributes can be more or less similar to each other [8].
Established dissimilarities between attribute classes – degrees of discernibility can be
expressed in the form of a matrix (example – Table 2).

3.2 Dominance-Based Rough Set Approach

The dominance based rough set (DBRS) approach, which is an extention of rough set
theory, enables, without the loss of information, the use of attributes as well as deci-
sions expressed in the ordinal scale. The theory postulates the apporoximation (and
consequently reducts’ calculation) for the union of the subsequent decision classes. The
theory is insufficient, however, in the case of the attributes expressed in quantitative
scales, as it indeed assumes the monotonous relation between the attributes, but does
not establish the distance between the subsequent classes [3].

3.3 Fuzzy Rough Sets

The hybrid of the fuzzy sets theory and rough sets theory, enabling to create fuzzy
reducts, employs the attributes in quantitative scale. The discernibility relation based on

Table 2. Different discernibility degrees for classes of attribute a1

a1 r s o g

r 0 0.8 1 1
s 0.8 0 0.5 1
o 1 0.5 0 1
g 1 1 1 0
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the equality of the attributes was replaced with the measure expressing the closeness of
the objects represented by a fuzzy discernibility relation R [2, 11, 12].

The discernibility matrix then, existing also in the traditional fuzzy sets theory, is
filed with the measure of closeness (based on each attribute) for each pair of objects
with different decision value. In this paper the value of the fuzzy indiscernibility is
calculated as follows:

Ra x; yð Þ ¼ ja xð Þ � a yð Þj
lðaÞ ð1Þ

Subsequently, on the basis of the discernibility matrix quality of the reduct can be
calculated by finding best fuzzy discernibility Rb for each pair of objects and finding
its’ minimal value out of all pairs (instead of max any co-norm ⊥ can be used):

qðBÞ ¼ min max Rb2Bð Þð Þ ð2Þ

This approach is based on the original RST assumption that each reduct is as good
as its weakest component, meaning it is as good as the least discernible pair of objects
belonging to separate decision classes. Therefore, in the original approach minimum
operator is used, however some authors find it overly restrictive and allow the use of an
average instead [2]:

qðBÞ ¼ mean max Rb2Bð Þð Þ ð3Þ

Such approach was used in the following work. The quality qðBÞ can be then
compared with the quality of the whole attribute set A (where ε is the acceptable
tolerance of the quality loose) [2]:

qðBÞ� ð1� eÞqðAÞ ð4Þ

Another approaches for reduct evaluation is to punish pairs of objects (x, y) which
belong to different decision classes but are nearly indiscernible using reduct’s attri-
butes. It can be expressed as [12]:

PB ¼ T b2Bð1� Rb x; yð ÞÞ ð5Þ

The FRST approaches are the first enabling the calculation of the reducts for the
data presented at the beginning, without discretization. It is possible, however, to
establish only the reduct for the first variant (1) – binary decision scale.
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4 Fuzzy Rough Reducts for Quantitative Decision

4.1 Adaptations of Existing FRST Methods

Few among the authors directly address the problem of reducts for the decisions in the
quantitative scale (dec2), however some of the solutions form Sect. 3.3 can be adapted
for this case.

In the formula (2) or (3) similarity of objects by decision can be added (now all the
objects’ pair are compared):

qðBÞ ¼ mean max Rb2B; 1� Rdecð Þð Þ ð6Þ

However, this solution disadvantage is that it promotes too much the pairs of
objects which are indiscernible according to the decision (Rdec ≅ 0) which is in fact not
interesting when looking for decisive reducts.

Also formula (5) can be adapted by adding fuzzy indiscernibility relation to the t-
norm [12]:

T ðPB;RdecÞ ð7Þ

The final punishment is calculated as a sum:

Sim d=Bð Þ ¼
X

x;y:d xð Þ6¼d yð Þb2B
Rdec

Y
b2B

ð1� RbÞ ð8Þ

The disadvantage of this approach (formulas 7 and 8) is that it does not seem
intuitive as it includes indiscernibility by decision for data already aggregated by t-norm.

4.2 Proposed Solutions

The proposed solution intends to be more intuitive for non-mathematical expert. It is
based on the necessity to establish the value of the relative relation Ra_rel considering
the objects’ relation R both on attribute (Ra) and decision (Rdec). Therefore, it is
proposed to calculate the relative tolerance relation for each pair of objects as a t-norm
of Ra and Rdec:

Ra rel ¼ T Ra;Rdecð Þ ð9Þ

The most interesting from the point of view of applications described in intro-
duction, seem to be such t-norms as:

1. product(Ra, Rdec)

2. Hamacher product(Ra, Rdec): TH0 a; bð Þ ¼ 0 if a ¼ b ¼ 0
ab

aþb�ab otherwise

�

3. min(Ra, Rdec)
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The further proceedings are identical as in the classic FRST method, though all pos-
sible pairs of objects are compiled and Rb_rel is used instead of Rb:

qðBÞ ¼ mean max Ra rel ðb2BÞ
� �� �

ð10Þ

Such an approach allows to follow the significance of each attribute (in relation to
the decision) for each pair of objects. This can be valuable from the point of view of
expert using decision system as it allows to intuitionally understand the importance of
attributes.

5 Experiments on Test Data

5.1 Some General Assumptions

The calculation of fuzzy discernibility indicator Ra for the pair of objects depends on
the scale in which the attribute a was depicted. Therefore:

• For the attribute a2 (expressed in binary scale) the classical discernibility approach,
based on the equivalence relation was employed,

• For the attribute a1 (expressed in the classifying scale) similarity matrix was
employed (Table 2),

• For the attributes a3 to a8 (in quantitative scale) tolerance relation R basing on
formula (1) was employed.

Due to the specificity of the described problem establishing of all possible reducts of
the set was not necessary. In practice, for the purpose of the further application only 1,
sometimes few, reducts will be used. The accessibility to the attributes necessary for the
calculation is usually high as they are available in the databases either as the descriptive
attributes designed in database structure, or are easy to calculate on the basis of objects
geometry. Therefore, the reducts were calculated with Johannson’s heuristic. It operates
as follows: every time such attribute is added to the reduct, which results in the biggest
increase of the quality q (understood as in formula 3). This steps may be repeated until:

• Obtaining the quality q fulfils the condition (4) assumed by the user or
• The point when adding another attributes results in the increase of quality q lower

then estabilished Dq.

In this work the second method (with Dq ¼ 0:02) was employed, due to the necessity
of maintaining a low system complexity (and consequently not overly numerous re-
ducts), if its higher complexity did not increase the overall quality significantly.

Similarly, the other reducts can be calculated (starting from the subsequent attri-
bute), however this work limited itself to only 1 reduct in each example.
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5.2 Fuzzy Reducts for Binary Decision

Determination of the reduct started with combining the objects belonging to different
decision classes (dec1) into pairs and calculating the discernibility matrix of relations R
(according to the rules described in Sect. 5.1). Then the consecutive elements of the
reduct were established with use of greedy heuristic basing on the q value – Table 3.

Consequently reduct {a1, a2, a8} have been established. Adding another attribute
would not increase the quality of the reduct so no other attribute was added. What is
worth mentioning is the high quality of the decision reduct, as the ability to distinguish
the object with different decisions, is high.

5.3 Fuzzy Reducts for Quantitative Decisions

First the method using formula 6 was used. Results of following steps are presented in
Table 4. One of the possible decision reduct is exactly the same that the one described
in Sect. 5.2, although it allows to distinguish a number of object types. However
accuracies seem to be over-optimistic since the goal was to distinguish between more
exact decisions and the qualities here are higher than for the binary decision.

The next step was to test the method proposed in Sect. 4.2. In this case all possible
pairs of objects were juxtaposed. For each of them Ra, Rdec1 and Ra_rel were calculated
(in two variants: with use of T-norm product and Hamacher product). Then the quality

Table 3. Subsequent steps of fuzzy reduct creation for the binary decision, including the
corresponding reducts qualities (the fields with the highest accuracy are highlighted, while the
elements added to the reduct are in bold)

Table 4. Subsequent steps of fuzzy reduct creation for the quantitative decision, including the
corresponding qualities (highlights as in Table 3); the method used: according to the formula 6
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based on Ra_rel was calculated for particular attributes – the subsequent steps of the
heuristics are illustrated in the tables below (Tables 5 and 6).

The methods results in the same reducts as the previous ones, irrespectively which
of the t-norm is used. What is more, even though qualities values differ depending on
the used t-norm (and differ even more form the corresponding ones in Table 4), there
seem to be noticeable tendencies in its distribution over the attributes.

In the next stage, in order to test the universality of the method, the same steps were
taken, though in this case on binary decision (dec1) – Table 7. In this case the results,
irrespective of the chosen t-norm, were alike (Rdec 2 0; 1f g, so all t-norms have the
same value in the Rb function). It should be noted, that the result (calculated reduct) and

Table 5. Subsequent steps of fuzzy reduct creation for the quantitative decision, including the
corresponding qualities (highlights as in Table 3); the t-norm used: Rrel ¼ product Ra; Rdecð Þ

Table 6. Subsequent steps of fuzzy reduct creation for the quantitative decision, including the
corresponding qualities (highlights as in Table 3); the t-norm used: Rrel ¼ Hamacher
product Ra; Rdecð Þ

Table 7. Subsequent steps of fuzzy reduct creation for the quantitative decision (decision
artificially brought to the binary scale), including the corresponding accuracies (highlights as in
Table 3); the t-norm used: product and Hamacher product (results for both are identical)
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the relation between the qualities of particular reducts are identical to those calculated
with the classic method described in Sect. 5.2. The ratio of corresponding accuracies in
the Tables 3 and 7 equals c.a. 0.53, which reflects the proportion of the number of pairs
in different decision classes and the total number of pairs (35/66), or in other words the
average discernibility of all pair of objects towards the decision.

6 Conclusions

The work above addressed the problem of reduct calculation in the case of decisions in
quantitative scale. In the process a tolerance relation (Rrel), understood as t-norm of
tolerance relations of attribute (Ra) and decision (Rdec), was employed.

The conducted tests using the two types of t-norm – product and Hamacher product –
gave similar results, meaning they both allowed to achieve the same reducts irrespective
of differences in the quality value of the reduct. Generally the reducts’ qualities values
calculated with this method were lower than for binary decision, what seems justifiable
taking into consideration the necessity to distinguish the objects according to their
continuous decision value. They are also lower than the qualities calculated by one of the
existing methods (formula 6), however those qualities seem to be over-optimistic as they
grow unreasonably thanks to the objects having the same or similar decision values.

The methodology employed in the case of artificially binary decision allowed to
achieve the same reduct as it was the case in the original FRST method. However, even
though the relation of quality values between particular attributes were maintained the
absolute values of quality were different. It is a result of calculating the discernibility
relation for all pair of objects.

The tests indicate that proposed method can be applied in the process of general-
isation of geographical data mentioned above. However there is also a potential for
other application areas. Depending on the application type other t-norm for calculating
Rrel can be used.

The main advantage over the other method is that it is intuitionally understandable
and prevents black-box solution, allowing user to follow the importance of each
attribute on every single step of the reduct computation. Therefore the method can be
employed among others in the creation of the system of generalisation control, on the
first stage of its development – attribute selection.
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