FramewORk for Embedded System verificaTion

(Competition Contribution)

Pablo Gonzalez-de-Aledo and Pablo Sanchez

University of Cantabria, Santander (Cantabria), Spain
{pabloga,sanchez}@teisa.unican.es

Abstract. FOREST is a bounded model checker that implements sym-
bolic execution on top of the LLVM intermediate language and is able to
detect errors in programs developed in C. FOREST transforms a program
into a set of SMT formulas describing each feasible path and decides
these formulas with an SMT solver. This enables it to prove the satisfia-
bility of reachability conditions such as the ones presented in SV-COMP.
FOREST implements different ways of representing SMT formulas: linear
arithmetic, polynomials and generic bit-accurate and not bit-accurate
representations.

1 Overview

As many bounded model checkers, to verify a property for a given piece of code,
FOREST unfolds the execution of the code up to a certain depth and trans-
forms each path into an SMT formula. Before this transformation, assertions
and special functions are converted into conditions, so verification clauses can
be expressed as reachability properties (in the SV-COMP framework, if a state
can be reached from the start of the main procedure in which an LTL clause
can be satisfied, then the program is unsafe). The transformation from source to
SMT can be done using different theories (integers, linear formulas, polynomials,
etc.), and formulas can be decided using different solvers (Boolector, Z3, CVC4
...). For the competition, the theory of integers and real numbers has been cho-
sen, and formulas are decided with Z3 [3]. This is a trade-off between accuracy
and solving time.

2 Architecture

As a framework for automated program verification through symbolic execution,
verification under FOREST comprises the following steps, which are illustrated
in Figure 1.

1. Configuration: The ‘forest’ binary orchestrates the remaining tools and
steps, and configures the framework according to command-line parameters
or configuration files (xml files).

© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 429-431, 2015.
DOI: 10.1007/978-3-662-46681-0 36

430

et JED R s

P. Gonzalez-de-Aledo and P. Sanchez

Veriﬁ'cationk <,\:| ‘ Confi .
onfiguration
library ! fig)

LLVM Compilation & @
Symbolic g Result
S] - [G

compiler Linking
Transformation @ * Automatic Test

Pattern Generation
’ . ® Model Checking
=;="é SMT * Equivalence Checking
|(B228) Solver * Bug Detection

Fig. 1. FOREST architecture

2. Front-End and intermediate representation: As a front-end we use

llvm-gce, which transforms the source code to an llvm intermediate rep-
resentation. In this representation, branch instructions are performed in two
steps; first the result of the comparison is stored in a register. This register
is then used in a jump instruction to implement the branch. This unifies
comparisons so they can be handled as binary instructions.

3. Annotation: The intermediate representation is transformed via a transfor-

mation pass that instruments every operation with calls to back-end func-
tions. These back-end functions dynamically compute the strongest post-
condition from the ‘start’ state for every instruction so the effect of this
instruction in the state can be considered when running the program.

4. Static Heuristic: The control-flow-graph of the intermediate representation

ot

is obtained and a heuristic is computed indicating possible paths from the
entry point of the program to the destination. Yen’s algorithm [1] is used to
compute the k-shortest paths from entry to error location.

. Linking: The transformed intermediate representation is linked with a ver-

ification library. This library implements the semantics of every operation
in the intermediate representation and performs the symbolic execution as
explained in the following step.

6. Execution: When executed, the program forks on every condition encoun-

3

tered in execution and the heuristic computed in step 4 is used to guide the
exploration toward the error location. The A* algorithm [4] is used to search
for paths between entry and error. While the program is run, the inserted
functions from step 3 compute the strongest post-condition from the start-
ing state, and this condition is passed to an SMT solver when a conditional
branch is encountered. The effect of forking the execution on every branch
instruction is that the program “unfolds” into a binary tree in which every
process executes a different feasible path. Feasible paths are then added to
A* set of candidate paths to continue exploration.

Strenghts and Weaknesses

As a bounded model checker, FOREST cannot generate proofs of correctness for
unbounded programs. In these cases, we unfold the loops up to a certain depth,

FramewORKk for Embedded System verificaTion 431

and check for satisfiability in an under-approximation of the program possible
behaviours. This may be unsound in certain benchmarks such as array call3,
where FOREST fail to detect the error due to this limitation. Orthogonally to this
problem, approximating the behavior of variables with integers and real types
can also produce errors. This happens in the test ‘verisec sendmail’, in which
the reachability of the error state depends on an integer overflow. This bug is
not detected using integer representation but can be spotted if we use the option
-solver bitvector. The strengths of symbolic execution are its applicability
in a wide spectrum of applications, the possibility of obtaining partial results
and the speed of finding bugs when the program has some.

4 Tool Setup

The version of FOREST submitted to the competition can be downloaded exe-
cuting the following command in a x86 64 Linux machine

wget teisa.unican.es/forest/images/install.sh -0 - | bash

This should download and execute a script that installs the tool in the current
path and performs some tests. A correct installation can be assessed if all tests
are correct and terminate in time. The command-line options to be used in SV-
COMP have been condensed to the ‘-svcomp’ parameter. The file to analyse can
be indicated with ‘-file’. Complete installation instructions can be obtained
removing the tailing ‘| bash’ from the previous command.

5 Software Project

FOREST is maintained by Pablo Gonzédlez de Aledo. This work has been sup-
ported by Project TEC2011-28666-C04-02 and grant BES-2012-055572, awarded
by the Spanish Ministry of Economy and Competitivity. We gratefully acknowl-
edge the help of Franck Cassez for the revision of this article and for his pertinent
advice, and Fernando Herrera for testing the tool under different Linux distri-
butions and machines.

References

1. Yen, J.Y.: An algorithm for finding shortest routes from all source nodes to a given
destination in general networks. The Quarterly of Applied Mathematics 27, 526-530

2. Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program analysis
& transformation. In: International Symposium on Code Generation and Optimiza-
tion 2004, pp. 75-86 (2004)

3. de Moura, L., Bjgrner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337-340. Springer, Heidelberg
2008

4. %—Iart,)P.E‘, Nilsson, N.J., Raphael, B.: A Formal Basis for the Heuristic Determi-
nation of Minimum Cost Paths. IEEE Transactions on Systems Science and Cyber-
netics SSC4 4, 100-107 (1968)

	FramewORk for Embedded System verificaTion
	1 Overview
	2 Architecture
	3 Strenghts and Weaknesses
	4 Tool Setup
	5 Software Project

