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Abstract 
Binary Decision Diagrams are the state-of-the-art technique for many syn­
thesis, verification and testing problems in CAD for VLSI. Many efforts have 
been spent to optimize this representation but in many complex applications 
they still require large amounts of (working) memory and of CPU time. Vir­
tual memory is not a good solution to this problem because, if the working 
set size for a program is large and memory accesses are random, an extremely 
large number of page faults significantly modifies software performance. 

Within this frame one of the most important and general operations is 
symbolic generation of the states reachable by a Finite State Machine. This 
is the starting point for many verification tasks. 

This paper presents a new mechanism for alleviating the two previous 
drawbacks by: 1) Decomposing the global problem in sub-problems by a 
"divide-and-conqud' approach that reduces memory requirements and 2) 
Using a parallel implementation of the algorithms, as parallel architectures 
represent a natural environment to overcome these limitations. 

Partitioning techniques and granularity of parallel tasks are discussed as 
a major issue to obtain a viable and efficient solution. Experimental results 
show the feasibility of the approach. 

Keywords 
BDDs, FSMs, Reachability Analysis, Symbolic Breadth-First Traversals, Par­
allel Computing 

1 INTRODUCTION 

Efficient techniques for Boolean function manipulation are a key point in 
many areas, such as digital logic design and testing, artificial intelligence, 
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combinatorics. The efficiency of logic function manipulation depends on the 
data structure used for representing Boolean functions. The state-of-the-art 
approach to the problem is based on Binary Decision Diagrams (BDDs) [4]. 
A number of results have been published on this topic in recent years and 
BDDs are now used in several academic and commercial tools for digital 
circuit design, verification and testing. Most of these algorithms involve the 
exploration of state spaces of Finite State Machines (FSMs) 

FSMs are a popular model for control-dominated ASICs and are identified 
by their input/output alphabets, initial state sets and next state and output 
functions. The reachable state space of a FSM is identified by a jorwa1·d traver­
sal. Intuitively, a state is reachable if a sequence of inputs causes the FSM to 
evolve from any initial state to that state. The next state function determines 
evolution along time. The next states are the image, for all inputs, of the 
current state set according to the next state function. The process terminates 
as soon as a fixed-point is reached, i.e., no newly reached states are found. 

Although quite successful, symbolic methods cannot complete the reach­
ability analysis of large FSMs, because: 

- BDDs require too much memory: peak BDD size during image compu­
tation and the size of BDDs representing reached states are critical. The 
conventional BDD manipulation packages work on a "depth-first" basis 
and result in random access to memory, leading to a large number of page 
faults. Since a page access is of the order of tens of milliseconds, a large 
number of page faults increases the amount of time necessary to deal with 
the problem even though the time spent by the processor doing useful 
work is quite small. 

- Manipulating BDDs is computationally expensive. 

Several approaches have been proposed to solve these problems. Dynamic 
variable reordering [19] overcome many limitations but they can slow down 
an application by more than an order of magnitude and they are still insuf­
ficient for very complex manipulations. Ochi et al. [16] proposed a breadth­
first approach to regularize memory access, which leads to fewer page faults. 
Following this trend, Ashar et al. [2] presented an improved breadth-first al­
gorithm, which enabled manipulation of BDDs with up to 100 million nodes. 
Other authors concentrate on different formalisms, e.g., Indexed BDDs (IB­
DDs) [11], that allow polynomialrepresentations offunctions that would oth­
erwise require an exponential space. Attempts have been made also at us­
ing special computing hardware configuration: in [12] Kimura et al. adopt a 
shared memory multiprocessors and in [15] authors use a vector processor. 
Finally a network of workstations is used in [18] to design a distributed BDD 
data structure and in [1] to allow the use of distributed main memory. 

In our approach we do not modify the software package (the BDD package) 
and we do not rely on special hardware platforms, rather we concentrate on 
a higher level of abstraction. 
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Therefore our goal is to: 

- Present a "divide-and-conquer" approach to the problem; in that direc­
tion we follow the method presented in [8], where we: 

• Decompose sets of states when their BDD representation becomes too 
large or when image computation becomes too expensive. 

• Carry out expensive computations in a decomposed form; this allows 
us to deal with just one subset at a time, decreasing the peak number 
of BDD nodes. 

- Resort to a parallel algorithm oriented to general purpose Multiple In­
struction Multiple Data (MIMD) architectures with distributed main mem­
ory but with a shared disk. 

Despite the possibility of repeated computations, decomposition decreases 
overall complexity, with remarkable benefits in terms ofrunning CPU time [8]. 
The intrinsic characteristic of the method and the size and complexity of 
functions make the use of parallel computers in this area extremely attractive. 

For our experiments we use sets of benchmarks universally known in the 
field of CAD (ISCAS'89 and ISCAS'89-addendum). These are large syn­
chronous circuits whose characteristics are reported in· the literature. Experi­
mental results show that the overall method is particularly effective on large 
circuits. 

The remainder of the paper is organized as follows. Section 2 summarizes 
some useful concepts on BDDs, Boolean functions and sets, image compu­
tations, FSMs and symbolic traversals. Section 3 describes the underline ap­
proach to decompose and manipulate BDDs, as described in [8]. Section 4 
describes the parallel implementation. Section 5 shows experimental results. 
Section 6 closes the paper with a brief summary and future work. 

2 PRELIMINARIES 

Binary Decision Diagrams and Elementary Operations 

Binary Decision Diagrams (BDDs) are a canonical representation of Boolean 
functions /(x1, x2, X3, ... , Xn) in the form of directed acyclic graphs. The 
reader should refer to [4] and [5] for a tutorial introduction to BDDs. 

We use the standard operations of Boolean algebra: +for OR, ·for AND, 
ffi for EXCLUSIVE-OR and an overline for NOT. We also use summation L 
and product TI notation referring to Boolean sums (OR) and products (AND). 

The function resulting from assigning variable Xi to a constant value k 
(either 0 or 1) is a restriction or a cofactor of f(xl, ... , zi, ... , .xn) with 
respect to Xi [3]: 

0 0.' 
... ' 

Xi, .•. , Xn)x,=O = /(xl, 
Xj, ••• , Xn)x,=l = /(xl, 

... , 
0 0.' 

0, ... , 
1, • 0 0' 

Xn) = fx, 
Xn) = fx, 
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Given the two cofactors h,, i.e., the negative cofactor, and fx,, i.e., the positive 
one, f is expressed as: 

This identity is commonly referred to as Shannon's expansion off with respect 
to x;, although it was originally recognized by Boole. 

The two following identities define existential quantification (or smoothing) 
and universal quantification (or consensus): 

3xJ = /x; + fx, 
Vx.f = /x; · fx, 

Many operations on Boolean functions can be implemented by simple 
graph algorithms that work recursively on their BDD representation in a 
conventional "depth-first" fashion. For example iff and g are Boolean func­
tions represented by BDDs, if x; is one of their variables and if op is a generic 
binary operator, we express fop g as: 

fop g =Xi· (/x, op YxJ +X;· (/:r; op 9x,) 

This is possible because algebraic operations and expansion commute. 
Tasks are then usually expressed as a sequence of steps, each involving 

an operation on one or more BDDs. Examples include: Determining whether 
two functions are equivalent, computing their logical conjunction, disjunction 
or negation, determining the size of the on-set for a function, etc. These 
algorithms obey to the closure property: Given BDDs as arguments with a 
certain ordering, the result is a BDD obeying the same ordering. Some of 
these algorithms have time and space complexity polynomial in the size of 
their operand graphs. 

2.1 Supports, Sets and Characteristic Functions 

Given a vector of Boolean variables x = (x1, x2, ... , xn) and a Boolean 
function f(x), the "true support" off is the set of x; variables on which f 
depends, i.e., such that the positive and negative cofactors off with respect 
to x; differ: 

supp(f) = {X; such that fx, "/= /x;} 

Let A be a subset of 8". The characteristic function of A is the function 
XA : 8" --+ B defined by: 

XA(a) = { ~ if 
if 

a E A 
a ~ A 
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Operations on sets can be efficiently implemented by Boolean operations 
on their characteristic functions. For example, if A and B are two subsets of 
S and XA and XB are their characteristic functions, we write: 

XAuB = XA + XB 

XAnB = XA · XB 

XA-B = XA. XB 

With abuse of notation, in the rest of this paper we make no distinction 
between the BDD representing a set of states, the characteristic function of 
the set and the set itself. 

2.2 Image of a Set 

In many application of BDDs, sets are constructed and manipulated using 
characteristic functions without ever enumerating explicitly their elements. 

Let I : Gi ---+ Bi be a Boolean function and C ~ Gi a subset of its domain. 
The image of C according to I is: 

IMG(/, C)= {yElP such that 3.x E C 1\ y = l(x)} 

Subset C is often called "constraint'. Whenever C = Gi, the image is often 
called "range". 

2.3 The Model 

A Finite State Machine (FSM) is an abstract model describing the behavior 
of a sequential circuit. A completely specified FSM M is a 6-tuple 

M =(I, 0, S, 6, ~. So) 

where I is the input alphabet, 0 is the output alphabet, S is the state space, 
6 : S x I ---+ S is the next state function, ~ : S x I ---+ 0 is the output function 
and So ~ S is the initial state set. 

In the rest of the paper, we denote with s = ( s1 , s2 , ... , Sn) present 
state variables, with x = (x1, x2, ... , Xm) primary inputs I of the FSM and 
with y = (Yl, Y2, ... , Yn) next state variables. We do not consider output 
functions ~; we introduced them just for sake of completeness. 

2.4 The Transition Relation 

Let M be a FSM. The Transition Relation T associated to M is defined as: 
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A transition relation is often called partitioned if conjunctions are not per­
formed once and forall, but tis are kept separate until an image computa­
tion [6], (7]. The image of a set C( s) is defined as: 

IMG(6, C(s)) = 3~. 3 (T(x, s, y) · C(s)) = 3~. 3 (n?:1 ti(x, s, yi) · C(s)) 

Images arc computed with a partitioned transition relation by resorting to 
early quantification during conjunction steps. Suppose that some inputs and 
current state variables appear just in the first i partitions. Let Ei be sets of 
such variables. Early quantification eliminates variables belonging to the Ei 
sets before conjoining the ti+1 term: 

IMG(6, C(s)) = 3~. 3(n?=1 ti(x, s, y) · C(s)) 
= 3(~. s)EE,. (tn · (3(~. s)e£,._ 1 (tn-1 · ... · 3(~. s)EE1 (tt · C(s))))) 

(1) 
The atomic operation in image computation is conjunction-quantification, 

i.e., and-exists operations. 
Several heuristics have been presented to sort the partitions. Further im­

provements are obtained through clustering, that may be used to decrease the 
number of partitions by performing some products once forall before image 
computations (17]. 

2.5 Symbolic Traversal 

A Symbolic Traversal is a breadth-first search that returns at each iteration 
the set of states reached from the current state set. 

Figure 1 shows the pseudo-code. 

(1) TRAVERSAL (6, So) 
(2) { 
(3) Reached= From =New= So; 
( 4) while (New :f. 0) 
(5) { 
(6) To= lMG (6, From); 
(7) New = To · Reached; 
(8) Reached = Reached + New; 
(9) From = BEST-BDD (New, Reached); 

(10) } 
(11) return (Reached); 
(12) } 

Fig. 1. Forward Traversal. 
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From is the current set of states and To is the set directly reached from 
From. This is accomplished by means of a symbolic image computation IMG ( 6, 
From), line 6. Set New contains the To states that have not yet been visited. 
Reached states are accumulated in Reached. Initially From is set to S0 and then 
it is selected by choosing a suitable BDD that represents all newly reached 
states and possibly some of the already visited ones, as in [9] (procedure 
BEST..BDD). 

The termination condition is to reach a least fixed-point. This condition 
is equivalent to testing the emptiness of New at each step, line 4. 

The number of iterations of this algorithm gives the sequential depth of 
the machine. 

Large amount of states, greater than 10120 , have been visited efficiently 
by means of symbolic traversals. 

3 DECOMPOSED TRAVERSAL 

Proceeding from one step to the next one in symbolic traversal, all sets, in 
particular From and Reached, become larger and much more complex to rep­
resent by means of BDDs. As a consequence, symbolic traversal experiences 
two bottlenecks: 

A monolithic BDD representing the sets may be too large to fit into main 
memory. 

- It may be impossible to perform an image computation (function IMG), 
because of the size of the BDDs involved in intermediate computations. 

As mass memory is inexpensive with respect to main memory, very often 
virtual memory (BDD nodes are automatically swapped to the hard disk 
by the operating system) is considered a good solution to problems where 
memory requirements are a key issue. Unfortunately conventional "depth­
first" algorithms cause random access of memory. As there have not been 
significant improvements in the speed of swapping from main memory to disk, 
in the last few years, this implies that if the working set of memory pages for 
a program is large, the time required to deal with page faults significantly 
impacts on the performance of the system. 

A lot of approaches essentially modify the BDD package by changing the 
representation (e.g., Zero-Suppressed BDDs, MTBDDs, etc.) or the access 
method (e.g., breadth-first manipulation, etc.). As all these approaches are 
quite expensive in term of rewriting code and modifying strategies and have 
both advantages and disadvantages, we prefer to work at a higher level, leaving 
the BDD package unchanged and we concentrate on the applications, i.e., 
reachability analysis. 

Our approach [8] consists in decomposing state sets, using a "divide-and­
conquer' strategy, when, during traversal, they become too large to be repre-
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sented as a monolithic BDD or when image computation becomes too expen­
sive. Image computation is carried out on decomposed sets. Useless BDDs are 
then stored in secondary memory and loaded only when needed. 

Using a certain threshold we split the problem in sub-problems whose 
complexity is smaller; splitting can occur between: 

- Image computations. 
- Conjunction-abstraction operations within image computations. 

In the first case, we decompose the current state set C( s) as v · C11 ( s) + v · Cv( s) 
using the Hoole's expansion. Its image, according to ~~ is then equivalent to 
the union of the images of v · Cv(s) and v · Cv(s): 

IMG(~, C(s)) = IMG(~, (v · C11 (s) + v · Cv(s))) 
= IMG(~v, (v · Cv(s))) + IMG(Ov, (v · Cv(s))) 

In the second case the approach is similar. Computing the image using the 
standard partitioned transition relation, see Equation 1, we apply the same 
decomposition technique to the i-th conjunction step, 3(.r,•)EE, (ti · ... ). 

In general, the first method is better when overall image computation is 
too expensive whereas the second one optimizes the first one when only a few 
steps of image computation are particularly expensive. In both cases we can 
re-compose the resulting set after a decomposed operation, or we can carry 
on operations on the partitioned form. 

Partitioning is a good solution in both cases, because: 

The advantage of working on decomposed sets stems from lowering overall 
complexity in terms of memory and execution time. In fact recursive split­
ting is a very common practice with BDDs, as it characterizes almost all 
BDD operators, but it normally follows a fixed variable selection scheme: 
Variable ordering. Partitioning the operands by means of splitting vari­
ables is equivalent to pushing them onto the top of variable ordering and 
it is independent from variable ordering as it possibly chooses different 
splitting variables when recurring in different set partitions. 
Partitions not directly involved in computations can be downloaded to 
mass storage and this: 

• Lowers the amount of working memory required. 
• A voids repeated page faults. 
• Allows easily an implementation on parallel machines. 

The method used to download large BDDs relies on binary file manipu­
lation. As a BDD node typically takes 16 bytes of memory for machines 
with 32 bit pointers, downloaded BDDs take approximately 1/5 of the 
space that they take on main memory3 . 

3 The global amount of main memory is influenced also by a few tables, like the 
computed table, that can consume large amount of memory and whose size is 
typically related to the amount of BDD nodes used. 
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Figure 2 shows the pseudo-code for decomposed traversal. It is derived 
from the standard traversal of Figure 1. 

(1) PARTITIONED-TRAVERSAL (c5, S0 , th) 
(2) { 
(3) Reachedp = Fromp = Newp = { So }; 
(4) while (Newp =/:- 0) 
(5) { 
(6) Fromp =SET-PARTITION (Newp, th); 
(7) Top= 0; 
(8) foreach f E Fromp 
(9) Top= {Top, lMG (c5, f)}; 

(10) Newp = SET-DIFF (Top, Reachedp, th); 
(11) Reachedp =SET-UNION (Newp, Reachedp, th); 
(12) } 
(13) return (Reachedp); 
(14) } 

Fig. 2. Partitioned Forward Traversal. 

Reachedp, Fromp and Newp represent sets Reached, From and New in mono­
lithic or partitioned form. They are initially set to So. At each step we generate 
set Fromp, line 6, in the right decomposed representation according to the size 
of the BDD representation of set Newp and to parameter th. Parameter th 
controls size and number of state set partitions as well as the complexity of 
the image computation procedure. Its value is usually chosen by manually 
tuning the traversal procedure, keeping into account the complexity of the 
problem and the power of the host machine. 

At each step, set Top is initialized to the empty set, line 7. Instead of 
computing a single image, line 6 in Figure 1, we call the image computation 
procedure for each subset f of Fromp, line 8. This is done on line 9, IMG (6, 
!), and new images are added to Top as a new set. This allows the image 
computation procedure to work on just a subset at a time, decreasing peak 
BDD size. Internally the image function can decompose sets as previously 
introduced but this doesn't appear in the pseudo-code. 

After image computation we call functions SET _DIFF and SET _UNION. 

These functions are relatively straightforward and compute sets Newp and 
Reachedp for the next iteration. In particular they evaluate fixed point and 
new decomposed representations for these sets. 

More information on the overall methodology can be found in [8]. 
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4 THE PARALLEL APPROACH 

Previous works on BDDs and parallel computing have mainly focused on 
"pure" functions representation or combinational verification. On the other 
hand we concentrate on sequential verification. 

A wide range of solutions are possible, basically depending on the kind 
of target parallel environment. Before going into the details of the imple­
mented algorithm, we will focus on the two main possible choices: Domain 
and co-domain partitioning. We show how the first possibility, i.e., domain 
partitioning, is a natural extension to a parallel platform of the approach 
introduced in Section 3. Then we focus on our approach. 

4.1 Domain and co-domain partitioning 

As discussed in Section 3 symbolic evaluation of images is the main problem 
of symbolic traversal. Coudert et a/. introduce in [10] domain and co-domain 
partitioning to reduce complexity of image computations. 

Domain and co-domain splitting perform a sort of functional partition­
ing while data partitioning is introduced to fully exploit the whole memory 
available in a parallel machine. 

Let us introduce again the IMG operator in the form: 

To= IMG(6, From) 

in which From and To represent the source (domain) and target (co-domain) 
of the image computation process, respectively. In domain partitioning the 
domain set From is decomposed in d disjoint subsets 

From= U1= 1 Fromi 

and the image To can be expressed as the union of distinct image computa­
tions: 

To= u:=l IMG(6, Fromj) 

In co-domain partitioning a single image evaluation task can be divided in 
sub-tasks through a proper co-domain space partitioning. Let us divide also 
the image space Y in c disjoint subsets 

Y = Uj=l Yi 
and create a new procedure IMG* that works on a restricted image space: 

Toi = IMG*(6, From,}'j) 

Then co-domain partitioning can be expressed as: 

To= Uj=1 Toi = Uj= 1 IMG*(6, From, Yj) 
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4.2 Proposed approach 

Neither domain nor co-domain partitioning is a perfect partitioning: In the 
former case disjoint domain sub-sets can produce overlapping images, in the 
latter repeated evaluations can occur in different image sub-spaces. Experi­
mental results in [10) show that there is no a priori choice between the two 
approaches, and that depending on the test case one can perform much better 
than the other. 

The strategy proposed in Section 3 is a particular implementation of do­
main partitioning and it is well suited to a parallel implementation. In fact 
"global" operations, like splitting sets, fixed point evaluation and so on, are 
far less expensive, both in terms of CPU time and of BDD nodes, than pure 
image computation. On the other hand each single image computation is split­
ted in several steps as images are computed on decomposed representations. 
In lines 8 and 9 of Figure 2, the image computation procedure work on just 
a subset at a time. On the monoprocessor implementation this decreases the 
peak BDD size and on the multiprocessor one allows the parallel implemen­
tation, as different image computations can be easily computed on different 
CPUs. Our target is to keep sub-problems large enough and well balanced to 
make computing times overcome communications and idle times due to unbal­
ancing. All these factors can be controlloed tuning the value of the threshold 
th. 

Domain sets are recursively splitted in sub-sets when complexity of their 
BDD. representation exceeds a given threshold. For every subset an image 
computation is performed. The process described in Figure 2 can be then 
divided in three separate phases: 

1. Domain set partitioning (line 6). 
2. Image computation (lines 8 and 9). 
3. Set union and closure computation (lines 10 and 11). 

As soon as an image task is splitted into sub-tasks they arc executed in par­
allel. The splitting procedtue can follow two paradigms: 

- Centrally Controlled Approach: In this kind of approach phase 1, func­
tion SET _PARTITION, and phase 3, functions SET _Din' and SET _UNION, 
are executed by a unique main process that splits completely the BDD 
representing the domain; then the different images (function IMG) are 
computed in parallel. 
Fully Distributed Approach: In this approach all three phases, partition, 
images computation and recombination, are distributed, i.e., executed in 
parallel. 

The second strategy is supposed to be more efficient but it also has a greater 
overhead. We will show in the experimental result section that image com­
putation is by far the most expensive phase. This implies that also the first 
approach can be quite efficient. 
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Besides generating proper sub-tasks of the image evaluation problem, a 
second important choice has been done with data structures: State sets are 
stored on a common disk and are accessible to all processes. This implies that 
the overall process is expensive from a computational point of view, but not 
from a communication point of view. 

Figure 3 reports the pseudo-code of the Centrally Controlled Approach. 

(1) PARALLEL-PARTITIONED-TRAVERSAL (6, So, th) 
(2) { 
(3) Reachedp = Fromp = Newp = { So }; 
( 4) while (Newp "1- 0) 
(5) { 
(7) Fromp = SET-PARTITION (Newp, th); 
(6) Top= 0; 
(8) foreach f E Fromp 
(9) if 3(idle processor) { 

(10) id = fork(); 
(11) if (id == 0) 
(12) exec (Top= (Top, IMG (6, !)));} 
(13) else { 
(14) wait (&status); 
(15) if ( status > ERROR_CODE ) 
(16) exit (I); } 
( 17) foreach child still running 
(18) { 
(19) wait (&status); 
(20) if ( status > ERROR-CODE ) 
(21) exit (1 ); 
(22) } 
(23) Newp = SET..DIFF (Top, Reachedp, th); 
(24) Reachedp =SET-UNION (Newp, Reachedp, th); 
(25) } 
(26) return (Reachedp); 
(27) } 

Fig. 3. Parallel version of the Partitioned Forward Traversal. 

In particular line 9 of Figure 2 is expanded in Figure 3 into lines 9 -:- 22. 
Like in Figure 2 for each subset of Fromp we have to compute an image. 

If there is an idle processor we fork the process: The child process (id==O) 
computes the new image, line 12, on that processor whereas the parent loops 
again. 

If there are no idle processes the parent waits for the termination of one 
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of the children, line 14, testing for its exit status, lines 15 and 16. The same 
operation is done when all the children have been started, lines 17...;... 21. 

The pseudo code can easily be expanded to: 

- Keep into account further possible decompositions performed inside func­
tion IMG, see Section 3. 

- Obtain a parallel execution also during phases 1 and 3 (functions SET _PARTITION, 
SET _DIFF and SET _UNION). 

- Get a better balance of the processor charge during various phases of 
traversal. 

Theoretical Evaluation Let us work on a traversal problem P, and define 
Size(P) as the global number of BDD nodes required to solve it in a mono­
processor implementation. In our environment problem P is decomposed in 
N parallel sub-tasks Pi (i = 1 ...;... N). We express the global size of BDDs 
involved in this solution as: 

Size(PPart) = L~l Size(Pi) = Oa · Size(P) 

with 0 3 ~ 1. If o 3 can be kept low and Size(Pi) (i = 1...;... N) is well balanced, 
the distributed approach can solve problems not manageable with the mono­
processor one, due to the large global memory space available on parallel 
machines. 

We can make some similar remarks from the point of view of time speed­
up. Global CPU time T101 required for the parallel solution can be expressed 
as: 

Ttot(PPart) = maxi(Ttot(Pi)) = maXi(Tcpu(Pi) + Tover(Pi) + Tidle(Pi)) . 
where Tcpu represents computing time, Tover time for spawning and state 
splitting (including exchange of messages), 7idle time lost due to not balanced 
tasks. Tc PU can also be related to T( P) (time of mono-processor execution): 

L~1 Tcpu(Pi) =a,· T(P) 

where o 1 ~ 1 represents the increase in time due to partitioning. If an effec­
tiveness ratio is introduced 

_ L~ 1 Tcpu(P,) 
Pt - N-T,.,(Pp_.,) 

the global speed-up of our parallel solution is 

SP - T(P) - E1:.!!... 
- Ttot(PPArt) - a, 

where it is easy to notice that the speed-up is directly proportional to the 
effectiveness ratio (Pt) and inversely proportional to the partitioning overhead 
(a,). 

In the following section we will present experimental data, which quantify 
some of the entities introduced above and demonstrate that the advantages 
brought by our method increase with the size of the problems. 
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5 EXPERIMENTAL RESULTS 

A prototype version of the parallel algorithms has been implemented in C 
la.nguage on two systems: 

- Three 200 MHz DEC Alpha with a 256 Mbyte main memory sharing the 
same disk. 

- Dual-node 3-way SMP with Pentium Processors at 100 Mllz with a 192 Mbyte 
main memory for each node (i.e., a total memory of 384 Mbytes with, in 
average, 64 Mbytes for each CPU). 

We impose a working memory limit of 200 Mbytes on the first set of platforms. 
The techniques are implemented on top of the Colorado University Decision 
Diagram (CUDD) package [20). The code added to the CUDD package is 
written in C and it amounts in about 12500 lines. We refer our result to the 
ones presented in [8) on a mono-processor implementation to evaluate the 
improvement attained with the technique. 

The original method presented in [8] heavily uses mass memory to store 
BDDs and separate different phases of the overall process. The traversal proce­
dure could be seen as a set of sub-processes that communicate and synchronize 
through files exchange. In this environment the parallel implementation has 
been quite straightforward to realize. 

Table 1 reports, for comparison purposes, data from [8] on the mono­
processor implementation. 

Table 1. Traversal Results on some ISCAS'89 and ISCAS'89-addendum circuits. • 
indicates that we use a simplified version of the original circuit 

Circuit #FF #level Reached Disk Mem. Time 
#Nodes #States 

sl269 37 10 612 1.1313·10!1 0.0 28 1424 
s3271 116 17 383521 1.3177·10:!1 11.8 149 1377i 
s3330 132 8 28748 7.2778·1017 9.7 107 4155 
sl423 74 14 13738871 1.7945·1011 125.9 106 8.47i 
s6669 239 3 2494135° * 22.7 97 530 

Column Circuit gives the name of the circuit and # FF the number of flip­
flops. # level indicates the number of traversal iterations (partial or total, 
i.e., up to the fixed point), # Nodes is the number of BDD nodes of the 
final reachable state set and # States is its number of states. Disk indicates 
the maximum mass memory (in Mbyte) used to download BDDs. Due to the 
compression technique this amounts to about 1/5 of the space the same BDDs 
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occupy in main memory. Mem. is the maximum amount of main memory 
used (in Mbyte). Time indicates the total execution time (in seconds, unless 
otherwise stated, or in hours). 

In Table 2 we report the CPU time required by the various phases of the 
traversal procedure to complete traversal on the same set of circuit of Table 1. 

Table 2. Time Data on the various phases of traversal 

Circuit Time 
Set-Partition [%] lmg [%] Set-Diff + Set-Union [%] Total 

s1269 11 [0.8] 1409 [99.0J 4 (0.2J 1424 
s3271 41i [3.0] 1321i [96.5] 0.481i [0.5J 1371i 
s3330 103 [2.5] 3990 [96.0] 62 [1.5] 4155 
s1423 3320 [11.0] 24198 [80.0J 2722 [9.0J 8.41i 
s6669 32 [6.0] 478 [90.2) 20 [3.8J 530 

Square brackets report percentage values to respect to the global traversal 
time (column Total). The traversal phase is the most expensive one, whereas 
decomposition and closure phases require just little percentage of total time. 
This table shows that it is really important to execute in parallel the traversal 
phase and that the Centrally Controlled Approach and the Fully Distributed 
Approach cannot differ too much because they differ just for phases 1 and 3. 

Problem decomposition reduces complexity and memory requirements and 
the granularity of the processes is really important as analyze in Section 4.2 . 

. We must reduce the complexity enough to be able to run sub-problems singu­
larly. The more partitions are produced, the easier the overall process can be 
divided among N processors but beyond a certain point the decomposition 
strategy becomes inefficient as the degree of overlapping increases to much. 

Following Section 4.2, Table 3 reports data concerning N, column # Part, 
Size(;), Size (PPart) and a •. 

We consider the final reachable state set of circuit s3271 and we split it in 
2, 4 and 8 subsets. More we split more we increase overlap, a., but, on the 
other hand, we could deal better with parallelism. Finding the right balance 
is one of the major topic of the overall procedure: BDD dimension, BDD 
structure and computing limit have to be considered. 

Table 4 reports data obtained on the first parallel hardware platform. In 
this case we could run experiments on three machines quite similar to the 
one used in (8]. Column# Partma.: indicates the maximum number of parti­
tion created to compute an image computation, i.e., the maximum number of 
parallel processes N. Following Section 4.2, timeT (P) and Ttot (PPart) are 
reported. Speed-ups, SP, from a factor of 2 to a factor of 3 are obtained. 
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Table 3. Split Results on the final reachable state set of circuit s3271 

#Part Size ~i~ Size ~p Part~ a, 
1 383521 383521 1.00 
2 204896, 257876 462772 1.20 
4 146945, 130854, 194413, 179924 652136 1.70 
8 99800, 99697, 86433, 94622, 915738 2.39 

121819, 160763, 107330, 146274 

Table 4. Parallel Traversal Results on some ISCAS'89 and ISCAS'89-addendum 
circuits 

Circuit # Partma.r Time SP 
Mono-Processor Multi-Processor 

T ~p~ Ttol ~PParl~ 
sl269 18 71424 35707 2.00 
s3271 43 1377i 497i 2.79 
s3330 23 4155 1750 2.37 
sl423 85 8.47i 3.27i 2.89 
s6669 33 530 220 2.41 

On the second hardware platform the major problem is the limited amount 
of working memory. This amount is quite low to obtain good performance on 
large circuits. We are currently experimenting on this set on machines. 

We are also trying to experiment with a larger number of processors. 

6 CONCLUSIONS AND FUTURE WORK 

BDDs and symbolic techniques have undergone major improvements in the 
last decade in different fields of CAD and symbolic FSM state space explo­
ration techniques represent one of the major recent results of formal verifica­
tion. 

The current limit of such techniques resides in the inability to represent, 
and compute during traversal, very large functions, relations or sets. 

In this paper we propose to apply an efficient set decomposition strategy 
in the field of parallel computing. The original approach has been shown to be 
effective with large problems, involving large sets and higher computational 
complexity. The parallel version has been completely described. The technique 
uses the intrinsic characteristic of the underlined approach in a new parallel 
environments. Preliminary experimental results seem to show that further 
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and relevant improvements can be obtained, both in terms of speed-ups and 
in supporting experiments not manageable by mono-processor architectures. 

In this sense, our experimental results are not complete, due to the rela­
tively small number of processors and the limited amount of memory available 
on our second configuration. These limitations could undoubtedly be overcome 
with larger hardware configurations. 

The ease of application of our mechanism is a very important factor for 
reducing the turnaround time of the implementation. 

In the current implementation, a single BDD variable order is used for 
all functions and sets represented, making it easy to combine and compare 
different functions and sets. We are planning to extend the work using different 
orderings; as analyzed in [14] and [13] this could drastically reduce problem 
SIZe. 
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