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Abstract. Homomorphism based multiparty computation techniques
are studied in this paper as they have several advantages over the other
multiparty computation schemes. A new homomorphism based multi-
party computation technique is proposed to evaluate functions in DNF
form. The new technique exploits homomorphism of a certain sealing
function to evaluate a function in DNF. The new technique has two
advantages over the existing homomorphism based multiparty computa-
tion schemes. Firstly, it supports any input format. Secondly, a general
method to reduce any function to DNFs is proposed in this paper. With
this method, functions like the famous millionaire problem can be re-
duced to DNFs and efficiently evaluated. Security of the new scheme is
formally defined in the static active adversary model and proved in a
new simulation model.

1 Introduction

Secure multiparty computation @, E, B, , , @, , , , , , , , ,
, , , , @,] is a technique to evaluate a function without revealing any
information about the inputs except the output. The basic technique of multi-
party computation is to present the function in a circuit composed of a few logic
gates and reduce the computation to evaluation of each gate. The inputs to the
function must be sealed and output of each gate must be private so that privacy
of the multiparty computation is protected.

Most existing multiparty computation schemes garble the inputs and outputs
wires of the gates to achieve privacy and this mechanism has a few drawbacks.
Firstly, they do not provide any concrete method to design an evaluation circuit
for the evaluated function. Instead they usually assume that the circuit already
exists and is ready to be garbled. Without a concrete circuit, the consequent
operations and analysis are based on assumptions like “after the circuit is gen-
erated by a party...” or “if the number of levels of gates is a logarithm of the
length of all the inputs ...”. Secondly, they need either a single circuit generator
(who knows how each gate is garbled and thus can learn additional information
about the inputs by monitoring execution of function evaluation) or a complex
and inefficient distributed multiparty circuit generation algorithm. Thirdly, it is
complex and inefficient for them to publicly prove and verify correctness of the
circuit without compromising its privacy. Fourthly, it is complex and inefficient
to match all the input variables to the function with the garbled inputting wires
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of the circuit, especially when public verifiability of this matching is required.
Finally, efficiency is low when appropriate trust sharing, public verifiability and
provable security are required.

We are interested in another solution ﬂ, , |l_l|, |ﬂ, @, @, @, @, @, @],
which employs homomorphic sealing function to seal the inputs and exploit
homomorphism of the sealing function to implement multiparty computation.
Intermediate outputs of all the gate are sealed, so does not reveal any information
assuming the sealing function is difficult to break. So the circuit can be public
and no gate needs garbling. Therefore the drawbacks of the first solution are
overcome. However, this solution has its own drawbacks. Firstly, only several
certain kinds of gates are supported and thus the function must be in a special
format. ﬂg, ] require that the function only employs three kinds of gates: “+7,
“” and multiplication. @, ] only support NOT and OR gates, which ﬂﬁ]
only supports XOR and AND gates. ﬂﬁ] requires a very special format for the
function: Standard low-degree polynomials over a finite field. Obviously, given a
random function it is possible that it cannot be reduced to a polynomial number
of gates in a special format. So each scheme in the second solution has its own
favourite functions, which can be reduced to a polynomial number of gates in the
special format in that scheme and thus can be efficiently evaluated. Moreover,
each of them requires that each input variable must be in a special format and
they fail if any input variable is invalid. In addition, some schemes ﬂﬁ7 @7 @, @]
are only suitabe to handle some certain functions.

In this paper, a new homomorphism based secure multiparty computation
scheme is proposed. Any function in DNF (disjunctive normal form) fornd] can
be efficiently evaluated in the new scheme. It has two main advantages over the
existing homomorphism based multiparty computation schemes. Firstly, it does
not require any special input format. Instead, any input format is supported
and an appropriate format can be flexibly chosen for the evaluated function.
Secondly, a general method to reduce any function to DNFs is proposed in this
paper. With this method, functions like the famous millionaire problem can be
reduced to simple DNF's and then efficiently evaluated. The new scheme employs
a flexible participant model. Like m], it does not require all the input providers
to take part in the computation. Although there may be many inputs and in-
put providers to a function, a small number of computation performers can be
employed, such that communication between them is not a heavy overhead in
practice. This participant model is especially suitable for applications like e-
auction and e-voting. Static active adversary model is used in the new scheme,
which is strong enough for most practical applications. The UC (universal com-
posable) security model [4] is not employed in the new scheme. Correctness and
soundness of the new scheme are defined in a straightforward manner while its
privacy is defined in a new simulation model detailed in Section [2 which is
simpler and more practical than the UC model and other traditional simulation
models. Security of the new scheme is formally guaranteed when a majority of
the computation performers are honest.

! Detailed definition of function in DNF will be given in Section [l
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2 Security Model

There are usually three kinds of participants in multiparty computation: IPs
(input providers), CPs (computation performers) and result receivers. They re-
spectively provide inputs, carry out the computation and receive the result.
Although it is assumed in most multiparty computation schemes that all the
participants play all the three roles, that assumption is impractical in many ap-
plications like e-auction and e-voting. A typical application is inputs from man
IPs are evaluated by several CPs. So in this paper, the participant model in ﬂﬁ],
is adopted: the IPs and the CPs are not the same group of participants and the
number of CPs is small. However, our participant model is a general model and
the three sets of players need not be disjoint. In garbled circuit based secure
computation, more participants like circuit generator (called compiler or issuer
in some schemes) are often needed. In this paper, we design a homomorphism
based secure computation scheme, so only need the three kinds of participants.
When we say a CP is corrupted, we mean an adversary obtains its complete se-
cret information (including historical record) and controls it behaviour. In other
words, we adopt active adversary model. Moreover, we assume the adversaries
are static. Two kinds of synchronous communication channels are used in this
paper. A public broadcast channel also called bulletin board is set up for ex-
change of public information. In addition, there is an authenticated confidential
channel from each IP to each CP. The following security properties are required
in a multiparty computation protocol.

— Correctness: when given encryption (or commitment) of inputs x1, xa, ..., x,
and asked to compute function f(), if a majority of CPs are not corrupted,
the protocol outputs f(z1,za,...,zy).

— Public verifiability: there is a public verification procedure, by which any
one can publicly check whether the protocol outputs f(z1,xa,...,x,) when
inputs x1, %2, ..., %, are given to function f().

— Soundness: if a majority of CPs pass the public verification procedure, the
protocol outputs f(x1,xe,...,x,) when given encryption (or commitment)
of input x1, 9, ..., z, and f().

— Privacy: if a majority of CPs are not corrupted no information about the
input is revealed except what can be deduced from the result of the function.

In the security definition above, the complex UC model M] is not used. Cor-
rectness and soundness are more straightforward defined. However, definition
of privacy is still intuitive and informal. So it is more formally defined in a
simulation model simpler than the UC model as follows.

Definition 1. There exists a polynomial algorithm for a party without any knowl-
edge about any input to simulate the transcript of the secure computation protocol
such that no polynomial algorithm can distinguish the simulated transcript and the
real transcript with a probability non-negligibly larger than 0.5.
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3 Parameters and Primitives

p,q, G, g, h are public parameters. p is a large prime such that p — 1 has a large
factor ¢ with no small factor. G is the cyclic subgroup of Z; with order ¢. g and
h are generators of G such that log, h is unknown. A primitive to be used later,
the t-out-of-m secret sharing algorithm in M], is described as follows.

— To share a secret s among m parties Ay, As,..., A, a dealer builds two
polynomials F(z) = Zf;é fiz' mod q and H(z) = Zf;é hyz' mod ¢ where
fo=sand fiforl=1,2,...;,t—1and h; for [ =0,1,...,¢ — 1 are random
integers in Z,.

— The dealer publishes sharing commitments £; = g/t mod pforl = 0,1, ...,
t — 1 on the bulletin board.

— The dealer sends Ay, its share (sg, ) = (F(k), H(k)) through the authenti-
cated confidential channel.

— Ay verifies g°*h™ = f;é El’cl mod p. If the verification is passed, Ay can be
sure that (s, 7y) is the k" share of the secret committed in Ey. As m and ¢
are usually small integers, each verification costs 2 exponentiations and O(t)
multiplications.

— If at least t correct shares are put together, the secret committed in Ey can
be recovered as s = ), _4 Sxur mod g where uy = Hl€¢7l¢k l_lk and @ is a
set containing the indexes of ¢ correct shares.

Note that definition of ug will be used throughout the paper. Pedersen ﬂﬂ]
proves that when log, h is unknown and discrete logarithm is a hard problem,
there is only one polynomial way to open commitment Ey, which is denoted as
s «— REC(Ep) in this paper. Pedersen also illustrates that his secret sharing
scheme is homomorphic. Namely, REC(Ey) + REC(E})) = REC(EyE{) mod ¢
where Ey and E| are the first components in two commitments.

Besides the general secret sharing algorithm described above, a special variant
of it is employed in this paper. In the special variant, a public known integer s
instead of a secret is shared. Its purpose is not to secretly hide the integer but to
publicly distribute it into a sharing format. Implementation of the special secret
sharing algorithm is simple: the commitment generation and sharing generation
function are the same as in the general secret sharing algorithm except that
F(z) = s, H(z) = 0 and the shares are public. So anyone can calculate com-
mitment ¢®,1,1,...,1 and each Ag’s share is (s, 0). This special variant is called
simplified secret sharing, which only costs one exponentiation but has all the
properties of the original secret sharing algorithm except privacy of the shared
integer.

In this paper, ElGamal encryption is employed. Private key zj is chosen for
Ay from Z,. Ap’s public key yy is ¢** mod p. Note that ElGamal encryption is
semantically secure. More precisely, given a ciphertext ¢ and two messages my
and ma, such that ¢ = E(m;) where i = 1 or 2, there is no polynomial algorithm
to find out 7 with a probability non-negligibly larger than 0.5 when the private
key is unknown. In this paper, ZP | x1,%2,...,2Zo | R1, R2,...,Rg | denotes a
ZK proof of knowledge of x1, 2, ..., z, satisfying conditions R, Ry, ..., Rg. In
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this paper, there is a security parameter 7" such that 7" is a small integer and 27
is no larger than the smallest factor of q.

4 Reduction to DNFs and Sealing the Inputs

A function with p IPs I Py, IP, ..., 1P, and inputs my,ma,...,m, can be re-
duced to DNF's as follows where m, is the input of IP, for . =1,2,..., u.

1. Integer L is chosen such that 2 > S and 2! < S where S is the size
of the co-domain of the function. Sort all the variables in the co-domain in
a certain order and the k** variable is transformed into a new format: the
binary representation of k.

2. The function is divided into L sub-functions, each of which receives the input
of the function and outputs one bit of the result of the function in the new
output format.

3. Each sub-function is transformed into a DNF as follows.

(a) The truth table mapping mq,ma,...,m, through the sub-function to
{0,1} is established.

(b) Every row with an output 1 in the truth table is picked out. Each chosen
row is transformed into a clause, which tests whether m, equals to the
(P input variable in the row for ¢ = 1,2, ..., u. Each test in the clause
is a basic logic computations and they are linked with AND logic.

(¢) Linking all the clauses with OR logic produces a DNF.

(d) Two methods can be employed to optimisation DNFs. The first method
adjusts the length and number of the inputs. A long input is divided into
multiple shorter inputs such that the the number of rows in the truth
table decreases. The second method is Karnaugh map, which simplifies a
DNF into least minterm form (See Pages 104-106 of [20]). Both methods
are tried until the simplest DNF's are obtained after multiple trials.

4. Outputs of all the DNF's form a L bit binary string, which can be transformed
back into the functions’ original co-domain (the bit string representing inte-
ger k is transformed to the k** output in the original co-domain).

Note that the algorithm above is not unique. For example, Karnaugh map
can be replaced by Quine-McCluskey technique (See Page 99 of @]) After the
simplest DNF' circuit is obtained, the function can be efficiently evaluated as
described later in this paper. An example will be given in Section [T to illustrate
high efficiency of this method.

To protect privacy of secure multiparty computation, the inputs of any DNF
must be sealed when it is processed. The unsealing power is shared among the
CPs.In our solution, the secret sharing algorithm in Section [Blis employed to seal
the inputs where the CPs A;, Ay, ..., A, act as the share holders. The inputs
to the DNFs of the function are sealed as follows using the t-out-of-m verifiable
secret sharing scheme in HE] as described in Section [Bland we require m+1 = 2t.

1. For v =1,2,...,p each IP, seals m, in commitment E,; for { =0,1,...,t—
1 and shares it among the CPs. The commitments are published on the
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bulletin board and share (s, x, 7, %) is sent to A through the authenticated
confidential channel for £k = 1,2, ..., m. Thus all the inputs to all the DNFs
are sealed. )

2. Every Ay, verifies validity of each of his shares: g%*h"* = []/_ Efll mod p
for . = 1,2,..., u. If an invalid share is found by a CP, it is published on the
bulletin board. As the communication channel used to distribute the shares
is authenticated, no IP can deny any invalid share it sends out. Therefore,
dishonest IPs can be detected and expelled.

3. All the DNF's are transformed into sealed format (composed of sealed inputs
and logic operation on them) one by one. A DNF in the form of (@) is
transformed to

?:1 (REC(EZ'J’()) :a@l/\REC(Ei’Q’O) =a;2/\.. ./\REC(EZ”M(Z*)’O) :ai)M(i))

(1)

where F; j; = E,; for 1 =0,1,...,t =1 if my; =m, For k=1,2,...,m
each Ay, holds (s, ,,7,) as his share of REC(E; ;o) if m;; =m,.

In each DNF, only the inputs to the DNF are sealed while all the equations, all
the AND and OR logic relations and the way they are combined and linked are
public. So without any proof anyone can publicly and directly check that in our
new scheme that each DNF is correctly organised and all the DNFs cooperate
to evaluate the target function.

5 Evaluation of DNF

A DNF is in the form of
iy (mig = a1 Amig = aza N NG i) = Qi) (2)

where M (i) is the number of inputs involved in the i*" clause in that DNF and
m;; € {mi,ma,...,m,}. In DNF () there are three levels of computation. The
bottom level is the equations; the middle level is AND logic and the top level is
OR logic. The three levels are computed one by one from the bottom to the top.

5.1 Computation on the Bottom Level

By simply exploiting homomorphism of the employed secret sharing algorithm,
(@) is simplified to

?:1 (REC(gai’l/Ei7170) =0 A REC(gai’z/ELQ’O) =0 A
... N REC(g*M® [E; priy0) = 0) (3)

Every commitment variable and share in the simplified DNF must be adjusted
as follows.

1. Aset A = Uzi?;;M(l){a”} is set up to include all the constant integers
involved in all the equations in the DNF in the form ({I). Suppose A has a

size v and A = {ay,a2,...,a,}.
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2. For + = 1,2,...,r, commitment EL,Z for [ = 0,1,...,t — 1 and shares
(86,7 k) for & = 1,2,...,m are publicly available for a, using the sim-
plified secret sharing algorithm in Section [B

3. For each a;;, if a;; = a,, then E;;; = E,; for | = 0,1,...,t — 1 and
§i7j7k = §L,k7 f@ﬁk = flL,k for k = 1,2, o, M.

4. (@) is presented in the form

" (REC(E}, ) = 0AREC(El, ) =0A...AREC(E yyy.0) = 0) (4)

where every commitment variable for ), E!

ij10 is publicly available as

ZJZ/E”lmodpforz—1,2,.. 71]—1,2,...7 (i)and 1 =0,1,...,t—1.
Ay, calculates s/ ik = =5k — swkmodqand r”k fwk 5,5,k mod g as
its share ofREC’( Ej ;o) fori =12, ,J =12,...,M(i) and k =
0,1,....,m

5.2 Computation on the Middle Level

Homomorphism of the employed secret sharing algorithm is further exploited to
transform (@) into

=1 Z] 1 REC( 1]0) =0 (5)
where each t; is a random integer.

1. The CPs cooperate to choose 1" bit random integers ¢; for j = 1,2,..., M
where M = max(M (1), M(2),...,M(n)). More precisely, each Ay, secretly
chooses random integers t; ;. from Z, for j = 1,2, ..., M and publishes h; ;, =
h(tjx) for j =1,2,..., M where h() is a collision resistant one-way function.
After each hjj has been published, the CPs publish ¢; for j =1,2,..., M
and k = 1,2,...,m. Finally, h;, = h(t;x) for j = 1,2,...,M and k =
1,2,...,m is verified and ¢; = Y ;"  t;, mod 27 for j = 1,2,..., M are
calculated. For the sake of high efficiency, h() can be a hash function. If
there is any concern for collision resistance in hash functions, h(x) can be
g* mod p.

2. (B is presented in the form of ().

Vii; REC(E;,) =0 (6)

where every commitment variable for (@), Ej,,

H ()E’tjlmodpforz_IQ ,nand [ = 0,1,...,t — 1. Ay calculates
sh . = Zﬂf(l) s; ;xtj mod ¢ and 1 = Zj]\i(f) r; ;xtj mod ¢ as its share of
REC’(E’ ) fori=1,2,....nand k=0,1,...,m

)

is publicly available as

5.3 Computation on the Top Level

([ is equivalent to
H?:1 REC(E'L{,O) =0,
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which according to homomorphism of the employed secret sharing scheme is
equivalent to

REC(E!

REC(E'";™ “N =0 ornamely  REC(El-zxersiriey g

which is equivalent to
REC((TTe B s Bnen e = o, (7)

where K is a set containing the indices of ¢ honest CPs and uy, = [];c ;¢ Ik l_lk.

[rex E’SQ *“* is denoted as EY . To evaluate (@), EY, has to be calculated
without reveahng sy, for k € K. Moreover, EY, for | =1,2,...,t—1 have to be
calculated to form a complete commitment. In addition, each Ay with k in K
should get its share necessary to reconstruct the secret in EY ;. The commitment
generation and shares distribution operations are as follows.

Y1,k

1. For k € K each Ay calculates and publishes C1 p = (g7* mod p, y, gsl k

mod p) and el),~c = (g%* mod p, kl "Bk mod p) where 1 and 61 are
randomly chosen from Z,.

2. For k' € K each Ay calculates £ ,, = E’izl'k/uk/ modpforl=0,1,...,t—1

0% S Ut
and ¢} ;. = c’f’,f mod p, € ;. ., = e’lzkk mod p for k € K.

3. BY, = Hk,eK Ellk, modp for I'=0,1,...,t — 1 and Ap = perx A pp
mod p, el = Hk,eK e . mod p for k € K.

Note that in the algorithm above, two integers &’ and k are used for the indices
of the CPs. The reason is that each CP have two roles: share holder and evalua-
tor. So two integers are needed for each index: Ay stands for the &** CP holding
(81,171 x) While Ay stands for the k'™ CP raising (¢} .k €1 ) and the commit-
ment variables to the power of its secret s ,,up. Thus EY; and its subsidiary
commitment variables are generated and each honest CP gets a encrypted share
necessary to reconstruct the secret in EY . Therefore, (@) is transformed to

REC(E"[j# 5+ 54 — g (®)

with the corresponding commitment variables and shares publicly available. (g))
is equivalent to

REC((I1ex E”S3 T S e State) = ©

@) is then transformed to
REC((erK E". 4kUk)H?:52keKs£,kuk) =0, (10)

where B3 = [Tje i /15" mod p for i =0,1,...,t 1 and the correspond—

. S UL U
ing encrypted shares are cj , = Hk,eKc”fkk mod p, €5 . = [1pex 6’13,:
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mod p for k € K. (@) is transformed to (I0) in the same way as (@) is transformed
to ([B). More precisely, each Ay with k' € K raises the commitment variables and
encrypted shares of ([@) to the power of his secret s3 jrug and then the honest
CPs’ outputs are combined.

The transform continues until (@) is reduced to

REC(erK E//nn guok) =0

(with supporting commitment variables E”,,_o; for | = 1,2,...,t — 1 and cor-
responding encrypted shares ¢;;_, ., eg—2,k for k € K) and finally

REC(E,_ 1, 0)=0 (11)
with supporting commitment variables E”,,_1; for 1 =1,2,...,¢t — 1 and corre-
sponding encrypted shares ¢ ., e, ;1 for k € K where By, =

Ut S;z Ut
[vex E//n ’ézk mod p and ¢ 1wx = lwex C”n—'g,kk mod p, e;ifl,lc =

Iwex e’nﬁg)kk mod p for k € K.
All the operations described intuitively above in this subsection can be de-
scribed in an abstract manner as follows. For ¢ =2,3,... n:

1. for k' € K each A calculates

B 1z;cf—E”Z’§/luk/ mod p for | =0,1,...,t—1 (12)
Gtk = C”ZL by modpfor ke K (13)
€ ke = 6”12'5:,6” mod p for k € K (14)
B = lwex By for 1 =01, ..t —Tand ¢ |, = [Tpex ¢ 1 pms
el 1k =lpex el 1 pp for ke K
where F, = Ef  for [ =0,1,...,t —Land ¢, = ¢}, for k € K, ej, = ¢}, for

ke K.

5.4 Secret Reconstruction
(I is solved as follows.

1. For k € K each Aj decrypts his encrypted share e _1, using ElGamal
decryption function: r, = Dy(e!’ 1) and publishes ry.

2. A secret is reconstructed: r = erK r.* mod p.

3. If r = E",_1 0, then the DNF is 1. Otherwise, it is 0.

6 Implementation and Efficiency Optimisation

There is an efficiency concern in the operation in Section Bl which needs p
inversions, > ; M (i) multiplications and v simplified secret sharing operations.
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m and t are small integers like 3 or 4. p is usually not too large in practical
applications. The DNF optimisation mechanism guarantees that n is not large
if the function is suitable for DNF solution. So the only efficiency concern is
about v, which may be large in some cases. Although each simplified secret
sharing operation only cost 1 exponentiation, a large cost is needed when v is
large. An optimised function is proposed as follows to replace the corresponding
commitment and sharing functions in Section[EIlto commit to and share publicly
known integers a;; for i = 1,2,...,n and j = 1,2,..., M (i) in the simplified
sharing format when v is large.

1. Aset A= Uii?j;M (i){aiv‘j} is set up to include all the constant integers
involved in all the equations in the DNF in the form (). Suppose A has a

size v and A = {a1,as,...,a,} and the largest integer in A is p bits long.
2. For 7=1,2,...,p— 1, G, = G?>_| are calculated where Gy = 1.
3. For t=1,2,...,v, the commitment of a, is publicly available as (EL,O, EL,1, ceey

E, 1) = (H G2 mod p, 1,1, .. ., 1) and its share for every Ay, is pub-
licly available as (SL,;€7 7.k) = (a,,0) where b, ; is the 7t bit of a,.
4. For each a;j, if a;; = a,, then E’M’l = E’LJ for I = 0,1,...,t — 1 and
§i7j7k = §L,k7 f@ﬁk = flL,k for k = 1, 27 oo, Mm.

After this optimisation, cost for committing to and sharing the constant inte-
gers in the function is 2(p — 1) multiplications. Therefore, evaluation of DNF's is
efficient. However, until now public verification has not been taken into account.
A cautious method to achieve public verifiability called complete public verifi-
cation procedure is to publicly verify validity of any secret operation. Thus the
following proof and verification computations are needed.

1. Bach Ay has to publicly prove that his share of REC(E] ;) is encrypted in
¢y, and €} ;. through ZK proof:
ZP [ Yiks Ouks Syt | €1y = (97 mod p, y)"" g+ mod p), (15)
€y = (g%+* mod p, y 1 *kRTLE mod p), ¢otkRMk = f éE ’fl mod p |,

Proof and verification of (IH) for k € K cost 13t full length exponentiations,

t(t 4+ 5) short exponentiations and ¢(¢ + 15) multiplications.
2. Computation of (IZ), (I3) and (I4) must be publicly proved and verified for
1=2,3,...,n and ¥ € K through ZK proof:

ZP E! — B od p f 1=0,1 t—1

[ s} Sik zk’| i—1,1,k/ i—2,0 od p Ior ¢ = et L

7" . //‘i,k’ U //1k’ Ug!

¢y pp=c"i"5, modpforkeK, e ;. = "5," modp for keK,

goin Rl = "~ IE’kl mod p |, (16)

Proof and verification of (I2), (I3) and @) for ¢ = 2,3,...,n and k' €
K cost (n — 1)t(3t + 12) full length exponentiations, (n — 1)¢(¢ + 5) short
exponentiations and (n — 1)¢(4¢ 4+ 16) multiplications.
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3. Decryption in Step 1 in Section [(£.4] must be publicly proved and verified
through ZK proof:

ZP [xp | g™ =gk, @} e = V)1 ] (17)

for k € K. () can be publicly proved and verified through ZK proof of equal-
ity of logarithms ﬂ], which costs 6¢ exponentiations and 3¢ multiplications.

4. As mentioned in Section ] sharing of the p secret inputs must be verified,
which costs the CPs totally 2mpu exponentiations and O(mut) multiplica-
tions. As illustrated in Section [ if a CP finds an invalid share from an IP,
he can publish it and the IP cannot deny it as the communication channel
between them is authenticated.

There is a more efficient method to achieve public verifiability. It does not
require to publicly verify validity of every secret operation. Instead, it only pub-
licly proves and verifies that []}"_, Zj\i(f ) (@i,j —m; ;)t; is correctly committed in
E;’ 1 and correctly reconstructed. So only the following proof and verification
operations are needed.

1. Aj, publicly proves for i =2,3,...,n and k' € K

S/. Uy’
/ / 14 _ 1174, k" Uk
ZP | Siks i ‘ E¢—1,o,k/ =E"" 5, mod p,

s’ t! t—1 /k:'l
g ik hiiw = ]—o '3y modp ],

verification of which guarantees that £, _,  is correctly generated. The proof
and verification of (I8) are implemented in Figure [I

2. It is publicly proved and verified that correct shares are used to reconstruct
the secret committed in E;{_LO in Section (4l More precisely, after each
Ay, publishes sy = Dy(c;, ;) and ri, = Di(e;, ), it is publicly verified

_ !
SpTk = ;Zé E”fL_Ll mod p for k € K.

This efficient public verification procedure (including proof and verification)
only costs 6 full length exponentiations, 2 4 t + 2 short exponentiations and
t2 + t + 6 multiplications, and thus is much more efficient than the complete
verification procedure. If it is passed, it is guaranteed that gl_I L XL (g —mig )t
is correctly reconstructed to determine the result of the function. If it fails, the
complete verification procedure is run and every secret operation is verified until
an invalid secret operation is detected. Then the participant responsible for the
invalid secret operation is expelled. If a penalty is given to any detected dishonest
participant, the participants will usually be honest and in most cases only the
efficient verification procedure is needed. Therefore, the DNF's can be efficiently
evaluated while public verifiability is achieved.

Theorem [l Theorem 2] and Theorem [ illustrate correctness, soundness and
privacy of the new scheme respectively. Privacy of the new secure computation
protocol with the complete public verification procedure can be proved as well.
Due to space limitation, their proof is left to the readers.
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1. A}, publishes z; ; ;s and zp; s where

_ 11Ut v, o
21k = (B i—2,0) L+ mod p
Zo ik = g Ltk hY248 mod p
and vy ; k/, Vo, are randomly chosen from Z.
2. A verifier randomly chooses and publishes a 128 bit integer u; /.
3. Aj, publishes wy ; ;» and wy ; ;v where
/
Wy ikt = V10 k' — 8§ Wik Mod g

Wa, i k! = V2,ik — t;yk/ui,k/ mod ¢
Anyone can verify

o A% wy o ! ik
21,50 = (E i—2,0) Ak E i—1,0,k mod p

rl
g = gt h2ik ([TZ) By )"+ mod p
Fig. 1. ZK proof and verification of (L8]

Theorem 1. The new secure computation protocol is correct.

Theorem 2. The new secure computation scheme is sound with the efficient
public verification procedure.

Theorem 3. The new secure computation protocol is private with the efficient
public verification procedure.

7 A Typical Example and Comparison

Using the DNF generation algorithm in Section] the famous millionaire problem
(the most popular and typical example in secure computation) is reduced to a
simple DNF as follows.

1. my and mg are L-bit messages to be compared where mq = (mq,1,m12,.. .,
mi,r), M2 = (Ma,1,May2,...,mar) and m;; is the 4" most important bit
of m;.

2. The DNF to evaluate the function is

(77?,171 =1A ma1 = 0) V (le =ma1 A mi2 = 1 /\m272 = 0) V
V(mig=mo1 Amia=moaA...ANMi_1="mM2_1
Amy g = 1N mo 1, = 0)
which is a simple DNF and can be efficiently evaluated.

In Table[l the new secure computation scheme is compared with the existing
general purpose secure computation schemes. Secure computation techniques
only dealing with a special function (like ﬂﬁ, @7 @, @]) are not included. As



266 K. Peng

Table 1. Comparison of properties

Scheme Sound- Privacy Flexibility Computation  Communi-
-ness in format -cation

1]  No Yes No > 15K LT > 37LT + 2T
= 61440000 = 148080

1§  Yes Yes No > 15K LT > 37LT + 2T
= 61440000 = 148080

Iﬂ] Yes Yes No average > 4665K L > 1626L
= 477696000 = 162600

E] Yes Yes No average > 4039.5K L > 1543L
= 413644800 = 154300

[2d  No Incomplete  No > Lt > 343L°

= 100000000 = 343000000

L5K(AL +40n — 18)+  10L + 30n

New  Yes Yes Yes 6K'(n—1)+2L+44n — 41 —20
= 1208663 = 1280

pointed out in Section[Ilit is very difficult to precisely estimate the cost of secure
computation schemes employing an abstract circuit [E, @, m7 |Il|7 @, @7 |2_l|]
They only claimed that a certain evaluation circuit is established to evaluate a
function while the concrete algorithm to generate the circuit is not provided and
the concrete structure of the circuit is unknown. So there is not an instantiated
protocol to be analysed in regard to efficiency in these schemes. Fortunately the
concrete cost of ﬂﬁ: , |ﬁ|] can be estimated according to HEL whose result is
then used in Table [l Unfortunately, there is no hint available to the concrete
cost of 8,19, [1d, [11], which are thus not included in Table [l The schemes in [d]
and [1] are similar to [17] and [2§] respectively, so are not separately listed in
Table [1l

For fairness of the comparison, the circumstance of the existing schemes is
adopted in the new scheme. For the sake of simplicity and generality, ¢, the
sharing threshold, is set to be 2. As the cost of preliminary operations including
set-up of distributed system (distribution of private keyﬁ or input), input en-
cryption, input validity check and all the public verification operations are not
counted in computation efficiency analysis of the existing schemes, their cost is
not counted in computation of the new protocols as well. In Table[Il n stands for
the number of clauses in the DNF; K is the bit length of a full length integer; K’
is the length of challenges in ZK proof primitives and 7T is the cutting factor in
cut-and-choose mechanism. The number of full length multiplications is counted
in terms of computation while addition, multiplication of small integers and ex-
ponentiations with small base are ignored and exponentiations with full length
base are converted into multiplications with a rule: an exponentiation with a
x bit exponent is equivalent to 1.5z multiplications. In Table [l transportation
of integers with significant length (e.g. 1024 bits long) is counted in regard to

2 In some secure computation schemes ﬁ|, @], distributed generation of private key is
extremely inefficient.
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communication. In the example in Table [Tl the evaluated function is the mil-
lionaire problem and K = 1024, K/ = 128, L = 100, n = 10 and T = 40. It is
clearly illustrated in Table [l that the new secure computation scheme is secure,
flexible and much more efficient than the existing secure computation schemes.

8 Conclusion

A new homomorphism based secure multiparty computation scheme with formal
security, strong flexibility and high efficiency is proposed. Compared to the other
homomorphism based multiparty computation schemes ﬂ, @, |_‘I__l|7 |ﬂ, @, @}, the
new scheme is more suitable for functions which can be reduced to polynomial-
size DNFs. The new scheme achieves flexibility in input format and supports
any input format. Privacy of the new scheme is formally proved in a novel se-
curity model, which has independent value. A typical example of evaluating the
millionaire problem is given to clearly illustrate advantage of the new scheme in
efficiency. The example also demonstrates practicality and applicability of the
new scheme.
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