
UNIFIED BEHAVIOR FRAMEWORK

FOR

DISCRETE EVENT SIMULATION SYSTEMS

THESIS

Alexander J. Kamrud, Captain, USAF

AFIT-ENG-MS-15-M-017

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, the Department of Defense, or the United
States Government.

This material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States.



AFIT-ENG-MS-15-M-017

UNIFIED BEHAVIOR FRAMEWORK

FOR

DISCRETE EVENT SIMULATION SYSTEMS

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

Alexander J. Kamrud, B.S.C.E.

Captain, USAF

March 2015

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



AFIT-ENG-MS-15-M-017

UNIFIED BEHAVIOR FRAMEWORK

FOR

DISCRETE EVENT SIMULATION SYSTEMS

Alexander J. Kamrud, B.S.C.E.

Captain, USAF

Committee Membership:

Douglas D. Hodson, PhD

Chair

Gilbert L. Peterson, PhD

Member

Maj Brian G. Woolley, PhD

Member



AFIT-ENG-MS-15-M-017
Abstract

Intelligent agents provide simulations a means to add lifelike behavior in place of

manned entities. Generally when developed, a single intelligent agent model is chosen,

such as rule based, behavior trees, etc. This choice introduces restrictions into what

behaviors agents can manifest, and can require significant testing in edge cases. This thesis

presents the use of the Unified Behavior Framework (UBF) in the Advanced Framework

for Simulation, Integration, and Modeling (AFSIM) environment. The UBF provides

the flexibility to implement any and all intelligent agent models, allowing the developer

to choose the model he/she feels best fits the experiment at hand. Furthermore, the

UBF demonstrates several key software engineering principles through its modular design,

including scalability through reduced code complexity, simplified development and testing

through abstraction, and the promotion of code reuse.

iv



Acknowledgments

I would like to thank Dr. Hodson for his guidance and direction throughout the AFIT

program. I also would like to thank my thesis committee members for their expertise,

teaching, and continuous input on the difficult subject matter at hand; without it this thesis

would not have been possible.

Most importantly to my wife; without you I am hopelessly lost, and with you I am

forever blessed. I cannot thank you enough for your extraordinary support, patience, and

understanding.

Alexander J. Kamrud

v



Table of Contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Research Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Sponsor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

II. Intelligent Agent Architectures Background . . . . . . . . . . . . . . . . . . . . 4

2.1 Sense-Plan-Act Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Reactive Control Architectures . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Subsumption Architecture . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Motor Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Unified Behavior Framework . . . . . . . . . . . . . . . . . . . . . 7

2.3 Tiered and Hybrid Architectures . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.1 Three-Layered Architectures . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Saphira Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.3 POMDP-Based Layered Architecture . . . . . . . . . . . . . . . . 11
2.3.4 OpenR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Intelligent Agents in Software . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.1 Behavior Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 Extended Teleo-Reactive Architecture: GRUE . . . . . . . . . . . 18
2.4.3 Dynamic Scripting . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.4 SimBionic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.5 Behavior Multi-Queues . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Choosing an Architecture - Summary . . . . . . . . . . . . . . . . . . . . 22

III. Publishable Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

vi



Page

IV. Additional Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 AFSIM Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 IADS Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.1 UAVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.2 SOJs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.3 Radar Company . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.4 Fighter Jets - Intelligent Agents . . . . . . . . . . . . . . . . . . . 38

4.3 UBF Implementation in AFSIM . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.1 Action Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.2 State Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.3 The Controller and Leaf Behaviors . . . . . . . . . . . . . . . . . . 42
4.3.4 Arbiters and Composite Behaviors . . . . . . . . . . . . . . . . . . 43

Appendix A: Implementation Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Appendix B: Simulation Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

vii



List of Figures

Figure Page

2.1 Linear Functional Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Layered Behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 UML Diagram for the UBF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Three-Layer Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Saphira Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Layered Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7 OpenR Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.8 Rooted Tree Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.9 Example of a Behavior Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.10 Dynamic Scripting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.11 Behavior Multi-Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 AFSIM Functional Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 VESPA GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Behavior Tree in AFSIM script . . . . . . . . . . . . . . . . . . . . . . . . . . 42

viii



List of Acronyms

Acronym Definition

AFSIM Advanced Framework for Simulation, Integration, and Modeling

AI Artificial Intelligence

APL Application Layer

BT Behavior Tree

CPC Configurable Physical Component

DIS Distributed Interactive Simulation

EW Early-Warning Radar

FSM Finite-State Machine

GRUE Goal and Resource Using architecturE

GUI Graphical User Interface

HAL Hardware Adaption Layer

HSM Hierarchical State Machine

IADS Integrated Air Defense System

LPS Local Perceptual Space

NPC Non-Player Character

OO Object Oriented

OpenR Open Architecture for Robot Entertainment

OTS Off-The-Shelf

POMDP Partially Observable Markov Decision Process

PRS Procedural Reasoning System

SAGE Simulation of Autonomously Generated Entities

SAM Surface-to-air Missile

SOJ Standoff Jammer

ix



Acronym Definition

SPA Sense-Plan-Act

SSL System Service Layer

TCA Task Control Architecture

TRP Teleo-Reactive Program

UAV Unmanned Aerial Vehicle

UBF Unified Behavior Framework

UML Unified Modeling Language

VESPA Visual Environment for Scenario Preparation and Analysis

x



UNIFIED BEHAVIOR FRAMEWORK

FOR

DISCRETE EVENT SIMULATION SYSTEMS

I. Introduction

M odeling and simulation provides the capability to study, experiment, and research

lifelike scenarios and systems without having to create and test those scenarios or

systems in real life. In the case of scenarios that contain human actors, intelligent agents

often represent the lifelike decision making of humans. Representing a lifelike scenario in

a simulation system requires ever increasing scenario complexity, and as scenarios increase

in complexity so too do the agents involved. With ever increasing complex tasks and

situations, developers must devote more time to the agent’s construction and should not

be hindered by the constraints of the architecture being used for agent design. Different

approaches to agent design offer developers different advantages to help combat these

effects.

Cognitive design approaches focus around building a symbolic world model and

reasoning over it to develop an action plan, which is computationally expensive and results

in poor performance in dynamic environments [9]. In contrast to this are reactive control

architectures which use a collection of behaviors that respond directly to stimulus from the

surrounding environment. This in combination with some form of control-flow mechanism

for action selection leads to robust performance in a changing environment. However

reactive control architectures are still limited by their lack of planning for completion of

high level goals.

1



Tiered and hybrid architectures solve this problem by taking advantage of the strengths

of both approaches by merging them, using behaviors at a low-level for control of the agent,

and deliberation and planning at a high-level for goal completion [9]. A disadvantage with

behaviors that remains with a tiered approach is that behaviors at the low-level are typically

tailored for a specific environment and situation, resulting in little code re-use for a different

project or experiment. Furthermore in the case of a simulation framework, it does not allow

for the flexibility of implementing different intelligent agent models.

1.1 Research Goal

Through its software engineering approach to intelligent agent design, the UBF has

been identified as an effective means to address these concerns of flexibility and code

re-use in intelligent agent design, however the UBF has yet to be used in a simulation

environment. The goal of this research is to adapt the UBF to a discrete event simulation

framework, specifically the AFSIM environment, which currently only uses Behavior

Trees (BTs) for agent design. The additional objectives that come with this goal are to

improve the overall agent design capabilities of AFSIM in relation to software engineering

principles. Specifically this includes: 1) providing increased agent design flexibility to the

developer, allowing them more freedom in choosing an agent architecture, 2) improving

AFSIM’s scalability through reduced code complexity, 3) simplifying development and

testing through abstraction, and 4) promoting code reuse through a modular design.

1.2 Sponsor

This research is sponsored by the Aerospace Systems Directorate of the Air Force

Research Laboratories (AFRL/RQQD) at Wright-Patterson Air Force Base. AFRL/RQQD

requires a modeling and simulation framework for research of aerospace vehicles

technology. Currently AFSIM is their current chosen modeling and simulation framework.

2



The work presented in this thesis provides necessary improvements to the intelligent agent

design capabilities of AFSIM.

1.3 Assumptions

The terms and approaches used in this thesis are programming independent, however

it is assumed that the reader has a basic knowledge of Object Oriented (OO) programming

concepts and fundamental principles [10]. These concepts aid in understanding the motive

for utilizing the UBF, as well as the structure of the UBF. Also while the general

concepts are programming language independent, specific implementation of the non-real-

time version of the UBF was performed in C++ as AFSIM is a discrete event simulation

framework written in C++. Thus basic knowledge of C/C++ is assumed when discussing

implementation. A basic understanding of the Unified Modeling Language (UML) is also

assumed, specifically in regards to UML notation as discussion of the UBF includes its

depiction through a UML diagram.

1.4 Thesis Structure

This thesis is structured as follows: this chapter introduces the problem and the goals

of the research. Chapter II presents an overview of various intelligent agent architectures,

including the advantages and disadvantages associated with each, as well as a comparison

summary to the UBF. Chapter III illustrates the entirety of the research, condensed into a

publishable paper. Finally Chapter IV provides additional details on AFSIM, the scenario

used to test functionality of the UBF, and the implementation of the UBF into AFSIM.

3



II. Intelligent Agent Architectures Background

T his chapter presents an overview of current research into intelligent agent

architectures. Intelligent agent architectures all strive to develop agents that

accomplish tasks and high level goals in dynamic or unsafe environments. However each

architecture is unique and has its own benefits, as well as its inherent disadvantages.

To understand these benefits and select an architecture for implementation first requires

understanding of these unique architectures.

The material in this chapter has been broken into four sections. First an early approach

to robotics and Artificial Intelligence (AI) research is introduced, in which the paradigm

was to sense and form a symbolic world model to reason and develop plans over. The

next section is an examination of reactive control architectures, followed by discussion of

tiered and hybrid architectures which attempted to merge the early approach with reactive

controllers. The final section covers research into intelligent agents that reside specifically

in software environments, which has a large focus on game AI.

2.1 Sense-Plan-Act Approach

In developing an autonomous robot, the Sense-Plan-Act (SPA) approach was the focus

of AI research for 30+ years until the mid-1980’s [9]. This approach first uses sensors to

sense the world around the robot and then next using that information to form a world

model. The robot would then use this model in planning algorithms to reason and form its

next actions, then execute those actions and repeat these steps. A visual depiction of this

approach is in Figure 2.1 and as can be seen it is a very linear cycle with serial execution.

The SPA approach to robotics proved problematic for even relatively simple tasks, as

the world we live in is dynamic [1]. After only a few or even a single action, the robot’s

model of the world would no longer be valid and it would have to reform its next actions

4



Figure 2.1: Robot control system using serial execution of functional modules [4].

to take. Forming the symbolic world model and reasoning over it is computationally very

expensive, and thus having to perform these steps after every action, while simultaneously

having no actions to execute, results in sub-par performance due to lag time between each

action taken.

Using solely the symbolic world model for planning was an issue in itself as this

meant the model must contain all information the robot needs [1]. Thus the robot can fail

to perform in a dynamic environment where the robot would encounter foreign entities to

its world model. The robot Shakey was an early example of the downfall to using this

approach of forming a world model and planning around it [16].

2.2 Reactive Control Architectures

In response to the failures of using the SPA approach to developing intelligent

agents, reactive control architectures (also referred to as behavior-based robotics) began

to emerge [9]. These architectures focused on using the world as the model, as opposed

to representing it symbolically, with the rational being that the world itself is its best

representation. This results in a robot that responds to the world through behaviors as

the robot senses the changing surrounding environment; visually this can be seen in Figure

2.2.

Of these emerging architectures, Braitenberg first presented a thought-experiment on

developing intelligent agents that are composed of simple internal structures that react to

the environment according to the structures’ designs [3]. These simple structures can be

thought of as behaviors as they define how to react to the environment. By slowly and

5



Figure 2.2: Robot control system using layered task achieving behaviors [4].

iteratively increasing the incorporation of these simple structures to develop a more and

more complex intelligent agent eliciting ever more complex behavior, he demonstrated

how an agent can be formed to solve any complex task using only simple behaviors.

Similarly Brooks argued that complex behavior of an agent is not the result of complex

internal systems but instead the result of a complex environment, and thus the agent’s

internal systems should remain simple [4]. He also argued that traditional AI robots which

model the world and then plan and act on that model must instead sense the world and act

directly from that stimulus, in order to better achieve real-time interactions with the world.

From this Brooks presented an architecture which linked the robots actions almost directly

to its sensor stimulus.

2.2.1 Subsumption Architecture.

The Subsumption Architecture developed by Brooks incorporated parallel layers of

competence, which can be thought of as task achieving behaviors, as opposed to the linear

series of functional modules used in the SPA approach [4]. Each layer of competence is a

sub-behavior of the complete behavior of the robot, and each higher level of competence

includes within it the earlier levels of competence. There is no central control for the

architecture, and thus each of these layers can be thought of as an individual agent operating

asynchronously and independently in their own world, free to operate and output actions

6



to the robot as they find appropriate. Despite the lack of central control the layers work

together, with the higher levels being able to subsume the lower levels, and the lower levels

being able to inhibit the higher levels, resulting in viable actions being produced for the

robot at all times. Furthermore with these layers all being independent of one another, the

intelligence of the robot can be grown incrementally by simply adding on additional layers

one layer at a time.

2.2.2 Motor Schema.

Another reactive control architecture that emerged around the same time was Arkin’s

Motor Schema, a schema-based reactive control [1]. A motor schema refers to a basic

behavior such as “wander” or “avoid objects” which contains the knowledge required to

generate a velocity vector command for that schema using potential fields. Thus the system

uses sensors to channel environmental stimulus to the motor schema, and then each of the

motor schema asynchronously generates these velocity vectors using solely that stimulus.

The velocity vectors are then summed and normalized to be used for execution by the robot.

In this manner, all behaviors are cooperating and contributing to the overall action produced

by the robot. Because no persistent knowledge of the world is ever stored or used by the

motor schema (unless the knowledge is known a priori), this architecture is truly reactive

control and can encounter problems with local maxima/minima, as well as cyclic behavior.

2.2.3 Unified Behavior Framework.

Once an architecture is implemented onto a mobile robotic system for a specific

application, it tends to bind that robot’s capabilities to the architecture’s strengths and

weaknesses. Furthermore this leads to a platform specific model, as the behavior logic,

the controller, and the underlying hardware all become interconnected. The UBF was

developed as a means to combat this inflexibility associated with implementing behavior-

based architectures, specifically at the controller level of the three-layer architecture

[22, 23]. By separating the behaviors from the controller, different behavior-based systems

7



can be implemented into the behavior logic without having to change the controller. This

also frees the behavior logic from being platform specific and encourages reuse.

Figure 2.3: UML diagram for the UBF [22].

The UBF accomplishes this distinction through the software engineering principles

of object oriented programming known as encapsulation, the strategy pattern, and the

composite pattern [22], as shown with the UBF hierarchy in Figure 2.3. Behaviors are

encapsulated as objects with an interface consisting of a generate action method (i.e.,

“genAction()”) which returns an action object. Using this interface allows behaviors to

be interchanged easily at runtime by the controller, following the strategy pattern. The

genAction() method of the behavior uses a state object, which contains all perceived data

from the agent’s sensors, to produce the action object. The action object contains all

necessary information (i.e. motor outputs) needed for the controller to execute the given

action, as well as how strongly the behavior recommends the action to be taken (i.e. a vote

amount set on an arbitrary scale). Thus the continuous cycle for the controller consists of

first updating the state object with current sensor data, then next invoking the genAction()

8



method of the composite behavior so the behaviors generate a unified recommended action

object, and then finally using this action object to execute commands to the agent.

Multiple behaviors can be encapsulated as a single composite behavior object,

following the composite pattern. Composite behaviors can replace ordinary behaviors,

allowing for limitless expansion of a UBF tree, and also encourages further modularity and

reuse. Also contained within a composite behavior is a construct known as an arbiter. The

arbiter is what unifies multiple action recommendations, given by the behaviors contained

within the composite behavior, into a single action recommendation object. Arbiters can

be customized to unify action recommendations however the developer sees fit, allowing

for any behavior-based system implementation to be possible.

2.3 Tiered and Hybrid Architectures

Reactive control architectures were able to respond quickly in dynamic environments

and as a result were viewed as a boon to robotic intelligence when compared to SPA-based

robots [9]. However while these architectures had a quick response to their environment,

they possessed limited planning or goal making capability. Tiered and hybrid architectures

arose from the need to push through this capability ceiling, while still departing from

the past SPA approach [2, 9]. Coincidentally multiple tiered architectures consisting

of three-layers were inadvertently developed at the same time, each by different groups

of researchers working relatively independent of one another. Despite being developed

independently, these architectures all consist of three layers or components that are similar

in their purpose and function.

2.3.1 Three-Layered Architectures.

Composition of a three-layer architecture is in general as follows [9]. At the low-level

there is a component for reactive behaviors, at mid-level a sequencer that can swap out

behaviors for the current situation at hand, and at the high-level a traditional deliberative

planner. This can be seen visually in Figure 2.4. The low-level reactive component, called

9



the skill layer or controller, is a mechanism that implements the current skill-set or behavior

scheme of the robot. These behavior schemes can represent tasks to be accomplished,

and do so reactively by sensing the surrounding environment and reacting to it according

to a transfer function, with no representation of the world needed (other than what the

sensors provide) and should not rely on internal state. The sequencing layer or sequencer

controls which behaviors should be currently executing, the purpose being that sequencing

behaviors in the correct order allows for complex tasks to be accomplished. In order to

know when to swap behaviors, the sequencer stores some amount of internal state to react to

changes in the environment. Finally at the highest level is the planning layer or deliberator,

which performs the typical planning aspect through polynomial-time and higher search

algorithms.

Figure 2.4: General composition for three-layered architecture.

Bonasso [2] and Gat [9] both developed similar three-layered architectures named 3T

and ATLANTIS respectively which followed this general composition. A key difference

between them was that ATLANTIS used more emphasis on the sequencer being in control,

while 3T mostly used a planner in control approach. Worth noting is that 3T used

10



the Reactive Action Packages (RAPs) [6] system developed by Firby for the sequencing

capability of activating and deactivating various skillsets of the robot.

2.3.2 Saphira Architecture.

The Saphira architecture is an integrated sensing and control system for robotics

applications [14]. It is similar to 3T and ATLANTIS in the sense of the general three-layer

design, with reactive behaviors used at the low level, a planner available for query, and

a sequencer in the middle to control behaviors, however there are some key differences.

At the core is the Local Perceptual Space (LPS), which is a fusion of sensor and a

priori information from independent perceptual routines which models the surrounding

environment for the robot. The LPS is used by reactive behaviors to produce actions,

and also by the Procedural Reasoning System (PRS) to sequence and monitor tasks for

goal completion. Because the reactive behaviors and the PRS use the LPS in order to

make decisions and produce actions, and because the LPS is a model of the world, then

this model must be updated immediately and consistently so that the actions produced

are valid even in a dynamic environment. Using Brooks’ terms[4], this is accomplished

with the overall organization of the architecture being partly horizontal and partly vertical,

which can be seen visually in Figure 2.5. In this manner, higher behaviors and perceptual

routines indicate a larger cognitive level of processing [14]. Thus there are perceptual

routines at the low-level which quickly update the LPS using sensor information, and also

perceptual routines at the high-level which require more processing time as they fuse sensor

information with a priori information. Similarly higher level behaviors are more complex

and are used to guide the lower level reactive behaviors.

2.3.3 POMDP-Based Layered Architecture.

Simmons’ research in creating an autonomous mobile office delivery robot led to

the development of the layered architecture, an architecture which is composed of five

different layered architectures, and is based in using Partially Observable Markov Decision

11



Figure 2.5: Visual depiction of the horizontal and vertical organization of the Saphira

architecture. [14].

Process (POMDP) models for its navigation [13, 18]. At the bottom there is the servo-

control layer which provides real-time motor control for the robot. Next up is the obstacle

avoidance layer which uses an objective function (Simmons’ Curvature-Velocity Method)

that provides safety, speed, and progress along the desired heading while avoiding static and

dynamic obstacles. From here is the POMDP-based navigation architecture which uses a

POMDP model for a probability distribution on the robot’s current location, which is then

used by the robot for action decisions. After this is the path planning layer which decides

how to travel from one location to another by choosing the path that is expected to have the

highest utility from estimated travel time calculations. Finally is the multiple-task planning

(task scheduling) layer, which consists of a symbolic non-linear planner (PRODIGY) to

schedule delivery requests in the most efficient order in real-time as the requests arrive

asynchronously.

12



Figure 2.6: Layered Architecture [18].

As can be seen in Figure 2.6, these layers are all horizontal, distributed, and operating

concurrently and thus must be integrated together [13, 18]. This is done using the

Task Control Architecture (TCA) [19] which provides inter-process communication and

synchronization, task decomposition and sequencing, execution monitoring, exception

handling, and resource management. Finally to monitor progress and receive delivery

requests from office workers, there is a user interface via the World Wide Web, providing

live monitoring of task execution and command over the robot.

2.3.4 OpenR.

The Open Architecture for Robot Entertainment (OpenR) is an architecture that was

developed particularly for autonomous robot systems in the entertainment field [8]. It was

aimed at allowing robot developers the ability to build their own systems using Off-The-

Shelf (OTS) components while meeting the specifications of OpenR. The specifications

include a reference model consisting of a basic system, an extension system, and a

development environment. The basic and extension systems revolve around using

Configurable Physical Components (CPCs), which have common interfaces and Hot-

Plug-and-Play capability to offer developers the flexibility to build their own robots by

connecting these CPCs to the System Core. From here the model is also layered consisting

of a Hardware Adaption Layer (HAL), a System Service Layer (SSL), and an Application

Layer (APL), as can be seen in Figure 2.7. This layering allows developers to create

13



programs with user-friendly interfaces that are hardware independent. Further expanding

upon the idea of common and well-defined interfaces, OpenR uses Apertos, an OO

distributed real-time operating system which defines all components, both physical and

software, as “objects” [24].

Figure 2.7: OpenR architecture’s layered reference model [8].

2.4 Intelligent Agents in Software

In this section various architectures for developing intelligent agents in software are

explored. Intelligent agents in software gave rise to new ways of developing autonomous

agent architectures, largely in part due to the video game industry and its growing use

of AI. The architectures discussed thus far are applicable to intelligent agents in all

regards, however they were largely developed for use with robots and thus differ from

these architectures and frameworks which focus solely on intelligent agents in software.

14



2.4.1 Behavior Trees.

A BT is a plan representation tool for action selection of an autonomous AI agent.

BTs largely originated from AI development for Non-Player Characters (NPCs) for the

video game Halo 2 [12], and as such BT frameworks are often game-oriented and are

not generalized to other fields such as robotics [15]. However in the context of three-

layered architectures, BTs reside in the middle or sequencing layer, where they provide a

component for switching between the low-level reactive controllers.

Figure 2.8: Graphical depiction of a rooted tree.

The structure of the BT is defined as a directed rooted tree, meaning it is a directed and

connected acyclic graph with one node chosen as the root, as can be seen in Figure 2.8 [15].

A node incident to an outgoing edge is considered the child node of the connected pair of

nodes, and a node with an edge leaving it is considered the parent node of the connected

pair of nodes. Nodes which have a degree of only 1 are referred to as leaf nodes, with the

exception of the unique root node. This collection of leaf nodes represents the behaviors

of the agent which execute and produce an action. All other nodes of the tree are part of

the mechanism for changing control-flow execution of these leaf nodes, and they consist

of three different types, selector, sequence, and parallel.

Control-flow execution of the tree is as follows. The root node ticks an activation

signal at a specified frequency rate ftick which propagates down through the tree according

15



to the algorithms contained in the four different types listed above [15]. When this

activation signal reaches a leaf node, the behavior contained in that node performs a check

on whether it should execute or not. If it should execute, then it returns either success

or running, however if the check fails, then it returns failure. This return value is then

propagated back up the tree accordingly and control-flow execution of the tree continues

until a return value reaches the root node, in which case the root waits for the appropriate

time to tick another activation signal according to ftick. An example of a fully constructed

BT for a fighter jet agent participating in a sweep mission scenario is shown in Figure 2.9

[17].

Figure 2.9: Example of a fighter jet agent’s BT for a sweep mission scenario [17]. Note

that leaf nodes are green, parallel nodes are yellow, selector nodes are blue, and the root

node is red.

The algorithms for the three node types are as follows. A selector node ticks the

activation signal sequentially across its children (from left to right if looking at a BT) until

one of them returns either success or running [15]. If all children return failure, then

the selector node returns failure as well, otherwise it returns either success or running,

depending upon what the first non-failing child node returned.

16



A sequence node ticks the activation signal sequentially across its children (from left

to right if looking at a BT) until one of them returns either running or failure [15]. If all

children return success, then the sequence node returns success as well, otherwise it returns

either running or failure, depending upon what the first non-success child node returned.

A parallel node ticks the activation signal sequentially across all of its children (from

left to right if looking at a BT) [15]. If the number of children that return success is ≥ S , S

being a user-defined node parameter, then the parallel node returns success. If the number

of children that return failure is ≥ F, F being a user-defined node parameter, then the

parallel node returns failure. If neither is true, then the parallel node returns running.

Algorithm 1: Selector [15]
1: for i← 1 to N do
2: state← Tick(child(i))
3: if state = Running then
4: return Running
5: if state = S uccess then
6: return S uccess
7: end
8: end
9: return Failure

Algorithm 2: Sequence [15]
1: for i← 1 to N do
2: state← Tick(child(i))
3: if state = Running then
4: return Running
5: if state = S uccess then
6: return Failure
7: end
8: end
9: return S uccess

17



Algorithm 3: Parallel [15]
1: for i← 1 to N do
2: statei ← Tick(child(i))
3: end
4: if nSucc(state) ≥ S then
5: return S uccess
6: if nFail(state) ≥ F then
7: return Failure
8: else
9: return Running

10: end

2.4.2 Extended Teleo-Reactive Architecture: GRUE.

Goal and Resource Using architecturE (GRUE) is an extended teleo-reactive

architecture which uses resources to overcome inherent limitations of using a teleo-reactive

architecture [11]. Teleo-Reactive Programs (TRPs) are composed of a list of rules, where

each has a condition and an action. When the program is run the rules are evaluated and

executed in series according to the first rule with a condition that evaluates to true. TRPs

are each used to accomplish a single goal, and with multiple goals an arbitrator is used

to determine with TRP should execute at each cycle. Goals are developed by the user, as

well as the reward for accomplishing the goal, allowing for reinforcement learning. While

TRPs have the advantage of handling a dynamic environment with ease due to arbitration,

they also have limitations as all goals and their corresponding reward have to be set by the

user, which is inappropriate for truly autonomous agents. GRUE solves these limitations by

introducing the concept of a resource, which represents a condition that must be kept true

throughout the execution of an action. By combining resources with priorities so that TRPs

never use a resource required by a higher priority TRP, multiple goals and the appropriate

reward become much easier to manage.

18



2.4.3 Dynamic Scripting.

Dynamic scripting is an online learning technique for game AI which builds upon

scripting [20]. Scripting is a technique for implementing game AI which consists of lists of

rules which are executed sequentially. While scripts are easy to understand and implement,

they are generally long, complex, and static. This means that scripted AI are unable to adapt

to unpredicted tactics from the opponent and that their weaknesses are easily exploitable.

This results in a scripted AI whose tactics become completely predictable once the human

understands his/her opponent. The only way for the developer to counter this problem when

using scripted game AI is to extend the script and make it even larger and more complex,

creating an endless challenge for the developer.

Figure 2.10: Dynamic scripting [20].

Dynamic scripting helps solve this problem by learning in real time how to win against

the human player [20]. It does this by generating script from a weighted ruleset (with

possible priorities). This script is then used to play against the human opponent and once

an encounter has finished, the weights of the rules are adjusted according to how they

contributed to the encounter so that the script generated for the next encounter is better

prepared for the opponent depending on which tactics performed well. Figure 2.10 depicts

this cycle visually. An important note with dynamic scripting is that the total weight is

kept constant (ignoring remainder weight which is explained in the paper), and thus after

19



weight reward adjustments, all remaining weights must be adjusted to keep the total weight

in check. Thus every rule weight is adjusted after every encounter, and then effectively all

rules are always learning to some extent with every iteration.

2.4.4 SimBionic.

SimBionic is an AI modeling tool aimed at aiding behavior creation through an

intuitive visual interface that is usable by both developers and non-programmers [7]. The

tool uses Finite-State Machines (FSMs) as the underlying way to depict behaviors. Users

define the actions and conditions of behaviors, i.e. the FSM’s states and transitions, in

the tool’s graphical editor. Once these definitions have been made, they act as building

blocks for behavior graphs to be constructed. The behavior graphs can then be indexed

via a descriptor hierarchy to facilitate polymorphic behavior selection. There are also

noteworthy extensions of SimBionic which augment its computational model: conditions

are used to evaluate transitions (expression evaluation), a single state can refer to another

FSM (stack-based execution), the capability to interrupt behaviors, and polymorphism.

2.4.5 Behavior Multi-Queues.

Behavior multi-queues [5] is an AI behavior architecture which uses behavior

queues to fulfill five important traits that Cutumisu identified that a behavior architecture

should display. The specified traits for behaviors include being responsive, interruptible,

resumable, collaborative (joint behavior events), and generative (non-programmers are

able to design and implement behaviors). The architecture encapsulates collections of

behaviors as roles. Roles select behaviors which are made up of a sequence of tasks or

other behaviors; using roles in this manner allows for the game AI to be responsive to a

dynamic environment. When these behaviors are created, the sequence of tasks is placed

in one of three queues depending on the behavior type. There is a queue for independent

behaviors, a queue for collaborative behaviors, and a queue for latent behaviors (meaning

they are event cued behaviors). Using roles consisting of behaviors for the game AI, in

20



combination with multi-queues of this manner, allows for the architecture to fulfill all five

traits. An example of the multi-queue architecture for a complex scenario can be seen in

Figure 2.11.

Figure 2.11: Complex scenario example depicted by Cutumisu using multi-queues

architecture [5].

21



2.5 Choosing an Architecture - Summary

In summary, there are advantages and disadvantages to all of the software architectures

presented. For example an architecture following the SPA approach can develop high

level plans to accomplish goals, but is unresponsive while executing those plans and thus

performance suffers in a dynamic environment. At the other end of the spectrum are

reactive architectures that respond quickly even in a changing environment, but lack any

type of forming of plans to accomplish high level goals, other than that which is inherent

in the behaviors and how they are structured. Considering both of these approaches are

the tiered and hybrid architectures which strive for the strengths of both of the SPA and

reactive approaches by merging them together. By having a reactive/behavioral approach

at the low level to control the motors, and a sequencer to utilize those behaviors in order

to carry out plans, the deliberator can then form plans while still responding quickly to the

world changing around it. However a disadvantage is that combining these layers for the

aforementioned capabilities adds code base complexity and introduces potential interaction

issues.

There are similar tradeoffs for architectures used to develop intelligent agents

in software. Dynamic scripting builds upon scripting by correcting the challenge in

complexity needed in order to make a script which adapts to the tactics of another

opponents by changing its own tactics to become more effective. While it solves this issue,

the drawbacks that are innate to scripting still exist. Dynamic scripting can be only be used

when the AI agent can be scripted, which is not always possible. and there is also still a

lack of complex collaboration and resumability between scripts. Dynamic scripting is also

built towards improving its tactics, and thus lacks any inherent mechanism to improve its

diversity, which can lead to static and predictable scripts [21].

SimBionic improved FSMs by adding in a more generative capability along with its

four additional augmentations, however collaboration is still left to be desired. Similarly

22



BTs are much more intuitive to build and understand than their Hierarchical State

Machine (HSM) and FSM predecessors, and also support reuse by making behaviors

modular. However even with the recent additions of making BTs resumable and also

cooperative[15], BTs still lack fusion between behaviors for more emergent behaviors of

agents. Furthermore BTs can lead to agents which are slow to respond if behaviors early

in the tree tick are computationally intensive. A natural evolution from BTs is behavior

multi-queues, which allowed for all five of Cutumisu’s desired features of a behavior to

exist in a single architecture. However the lack of fusion between behaviors again has a

lack of emergent behavior of agents as desired.

The UBF does not necessarily have any of these drawbacks, as it is a framework

that offers the flexibility to implement or even merge any of the behavior-based systems

mentioned. For example a UBF structure with the properly implemented arbiter can

resemble and offer the same functionality as a BT, while also offering more capabilities

such as fusion, which as an arbiter can be customized to emulate various algorithms [22].

Furthermore, as all of the behaviors in the UBF evaluate with each controller cycle, the

downfall of slow response due to computationally intensive behaviors is mitigated. The

UBF also promotes behavior reuse with its modular design and cross-platform code reuse.

Performance degradation is a disadvantage that can result with the UBF if there are too

many behaviors running concurrently on the agent and not enough computational resources

to support the behaviors, as each behavior performs calculations with each controller cycle.

Thus, as expected, as complexity of an agent grows, necessary computational resources

grows as well.

23



III. Publishable Paper

This chapter presents the entirety of the research, illustrated as a publishable paper.

24



Unified Behavior Framework in Discrete Event
Simulation Systems

Alex Kamrud∗, Douglas Hodson†, Gilbert Peterson‡, and Brian Woolley§
Department of Electrical and Computer Engineering

Air Force Institute of Technology, Wright-Patterson AFB, OH 45433
Email: alexander.kamrud@afit.edu, douglas.hodson@afit.edu, gilbert.peterson@afit.edu, brian.woolley@ieee.org

Telephone: ∗651-485-8626, 937-255-3636 †x4719, ‡x4281, §x4618

Abstract—Intelligent agents provide simulations a means to
add lifelike behavior in place of manned entities. Generally when
developed, a single intelligent agent model is chosen, such as rule
based, behavior trees, etc. This choice introduces restrictions into
what behaviors agents can manifest, and can require significant
testing in edge cases. This paper presents the use of the unified
behavior framework (UBF) in the advanced framework for
simulation, integration, and modeling (AFSIM) environment. The
UBF provides the flexibility to implement any and all behavior-
based systems, allowing the developer to choose the model
he/she feels best fits the experiment at hand. Furthermore, the
UBF demonstrates several key software engineering principles
through its modular design, including scalability through reduced
code complexity, simplified development and testing through
abstraction, and the promotion of code reuse.

I. INTRODUCTION

The purpose of autonomous agents in simulation systems
is to represent lifelike intelligence. In doing so, scenarios
representative of real-life can be played out in a simulated
environment for further study, experimentation, and research.
To accomplish this, agents must be able to handle ever
increasing complex tasks and situations, resulting in both their
design and overall time in development growing as well.
Different approaches to agent design offer developers different
advantages to help combat these effects.

Cognitive design approaches focus around building a sym-
bolic world model and reasoning over it to develop an action
plan, which is computationally expensive and results in poor
performance in dynamic environments. In contrast to this are
reactive control architectures which use a collection of behav-
iors that respond directly to stimulus from the surrounding
environment. This in combination with some form of control-
flow mechanism for action selection leads to robust perfor-
mance in a changing environment. However reactive control
architectures are still limited by their lack of planning for
completion of high level goals. Tiered and hybrid architectures
solve this problem by taking advantage of the strengths of both
approaches by merging them, using behaviors at a low-level
for control of the agent, and deliberation and planning at a
high-level for goal completion [1].

A disadvantage with behaviors that remains with a tiered
approach is that behaviors at the low-level are typically tai-
lored for a specific environment and situation, resulting in little
code re-use for a different project or experiment. Furthermore

in the case of a simulation framework, it does not allow for the
flexibility of implementing different intelligent agent models.
To solve these issues, the unified behavior framework (UBF)
has been identified as an effective means to developing cross-
application behaviors which are re-usable due to modularity
and drawing a delineation in design (i.e., a separation of
concerns) between the behavior logic and the controller [2].
The UBF also provides flexibility to the user by allowing any
agent model implementation to be possible. Finally the UBF
also reduces code complexity and encourages experimentation
through the composite pattern [3], allowing for new behaviors
and control structures to be formed using any organization of
existing behaviors and hierarchies.

This paper explores the use of the UBF to improve intel-
ligent agent design in a discrete event simulation framework
from a software engineering perspective. The remainder of
this paper is structured as follows. In Section II background
material related to approaches in developing intelligent agents
are reviewed. Next a detailed overview of the UBF is given
following the definition from [2], [4]. In Section IV results
are presented for implementing the UBF into AFSIM using
an attack on an integrated air defense system (IADS) scenario.
Lastly conclusions and future work are presented.

II. BACKGROUND

A. Sense-Plan-Act Approach

In developing an intelligent agent, the sense-plan-act (SPA)
approach was the focus of artificial intelligence (AI) research
for 30+ years until the mid-1980’s [1]. However the SPA
approach to robotics proved problematic for even relatively
simple tasks, as the world we live in is dynamic [5]. After only
a few or even a single action, the robot’s model of the world
would no longer be valid and it would have to reform its next
actions to execute. Forming the symbolic world model and
reasoning over it to develop this action plan is computationally
very expensive. Thus having to perform these steps after every
action, while simultaneously having no actions to execute
due to the dynamic environment invalidating the action plan,
results in sub-par performance due to lag time between each
action taken. The robot Shakey was an early example of the
downfall to using this approach of forming a world model
and planning around it [6]. Figure 1 depicts the linear SPA
approach visually.



Fig. 1. Robot control system using serial execution of functional modules
[7].

Fig. 2. Robot control system using layered task achieving behaviors [7].

B. Reactive Control Architectures

In response to the failures of using the sense-plan-act
approach to developing intelligent agents, reactive control
architectures (i.e. behavior-based robotics) began to emerge.
These architectures focused on using low-level behaviors
which responded directly to sensor stimulus [1]. Braitenberg
first presented a thought-experiment on developing intelligent
agents that are composed of simple internal structures that
react to the environment according to the structures’ designs
[8]. By slowly and iteratively increasing the incorporation of
these simple structures to develop a more and more complex
intelligent agent eliciting ever more complex behavior, he
demonstrated how an agent can be formed to solve any
complex task using only simple behaviors. Similarly Brooks
argued that complex behavior of an agent is not the result of
complex internal systems but instead the result of a complex
environment, and thus the agent’s internal systems should re-
main simple [7]. From this, Brooks presented the Subsumption
architecture, which linked the robot’s actions almost directly
to its sensor stimulus. The horizontal structure of this approach
can be seen in Figure 2.

C. Tiered and Hybrid Architectures

Reactive control architectures were able to respond quickly
in dynamic environments and as a result were viewed as a boon
to robotic intelligence when compared to SPA-based robots
[1]. However, while these architectures had a quick response
to their environment, they lacked any type of planning or goal
making, which represented a limitation in their capabilities.
Three layer architectures and hybrid architectures arose from
the need to push through this capability ceiling while still
departing from the past SPA approach, and current research
uses these architectures as the basis for their systems [1],
[9]. In particular three layer architectures did this by using
a reactive approach as a low-level control component and a

Fig. 3. General composition for three-layered architecture.

Fig. 4. Graphical depiction of a rooted tree.

traditional deliberative planner at the high level, essentially
merging the previous two approaches to building intelligent
robots. This can be seen visually in Figure 3. The low-level
reactive component, called the skill layer or controller, is a
mechanism which implements the current reactive behavior
scheme of the robot. In the middle is the sequencing layer or
sequencer which controls the current active behavior scheme.
Finally at the highest level is the planning layer or delib-
erator, which performs the typical planning aspect through
polynomial-time and higher search algorithms.

D. Behavior Trees

Furthering research at the controller level is a construct
known as a behavior tree (BT), and is what AFSIM currently
uses to build intelligent agents. A BT is a plan representation
tool for action selection of an autonomous agent. BTs largely
originated from AI development for non-player characters
(NPCs) for the video game Halo 2 [10], [11]. The structure
of the BT is defined as a directed rooted tree, meaning it is
a directed and connected acyclic graph with one node chosen
as the root, as can be seen in Figure 4. A node incident to an
outgoing edge is considered the child node of the connected
pair of nodes, and a node with an edge leaving it is considered
the parent node of the connected pair of nodes. Nodes which
have a degree of only 1 are referred to as leaf nodes, with
the exception of the unique root node. This collection of leaf
nodes represents the different behaviors of the agent which
produce and execute an action, meaning the behaviors perform
the action execution of the agent. All other nodes of the
tree are branch nodes and are part of the mechanism for



Fig. 5. Example of a fighter jet agent’s BT for a sweep mission scenario [12].
Note that leaf nodes are green, sequence nodes are yellow, selector nodes are
blue, and the root node is red.

changing control-flow execution of these leaf nodes. These
branch nodes consist of various different types, however the
selector and sequence nodes are two of the more common
types that exist across all Behavior Tree implementations.

Control-flow execution of the tree is as follows. The root
node ticks an activation signal at a specified frequency rate
ftick which propagates down through the tree according to the
algorithms contained in the three different node types listed
above [11]. When this activation signal reaches a leaf node, the
behavior contained in that node performs a check on whether
it should execute or not. If it should execute, then it does so
for one cycle and returns either success or running. However
if the check fails, then it returns failure. This return value is
then propagated back up the tree accordingly and control-flow
execution of the tree continues until a return value reaches the
root node, in which case the root waits for the appropriate time
to tick another activation signal according to ftick. An example
of a BT constructed for a fighter jet agent participating in a
sweep mission scenario is shown in Figure 5 [12].

Algorithm 1: Selector [11]
1: for i ← 1 to N do
2: state ← Tick(child(i))
3: if state = Running then
4: return Running
5: if state = Success then
6: return Success
7: end
8: end
9: return Failure

To give examples of branch nodes, the algorithms for the
selector and sequence node types are as follows.

1) Selector: A selector node ticks the activation signal
sequentially across its children (from left to right if looking at
a BT) until one of them returns either success or running [11].
If all children return failure, then the selector node returns
failure as well, otherwise it returns either success or running,
depending upon what the first non-failing child node returned.

Algorithm 2: Sequence [11]
1: for i ← 1 to N do
2: state ← Tick(child(i))
3: if state = Running then
4: return Running
5: if state = Success then
6: return Failure
7: end
8: end
9: return Success

2) Sequence: A sequence node ticks the activation signal
sequentially across its children (from left to right if looking
at a BT) until one of them returns either running or failure
[11]. If all children return success, then the sequence node
returns success as well, otherwise it returns either running or
failure, depending upon what the first non-success child node
returned.

BT’s facilitate the construction and organization of a behav-
ior scheme for an agent, and also give the user the advantage
of re-use as each behavior is its own compact modular entity.
However as BT’s are implemented at the controller level
of an agent and are thus interconnected in executing the
agent’s actions, the user is then unable to implement any other
intelligent agent model and is instead tied to using solely BT’s
for agent representation. By incorporating the UBF, this paper
further expands upon these benefits provided by BT’s, while
simultaneously allowing the user the flexibility to implement
any intelligent agent model/architecture.

III. UNIFIED BEHAVIOR FRAMEWORK

Once an architecture is implemented onto a robotic system
for a specific application, it tends to commit that robot’s
capabilities to the model’s strengths and weaknesses. Fur-
thermore this leads to an application specific model, as the
behavior logic, the controller, and the underlying hardware all
become interconnected. The UBF was developed as a means
to address this inflexibility with implementing behavior-based
architectures, specifically at the controller level of the three-
layer architecture [2], [4]. By separating the behaviors from the
controller, different architectures can be implemented into the
behavior logic without having to change the controller. This
also frees the behavior logic from being application specific
and encourages reuse. The UBF accomplishes this distinction
between behaviors and the controller through the software
engineering principles of object-oriented programming known
as encapsulation, the composite pattern, and the strategy
pattern [2], as shown with the UBF hierarchy in Figure 6. Here
in this section a description of the UBF is given following the
definition from [2], [4].

A. Leaf Behaviors

As can be seen in Figure 6, there are two different concrete
implementations of the abstract behavior interface (i.e. leaf and
composite behaviors). Leaf behaviors contain a user-defined



Fig. 6. UML diagram for the UBF[2].

“genAction” method necessary to generate a recommended
action for the agent based on the current state perception of the
agent. Encapsulated as an action object, this recommendation
is composed of parameters necessary for the agent to execute
the recommendation. There are also vote values for each
parameter, and a separate vote value for the overall recommen-
dation. These vote values indicate how strongly the behavior
recommends the action or parameters be taken. By separating
leaf and composite behaviors, the code complexity of action
generation algorithms is confined to the leaf behaviors.

B. Composite Behaviors

Composite behaviors contain leaf or other composite behav-
iors as its children, and share the same interface as leaf behav-
iors, following the composite pattern [3]. By holding this set
of sub-behaviors, B = {b1, ... , bn}, the composite behavior
generates a corresponding set of actions, A = {a1, ... , an}, by
calling each child behavior’s “genAction” method whenever
the composite behavior’s own “genAction” method is invoked.
This allows the developer to treat both types of behaviors
uniformly, and encourages reuse and experimentation as it
provides the developer the ability to create new behavior
structures using existing composite and/or leaf behaviors.
Because composite behaviors extend the behavior interface in
Figure 6, they must return a single action object as opposed
to a set of actions. For this reason composite behaviors also
contain a construct known as an arbiter which is used when
the composite behavior is called to generate an action.

C. Arbiters

An arbiter uses a user-defined “evaluate” method to unify
(i.e., select or fuse) all of the recommended actions in set
A into a single action object. Arbiters can be customized to
perform this action recommendation however the user sees fit,
allowing for any architecture implementation to be possible.
Composite behaviors can also use the “setArbiter” method
to change its arbitration technique at any time, allowing for
further modularity. Beyond an action’s vote value and its
associated parameters’ vote values, an arbiter can also assign

Fig. 7. Strategy pattern allowing for dynamic swapping of active behaviors
[4].

weight values to each of the behaviors from a normalized set of
weights W = {w1, ... , wn}. By doing this, certain behaviors
can be given priority in comparison to the other behaviors of
the arbiter.

An example of an arbiter is an overall vote value winner-
takes-all (WTA) arbiter. This arbiter operates by selecting the
action with the highest overall vote value and returning it as
the recommended action of the composite behavior. Weights
for each individual behavior’s vote value can also be used to
tweak agent performance. The algorithm for this can be seen
below in Algorithm 3. Take note that for this arbiter, if there
are ties in the voting, then the sub-behaviors of the composite
which are first called to generate actions will receive priority
in selection.

Algorithm 3: WTA Overall Value - Evaluate ActionList
1: Action winner = actionList[0]
2: double highestV ote = winner.overallV ote
3: for all Action i in actionList
4: if i.overallV ote > highestV ote
5: winner = i
6: highestV ote = i.overallV ote
7: return winner

D. Controller

The controller is responsible for querying its current active
behavior for an action recommendation through the behav-
ior’s “genAction” method. Once it has the action object, the
controller then executes this action, resulting in the agent
performing actions in its environment [2]. As can be seen in
Figure 7, the controller has the ability to hot-swap the current
active behavior during execution due to the strategy pattern
[3], as all behaviors share the same abstract behavior interface.
Thus the controller is free to dynamically switch between any
behavior-based architecture while the agent is running.

A typical sequence diagram for the controller is shown in
Figure 8. Here the controller first updates the state object
with the latest perception data from the agent’s sensors.
Then the controller sends this state object to the controller’s
current active behavior and invokes the behavior’s “genAction”
method. The behavior then uses the state information to
produce an action recommendation object which is returned to
the controller. Once the controller receives this action object,



Fig. 8. Sequence diagram for the controller in the UBF [2].

the controller uses the action’s “execute” method and uses the
parameters within it to command the agent. Interesting to note
that UBF behaviors are unable to act on the agent as BTs can.
Rather, the agent explicitly applies the action recommended
by the root behavior. While the agent is running, these steps
repeat as a continuous cycle at a user-defined frequency rate.

IV. IMPLEMENTATION

In this section the UBF is implemented into a discrete event
simulation framework to improve agent modeling capability in
scenario simulations. Specifically this implementation occurs
on the advanced framework for simulation, integration, and
modeling (AFSIM).

A. AFSIM Background

AFSIM is a government-owned C++ simulation framework
for use in constructing engagement and mission-level ana-
lytic simulations for the Operations Analysis community, as
well as virtual experimentation. The primary goal of AF-
SIM applications is the assessment of new system concepts
and designs with advanced capabilities not easily assessed
with traditional engagement and mission level simulations.
Development activities include modeling weapon kinematics,
sensor systems, electronic warfare systems, communications
networks, advanced tracking, correlation, and fusion algo-
rithms, and automated tactics and battle management software.
For external customization by the user (i.e. developing simu-
lation scenarios), AFSIM provides a general-purpose scripting
language which allows limited access to the framework using
text input files (i.e. scripts). The scripting language is similar
to Java/Visual Basic/C# and can be thought of as the “glue”
which brings all components of the framework together for
the user.

For design of autonomous agents, AFSIM uses a combi-
nation of BTs and the reactive integrated planning architec-
ture (RIPR). RIPR is the framework included with AFSIM
that enables behavior modeling for agents, and can be best
thought of as a collection of utilities and algorithms that tie
together nicely in the construction of an intelligent agent.

RIPR is mainly comprised of three components. There is
the perception processor, the quantum tasker processor, and
the actual behaviors of the agents. Behaviors for the agent
are user-defined inside of script in AFSIM, and BTs used
in conjunction with the user-defined behaviors allow for the
modeling of the decision making of the agent.

The perception processor acts as the agent’s cognitive
model, and can be thought of as state. The agent senses
the world by querying the platform and its subsystems for
information. The agent builds knowledge internally, makes
decisions, and then takes action by controlling its platform
accordingly. Most platform queries and control actions take
place inside of the AFSIM scripting language. As a RIPR
agent maintains its own perception of threats, assets, and peers,
this represents an agent’s limited brain. To represent players of
varying skill, each agent has its own tunable cognitive model.
For example, an “expert” pilot agent can maintain knowledge
of 16 threats that the agent updates (looks at radar) every 5
seconds.

The RIPR quantum tasker is used for commander subordi-
nate interaction and task de-confliction. The quantum tasker
comprises task generator(s), task-asset pair evaluator(s), an
allocation algorithm, and various strategy settings (such as
how to handle rejected task assignments). Each component
(generator, evaluator, allocator) can be selected from pre-
defined options, or custom created in script. It can send
and/or receive tasks to/from other RIPR agents and other task
manager platforms. The general cycle for the quantum tasker
is for the generator to create tasks, the evaluator to consider
task-asset pairings, and the allocator to then find the best asset
for each task, which are then assigned accordingly.

Depending on the hardware/software used, some BT im-
plementations do not allow for the simultaneous execution of
different behaviors in the same agent. This limits the types of
branch nodes that can be created, as they can then only tick
their child behaviors one at a time. However, BTs inside of
AFSIM do not suffer from this issue as AFSIM is a discrete
event simulator, and thus has the infrastructure to allow for
different pieces of script to execute and operate on an agent
simultaneously. BTs that allow for this simultaneous execution
of behaviors offer more variety in terms of branch nodes to
the user, such as the parallel node.

A parallel node ticks the activation signal sequentially
across all of its children (from left to right if looking at a
BT) [11]. If the number of children that return success is
≥ S, then the parallel node returns success. If the number
of children that return failure is ≥ F , then the parallel node
returns failure. If neither is true, then the parallel node returns
running. This algorithm can be seen below in Algorithm 4.

B. The UBF Implementation in AFSIM

Being that AFSIM is a simulation framework with be-
havior modeling tools already available for the user, some
of the features of RIPR were used in conjunction with the
implementation of the UBF. Specifically behaviors and their
structured hierarchies are still written in AFSIM script by



Algorithm 4: Parallel [11]
1: for i ← 1 to N do
2: statei ← Tick(child(i))
3: end
4: if nSucc(state) ≥ S then
5: return Success
6: if nFail(state) ≥ F then
7: return Failure
8: else
9: return Running

10: end

users, the quantum tasker is still in use for commander-
subordinate interaction, and the perception processor of RIPR
is used as a suitable replacement to the state object of the
UBF hierarchy. Arbiters are also still user-defined, however
they are done so in C++ as user-defined methods of an
arbiter object. Arbiter objects now also act as the composite
behaviors, holding actions created by sub-behaviors, with a
unified action being obtained by invoking one of the user-
defined arbitration methods inside of the arbiter object. This
still results in arbitration techniques being left to the design
of the user, as well as retaining their modularity. The rest of
the UBF was implemented as described in Section III.

For the purpose of this research AFSIM was used to
simulate a Boeing-developed military combat scenario,
specifically an attack on an IADS involving autonomous
agents. In this scenario, four unmanned aerial vehicles (UAVs)
with two standoff jammers (SOJs) carry out a deep-strike
mission into the heart of an IADS with the objective of
bombing six high-value targets. Inside the IADS the specific
defenses for the targets include surface-to-air missile (SAM)
sites, as well as four defensive fighter jets. Each fighter jet is
an autonomous agent built with the UBF with the following
behaviors/arbiters.

Behaviors:

Pursue Target using Route Finder - When at least one enemy
target is available to the agent, this behavior activates and
selects the highest priority target available to the agent and
pursues that target utilizing AFSIM’s route finder. The route
finder allows an agent to path around static and/or dynamic
obstacles using a depth-first-search algorithm to find the best
route to the target while avoiding these obstacles. For this
behavior it is used specifically to remain out of range of
friendly SAM sites of the agent.

Return to Base - Calculates a direct route back to home base
and flies that route at a pre-defined altitude and speed. This
behavior activates when the agent’s fuel amount dips below a
certain threshold.

Fire Weapon - When an enemy target comes within firing

Fig. 9. Competitive approach using highest set vote arbiters.

range of the agent’s available weapons and the agent has a
high enough track quality required for firing upon that threat,
the agent selects the best weapon available and fires at the
target.

Follow Route - This behavior is always active and causes the
agent to fly on a pre-set patrol route with speed and altitude
defined at discrete intervals along the route using waypoints.

Arbiters:

Highest Set Vote - This is a WTA arbiter that returns the
action recommendation which has the highest overall vote
value. This arbiter is used when the parameters of the action
recommendations are to be used as a whole, as opposed to
individually. Algorithm 3 contains the steps used for this
arbiter and is considered a competitive approach, as behaviors
compete against one another for selection of their respective
action.

Activation Fusion - Action recommendations from all
behaviors are fused together by selecting the individual
parameters with the highest vote values and unifying those
parameters into a single new action recommendation. Fusion
arbiters such as this are best used when behaviors are
designed to be cooperative and the behavior doesn’t require
use of all parameters to be successful. This algorithm is
shown in Algorithm 5 and is a cooperative approach, as
multiple behaviors can contribute to the final unified action.

Algorithm 5: Activation Fusion - Evaluate ActionList
1: Action unified = new Action
2: for all Action i in actionList
3: if i.parameterXV ote > unified.parameterXV ote
4: unified.parameterXV ote = i.parameterXV ote
5: unified.parameterX = i.parameterX
6: //***Repeat for all parameters***
7: return unified



Fig. 10. Cooperative approach using activation fusion arbiters.

C. Results

The simulation was executed using both a competitive
approach as shown in Figure 9, and a cooperative approach
as shown in Figure 10. Both simulations resulted in the SAM
sites and autonomous agent defensive fighter jets successfully
shooting down all four UAVs and the two SOJs. However
there was a distinct difference between the two approaches
in the speed to which the defenders reacted to the attack. The
cooperative fusion approach reacted within 55.2 seconds to the
attack, while the competitive approach reacted in 65.2 seconds,
leading to a ten second difference between the approaches.
This resulted in the cooperative approach shooting down
the second UAV 13.9 seconds faster than the competitive
approach. Ultimately this led to the fusion approach only
losing three of the six high-value targets, while the competitive
approach lost five of the six.

The performance gap is explained by the behaviors being
constructed with a cooperative approach in mind. This means
the behaviors were designed to achieve optimal performance
by having their action recommendations unified together into
a single action recommendation. Thus when used for a
competitive approach, the behaviors suffer from disruption.
Disruption occurs when the task the current active behavior is
trying to accomplish is disrupted by a higher voting behavior,
despite the higher voting behavior depending upon the lower
voting behavior. An example of this is when the Fire Weapon
behavior would interrupt the Pursue Target behavior to fire
upon a target, despite the Fire Weapon behavior requiring
an accurate track of the target which is provided by the
Pursue Target behavior. The cooperative approach does not
suffer from this as the action recommendations are unified
together, allowing for the agent to fire upon the target while
simultaneously pursuing it.

It is important to note that this does not imply one approach
or architecture is superior to another. It only means that an
intelligent agent model or architecture should be in mind from
the beginning of behavior design. Had the behaviors been
designed for a competitive approach, the outcomes could have
certainly been reversed. The reason for implementing both
approaches is to highlight the ability of the UBF to easily
change an architecture or approach by leveraging the arbiters
and modular hierarchy of the UBF. Switching between both
approaches also requires minimal changes in code, demonstrat-

Fig. 11. Competitive approach agent built using BT.

ing how the UBF reduces code complexity and constricts it
to the leaf behaviors. Lastly implementing both approaches
also exhibits code reuse as the same behaviors were used
for both approaches, multiple experiments, and multiple agent
platforms in simulation.

After the UBF was implemented inside the AFSIM frame-
work, the majority of time spent in scenario development
was in developing the individual leaf behaviors, as each leaf
behavior is a unique piece of script with its own objectives.
Once the leaf behaviors were developed, combining them to
form different arbitration hierarchies was simple. Utilizing the
arbiters as composite behaviors, the leaf behaviors could be
conjoined into a single composite behavior with any arbitration
technique selected. This technique could also be altered with
ease as it only requires changing the arbitration method call
to whichever was desired.

D. UBF versus BTs

Being that the UBF, BTs, and RIPR are all frameworks used
to aid in the construction of an agent, the exact same agent can
thus be constructed with any of these three frameworks, with
no difference in performance between the agents. However
where there is a difference is in ease of construction of
the agent in terms of code complexity (lines of code). The
competitive and cooperative agents constructed for the IADS
scenario are used for these comparisons.

For the UBF versus BTs, in comparing the construction of
an agent with verbatim decision-making to the competitive
approach agent, the code complexity for both constructions
is roughly equivalent. The reason for this can be seen in
Figure 11, where the code for the leaf behaviors and behavior
hierarchy for both the UBF and the BT is the same, with
the only difference being a selector node substituted for
a WTA arbiter and vice versa. However in comparing the
construction of an agent with verbatim decision-making to the
cooperative approach agent using the UBF versus BTs, the
code complexity is greatly increased for the BT construction.

The reason for this is that without the simultaneous exe-
cution of leaf behaviors, actions which are always performed
in conjunction with some other action must now be produced
by every behavior, resulting in a significant increase in code
complexity. Specifically in this example it means that the code
for the Fire Weapon behavior must now be included with the



Fig. 12. Cooperative approach agent built using BT.

Fig. 13. Cooperative approach agent built using RIPR.

code of every other behavior, as Fire Weapon must be per-
formed simultaneously while performing one of the navigation
behaviors in order to verbatim replicate the decision making
of the cooperative approach agent. Figure 12 contains the
BT and illustrates this increase in code complexity. Thus the
UBF has the advantage of reduced code complexity over BTs
when constructing agents which require multiple behaviors
executing simultaneously.

E. UBF versus RIPR

As RIPR uses BTs, the code complexity results of com-
paring the UBF versus RIPR in regards to the competitive
approach agent are identical between the two, as the BT that
RIPR uses for this agent is that which is shown in Figure 11.
However for the cooperative approach agent, as RIPR has the
ability to execute behaviors simultaneously, the BT for RIPR
differs from that shown in Figure 12, and instead looks like
the BT shown in Figure 13. As such, the code complexity
of constructing the cooperative approach agent for the UBF
versus RIPR does not differ, as their only difference in code
is the arbiters/branch nodes making up the overall hierarchy.
Thus there is no advantage between the UBF versus RIPR
in regards to code complexity when constructing an agent in
which both frameworks are capable of constructing.

However RIPR is unable to construct all agents that the UBF
is capable of constructing. Specifically RIPR falls short of
constructing any agent in which the agent requires the fusing
of the action outputs of multiple behaviors. This is due to the
fact that RIPR uses BTs for decision making, and with BTs
the behavior logic is tightly coupled to the action execution
of the agent, meaning the behaviors themselves perform the
action execution of the agent. Thus there is no way to fuse

Fig. 14. Example scenario for illumination with evasion.

the action execution of different behaviors. As an example,
if two different behaviors desired to navigate the agent in
two different headings, there is no way for RIPR to fuse the
headings and have the agent take a median heading between
the two.

The UBF is capable of doing this as the behaviors in the
UBF do not perform action execution for the agent and instead
only produce an action object comprised of parameters, and
these parameters are then able to be manipulated and fused
together by the user-defined arbiters. Once these parameters
are fused together as desired, the fused action object can then
be executed, resulting in a blending of the action outputs
of the behaviors. This added capability of agent construction
in the UBF allows for greater experimentation and research,
as this blending of action outputs can result in unforeseen
emergent behaviors. This is further expanded upon in Section
V. Additionally, while RIPR has the ability to construct an
agent which replicates the same performance as a UBF agent
utilizing the blending of action outputs, the resulting code
complexity for the RIPR agent will be greater than that of
the code complexity for the UBF agent.

This is shown with the following example scenario, where a
blue fighter jet agent enters the state of having just launched a
missile at a red target aircraft, and wants to keep the red target
illuminated for additional missile guidance until detonation.
However, the red target has also launched a missile at the
blue fighter jet agent, so the blue agent wants to evade this
oncoming missile, while also still simultaneously illuminating
the red target. Figure 14 illustrates this scenario visually, and
can be thought of as a “half-measure”, as the agent isn’t flying
directly at the target for full illumination, but also not turning
completely away from the target for full evasion. Furthermore,
if the blue agent is not currently firing upon a target, the agent
should perform full evasive maneuvers if an enemy launches a
missile at the agent; and if the blue agent is not being targeted
by an enemy and has a target to pursue or illuminate, then the
blue agent should fully pursue that target.



Fig. 15. UBF hierarchy for blue agent in example scenario.

To construct an agent in the UBF which replicates this
performance, three behaviors are needed: an Evade behavior
to evade an incoming missile, a Fire Weapon behavior to fire
a missile, and a Pursue Target behavior to continue to pursue
the target for beam illumination until missile detonation. The
Fire Weapon and Pursue Target behaviors are combined using
an Activation Fusion, allowing for the firing of a weapon
on a target and continuous pursuit of the target until missile
detonation. Then with the combined action from these two
behaviors, and the action object of the Evade behavior, a
Blending Fusion arbiter is used to blend the action outputs of
these behaviors together, essentially averaging the parameters
of the two action objects, creating a behavior hierarchy as
shown in Figure 15. From this blending of the headings, a
new emergent behavior is created, and the aircraft then flies
as depicted in Figure 14. Note that the hierarchy accounts for
evading enemy fire while not currently firing upon a target,
by using an Activation Fusion arbiter in conjunction with the
Evade behavior and the Blending Fusion arbiter, and likewise
for pursuing a target while not being fired upon.

For RIPR to construct an agent which replicates this perfor-
mance, a separate behavior strictly for simultaneous evasion
and target illumination must be created, as RIPR is unable
to blend the action outputs of the Evade and Pursue Target
behaviors. Thus RIPR requires an additional Evade+Pursue
Target behavior which performs the “half-measure” calcula-
tions; as well as a separate Evade behavior so that the agent
can still perform full evasive maneuvers even while not firing
upon a target, and a separate Pursue Target behavior so that
the agent can still fully pursue a target while not being fired
upon. Lastly the Fire Weapon behavior is needed for firing
upon a target. This results in a BT as shown in Figure 16, and
an increase in code complexity in comparison to the UBF,
as an additional leaf behavior must be created in order to
achieve the desired performance. If only three of these four
behaviors are used to construct the RIPR agent, then agent
performance will be lacking in terms of how the scenario
describes the agent should perform. Thus, while RIPR can
duplicate verbatim performance of a UBF agent which utilizes
a Blending Fusion arbiter, the result is a RIPR agent with
increased code complexity and subsequently more work for

Fig. 16. BT for blue agent in example scenario.

the developer.

V. CONCLUSIONS

This paper demonstrates the benefits of using the UBF for
constructing autonomous agents in a discrete event simulation
system. Specifically the UBF reduces code complexity, simpli-
fies development and testing, gives the flexibility to implement
any agent model desired, and promotes code reuse through a
modular design [2]. This was demonstrated by implementing
a competitive approach with highest vote activation, and a
cooperative fusion approach, where the actions of different
behaviors were fused together. While behavior reuse and
reduced code complexity are features that both the UBF and
RIPR share, the additional advantage with the UBF is the
flexibility to implement any behavior-based architecture into
agent design. Without the UBF, AFSIM only offers RIPR as
a means for control-flow execution of behaviors, leaving the
user with only those node types mentioned in Section II & IV
as mechanisms for designing control-flow of agent behaviors
(Algorithms 1, 2, 4), and the user is forced to create behaviors
which perform action execution of the agent. However with the
UBF, agent construction has unlimited flexibility in behavior-
based design as the behaviors solely output action objects as
opposed to executing actions, and the arbiters that use these
action objects are user-defined.

As mentioned in Section IV, this specifically gives the
advantage of blending different behavior’s action outputs,
opening up more avenues for behavior experimentation of
agents. Suggested future work would involve utilizing this
blending of action outputs for research of optimal air-to-air
tactics with future weapons systems. For example, optimal
air-to-air tactics may be different for future UAV platforms,
as UAVs do not have the constraint of the limitations of a
human pilot. Thus the optimal action for a UAV in a certain
situation may be different than current doctrine dictates. By
defining a goal for the behaviors and letting them blend action
outputs as needed, a better policy (tactics) for these future
weapon systems could be found. This suggests that unforeseen
emergent behaviors could aid in the discovery of unforeseen
improvements in tactics.

ACKNOWLEDGMENT

The authors would like to acknowledge funding through
the Aerospace Systems Directorate of the Air Force Research



Laboratories (AFRL/RQQD) at Wright-Patterson Air Force
Base. The authors also gratefully acknowledge the support
given by The Boeing Company, specifically developer Luke
B. Miklos. The views expressed in this article are those of the
author and do not reflect the official policy or position of the
United States Air Force, Department of Defense, or the U.S.
Government.

REFERENCES

[1] E. Gat, “Three-layer architectures,” in Artificial Intelligence and Mobile
Robots, D. Kertenkamp, R. Bonasso, and R. Murphy, Eds. AAAI Press,
1998, pp. 195–210.

[2] B. Woolley and G. Peterson, “Unified behavior framework for reactive
robot control,” Journal of Intelligenct and Robotic Systems, vol. 55, no.
2-3, pp. 155–176, July 2009.

[3] E. Freeman, E. Robson, B. Bates, and K. Sierra, Head first design
patterns. " O’Reilly Media, Inc.", 2004.

[4] B. G. Woolley, G. L. Peterson, and J. T. Kresge, “Real-time behavior-
based robot control,” Autonomous Robots, vol. 30, no. 3, pp. 233–242,
2011.

[5] R. Arkin, “Survivable robotics systems: Reactive and homeostatic con-
trol,” in Robotics and Remote Systems for Hazardous Environments,
M. Jamishidi and P. Eicker, Eds. Prentice-Hall, 1993, pp. 135–154.

[6] N. J. Nilsson, “Shakey the robot,” SRI International, 1984.
[7] R. Brooks, “A robust layered control system for a mobile robot,” IEEE

Journal of Robotics and Automation, vol. 2, no. 1, pp. 14–23, March
1986.

[8] V. Braitenberg, Vehicles: Experiments in Synthetic Psychology. Cam-
bridge Massachusetts: MIT Press, 1984.

[9] R. Bonasso, D. Kortenkamp, D. Miller, and M. Slack, “Experiments
with an architecture for intelligent reactive agents,” in Intelligent Agents
II: Agent Theories, Architectures, and Languages, M. Wooldridge, J. P.
Mueller, and M. Tambe, Eds. Springer-Werlag, 1995.

[10] D. Isla, “Handling complexity in the halo 2 ai,” in Game Developers
Conference, vol. 12, 2005.

[11] A. Marzinotto, M. Colledanchise, C. Smith, and P. Ogren, “Towards a
unified behavior trees framework for robot control,” in IEEE Interna-
tional Conference on Robots and Automation (ICRA 2014), 2014.

[12] S. L. G. G. L. Z. Sandeep S. Mulgund, Karen A. Harper, “Situation
awareness for pilot-in-the-loop evaluation,” Charles River Analytics, 725
Concord Ave. Cambridge, MA 02138, Tech. Rep. R96011, mar 1999.



IV. Additional Details

This chapter presents additional details on the research which were not covered in

Chapter III. Section 4.1 presents some additional background on the AFSIM simulation

environment. Section 4.2 discusses the scenario used for experimentation in greater detail.

The final section presents how the UBF was adapted to the AFSIM environment in greater

detail.

4.1 AFSIM Background

AFSIM is a government owned OO C++-based simulation environment that facilitates

the rapid prototyping of customized engagement and mission-level warfare simulations.

AFSIM includes a set of software libraries, shown as a functional architecture in Figure

4.1, containing routines commonly used to create analytic applications. The AFSIM

infrastructure includes routines for the top-level control and management of the simulation;

management of time and events within the simulation; management of terrain databases;

general purpose math and coordinate transformation utilities; and support of standard

simulation interfaces, such as those supporting the Distributed Interactive Simulation (DIS)

protocol. The AFSIM component software routines support the definition of entities

(platforms) to populate scenarios. These software routines contain models for a variety

of user-defined movers, sensors, weapons, processors for defining system behavior and

information flow, communications and track management. For external customization

by the user (i.e. developing simulation scenarios), AFSIM provides a general-purpose

scripting language which allows limited access to the framework using text input files (i.e.

scripts). The scripting language is similar to Java/Visual Basic/C# and can be thought of as

the “glue” which brings all components of the framework together for the user.

35



Figure 4.1: The AFSIM Functional Architecture.

The baseline AFSIM constructive application is called the Simulation of Autonomously

Generated Entities (SAGE), and it is a simple application that reads in a user-defined in-

put file of AFSIM script, executes the simulation, and outputs any user-defined data files.

These output files are then used in the Visual Environment for Scenario Preparation and

Analysis (VESPA) to visualize object positional time histories and other event information

of the simulation. The Graphical User Interface (GUI) of VESPA can be seen in Figure

4.2. With SAGE the user can exercise all of the resident AFSIM capabilities, and the entire

AFSIM IADS model is executed using the SAGE application. It is through recompiling

this application that certain components of the UBF were incorporated into AFSIM.

4.2 IADS Scenario

As AFSIM was developed specifically to simulate threat Integrated Air Defense Sys-

tems (IADSs) to assess advanced air vehicle concepts performing Precision Engagement

missions, an attack on an IADS scenario was deemed most appropriate for this research.

In summary of the scenario, four Unmanned Aerial Vehicles (UAVs) with two Standoff

36



Figure 4.2: The VESPA GUI.

Jammers (SOJs) carry out a deep-strike mission into the heart of an IADS with the ob-

jective of bombing six high-value targets. Inside the IADS the specific defenses for the

targets include a large radar company with Surface-to-air Missile (SAM) sites, and also

four defensive fighter jets. Each fighter jet is an intelligent agent built with the UBF.

4.2.1 UAVs.

The UAVs are essentially dummy bombers with no AI involved. They each fly their

own pre-determined ingress route over the targets, release ordnance once in relative range

of the targets they are assigned to bomb, and then fly an egress route out of hostile territory

and back to the ocean. They receive no orders and will only bomb the target they are

assigned (UAV 1 assigned targets 1 and 2, UAV 2 assigned targets 1 and 3, UAV 3 assigned

targets 4 and 5, and UAV 4 assigned target 6). Doing so allows for easier analysis of the

results of the simulation which makes comparison of results between different intelligent

approaches easier as well.

37



4.2.2 SOJs.

The SOJs original purpose was to support the UAVs as they ingress by flying a

patrol route and suppressing enemy radar capabilities to limit detection of the UAVs.

Unfortunately this capability was unable to be implemented as a portion of the Quantum

Tasker required for this was missing in the source code released to AFIT. Instead of simply

removing the SOJs, they were left in as they are still targets for the intelligent agents and

thus serve a purpose in testing the agent’s decision making.

4.2.3 Radar Company.

The radar company for the defenders is made up of a plethora of radars for detecting

the enemy. There are nine Early-Warning Radar (EW) radars split into two separate

squadrons, whose mission is detection of targets at long ranges and to then report it to the

IADS commander. There is also two SAM battalions each consisting of an acquisition

radar, a target-track radar, and five SAM launchers. These SAM battalions use the

acquisition radar to scan their surrounding area and once a detection is made through the

acquisition radar, the target track radar uses that information to obtain a more accurate lock

on the target, which is then used to fire a SAM. As with the EW radars, this information is

also passed up to the IADS commander. Through all of this the IADS commander receives

these communications and uses it to assign tasks and tracks to its subordinates.

4.2.4 Fighter Jets - Intelligent Agents.

The four defensive fighter jets are intelligent agents designed using the UBF. At

all times the fighters are using their behaviors to make intelligent decisions based upon

their perceptions of the world, which includes target tracks, tasks given by commanders,

and other sensor information. As the goal of these experiments is to confirm successful

operation of the UBF, the perception processor is set at a “perfect pilot” setting, which

removes the delay and info limit of the pilot’s cognitive model. This was done as to ensure

38



the perception processor is not interfering with differences in results between the different

approaches in behavior design.

The fighters are split into groups of two, with each group reporting to a separate flight

lead commander that is stationed on the ground. These flight leads communicate with

the IADS commander in order to be alerted once targets are detected through the radar

company. Once the flight leads are aware of these detections, the target tracks and tasks

are passed down to the fighters. Once the fighters have this information they act upon it

according to their behavioral design. The behaviors of these intelligent agents are listed

below.

Behaviors:

Pursue Target using Route Finder - When at least one enemy target is available to the agent,

this behavior activates and selects the highest priority target available to the agent and pur-

sues that target utilizing AFSIM’s route finder. The route finder allows an agent to path

around static and/or dynamic obstacles using a depth-first-search algorithm to find the best

route to the target while avoiding these obstacles. For this behavior it is used specifically

to remain out of range of friendly SAM sites of the agent.

Return to Base - Calculates a direct route back to home base and flies that route at a pre-

defined altitude and speed. This behavior activates when the agent’s fuel amount dips below

a certain threshold (1000 lbs of fuel, equaling approximately 142 seconds of flight time at

a consumption rate of 7 lbs/second).

Fire Weapon - When an enemy target comes within firing range of the agent’s available

weapons and the agent has a high enough track quality required for firing upon that threat,

39



the agent selects the best weapon available and fires at the target.

Follow Route - This behavior is always active (unless overridden by another navigation be-

haviors) and causes the agent to fly on a pre-set patrol route with speed and altitude defined

at discrete intervals along the route using waypoints.

Arbiters:

Highest Set Vote - This is a WTA arbiter that returns the action recommendation which

has the highest overall vote value. This arbiter is used when the parameters of the action

recommendations are to be used as a whole, as opposed to individually. Algorithm 4 of

Chapter III contains the steps used for this arbiter and is considered a competitive approach.

Activation Fusion - Action recommendations from all behaviors are fused together by se-

lecting the individual parameters with the highest vote values and unifying those parameters

into a single new action recommendation. Fusion arbiters such as this are best used when

behaviors are designed to be cooperative and the behavior doesn’t require use of all pa-

rameters to be successful. This algorithm is shown in Algorithm 5 of Chapter III and is a

cooperative approach.

4.3 UBF Implementation in AFSIM

As described in Section III of Chapter III, the following components are necessary

in order to successfully implement the UBF: 1) Action object, 2) State object, 3) The

Controller, 4) Leaf Behaviors, 5) Arbiters, and 6) Composite Behaviors. The following

subsections correspond to each of these components and discuss in further detail how each

40



was implemented, and in some cases adapted, to the AFSIM environment, with reasons for

these adaptations also being stated.

4.3.1 Action Object.

Action objects are implemented explicitly as described in Section III of Chapter III

with no adaptation involved. Being directly built into the AFSIM framework, the user can

create an action object inside of AFSIM script which will then hold various parameters

required for action execution (e.g. altitude, speed, a route to fly, etc), and corresponding

vote values required for arbitration. There is also an overall vote value that can be set by the

user and is used to arbitrate between entire actions, and thus is used by WTA type arbiters.

If this value is left unset by the user, then it defaults to the highest vote value associated

with a parameter.

4.3.2 State Object.

The purpose of the state class is to store the agent’s current perception of the world,

usually updated through the agent’s sensors. Then a state object can be sent to each

behavior to be used for action generation. Behaviors can be still store their own behavior-

specific state information if desired, however having a state class prevents each behavior

from having to store all of its own state data, and thus avoids unnecessary duplication of

data.

Currently AFSIM already accomplishes this through RIPR and its perception

processor. The perception processor acts as the agent’s cognitive model, using the sensors

for that agent to update that agent’s perception of the world. The behaviors of the agent

can then access the agent’s state in a manner similar to a blackboard system. Each agent

has its own perception processor updating its own view of the world, and each agent’s

processor can be set to update at varying frequencies. As the perception processor is already

implemented inside of AFSIM and can fulfill the role of the state class, it was adopted as

substitution of this UBF component.

41



4.3.3 The Controller and Leaf Behaviors.

Currently in AFSIM behaviors are defined for use with BTs. As can be seen in Figure

4.3, behavior nodes are used to form a BT hierarchy. Each of these BT nodes corresponds

to its own separate script file, which defines how the behavior operates. Each behavior will

have a precondition portion of script which checks whether the behavior should execute

or not (in accordance with how BTs operate as described in Section 2.4.1), and each will

also have an execute portion of script which is what executes should the behavior pass

the precondition. The only part of the behaviors which is relevant to the UBF is the

execute portion, and this portion is defined solely in script. Thus leaf behaviors, which

are responsible for action generation, can also be defined using AFSIM script.

Figure 4.3: Behavior Tree inside of an AFSIM script file.

To form a tree hierarchy for the UBF, AFSIM script can also be used. Each leaf

behavior is defined in separate files of script, and each can be called upon similar to a

method. Thus in combination with arbiters and some form of composite behaviors, a

hierarchy can be built inside of script. This script file which contains the UBF hierarchy

can also be responsible for executing the action generated by the tree, and thus be named

the controller.

42



To set this up inside of AFSIM, a BT with a single behavior node can be made and

be aptly named “controller”. This “behavior” is the only behavior of the BT, and always

passes its precondition so that it always executes for the agent. By then incorporating the

UBF hierarchy into the execute portion of this behavior through AFSIM script, the user is

then implementing behavior logic into the agent in a manner in accordance with the UBF.

The update portion of the controller for the UBF which controls the frequency at which the

controller “ticks” can also be adjusted by changing the “update interval” parameter of the

BT, which can be seen at the top of Figure 4.3.

4.3.4 Arbiters and Composite Behaviors.

Arbiters are built directly into the AFSIM framework and thus an arbiter object can

be created in script and used by the user. However as defining arbiters in script would

prove difficult, arbiters differ from the traditional method described in Section 2.3.2 and

instead were adapted to work with the AFSIM environment. Instead of having an arbiter

interface which multiple different arbiters implement, the arbiter class built into the AFSIM

framework instead defines all different types of arbiter techniques through user-defined

C++ member functions. Thus once an arbiter object is created in script, any of these

arbiter techniques can be called upon using an arbiter object and an action will be returned.

The arbiter techniques of these arbiter objects also differ from traditional implementa-

tion in that they no longer take in a list of actions, but instead the arbiter object itself holds

the list of actions subsequently generated by child behaviors. In this manner the arbiter not

only carries out arbitration, but also fulfills the role of composite behaviors. Leaf behaviors

which generate an action object add it to their parent arbiter, and once the leaf/child behav-

iors of the arbiter have executed and given their action recommendations, the user can run

any arbitration technique on the arbiter object and receive the unified recommended action

for those child behaviors.

43



Appendix A: Implementation Code

#ifndef WSFACTION_HPP

#define WSFACTION_HPP

//------------------------------------------------------------------------------

// Class: WsfAction

//

// Description: Represents an action to be executed inside of AFSIM script

by

// the controller component of an intelligent agent. Contains

// various variables required for this execution.

//

// Public members:

//

// All public members are self-explanatory setters and getters.

// The various constructors are to ease action creation in AFSIM

// script, as certain variables are required for common actions.

//

//------------------------------------------------------------------------------

#include "WsfExport.hpp"

class WsfGeoPoint;

class WsfTrack;

class WsfRoute;

class WSF_EXPORT WsfAction {

public:

WsfAction();

WsfAction(double behaviorVote, double evadeHeading, double

evadeAltitude, double cEVADE_SPEED,

double evadeHeadingVote, double evadeAltitudeVote, double

cEVADE_SPEED_VOTE);

WsfAction(double behaviorVote, WsfGeoPoint* tgt, double formSpeed,

double tgtVote, double formSpeedVote);

WsfAction(double behaviorVote, WsfTrack* targetTrack, double salvoCount,

double targetTrackVote, double salvoCountVote);

WsfAction(double behaviorVote, WsfRoute* route, int i, double

cDEFAULT_SPEED, double cDEFAULT_ACCEL,

double routeVote, double iVote, double

cDEFAULT_SPEED_VOTE, double cDEFAULT_ACCEL_VOTE);

˜WsfAction();

44



void setHeading(const double headingArg);

void setAltitude(const double altitudeArg);

void setSpeed(const double speedArg);

void setGeoPoint(WsfGeoPoint* target);

void setTrack(WsfTrack* targetTrack);

void setSalvoCount(const double salvoCountArg);

void setRoute(WsfRoute* routeArg);

void setRouteInteger(const int i);

void setAcceleration(const double accelerationArg);

void setBehaviorVote(const double vote);

void setHeadingVote(const double headingVoteArg);

void setAltitudeVote(const double altitudeVoteArg);

void setSpeedVote(const double speedVoteArg);

void setGeoPointVote(const double targetVote);

void setTrackVote(const double targetTrackVote);

void setSalvoCountVote(const double salvoCountVoteArg);

void setRouteVote(const double routeVoteArg);

void setRouteIntegerVote(const double iVote);

void setAccelerationVote(const double accelerationVoteArg);

double getHeading() const;

double getAltitude() const;

double getSpeed() const;

WsfGeoPoint* getGeoPoint() const;

WsfTrack* getTrack() const;

double getSalvoCount() const;

WsfRoute* getRoute() const;

int getRouteInteger() const;

double getAcceleration() const;

double getBehaviorVote() const;

double getHeadingVote() const;

double getAltitudeVote() const;

double getSpeedVote() const;

double getGeoPointVote() const;

double getTrackVote() const;

double getSalvoCountVote() const;

double getRouteVote() const;

double getRouteIntegerVote() const;

double getAccelerationVote() const;

private:

45



double heading;

double altitude;

double speed;

WsfGeoPoint* geoPoint;

WsfTrack* track;

double salvoCount;

WsfRoute* route;

int routeInteger;

double acceleration;

double behaviorLevelVote; //Used by Winner Takes All arbiter.

double headingVote;

double altitudeVote;

double speedVote;

double geoPointVote;

double trackVote;

double salvoCountVote;

double routeVote;

double routeIntegerVote;

double accelerationVote;

};

#endif // WSFACTION_HPP

46



#include "WsfAction.hpp"

#include "WsfGeoPoint.hpp"

#include "WsfTrack.hpp"

#include "WsfRoute.hpp"

WsfAction::WsfAction() : heading(0), altitude(0), speed(0), geoPoint(0),

track(0), salvoCount(0),

route(0), routeInteger(0), acceleration(0), behaviorLevelVote(0),

headingVote(0), altitudeVote(0),

speedVote(0), geoPointVote(0), trackVote(0), salvoCountVote(0),

routeVote(0), routeIntegerVote(0),

accelerationVote(0)

{

}

WsfAction::WsfAction(double behaviorVote, double evadeHeading, double

evadeAltitude, double cEVADE_SPEED,

double evadeHeadingVote, double evadeAltitudeVote, double

cEVADE_SPEED_VOTE) :

behaviorLevelVote(behaviorVote), heading(evadeHeading),

altitude(evadeAltitude), speed(cEVADE_SPEED),

headingVote(evadeHeadingVote), altitudeVote(evadeAltitudeVote),

speedVote(cEVADE_SPEED_VOTE),

geoPoint(0), track(0), salvoCount(0), route(0), routeInteger(0),

acceleration(0),

geoPointVote(0), trackVote(0), salvoCountVote(0), routeVote(0),

routeIntegerVote(0), accelerationVote(0)

{

}

WsfAction::WsfAction(double behaviorVote, WsfGeoPoint* tgt, double

formSpeed,

double tgtVote, double formSpeedVote) :

behaviorLevelVote(behaviorVote), geoPoint(tgt), speed(formSpeed),

geoPointVote(tgtVote), speedVote(formSpeedVote),

heading(0), altitude(0), track(0), salvoCount(0), route(0),

routeInteger(0), acceleration(0),

headingVote(0), altitudeVote(0), trackVote(0), salvoCountVote(0),

routeVote(0), routeIntegerVote(0), accelerationVote(0)

{

}

47



WsfAction::WsfAction(double behaviorVote, WsfTrack* targetTrack, double

salvoCount,

double targetTrackVote, double salvoCountVote) :

behaviorLevelVote(behaviorVote), track(targetTrack),

salvoCount(salvoCount),

trackVote(targetTrackVote), salvoCountVote(salvoCountVote),

heading(0), altitude(0), speed(0), geoPoint(0), route(0),

routeInteger(0), acceleration(0),

headingVote(0), altitudeVote(0), speedVote(0), geoPointVote(0),

routeVote(0), routeIntegerVote(0), accelerationVote(0)

{

}

WsfAction::WsfAction(double behaviorVote, WsfRoute* route, int i, double

cDEFAULT_SPEED, double cDEFAULT_ACCEL,

double routeVote, double iVote, double cDEFAULT_SPEED_VOTE,

double cDEFAULT_ACCEL_VOTE) :

behaviorLevelVote(behaviorVote), route(route), routeInteger(i),

speed(cDEFAULT_SPEED), acceleration(cDEFAULT_ACCEL),

routeVote(routeVote), routeIntegerVote(iVote),

speedVote(cDEFAULT_SPEED_VOTE),

accelerationVote(cDEFAULT_ACCEL_VOTE),

heading(0), altitude(0), geoPoint(0), track(0), salvoCount(0),

headingVote(0), altitudeVote(0),

geoPointVote(0), trackVote(0), salvoCountVote(0)

{

}

WsfAction::˜WsfAction(){

}

//setters and getters

void WsfAction::setHeading(const double headingArg){

heading = headingArg;

}

void WsfAction::setAltitude(const double altitudeArg){

altitude = altitudeArg;

}

void WsfAction::setSpeed(const double speedArg){

speed = speedArg;

}

48



void WsfAction::setGeoPoint(WsfGeoPoint* target){

geoPoint = target;

}

void WsfAction::setTrack(WsfTrack* targetTrack){

track = targetTrack;

}

void WsfAction::setSalvoCount(const double salvoCountArg){

salvoCount = salvoCountArg;

}

void WsfAction::setRoute(WsfRoute* routeArg){

route = routeArg;

}

void WsfAction::setRouteInteger(const int i){

routeInteger = i;

}

void WsfAction::setAcceleration(const double accelerationArg){

acceleration = accelerationArg;

}

void WsfAction::setBehaviorVote(const double vote){

behaviorLevelVote = vote;

}

void WsfAction::setHeadingVote(const double headingVoteArg){

headingVote = headingVoteArg;

}

void WsfAction::setAltitudeVote(const double altitudeVoteArg){

altitudeVote = altitudeVoteArg;

}

void WsfAction::setSpeedVote(const double speedVoteArg){

speedVote = speedVoteArg;

}

void WsfAction::setGeoPointVote(const double targetVote){

geoPointVote = targetVote;

}

void WsfAction::setTrackVote(const double targetTrackVote){

49



trackVote = targetTrackVote;

}

void WsfAction::setSalvoCountVote(const double salvoCountVoteArg){

salvoCountVote = salvoCountVoteArg;

}

void WsfAction::setRouteVote(const double routeVoteArg){

routeVote = routeVoteArg;

}

void WsfAction::setRouteIntegerVote(const double iVote){

routeIntegerVote = iVote;

}

void WsfAction::setAccelerationVote(const double accelerationVoteArg){

accelerationVote = accelerationVoteArg;

}

double WsfAction::getHeading() const{

return heading;

}

double WsfAction::getAltitude() const{

return altitude;

}

double WsfAction::getSpeed() const{

return speed;

}

WsfGeoPoint* WsfAction::getGeoPoint() const{

return geoPoint;

}

WsfTrack* WsfAction::getTrack() const{

return track;

}

double WsfAction::getSalvoCount() const{

return salvoCount;

}

WsfRoute* WsfAction::getRoute() const{

return route;

}

50



int WsfAction::getRouteInteger() const{

return routeInteger;

}

double WsfAction::getAcceleration() const{

return acceleration;

}

double WsfAction::getBehaviorVote() const{

return behaviorLevelVote;

}

double WsfAction::getHeadingVote() const{

return headingVote;

}

double WsfAction::getAltitudeVote() const{

return altitudeVote;

}

double WsfAction::getSpeedVote() const{

return speedVote;

}

double WsfAction::getGeoPointVote() const{

return geoPointVote;

}

double WsfAction::getTrackVote() const{

return trackVote;

}

double WsfAction::getSalvoCountVote() const{

return salvoCountVote;

}

double WsfAction::getRouteVote() const{

return routeVote;

}

double WsfAction::getRouteIntegerVote() const{

return routeIntegerVote;

}

double WsfAction::getAccelerationVote() const{

51



return accelerationVote;

}

52



#ifndef WSFARBITER_HPP

#define WSFARBITER_HPP

#include <vector>

#include "WsfAction.hpp"

#include "WsfExport.hpp"

//---------------------------------------------------------------------------------

// Class: Arbiter

//

// Description: Arbiters return a single Action given a set of Actions.

//

// Arbiters can be either Winner-Takes-All (WTA) or Fusion

based.

// WTA Arbiters chooses an Action to return as-is, based on

some criteria.

// Fusion Arbiters attempt to combine the set of Actions

according to

// some policy. WTA is sometimes refered to as "Competitive"

and Fusion

// as "Cooperative."

//

// Public members:

//

//

// addAction(WsfAction* actionPtr);

// Adds an action for the Arbiter to hold and arbitrate over.

//

// getWTAAction();

// Performs a Winner Takes All selection over the actions the

Arbiter holds.

// Returns the action which has the highest behaviorlevelvote

(overall vote).

//

// getParameterFusedAction();

// Performs a fusion based arbitration by returning a single action

composed

// of the highest voted parameters across all actions held by the

arbiter.

//

// getCombinedFusedAction();

// Performs a fusion based arbitration by fusing each parameter type

// together into a single parameter, using the parameter’s votes as

weights to

53



// determine the unified parameter value. Then returns this new

unified action.

//

//---------------------------------------------------------------------------------

class WSF_EXPORT WsfArbiter {

public:

WsfArbiter();

˜WsfArbiter();

void addAction(WsfAction* actionPtr);

WsfAction* getWTAAction();

WsfAction* getParameterFusedAction();

WsfAction* getCombinedFusedAction();

private:

WsfAction* previousAction;

std::vector<WsfAction*> candidateActions;

};

#endif // WSFARBITER_HPP

54



#include "WsfArbiter.hpp"

WsfArbiter::WsfArbiter()

{

previousAction = new WsfAction();

}

WsfArbiter::˜WsfArbiter(){

candidateActions.clear();

}

void WsfArbiter::addAction(WsfAction* actionPtr) {

candidateActions.push_back(actionPtr);

}

// Winner takes all arbiter. Winner is based on the Behavior level vote

rather than motor level votes.

// Most useful when the actions returned are supposed to be used as a

package, i.e. all parameters of the action

// together, not separate.

WsfAction* WsfArbiter::getWTAAction() {

if(candidateActions.size() == 0)

return previousAction;

else{

WsfAction* currentWinner = candidateActions.front();

double highestVote = currentWinner->getBehaviorVote();

for(std::vector<WsfAction*>::const_iterator it =

candidateActions.begin();

it != candidateActions.end(); ++it) {

if((*it)->getBehaviorVote() > highestVote){ //first added to

the queue has priority

currentWinner = (*it);

highestVote = currentWinner->getBehaviorVote();

}

}

previousAction = currentWinner;

candidateActions.clear();

return currentWinner;

}

}

// Fuses the highest voted parameters from multiple actions into a single

action set. For example, one behavior’s

55



// action may contribute the heading and speed parameter, while a

different behavior will contribute the altitude parameter.

WsfAction* WsfArbiter::getParameterFusedAction() {

if(candidateActions.size() == 0)

return previousAction;

else{

WsfAction* result = new WsfAction();

for(std::vector<WsfAction*>::const_iterator it =

candidateActions.begin(); it != candidateActions.end(); ++it) {

if((*it)->getHeadingVote() != 0){

if((result->getHeadingVote()) == 0 ||

((*it)->getHeadingVote() > result->getHeadingVote())) {

result->setHeadingVote((*it)->getHeadingVote());

result->setHeading((*it)->getHeading());

}

if((*it)->getHeadingVote() > result->getBehaviorVote())

result->setBehaviorVote((*it)->getHeadingVote());

}

if((*it)->getAltitudeVote() != 0){

if((result->getAltitudeVote()) == 0 ||

((*it)->getAltitudeVote() > result->getAltitudeVote())) {

result->setAltitudeVote((*it)->getAltitudeVote());

result->setAltitude((*it)->getAltitude());

}

if((*it)->getAltitudeVote() > result->getBehaviorVote())

result->setBehaviorVote((*it)->getAltitudeVote());

}

if((*it)->getSpeedVote() != 0){

if((result->getSpeedVote()) == 0 || ((*it)->getSpeedVote() >

result->getSpeedVote())) {

result->setSpeedVote((*it)->getSpeedVote());

result->setSpeed((*it)->getSpeed());

}

if((*it)->getSpeedVote() > result->getBehaviorVote())

result->setBehaviorVote((*it)->getSpeedVote());

}

if((*it)->getGeoPointVote() != 0){

if((result->getGeoPointVote()) == 0 ||

((*it)->getGeoPointVote() > result->getGeoPointVote())) {

result->setGeoPointVote((*it)->getGeoPointVote());

result->setGeoPoint((*it)->getGeoPoint());

}

if((*it)->getGeoPointVote() > result->getBehaviorVote())

result->setBehaviorVote((*it)->getGeoPointVote());

}

56



if((*it)->getTrackVote() != 0){

if((result->getTrackVote()) == 0 || ((*it)->getTrackVote() >

result->getTrackVote())) {

result->setTrackVote((*it)->getTrackVote());

result->setTrack((*it)->getTrack());

}

if((*it)->getTrackVote() > result->getBehaviorVote())

result->setBehaviorVote((*it)->getTrackVote());

}

if((*it)->getSalvoCountVote() != 0){

if((result->getSalvoCountVote()) == 0 ||

((*it)->getSalvoCountVote() >

result->getSalvoCountVote())) {

result->setSalvoCountVote((*it)->getSalvoCountVote());

result->setSalvoCount((*it)->getSalvoCount());

}

if((*it)->getSalvoCountVote() > result->getBehaviorVote())

result->setBehaviorVote((*it)->getSalvoCountVote());

}

if((*it)->getRouteVote() != 0){

if((result->getRouteVote()) == 0 || ((*it)->getRouteVote() >

result->getRouteVote())) {

result->setRouteVote((*it)->getRouteVote());

result->setRoute((*it)->getRoute());

}

if((*it)->getRouteVote() > result->getBehaviorVote())

result->setBehaviorVote((*it)->getRouteVote());

}

if((*it)->getRouteIntegerVote() != 0){

if((result->getRouteIntegerVote()) == 0 ||

((*it)->getRouteIntegerVote() >

result->getRouteIntegerVote())) {

result->setRouteIntegerVote((*it)->getRouteIntegerVote());

result->setRouteInteger((*it)->getRouteInteger());

}

if((*it)->getRouteIntegerVote() > result->getBehaviorVote())

result->setBehaviorVote((*it)->getRouteIntegerVote());

}

if((*it)->getAccelerationVote() != 0){

if((result->getAccelerationVote()) == 0 ||

((*it)->getAccelerationVote() >

result->getAccelerationVote())) {

result->setAccelerationVote((*it)->getAccelerationVote());

result->setAcceleration((*it)->getAcceleration());

}

if((*it)->getAccelerationVote() > result->getBehaviorVote())

57



result->setBehaviorVote((*it)->getAccelerationVote());

}

}

previousAction = result;

candidateActions.clear();

return result;

}

}

// Fuses each parameter type together into a single parameter, using their

votes as a weight. For example an action with a heading parameter

// would have the heading multiplied with its headingVote, and this would

then be combined with all other Action’s heading parameters. After

// summing all heading amounts from all actions in this manner, it will be

divided by the total sum of all headingVotes from all actions. This

// way an average across all actions is achieved, while also using the

votes as a weight.

//

// Note: If the vote associated with a parameter is <.5, then .5 is used

as the as vote amount; otherwise fusion has a chance of being incorrect

// and failing (i.e. if multiple actions submitted parameter votes of only

.1).

WsfAction* WsfArbiter::getCombinedFusedAction() {

if(candidateActions.size() == 0)

return previousAction;

else{

WsfAction* result = new WsfAction();

double headingVoteSum = 0;

double altitudeVoteSum = 0;

double speedVoteSum = 0;

double accelerationVoteSum = 0;

for(std::vector<WsfAction*>::const_iterator it =

candidateActions.begin(); it != candidateActions.end(); ++it) {

if((*it)->getHeadingVote() != 0){

if((result->getHeadingVote()) == 0) {

result->setHeadingVote((*it)->getHeadingVote());

result->setHeading((*it)->getHeading());

}

else {

double currentHeading = result->getHeading();

double weightedParameter = 0;

58



if (((*it)->getHeadingVote()) < .5) {

weightedParameter = .5*((*it)->getHeading());

result->setHeading(currentHeading += weightedParameter);

headingVoteSum += .5;

}

else {

weightedParameter =

((*it)->getHeadingVote())*((*it)->getHeading());

result->setHeading(currentHeading += weightedParameter);

headingVoteSum += (*it)->getHeadingVote();

}

}

if((*it)->getHeadingVote() > result->getHeadingVote())

result->setHeadingVote((*it)->getHeadingVote());

if((*it)->getHeadingVote() > result->getBehaviorVote())

result->setBehaviorVote((*it)->getHeadingVote());

}

if((*it)->getAltitudeVote() != 0){

if((result->getAltitudeVote()) == 0) {

result->setAltitudeVote((*it)->getAltitudeVote());

result->setAltitude((*it)->getAltitude());

}

else {

double currentAltitude = result->getAltitude();

double weightedParameter = 0;

if (((*it)->getAltitudeVote()) < .5) {

weightedParameter = .5*((*it)->getAltitude());

result->setAltitude(currentAltitude += weightedParameter);

altitudeVoteSum += .5;

}

else {

weightedParameter =

((*it)->getAltitudeVote())*((*it)->getAltitude());

result->setAltitude(currentAltitude += weightedParameter);

altitudeVoteSum += (*it)->getAltitudeVote();

}

}

if((*it)->getAltitudeVote() > result->getAltitudeVote())

result->setAltitudeVote((*it)->getAltitudeVote());

if((*it)->getAltitudeVote() > result->getBehaviorVote())

result->setBehaviorVote((*it)->getAltitudeVote());

}

if((*it)->getSpeedVote() != 0){

if((result->getSpeedVote()) == 0) {

59



result->setSpeedVote((*it)->getSpeedVote());

result->setSpeed((*it)->getSpeed());

}

else {

double currentSpeed = result->getSpeed();

double weightedParameter = 0;

if (((*it)->getSpeedVote()) < .5) {

weightedParameter = .5*((*it)->getSpeed());

result->setSpeed(currentSpeed += weightedParameter);

speedVoteSum += .5;

}

else {

weightedParameter =

((*it)->getSpeedVote())*((*it)->getSpeed());

result->setSpeed(currentSpeed += weightedParameter);

speedVoteSum += (*it)->getSpeedVote();

}

}

if((*it)->getSpeedVote() > result->getSpeedVote())

result->setSpeedVote((*it)->getSpeedVote());

if((*it)->getSpeedVote() > result->getBehaviorVote())

result->setBehaviorVote((*it)->getSpeedVote());

}

//has to be kept the same as ParameterFusion since it is not a

numeric value that can simply be summed/manipulated

if((*it)->getGeoPointVote() != 0){

if((result->getGeoPointVote()) == 0 ||

((*it)->getGeoPointVote() > result->getGeoPointVote())) {

result->setGeoPointVote((*it)->getGeoPointVote());

result->setGeoPoint((*it)->getGeoPoint());

}

if((*it)->getGeoPointVote() > result->getBehaviorVote())

result->setBehaviorVote((*it)->getGeoPointVote());

}

//has to be kept the same as ParameterFusion since it is not a

numeric value that can simply be summed/manipulated

if((*it)->getTrackVote() != 0){

if((result->getTrackVote()) == 0 || ((*it)->getTrackVote() >

result->getTrackVote())) {

result->setTrackVote((*it)->getTrackVote());

result->setTrack((*it)->getTrack());

}

if((*it)->getTrackVote() > result->getBehaviorVote())

result->setBehaviorVote((*it)->getTrackVote());

}

60



//has to be kept the same as ParameterFusion since it is not a

numeric value that can simply be summed/manipulated

if((*it)->getSalvoCountVote() != 0){

if((result->getSalvoCountVote()) == 0 ||

((*it)->getSalvoCountVote() >

result->getSalvoCountVote())) {

result->setSalvoCountVote((*it)->getSalvoCountVote());

result->setSalvoCount((*it)->getSalvoCount());

}

if((*it)->getSalvoCountVote() > result->getBehaviorVote())

result->setBehaviorVote((*it)->getSalvoCountVote());

}

//has to be kept the same as ParameterFusion since it is not a

numeric value that can simply be summed/manipulated

if((*it)->getRouteVote() != 0){

if((result->getRouteVote()) == 0 || ((*it)->getRouteVote() >

result->getRouteVote())) {

result->setRouteVote((*it)->getRouteVote());

result->setRoute((*it)->getRoute());

}

if((*it)->getRouteVote() > result->getBehaviorVote())

result->setBehaviorVote((*it)->getRouteVote());

}

//has to be kept the same as ParameterFusion since it is not a

numeric value that can simply be summed/manipulated

if((*it)->getRouteIntegerVote() != 0){

if((result->getRouteIntegerVote()) == 0 ||

((*it)->getRouteIntegerVote() >

result->getRouteIntegerVote())) {

result->setRouteIntegerVote((*it)->getRouteIntegerVote());

result->setRouteInteger((*it)->getRouteInteger());

}

if((*it)->getRouteIntegerVote() > result->getBehaviorVote())

result->setBehaviorVote((*it)->getRouteIntegerVote());

}

if((*it)->getAccelerationVote() != 0){

if((result->getAccelerationVote()) == 0) {

result->setAccelerationVote((*it)->getAccelerationVote());

result->setAcceleration((*it)->getAcceleration());

}

else {

double currentAcceleration = result->getAcceleration();

double weightedParameter = 0;

if (((*it)->getAccelerationVote()) < .5) {

weightedParameter = .5*((*it)->getAcceleration());

61



result->setAcceleration(currentAcceleration +=

weightedParameter);

accelerationVoteSum += .5;

}

else {

weightedParameter =

((*it)->getAccelerationVote())*((*it)->getAcceleration());

result->setAcceleration(currentAcceleration +=

weightedParameter);

accelerationVoteSum += (*it)->getAccelerationVote();

}

}

if((*it)->getAccelerationVote() > result->getAccelerationVote())

result->setAccelerationVote((*it)->getAccelerationVote());

if((*it)->getAccelerationVote() > result->getBehaviorVote())

result->setBehaviorVote((*it)->getAccelerationVote());

}

}

result->setHeading( (result->getHeading()) / headingVoteSum);

result->setAltitude( (result->getAltitude()) / altitudeVoteSum);

result->setSpeed( (result->getSpeed()) / speedVoteSum);

result->setAcceleration( (result->getAcceleration()) /

accelerationVoteSum);

previousAction = result;

candidateActions.clear();

return result;

}

}

62



#ifndef WSFSCRIPTACTIONCLASS_HPP

#define WSFSCRIPTACTIONCLASS_HPP

//#include "UtScriptClass.hpp"

//#include "UtScriptClassDefine.hpp"

#include "UtScriptBasicTypes.hpp"

#include "WsfExport.hpp"

class WSF_EXPORT WsfScriptActionClass : public UtScriptClass

{

public:

WsfScriptActionClass(const std::string& aClassName,

UtScriptTypes* aScriptTypesPtr);

virtual ˜WsfScriptActionClass();

UT_DECLARE_SCRIPT_METHOD(Create_1);

UT_DECLARE_SCRIPT_METHOD(Create_2);

UT_DECLARE_SCRIPT_METHOD(Create_3);

UT_DECLARE_SCRIPT_METHOD(Create_4);

UT_DECLARE_SCRIPT_METHOD(Create_5);

UT_DECLARE_SCRIPT_METHOD(getHeading);

UT_DECLARE_SCRIPT_METHOD(getAltitude);

UT_DECLARE_SCRIPT_METHOD(getSpeed);

UT_DECLARE_SCRIPT_METHOD(getGeoPoint);

UT_DECLARE_SCRIPT_METHOD(getTrack);

UT_DECLARE_SCRIPT_METHOD(getSalvoCount);

UT_DECLARE_SCRIPT_METHOD(getRoute);

UT_DECLARE_SCRIPT_METHOD(getRouteInteger);

UT_DECLARE_SCRIPT_METHOD(getAcceleration);

UT_DECLARE_SCRIPT_METHOD(getHeadingVote);

UT_DECLARE_SCRIPT_METHOD(getAltitudeVote);

UT_DECLARE_SCRIPT_METHOD(getSpeedVote);

UT_DECLARE_SCRIPT_METHOD(getGeoPointVote);

UT_DECLARE_SCRIPT_METHOD(getTrackVote);

UT_DECLARE_SCRIPT_METHOD(getSalvoCountVote);

UT_DECLARE_SCRIPT_METHOD(getRouteVote);

UT_DECLARE_SCRIPT_METHOD(getRouteIntegerVote);

UT_DECLARE_SCRIPT_METHOD(getAccelerationVote);

UT_DECLARE_SCRIPT_METHOD(setHeading);

UT_DECLARE_SCRIPT_METHOD(setAltitude);

UT_DECLARE_SCRIPT_METHOD(setSpeed);

63



UT_DECLARE_SCRIPT_METHOD(setGeoPoint);

UT_DECLARE_SCRIPT_METHOD(setTrack);

UT_DECLARE_SCRIPT_METHOD(setSalvoCount);

UT_DECLARE_SCRIPT_METHOD(setRoute);

UT_DECLARE_SCRIPT_METHOD(setRouteInteger);

UT_DECLARE_SCRIPT_METHOD(setAcceleration);

UT_DECLARE_SCRIPT_METHOD(setHeadingVote);

UT_DECLARE_SCRIPT_METHOD(setAltitudeVote);

UT_DECLARE_SCRIPT_METHOD(setSpeedVote);

UT_DECLARE_SCRIPT_METHOD(setGeoPointVote);

UT_DECLARE_SCRIPT_METHOD(setTrackVote);

UT_DECLARE_SCRIPT_METHOD(setSalvoCountVote);

UT_DECLARE_SCRIPT_METHOD(setRouteVote);

UT_DECLARE_SCRIPT_METHOD(setRouteIntegerVote);

UT_DECLARE_SCRIPT_METHOD(setAccelerationVote);

};

#endif // WSFSCRIPTACTIONCLASS_HPP

64



#include "script/WsfScriptActionClass.hpp"

#include "WsfAction.hpp"

#include "UtScriptRef.hpp"

#include "WsfGeoPoint.hpp"

#include "WsfTrack.hpp"

#include "WsfRoute.hpp"

using namespace std;

WsfScriptActionClass::WsfScriptActionClass(const std::string& aClassName,

UtScriptTypes* aScriptTypesPtr)

: UtScriptClass(aClassName, aScriptTypesPtr)

{

SetClassName("WsfAction");

AddStaticMethod(new Create_1(this, "Create")); // Create()

AddStaticMethod(new Create_2(this, "Create")); // Create(double

behaviorVote, double evadeHeading, double evadeAltitude, double

cEVADE_SPEED,

// double

evadeHeadingVote, double

evadeAltitudeVote,

double cEVADE_SPEED_VOTE)

AddStaticMethod(new Create_3(this, "Create")); // Create(double

behaviorVote, WsfGeoPoint tgt, double formSpeed,

// double tgtVote, double

formSpeedVote)

AddStaticMethod(new Create_4(this, "Create")); // Create(double

behaviorVote, WsfTrack targetTrack, double salvoCount,

// double

targetTrackVote, double

salvoCountVote)

AddStaticMethod(new Create_5(this, "Create")); // Create(double

behaviorVote, WsfRoute route, int i, double cDEFAULT_SPEED, double

cDEFAULT_ACCEL,

// double routeVote,

double iVote, double

cDEFAULT_SPEED_VOTE,

double

cDEFAULT_ACCEL_VOTE)

65



AddMethod(new getHeading(this));

AddMethod(new getAltitude(this));

AddMethod(new getSpeed(this));

AddMethod(new getGeoPoint(this));

AddMethod(new getTrack(this));

AddMethod(new getSalvoCount(this));

AddMethod(new getRoute(this));

AddMethod(new getRouteInteger(this));

AddMethod(new getAcceleration(this));

AddMethod(new getHeadingVote(this));

AddMethod(new getAltitudeVote(this));

AddMethod(new getSpeedVote(this));

AddMethod(new getGeoPointVote(this));

AddMethod(new getTrackVote(this));

AddMethod(new getSalvoCountVote(this));

AddMethod(new getRouteVote(this));

AddMethod(new getRouteIntegerVote(this));

AddMethod(new getAccelerationVote(this));

AddMethod(new setHeading(this));

AddMethod(new setAltitude(this));

AddMethod(new setSpeed(this));

AddMethod(new setGeoPoint(this));

AddMethod(new setTrack(this));

AddMethod(new setSalvoCount(this));

AddMethod(new setRoute(this));

AddMethod(new setRouteInteger(this));

AddMethod(new setAcceleration(this));

AddMethod(new setHeadingVote(this));

AddMethod(new setAltitudeVote(this));

AddMethod(new setSpeedVote(this));

AddMethod(new setGeoPointVote(this));

AddMethod(new setTrackVote(this));

AddMethod(new setSalvoCountVote(this));

AddMethod(new setRouteVote(this));

AddMethod(new setRouteIntegerVote(this));

AddMethod(new setAccelerationVote(this));

}

WsfScriptActionClass::˜WsfScriptActionClass()

{

}

66



UT_DEFINE_SCRIPT_METHOD(WsfScriptActionClass, WsfAction, Create_1, 0,

"WsfAction", "")

{

WsfAction* action = new WsfAction();

aReturnVal.SetPointer(new UtScriptRef(action, aReturnClassPtr,

UtScriptRef::cMANAGE));

}

UT_DEFINE_SCRIPT_METHOD(WsfScriptActionClass, WsfAction, Create_2, 7,

"WsfAction", "double, double, double, double, double, double, double")

{

WsfAction* action = new WsfAction(aVarArgs[0].GetDouble(),

aVarArgs[1].GetDouble(), aVarArgs[2].GetDouble(),

aVarArgs[3].GetDouble(),

aVarArgs[4].GetDouble(), aVarArgs[5].GetDouble(),

aVarArgs[6].GetDouble());

aReturnVal.SetPointer(new UtScriptRef(action, aReturnClassPtr,

UtScriptRef::cMANAGE));

}

UT_DEFINE_SCRIPT_METHOD(WsfScriptActionClass, WsfAction, Create_3, 5,

"WsfAction", "double, WsfGeoPoint, double, double, double")

{

WsfGeoPoint* pointPtr =

(static_cast<WsfGeoPoint*>(aVarArgs[1].GetPointer()->GetAppObject()))->Clone();

WsfAction* action = new WsfAction(aVarArgs[0].GetDouble(), pointPtr,

aVarArgs[2].GetDouble(), aVarArgs[3].GetDouble(),

aVarArgs[4].GetDouble());

aReturnVal.SetPointer(new UtScriptRef(action, aReturnClassPtr,

UtScriptRef::cMANAGE));

}

UT_DEFINE_SCRIPT_METHOD(WsfScriptActionClass, WsfAction, Create_4, 5,

"WsfAction", "double, WsfTrack, double, double, double")

{

WsfTrack* trackPtr = ((WsfTrack*)

aVarArgs[1].GetPointer()->GetAppObject())->Clone();

WsfAction* action = new WsfAction(aVarArgs[0].GetDouble(), trackPtr,

aVarArgs[2].GetDouble(), aVarArgs[3].GetDouble(),

aVarArgs[4].GetDouble());

aReturnVal.SetPointer(new UtScriptRef(action, aReturnClassPtr,

UtScriptRef::cMANAGE));

}

67



UT_DEFINE_SCRIPT_METHOD(WsfScriptActionClass, WsfAction, Create_5, 9,

"WsfAction", "double, WsfRoute, int, double, double, double, double,

double, double")

{

WsfRoute* routePtr =

((WsfRoute*)aVarArgs[1].GetPointer()->GetAppObject())->Clone();

WsfAction* action = new WsfAction(aVarArgs[0].GetDouble(), routePtr,

aVarArgs[2].GetInt(), aVarArgs[3].GetDouble(),

aVarArgs[4].GetDouble(), aVarArgs[5].GetDouble(),

aVarArgs[6].GetDouble(), aVarArgs[7].GetDouble(),

aVarArgs[8].GetDouble());

aReturnVal.SetPointer(new UtScriptRef(action, aReturnClassPtr,

UtScriptRef::cMANAGE));

}

UT_DEFINE_SCRIPT_METHOD(WsfScriptActionClass, WsfAction, getHeading, 0,

"double", "")

{

aReturnVal.SetDouble(aObjectPtr->getHeading());

}

UT_DEFINE_SCRIPT_METHOD(WsfScriptActionClass, WsfAction, getAltitude, 0,

"double", "")

{

aReturnVal.SetDouble(aObjectPtr->getAltitude());

}

UT_DEFINE_SCRIPT_METHOD(WsfScriptActionClass, WsfAction, getSpeed, 0,

"double", "")

{

aReturnVal.SetDouble(aObjectPtr->getSpeed());

}

UT_DEFINE_SCRIPT_METHOD(WsfScriptActionClass, WsfAction, getGeoPoint, 0,

"WsfGeoPoint", "")

{

WsfGeoPoint* geoPtr = aObjectPtr->getGeoPoint()->Clone();

aReturnVal.SetPointer(new UtScriptRef(geoPtr, aReturnClassPtr,

UtScriptRef::cMANAGE));

//aReturnVal.SetPointer(UtScriptRef::Ref(aObjectPtr->getGeoPoint(),

aReturnClassPtr));

//aReturnVal.SetPointer(UtScriptRef::Ref(aObjectPtr->GetMover(),

aReturnClassPtr));

}

68



UT_DEFINE_SCRIPT_METHOD(WsfScriptActionClass, WsfAction, getTrack, 0,

"WsfTrack", "")

{

WsfTrack* trackPtr = aObjectPtr->getTrack()->Clone();

aReturnVal.SetPointer(new UtScriptRef(trackPtr, aReturnClassPtr,

UtScriptRef::cMANAGE));

//aReturnVal.SetPointer(UtScriptRef::Ref(aObjectPtr->getTrack(),

aReturnClassPtr));

}

UT_DEFINE_SCRIPT_METHOD(WsfScriptActionClass, WsfAction, getSalvoCount, 0,

"double", "")

{

aReturnVal.SetDouble(aObjectPtr->getSalvoCount());

}

UT_DEFINE_SCRIPT_METHOD(WsfScriptActionClass, WsfAction, getRoute, 0,

"WsfRoute", "")

{

WsfRoute* routePtr = aObjectPtr->getRoute()->Clone();

aReturnVal.SetPointer(new UtScriptRef(routePtr, aReturnClassPtr,

UtScriptRef::cMANAGE));

//aReturnVal.SetPointer(UtScriptRef::Ref(aObjectPtr->getRoute(),

aReturnClassPtr));

}

UT_DEFINE_SCRIPT_METHOD(WsfScriptActionClass, WsfAction, getRouteInteger,

0, "int", "")

{

aReturnVal.SetInt(aObjectPtr->getRouteInteger());

}

UT_DEFINE_SCRIPT_METHOD(WsfScriptActionClass, WsfAction, getAcceleration,

0, "double", "")

{

aReturnVal.SetDouble(aObjectPtr->getAcceleration());

}

UT_DEFINE_SCRIPT_METHOD(WsfScriptActionClass, WsfAction, getHeadingVote,

0, "double", "")

{

aReturnVal.SetDouble(aObjectPtr->getHeadingVote());

}

UT_DEFINE_SCRIPT_METHOD(WsfScriptActionClass, WsfAction, getAltitudeVote,

0, "double", "")

69



{

aReturnVal.SetDouble(aObjectPtr->getAltitudeVote());

}

UT_DEFINE_SCRIPT_METHOD(WsfScriptActionClass, WsfAction, getSpeedVote, 0,

"double", "")

{

aReturnVal.SetDouble(aObjectPtr->getSpeedVote());

}

UT_DEFINE_SCRIPT_METHOD(WsfScriptActionClass, WsfAction, getGeoPointVote,

0, "double", "")

{

aReturnVal.SetDouble(aObjectPtr->getGeoPointVote());

}

UT_DEFINE_SCRIPT_METHOD(WsfScriptActionClass, WsfAction, getTrackVote, 0,

"double", "")

{

aReturnVal.SetDouble(aObjectPtr->getTrackVote());

}

UT_DEFINE_SCRIPT_METHOD(WsfScriptActionClass, WsfAction,

getSalvoCountVote, 0, "double", "")

{

aReturnVal.SetDouble(aObjectPtr->getSalvoCountVote());

}

UT_DEFINE_SCRIPT_METHOD(WsfScriptActionClass, WsfAction, getRouteVote, 0,

"double", "")

{

aReturnVal.SetDouble(aObjectPtr->getRouteVote());

}

UT_DEFINE_SCRIPT_METHOD(WsfScriptActionClass, WsfAction,

getRouteIntegerVote, 0, "double", "")

{

aReturnVal.SetDouble(aObjectPtr->getRouteIntegerVote());

}

UT_DEFINE_SCRIPT_METHOD(WsfScriptActionClass, WsfAction,

getAccelerationVote, 0, "double", "")

{

aReturnVal.SetDouble(aObjectPtr->getAccelerationVote());

}

70



UT_DEFINE_SCRIPT_METHOD(WsfScriptActionClass, WsfAction, setHeading, 1,

"double", "double")

{

aObjectPtr->setHeading(aVarArgs[0].GetDouble());

aReturnVal.SetDouble(aObjectPtr->getHeading());

}

UT_DEFINE_SCRIPT_METHOD(WsfScriptActionClass, WsfAction, setAltitude, 1,

"double", "double")

{

aObjectPtr->setAltitude(aVarArgs[0].GetDouble());

aReturnVal.SetDouble(aObjectPtr->getAltitude());

}

UT_DEFINE_SCRIPT_METHOD(WsfScriptActionClass, WsfAction, setSpeed, 1,

"double", "double")

{

aObjectPtr->setSpeed(aVarArgs[0].GetDouble());

aReturnVal.SetDouble(aObjectPtr->getSpeed());

}

UT_DEFINE_SCRIPT_METHOD(WsfScriptActionClass, WsfAction, setGeoPoint, 1,

"WsfGeoPoint", "WsfGeoPoint")

{

//WsfGeoPoint* pointPtr =

(static_cast<WsfGeoPoint*>(aVarArgs[0].GetPointer()->GetAppObject()))->Clone();

WsfGeoPoint* pointPtr =

((WsfGeoPoint*)aVarArgs[0].GetPointer()->GetAppObject())->Clone();

aObjectPtr->setGeoPoint(pointPtr);

//WsfGeoPoint* geoPtr = aObjectPtr->getGeoPoint()->Clone();

aReturnVal.SetPointer(new UtScriptRef(pointPtr, aReturnClassPtr));

//aReturnVal.SetPointer(UtScriptRef::Ref(aObjectPtr->getGeoPoint(),

aReturnClassPtr));

//aReturnVal.SetPointer(UtScriptRef::Ref(aObjectPtr->GetMover(),

aReturnClassPtr));

}

UT_DEFINE_SCRIPT_METHOD(WsfScriptActionClass, WsfAction, setTrack, 1,

"WsfTrack", "WsfTrack")

{

WsfTrack* trackPtr = ((WsfTrack*)

aVarArgs[0].GetPointer()->GetAppObject())->Clone();

aObjectPtr->setTrack(trackPtr);

//WsfTrack* trackPtr = aObjectPtr->getTrack()->Clone();

71



//aReturnVal.SetPointer(new UtScriptRef(trackPtr, aReturnClassPtr,

UtScriptRef::cMANAGE));

aReturnVal.SetPointer(UtScriptRef::Ref(trackPtr, aReturnClassPtr));

}

UT_DEFINE_SCRIPT_METHOD(WsfScriptActionClass, WsfAction, setSalvoCount, 1,

"double", "double")

{

aObjectPtr->setSalvoCount(aVarArgs[0].GetDouble());

aReturnVal.SetDouble(aObjectPtr->getSalvoCount());

}

UT_DEFINE_SCRIPT_METHOD(WsfScriptActionClass, WsfAction, setRoute, 1,

"WsfRoute", "WsfRoute")

{

WsfRoute* routePtr =

((WsfRoute*)aVarArgs[0].GetPointer()->GetAppObject())->Clone();

aObjectPtr->setRoute(routePtr);

//WsfRoute* routePtr = aObjectPtr->getRoute()->Clone();

//aReturnVal.SetPointer(new UtScriptRef(routePtr, aReturnClassPtr,

UtScriptRef::cMANAGE));

aReturnVal.SetPointer(UtScriptRef::Ref(routePtr, aReturnClassPtr));

}

UT_DEFINE_SCRIPT_METHOD(WsfScriptActionClass, WsfAction, setRouteInteger,

1, "int", "int")

{

aObjectPtr->setRouteInteger(aVarArgs[0].GetInt());

aReturnVal.SetInt(aObjectPtr->getRouteInteger());

}

UT_DEFINE_SCRIPT_METHOD(WsfScriptActionClass, WsfAction, setAcceleration,

1, "double", "double")

{

aObjectPtr->setAcceleration(aVarArgs[0].GetDouble());

aReturnVal.SetDouble(aObjectPtr->getAcceleration());

}

UT_DEFINE_SCRIPT_METHOD(WsfScriptActionClass, WsfAction, setHeadingVote,

1, "double", "double")

{

aObjectPtr->setHeadingVote(aVarArgs[0].GetDouble());

aReturnVal.SetDouble(aObjectPtr->getHeadingVote());

}

72



UT_DEFINE_SCRIPT_METHOD(WsfScriptActionClass, WsfAction, setAltitudeVote,

1, "double", "double")

{

aObjectPtr->setAltitudeVote(aVarArgs[0].GetDouble());

aReturnVal.SetDouble(aObjectPtr->getAltitudeVote());

}

UT_DEFINE_SCRIPT_METHOD(WsfScriptActionClass, WsfAction, setSpeedVote, 1,

"double", "double")

{

aObjectPtr->setSpeedVote(aVarArgs[0].GetDouble());

aReturnVal.SetDouble(aObjectPtr->getSpeedVote());

}

UT_DEFINE_SCRIPT_METHOD(WsfScriptActionClass, WsfAction, setGeoPointVote,

1, "double", "double")

{

aObjectPtr->setGeoPointVote(aVarArgs[0].GetDouble());

aReturnVal.SetDouble(aObjectPtr->getGeoPointVote());

}

UT_DEFINE_SCRIPT_METHOD(WsfScriptActionClass, WsfAction, setTrackVote, 1,

"double", "double")

{

aObjectPtr->setTrackVote(aVarArgs[0].GetDouble());

aReturnVal.SetDouble(aObjectPtr->getTrackVote());

}

UT_DEFINE_SCRIPT_METHOD(WsfScriptActionClass, WsfAction,

setSalvoCountVote, 1, "double", "double")

{

aObjectPtr->setSalvoCountVote(aVarArgs[0].GetDouble());

aReturnVal.SetDouble(aObjectPtr->getSalvoCountVote());

}

UT_DEFINE_SCRIPT_METHOD(WsfScriptActionClass, WsfAction, setRouteVote, 1,

"double", "double")

{

aObjectPtr->setRouteVote(aVarArgs[0].GetDouble());

aReturnVal.SetDouble(aObjectPtr->getRouteVote());

}

UT_DEFINE_SCRIPT_METHOD(WsfScriptActionClass, WsfAction,

setRouteIntegerVote, 1, "double", "double")

{

aObjectPtr->setRouteIntegerVote(aVarArgs[0].GetDouble());

73



aReturnVal.SetDouble(aObjectPtr->getRouteIntegerVote());

}

UT_DEFINE_SCRIPT_METHOD(WsfScriptActionClass, WsfAction,

setAccelerationVote, 1, "double", "double")

{

aObjectPtr->setAccelerationVote(aVarArgs[0].GetDouble());

aReturnVal.SetDouble(aObjectPtr->getAccelerationVote());

}

74



#ifndef WSFSCRIPTARBITERCLASS_HPP

#define WSFSCRIPTARBITERCLASS_HPP

#include "WsfExport.hpp"

//#include "UtScriptClass.hpp"

//#include "UtScriptClassDefine.hpp"

#include "UtScriptBasicTypes.hpp"

class WSF_EXPORT WsfScriptArbiterClass : public UtScriptClass

{

public:

WsfScriptArbiterClass(const std::string& aClassName,

UtScriptTypes* aScriptTypesPtr);

virtual ˜WsfScriptArbiterClass();

UT_DECLARE_SCRIPT_METHOD(Create);

UT_DECLARE_SCRIPT_METHOD(addAction);

UT_DECLARE_SCRIPT_METHOD(getWTAAction);

UT_DECLARE_SCRIPT_METHOD(getParameterFusedAction);

UT_DECLARE_SCRIPT_METHOD(getCombinedFusedAction);

};

#endif // WSFSCRIPTARBITERCLASS_HPP

75



#include "script/WsfScriptArbiterClass.hpp"

#include "WsfArbiter.hpp"

#include "WsfAction.hpp"

#include "UtScriptRef.hpp"

using namespace std;

WsfScriptArbiterClass::WsfScriptArbiterClass(const std::string& aClassName,

UtScriptTypes* aScriptTypesPtr)

: UtScriptClass(aClassName, aScriptTypesPtr)

{

SetClassName("WsfArbiter");

AddStaticMethod(new Create(this));

AddMethod(new addAction(this));

AddMethod(new getWTAAction(this));

AddMethod(new getParameterFusedAction(this));

AddMethod(new getCombinedFusedAction(this));

}

WsfScriptArbiterClass::˜WsfScriptArbiterClass()

{

}

UT_DEFINE_SCRIPT_METHOD(WsfScriptArbiterClass, WsfArbiter, Create, 0,

"WsfArbiter", "")

{

WsfArbiter* arbiter = new WsfArbiter();

aReturnVal.SetPointer(new UtScriptRef(arbiter, aReturnClassPtr,

UtScriptRef::cMANAGE));

}

UT_DEFINE_SCRIPT_METHOD(WsfScriptArbiterClass, WsfArbiter, addAction, 1,

"void", "WsfAction")

{

WsfAction* actionPtr =

(WsfAction*)aVarArgs[0].GetPointer()->GetAppObject();

aObjectPtr->addAction(actionPtr);

}

UT_DEFINE_SCRIPT_METHOD(WsfScriptArbiterClass, WsfArbiter, getWTAAction,

0, "WsfAction", "")

{

76



WsfAction* actionPtr = aObjectPtr->getWTAAction();

aReturnVal.SetPointer(new UtScriptRef(actionPtr, aReturnClassPtr,

UtScriptRef::cMANAGE));

}

UT_DEFINE_SCRIPT_METHOD(WsfScriptArbiterClass, WsfArbiter,

getParameterFusedAction, 0, "WsfAction", "")

{

WsfAction* actionPtr = aObjectPtr->getParameterFusedAction();

aReturnVal.SetPointer(new UtScriptRef(actionPtr, aReturnClassPtr,

UtScriptRef::cMANAGE));

}

UT_DEFINE_SCRIPT_METHOD(WsfScriptArbiterClass, WsfArbiter,

getCombinedFusedAction, 0, "WsfAction", "")

{

WsfAction* actionPtr = aObjectPtr->getCombinedFusedAction();

aReturnVal.SetPointer(new UtScriptRef(actionPtr, aReturnClassPtr,

UtScriptRef::cMANAGE));

}

77



Appendix B: Simulation Code

include_once processors/quantum_agents/aiai/behavior_planned_route.txt

include_once

processors/quantum_agents/aiai/behavior_pursue_weapon_task_target.txt

include_once ../common/common_platform_script.txt

behavior controller

script_debug_writes off

script_variables

WsfAction mAction;

WsfArbiter myArby;

WsfPlatform myPlatform;

WsfProcessor myProcessor;

WsfGeoPoint targetPoint = WsfGeoPoint();

end_script_variables

precondition

return true;

end_precondition

on_init

//myPlatform = PLATFORM;

//myProcessor = PROCESSOR;

end_on_init

execute

mAction = WsfAction.Create();

myArby = WsfArbiter.Create();

Pursue_Weapon_Task_Target(myArby, PLATFORM, PROCESSOR);

Planned_Route(myArby, PLATFORM);

mAction = myArby.getWTAAction();

writeln(" getgeovote ", mAction.getGeoPointVote(), " at ", TIME_NOW);

if(mAction.getGeoPointVote() > 0) {

FlyTarget( PLATFORM, mAction.getGeoPoint(), mAction.getSpeed());

}

else if (mAction.getRouteVote() > 0){

PLATFORM.GoToSpeed(mAction.getSpeed(), mAction.getAcceleration(),

true);

PLATFORM.FollowRoute(mAction.getRoute(),

mAction.getRouteInteger());

}

78



end_execute

end_behavior

79



//TODO use default values from higher level context (processor or parent

behavior that holds default)

script_debug_writes off

script_variables

bool mDrawRoute = false;

//WsfDraw mDraw = WsfDraw();

double cDEFAULT_SPEED = 450.0 * MATH.MPS_PER_NMPH();

double cDEFAULT_ACCEL = 7.5 * Earth.ACCEL_OF_GRAVITY(); //

7.5 G (m/sˆ2)

WsfAction plannedAction;

bool initPlanned = true;

end_script_variables

script void Planned_Route(WsfArbiter myArby, WsfPlatform myPlatform)

if(initPlanned){

plannedAction = WsfAction.Create();

initPlanned = false;

}

//writeln_d(myPlatform.Name(), " executing planned_route, T=",

TIME_NOW);

//only command the platform to do something different if its not

currently flying a route

WsfMover aMover = myPlatform.Mover();

if (aMover.IsValid()) {

if (aMover.IsExtrapolating()) {

WsfGeoPoint pt = myPlatform.Location();

WsfRoute ro = aMover.DefaultRoute().Copy(); #now we have a

modifiable route

if (!ro.IsValid()) {

#myAction.Create(1, ro, i, cDEFAULT_SPEED, cDEFAULT_ACCEL, 1,

1, 1, 1);

#myArby.addAction(plannedAction);

return;

}

writeln_d("flying route, name: ", ro.Name(), ", type: ",

ro.Type());

WsfGeoPoint close =

ro.LocationAtDistance(ro.DistanceAlongRoute(pt));

if (!close.IsValid()) {

80



//myAction.Create(1, ro, i, cDEFAULT_SPEED, cDEFAULT_ACCEL,

1, 1, 1, 1);

//myArby.addAction(plannedAction);

return;

}

close.SetAltitudeAGL(pt.Altitude());

// if (mDrawRoute)

// {

// mDraw.BeginLines();

// mDraw.Vertex(pt);

// mDraw.Vertex(close);

// mDraw.End();

// }

double d1 = ro.DistanceFromRoute(pt);

double d2 = pt.GroundRangeTo(close);

double d3 = -1;

Array<double> turnRad = aMover.PropertyDouble("turn_radius");

if (turnRad.Size() > 0) {

d3 = 2*turnRad[0];

}

int i = 0;

for (; i < ro.Size(); i = i+1)

{

WsfWaypoint wpt = ro.Waypoint(i);

WsfGeoPoint rpt = wpt.Location();

//check if we are close to an existing waypoint, if so...

break & fly at that one

if (rpt.GroundRangeTo(close) < 926) {

break;

}

double dist = ro.DistanceAlongRoute(rpt);

if (dist > d1) {

if (d2 > d3) {

ro.Insert(i, WsfWaypoint.Create(close, wpt.Speed()));

}

break;

}

}

if (i >= ro.Size()) {

i = ro.Size() - 1;

}

//go at default speed; this gets overwritten if route waypoint

has defined a speed

//myPlatform.GoToSpeed(cDEFAULT_SPEED, cDEFAULT_ACCEL, true);

//myPlatform.FollowRoute(ro, i);

81



//plannedAction = WsfAction.Create(1, ro, i, cDEFAULT_SPEED,

cDEFAULT_ACCEL, 1, 1, 1, 1);

plannedAction = WsfAction.Create(1, aMover.DefaultRoute(), i,

cDEFAULT_SPEED, cDEFAULT_ACCEL, 1, 1, 1, 1);

myArby.addAction(plannedAction);

}

}

82



//converted from pursue-target

include_once ../common/common_platform_script.txt

script_variables

WsfQuantumTaskerProcessor processor;

//**********************************************************************//

//** debugging parameters **//

//**********************************************************************//

bool mDrawSteering = false;

string mZoneName = "";

WsfZone mFezZone;

//**********************************************************************//

//** flying parameters, for intercept or approach **//

//**********************************************************************//

//target point to fly at

double cDEFAULT_ALTITUDE = 9144; // ˜30,000 feet

WsfTrackId mTargetId;

WsfGeoPoint mTargetPoint = WsfGeoPoint();

double mTargetSpeed = 0; # will be overwritten

// larger values, suggested for air to air fighters & jets

double mMatchSpeedDistanceMin = 5 * 1852; # 5 mile

double mMatchSpeedDistanceMax = 30 * 1852; # 30 miles

//double mWaitSpeed = 500 * MATH.MPS_PER_NMPH();

//double mInterceptSpeed = 800 * MATH.MPS_PER_NMPH();

//double mInterceptSpeed = 293.941; //mach 0.95 at 25200 ft altitude

//double mWaitSpeed = 293.941; //mach 0.95 at 25200 ft altitude

double mWaitSpeed = 250 * MATH.MPS_PER_NMPH();

double mInterceptSpeed = 600 * MATH.MPS_PER_NMPH();

double mDefaultAccel = 7.5 * Earth.ACCEL_OF_GRAVITY(); # m/sˆ2

˜7.5 Gs

// smaller values, suggest for a UAV intercepting or following ground

forces

#double mMatchSpeedDistanceMin = 185.2; # one tenth of a mile

#double mMatchSpeedDistanceMax = 1852.0; # a mile

#double mWaitSpeed = 22; # m/s (˜50 mph)

#double mInterceptSpeed = 52; # m/s (˜100 knots)

double mMinAltitude = 4572; # ˜15000 feet

//switch for matching threat’s altitude during pursuit

bool DefaultMatchThreatAltitude = false;

83



Map<string, bool> mThreatTypeMatchAltitude = Map<string, bool>();

//mThreatTypeMatchAltitude["missile_fast"] = true;

//mThreatTypeMatchAltitude["awacs"] = true;

//mThreatTypeMatchAltitude["bomber"] = true;

//mThreatTypeMatchAltitude["fighter"] = true;

mThreatTypeMatchAltitude["unknown"] = false;

mThreatTypeMatchAltitude["uav"] = false;

mThreatTypeMatchAltitude["sam"] = false;

mThreatTypeMatchAltitude["ship"] = false;

mThreatTypeMatchAltitude["jammer"] = false;

mThreatTypeMatchAltitude["missile"] = false;

//specify offset angle to fly at, during f-pole pursuit

double DefaultOffsetDistance = 1852*50; //50 nm

double DefaultOffsetAngle = 30.0; // should this be

radar-specific?

//Map<string, double> ThreatTypeOffsetAngle = Map<string, double>();

//ThreatTypeOffsetAngle["awacs"] = 15.0;

//ThreatTypeOffsetAngle["unknown"] = 20.0;

//ThreatTypeOffsetAngle["sam"] = 50.0;

//**********************************************************************//

//********* VARIABLES BELOW THIS LINE ARE NOT FOR USER EDITING

*********//

//**********************************************************************//

WsfDraw mDraw = WsfDraw();

double mLastTime = 0.0;

bool initPursue = true;

WsfAction pursueAction;

end_script_variables

script bool MatchAltitudeForThreat(WsfTrack track, WsfPlatform myPlatform)

WsfPlatform plat = myPlatform.FindPlatform( track.TargetName() );

if (plat.IsValid())

{

foreach (string aCategory : bool match in

mThreatTypeMatchAltitude)

{

if (plat.CategoryMemberOf(aCategory))

{

return match;

}

}

}

return DefaultMatchThreatAltitude;

84



end_script

script void Pursue_Weapon_Task_Target(WsfArbiter myArby, WsfPlatform

myPlatform, WsfProcessor myProcessor)

pursueAction = WsfAction.Create();

if (myProcessor.IsA_TypeOf("WSF_QUANTUM_TASKER_PROCESSOR"))

{

processor = (WsfQuantumTaskerProcessor)myProcessor;

}

//writeln_d(myPlatform.Name(), " precondition quantum_weapon_task,

T=", TIME_NOW);

//writeln_d(PLATFORM.Name(), " precondition quantum_weapon_task, T=",

TIME_NOW);

if (!myProcessor.IsA_TypeOf("WSF_QUANTUM_TASKER_PROCESSOR"))

{

//writeln(" PROCESSOR INVALID at ", TIME_NOW);

//myArby.addAction(pursueAction);

return;

}

WsfTaskList tasks = processor.TasksReceivedOfType("WEAPON");

WsfTrackId targetId;

if (tasks.Count() <= 0)

{

//writeln(" TASKS.COUNT <=0 at ", TIME_NOW);

//myArby.addAction(pursueAction);

return;

}

//writeln(PLATFORM.Name(), " received tasks: ", tasks.Count());

// FOR DEBUGGING:

// if (TIME_NOW > 30)

// {

// for (int i=0; i<tasks.Count(); i=i+1)

// {

// WsfTask task = tasks.Entry(i);

// writeln("rejecting task, id: ", task.TaskId(), ", target: ",

task.TrackId().ToString());

// processor.RejectTask(task);

// }

// return false;

85



// }

double minDist = 999999999999999.9;

#WsfLocalTrack targetTrack;

for (int i=0; i<tasks.Count(); i=i+1)

{

WsfTask task = tasks.Entry(i);

WsfTrackId tid = task.LocalTrackId();

WsfLocalTrack aTrack = myPlatform.MasterTrackList().FindTrack(tid);

if (aTrack.IsValid())

{

//check if the target platform is terminated

if (!aTrack.Target().IsValid())

{

//TODO - report task complete

processor.SetTaskComplete(task, "SUCCESSFUL");

continue;

}

double range = myPlatform.SlantRangeTo(aTrack);

if (range < minDist)

{

minDist = range;

targetId = tid;

//targetTrack = aTrack;

}

}

else

{

//lost track for task

//TODO: report incomplete (complete unsuccessful)

//TODO: always report incomplete? what if we fired on the guy?

// proc.SetTaskComplete(task, "UNSUCCESSFUL");

processor.SetTaskComplete(task, "UNSUCCESSFUL");

//proc.SetTaskProgress(task, "LOST");

}

}

if (targetId.IsValid())

{

mTargetId = targetId;

}

else

{

#myArby.addAction(pursueAction);

86



return;

}

#############################################################################

WsfTrack targetTrack;

if (mTargetId.IsValid())

{

targetTrack = myPlatform.MasterTrackList().FindTrack(mTargetId);

}

if (targetTrack.IsNull() ||

!targetTrack.IsValid())

{

//writeln_d(" UpdateInterceptLocation, targetTrack is null or not

valid");

//myArby.addAction(pursueAction);

return;

}

//string comment = write_str(myPlatform.Name(), " executing

quantum_target_task, T=", TIME_NOW);

//writeln_d(comment);

//PLATFORM.Comment(comment);

//extern string CalculatePositioning (WsfPlatform, WsfTrack, double);

double ownSpeed = myPlatform.Speed();

double targetSpeed = targetTrack.Speed();

double slantRangeTo = myPlatform.SlantRangeTo(targetTrack);

double closingSpeed = myPlatform.ClosingSpeedOf(targetTrack);

string positioning = CalculatePositioning(myPlatform, targetTrack,

10.0);

int weaponsActive =

myPlatform.WeaponsActiveFor(targetTrack.TrackId());

double engageRangeMax = 185200.0; //100 miles

double engageRangeMin = 1852.0; // 1 mile

string PursuitMode = "pure";

if (weaponsActive > 0)

{

PursuitMode = "f-pole";

87



}

else if (targetTrack.AirDomain())

{

if (slantRangeTo >= engageRangeMax &&

positioning != "head-to-head" &&

positioning != "head-to-tail" &&

targetSpeed >= ownSpeed)

{

PursuitMode = "lead";

}

else if (slantRangeTo <= engageRangeMax &&

positioning != "head-to-head" &&

positioning != "head-to-tail")

{

PursuitMode = "lag";

}

//else if (slantRangeTo > engageRangeMax ||

// (slantRangeTo <= engageRangeMax &&

// (positioning == "head-to-head" ||

// positioning == "head-to-tail")))

//{

// PursuitMode = "pure";

//}

}

//writeln_d(" PursuitMode = ", PursuitMode);

// Our track quality (or target range) may not be good enough yet, so

keep moving towards the target.

// If we got the altitude from the TRACK, match it

double interceptHeading = myPlatform.Heading();

double distanceToTarget = myPlatform.SlantRangeTo(targetTrack);

double interceptAltitude = cDEFAULT_ALTITUDE;

//check for targets altitude, and whether or not we should match it

if (targetTrack.ElevationValid() ||

targetTrack.LocationValid())

{

if (targetTrack.Altitude() > interceptAltitude) //always climb up

to target

{

interceptAltitude = targetTrack.Altitude();

}

else if (MatchAltitudeForThreat(targetTrack, myPlatform) == true)

{

88



interceptAltitude = targetTrack.Altitude();

}

}

//always bound the altitude by the min & max restrictions (in case

mover is not setup to do it)

if (interceptAltitude < mMinAltitude)

{

interceptAltitude = mMinAltitude;

}

//writeln_d("desired intercept altitude: ", interceptAltitude);

mTargetSpeed = mInterceptSpeed;

if (targetTrack.VelocityValid())

{

if (targetTrack.AirDomain())

{

//extern double EffectiveRange(WsfPlatform, WsfTrack);

double speedOfTarget = targetTrack.Speed();

double effRange = EffectiveRange(myPlatform, targetTrack);

double distanceWindow = mMatchSpeedDistanceMax -

mMatchSpeedDistanceMin;

double speedWindow = mInterceptSpeed - speedOfTarget;

if(effRange < mMatchSpeedDistanceMax && effRange >

mMatchSpeedDistanceMin)

{

double rangeScale = (effRange - mMatchSpeedDistanceMin) /

distanceWindow;

mTargetSpeed = speedOfTarget + (speedWindow * rangeScale);

//writeln_d(myPlatform.Name(), " pursue-target, speed scaled

down in matching window!");

}

else if (effRange <= mMatchSpeedDistanceMin)

{

mTargetSpeed = speedOfTarget * 0.99;

#writeln_d(myPlatform.Name(), " pursue-target, speed set to

match target!");

}

if (mTargetSpeed < mWaitSpeed)

{

mTargetSpeed = mWaitSpeed;

//writeln_d(myPlatform.Name(), " pursue-target, speed was

lower than wait speed, adjust!");

89



}

}

else if (targetTrack.LandDomain())

{

//writeln_d(myPlatform.Name(), " pursue-target, target is land

domain, adjust speed!");

double speedOfTarget = targetTrack.Speed();

double range = myPlatform.GroundRangeTo(targetTrack);

double distanceWindow = mMatchSpeedDistanceMax -

mMatchSpeedDistanceMin;

double speedWindow = mInterceptSpeed - speedOfTarget;

if(range < mMatchSpeedDistanceMax && range >

mMatchSpeedDistanceMin)

{

double rangeScale = (range - mMatchSpeedDistanceMin) /

distanceWindow;

mTargetSpeed = speedOfTarget + (speedWindow * rangeScale);

}

else if (range <= mMatchSpeedDistanceMin)

{

mTargetSpeed = speedOfTarget * 0.99;

}

if (mTargetSpeed < mWaitSpeed)

{

mTargetSpeed = mWaitSpeed;

}

}

}

double leadOrLagTime = 15.0; //seconds

if (PursuitMode == "lead")

{

WsfWaypoint wpt = WsfWaypoint();

double tti = myPlatform.InterceptLocation3D(targetTrack, wpt);

if (tti > 0.0)

{

mTargetPoint = wpt.Location();

}

else

{

mTargetPoint = targetTrack.LocationAtTime(TIME_NOW +

leadOrLagTime);

}

}

90



else if(PursuitMode == "lag")

{

double usedLagDelay = (slantRangeTo/engageRangeMax) *

leadOrLagTime;

double maxLagDist = 0.35 * myPlatform.SlantRangeTo(targetTrack);

double maxLagTime = maxLagDist / targetTrack.Speed();

if (usedLagDelay > maxLagTime)

{

usedLagDelay = maxLagTime;

}

mTargetPoint = targetTrack.LocationAtTime(TIME_NOW - usedLagDelay);

}

else if (PursuitMode == "f-pole")

{

//extern double MaximizeFPole(WsfPlatform, WsfTrack, double);

//interceptHeading = MaximizeFPole(PLATFORM, targetTrack,

GetOffsetAngleOnThreat(targetTrack));

if (myPlatform.RelativeBearingTo(targetTrack) > 0)

{

interceptHeading =

MATH.NormalizeAngle0_360(myPlatform.TrueBearingTo(targetTrack)

- DefaultOffsetAngle);

}

else

{

interceptHeading =

MATH.NormalizeAngle0_360(myPlatform.TrueBearingTo(targetTrack)

+ DefaultOffsetAngle);

}

mTargetPoint = myPlatform.Location();

mTargetPoint.Extrapolate(interceptHeading, DefaultOffsetDistance);

}

else

{

//PursuitMode == pure

mTargetPoint = targetTrack.LocationAtTime(TIME_NOW);

}

if (!mTargetPoint.IsValid())

{

mTargetPoint = targetTrack.CurrentLocation();

}

mTargetPoint.Set(mTargetPoint.Latitude(), mTargetPoint.Longitude(),

interceptAltitude);

91



if (mDrawSteering == true)

{

mDraw.SetLayer("behavior_pursue_target");

mDraw.SetDuration(processor.UpdateInterval());

mDraw.SetColor(1.0, 0.5, 0.0);

mDraw.SetLineSize(1);

mDraw.BeginLines();

mDraw.Vertex(myPlatform.Location());

mDraw.Vertex(mTargetPoint);

mDraw.End();

}

// string msg = write_str("pursue-target: ", targetTrack.TargetName(),

" at speed ", (string)mTargetSpeed);

//PLATFORM.Comment(msg);

// writeln_d(" T=", TIME_NOW, " ", myPlatform.Name(), " ", msg);

//extern bool FlyTarget (WsfPlatform, WsfGeoPoint, double);

//FlyTarget( myPlatform, mTargetPoint, mTargetSpeed);

pursueAction = WsfAction.Create(1, mTargetPoint, mTargetSpeed, 1, 1);

myArby.addAction(pursueAction);

end_script

92



//TODO use default values from higher level context (processor or parent

behavior that holds default)

include_once weapons/aam/medium_range_radar_missile.txt

include_once

processors/quantum_agents/aiai/behavior_engage_weapon_task_target.txt

include_once

processors/quantum_agents/aiai/behavior_pursue-target_route_finder.txt

include_once processors/quantum_agents/aiai/behavior_planned_route.txt

//include_once

processors/quantum_agents/aiai/behavior_pursue_weapon_task_target.txt

include_once ../common/common_platform_script.txt

behavior controller

script_debug_writes off

script_variables

WsfAction mAction;

WsfArbiter myArby;

WsfPlatform myPlatform;

WsfProcessor myProcessor;

WsfRouteFinder mRouteFinder = WsfRouteFinder();

end_script_variables

precondition

return true;

end_precondition

on_init

//myPlatform = PLATFORM;

//myProcessor = PROCESSOR;

mRouteFinder.SetImpossibleRouteResponse("SHIFT");

mRouteFinder.SetMaxArcLength(1852*5); //max of 5 mile long arcs

extern Array<WsfGeoPoint> gAvoidPoints;

extern Array<double> gAvoidRadii;

for (int i=0; i < gAvoidPoints.Size() && i < gAvoidRadii.Size();

i=i+1)

{

WsfGeoPoint pt = gAvoidPoints[i];

double radius = gAvoidRadii[i];

writeln_d(PLATFORM.Name(), " avoiding: ", pt.ToString(), ", at

radius: ", radius);

93



mRouteFinder.Avoid(pt, radius);

}

end_on_init

execute

//logic could be included to change the current active behavior at

runtime

////////////////////////////////////////////////////////////////////////////////////////////

//////////////////////////CURRENT ACTIVE

BEHAVIOR///////////////////////////////////////////

////////////////////////////////////////////////////////////////////////////////////////////

mAction = WsfAction.Create();

myArby = WsfArbiter.Create();

Pursue_Target_Route_Finder(myArby, PLATFORM, PROCESSOR, mRouteFinder);

Planned_Route(myArby, PLATFORM);

Engage_Weapon_Task_Target(myArby, PLATFORM, PROCESSOR);

mAction = myArby.getParameterFusedAction();

//writeln(" getgeovote ", mAction.getGeoPointVote(), " at ",

TIME_NOW);

//writeln(" WRITE at ", TIME_NOW);

if(mAction.getAccelerationVote() > 0) {

PLATFORM.GoToSpeed(mAction.getSpeed(), mAction.getAcceleration(),

true);

}

if(mAction.getRouteVote() > 0) {

PLATFORM.FollowRoute(mAction.getRoute(),

mAction.getRouteInteger());

}

if (mAction.getSalvoCountVote() > 0) {

WsfTaskList tasks =

((WsfQuantumTaskerProcessor)PROCESSOR).TasksReceivedOfType("WEAPON");

int salvoCount = mAction.getSalvoCount();

foreach (WsfTask task in tasks) {

WsfTrack targetTrack =

PLATFORM.MasterTrackList().FindTrack(task.LocalTrackId());

if (targetTrack.IsNull() || !targetTrack.IsValid())

{

writeln_d("target track not valid");

continue;

}

bool launched = false;

writeln_d(" Time= ", TIME_NOW, " Attempting a shot against: ",

targetTrack.TargetName(), " Index: ",

94



targetTrack.TargetIndex(), " Type: ",

targetTrack.TargetType());

if (mCanEngageOnRemote == false)

{

WsfLocalTrack targetLocalTrack = (WsfLocalTrack)targetTrack;

if (targetLocalTrack.IsValid())

{

if(!targetLocalTrack.ContributorOf(PLATFORM) &&

!targetLocalTrack.IsPredefined())

{

writeln_d(" FAIL: Not able to engage-on-remote! ",

PLATFORM.Name(), " targeting

",targetTrack.TargetName(), ". NumContributors: ",

targetLocalTrack.NumContributors() );

return;

}

}

}

writeln_d (" targetTrack.TrackQuality == ",

targetTrack.TrackQuality());

if (targetTrack.TrackQuality() <

GetRequiredTrackQualityForThreat(targetTrack, PLATFORM))

{

writeln_d(" FAIL: track quality not good enough to fire

on target");

return;

}

if ((PLATFORM.WeaponsPendingFor(task.LocalTrackId()) +

PLATFORM.WeaponsActiveFor(task.LocalTrackId())) > 0)

{

writeln_d("already have weapons assigned for target track");

return;

}

WsfWeapon weapon;

// if (task.ResourceName() != "")

// {

// weapon = PLATFORM.Weapon(task.ResourceName());

// writeln_d("checking if weapon ", weapon.Name(), " can be

fired against track.");

// if (!WeaponCapableAvailableAgainstThreat(weapon,

targetTrack) ||

95



// !InRangeToFire(PLATFORM, weapon, targetTrack,

GetLaunchPercentRangeMaxOnThreat(weapon.Name(), targetTrack),

DefaultPercentRangeMin))

// {

// writeln_d("task defined weapon not available or in

range!");

// return;

// }

// }

// else

{

bool weaponUsable = false;

#first weapon found will be used

for (int i=0; i < PLATFORM.WeaponCount(); i+=1)

{

weapon = PLATFORM.WeaponEntry(i);

writeln_d("checking if weapon ", weapon.Name(), " is

usable.");

if (WeaponCapableAvailableAgainstThreat(weapon,

targetTrack) &&

InRangeToFire(PLATFORM, weapon, targetTrack,

GetLaunchPercentRangeMaxOnThreat(weapon.Name(),

targetTrack, PLATFORM), DefaultPercentRangeMin))

{

weaponUsable = true;

break;

}

}

if (weaponUsable == false)

{

writeln_d("no usable weapon found!");

return;

}

}

writeln_d(" salvo count for ", targetTrack, " is: ",

salvoCount);

if (weapon.IsTurnedOn())

{

writeln_d(" Attempting launch at ",

targetTrack.TargetName());

if (salvoCount > 1)

{

writeln_d("FIRING SALVO AT ", targetTrack.TargetName());

launched = weapon.FireSalvo(targetTrack, salvoCount);

96



}

else

{

writeln_d("FIRING AT ", targetTrack.TargetName());

launched = weapon.Fire(targetTrack);

}

}

writeln_d(" launched == ", launched, ", weapon: ",

weapon.Name());

if(launched == false)

{

writeln_d(" ", PLATFORM.Name(), " could NOT fire at track: ",

targetTrack.TargetName(), " at time: ", TIME_NOW);

}

}

}

////////////////////////////////////////////////////////////////////////////////////////////

//////////////////////////CURRENT ACTIVE

BEHAVIOR///////////////////////////////////////////

////////////////////////////////////////////////////////////////////////////////////////////

end_execute

end_behavior

97



include_once ../common/weapon_defs.txt

script_variables

//**********************************************************************//

//** platform / agent specific shooting parameters **//

//**********************************************************************//

bool mCanEngageOnRemote = false;

//bool mEngageRemoteFlightOnly = false;

double mDegradedFiringAngle = 55.0; //negative if not valid

double mDegradedPercentRange = 0.50; //range constraint if past

degraded firing angle

//specify orientation limits for shooting

double mMaxFiringRollAngle = 10.0; //dont shoot if rolled more/less

than this

double mMaxFiringPitchAngle = 15.0; //dont shoot if pitched more than

this

double mMinFiringPitchAngle = -10.0; //dont shoot if pitched less

than this

//**********************************************************************//

//** threat specific shooting parameters **//

//**********************************************************************//

//require different track qualities to fire on different kinds of

threats

double DefaultRequiredTrackQuality = 0.49;

Map<string, double> ThreatTypeRequiredTrackQuality = Map<string,

double>();

ThreatTypeRequiredTrackQuality["bomber"] = 0.49;

ThreatTypeRequiredTrackQuality["fighter"] = 0.49;

//fire off different salvos at different types of threats

int DefaultAirSalvo = 1;

int DefaultGndSalvo = 1;

Map<string, int> ThreatTypeSalvo = Map<string, int>();

ThreatTypeSalvo["sam"] = 2;

ThreatTypeSalvo["ship"] = 2;

ThreatTypeSalvo["bomber"] = 2;

ThreatTypeSalvo["fighter"] = 1;

ThreatTypeSalvo["FIRE_CONTROL"] = 1;

ThreatTypeSalvo["primary_target"] = 2;

ThreatTypeSalvo["secondary_target"] = 2;

//**********************************************************************//

//** weapon + threat specific shooting parameters **//

//**********************************************************************//

//specify an Rmax based on which weapon used and which threat engaged

98



double DefaultPercentRangeMax = 0.85; // don’t launch unless within

this percent of Rmax

double DefaultPercentRangeMin = 1.20; // don’t launch unless beyond

this percent of Rmin

Map<string, Map<string, double>> WeaponThreatRmaxMap = Map<string,

Map<string, double>>();

WeaponThreatRmaxMap["base_weapon"] = Map<string, double>();

WeaponThreatRmaxMap["base_weapon"].Set("fighter", 0.80);

WsfAction engageAction;

end_script_variables

script int GetSalvoForThreat(WsfTrack track, WsfPlatform myPlatform)

//writeln_d("checking salvo size for category: ", category);

//WsfPlatform plat = PLATFORM.FindPlatform( track.TargetIndex() );

WsfPlatform plat = myPlatform.FindPlatform( track.TargetName() );

if (plat.IsValid())

{

foreach( string aCategory : int salvo in ThreatTypeSalvo )

{

if( plat.CategoryMemberOf( aCategory ) )

{

writeln_d("salvo for type ", aCategory, " = ", salvo);

return salvo;

}

}

}

//extern string GetTargetDomain(WsfTrack);

string sTargetDomain = GetTargetDomain(track);

if ( (sTargetDomain == "LAND") || (sTargetDomain == "SURFACE") )

{

return DefaultGndSalvo;

}

return DefaultAirSalvo;

end_script

script double GetRequiredTrackQualityForThreat(WsfTrack threat,

WsfPlatform myPlatform)

writeln_d("checking required TQ for track: ", threat.TargetName());

WsfPlatform plat = myPlatform.FindPlatform( threat.TargetName() );

if (plat.IsValid())

{

foreach( string aCategory : double quality in

ThreatTypeRequiredTrackQuality )

99



{

if( plat.CategoryMemberOf( aCategory ) )

{

writeln_d("TQ for type ", aCategory, " = ", quality);

return quality;

}

}

}

return DefaultRequiredTrackQuality;

end_script

script double GetLaunchPercentRangeMaxOnThreat(string weaponName,

WsfTrack threat, WsfPlatform myPlatform)

WsfPlatform plat = myPlatform.FindPlatform( threat.TargetName() );

if (plat.IsValid())

{

if (WeaponThreatRmaxMap.Exists(weaponName))

{

Map<string, double> categoryRangeMap =

WeaponThreatRmaxMap.Get(weaponName);

foreach (string aCategory : double percent in categoryRangeMap)

{

if( plat.CategoryMemberOf( aCategory ) )

{

return percent;

}

}

}

}

return DefaultPercentRangeMax;

end_script

//on_init

//end_on_init

script void Engage_Weapon_Task_Target(WsfArbiter myArby, WsfPlatform

myPlatform, WsfProcessor myProcessor)

//writeln_d("precondition engage-target");

engageAction = WsfAction.Create();

if (!myProcessor.IsA_TypeOf("WSF_QUANTUM_TASKER_PROCESSOR"))

{

writeln_d("behavior engage... not on quantum tasker processor");

myArby.addAction(engageAction);

100



return;

}

//extern WsfTrack GetTrackByName(WsfPlatform, string);

// todo - try using a state machine to setup the shot ??

double pitch = myPlatform.Pitch();

if (MATH.Fabs(myPlatform.Roll()) > mMaxFiringRollAngle ||

pitch > mMaxFiringPitchAngle ||

pitch < mMinFiringPitchAngle)

{

string msgStr = write_str(" ", myPlatform.Name(), " orientation too

far off to fire! (roll or pitch)");

writeln_d(msgStr);

//PLATFORM.Comment(msgStr);

myArby.addAction(engageAction);

return;

}

WsfQuantumTaskerProcessor proc =

(WsfQuantumTaskerProcessor)myProcessor;

WsfTaskList tasks = proc.TasksReceivedOfType("WEAPON");

if (tasks.Count() > 0)

{

writeln_d("behavior engage precondition passes!");

// continue on

}

else {

writeln_d("no weapon task target to shoot at!");

myArby.addAction(engageAction);

return;

}

#######################################################################################

writeln_d(myPlatform.Name(), " executing engage-target, T=",

TIME_NOW);

//extern WsfTrack GetTrackByName(WsfPlatform, string);

//check all possible targets on all channels

////////////////////////////////////////////////////////////////////////

//////// fire on any pursue-target jobs we are assigned to //////////

////////////////////////////////////////////////////////////////////////

//WsfQuantumTaskerProcessor proc =

(WsfQuantumTaskerProcessor)myProcessor;

101



//WsfTaskList tasks = proc.TasksReceivedOfType("WEAPON");

foreach (WsfTask task in tasks)

{

WsfTrack targetTrack =

myPlatform.MasterTrackList().FindTrack(task.LocalTrackId());

if (targetTrack.IsNull() || !targetTrack.IsValid())

{

writeln_d("target track not valid");

continue;

}

bool launched = false;

writeln_d(" Time= ", TIME_NOW, " Attempting a shot against: ",

targetTrack.TargetName(), " Index: ",

targetTrack.TargetIndex(), " Type: ", targetTrack.TargetType());

if (mCanEngageOnRemote == false)

{

WsfLocalTrack targetLocalTrack = (WsfLocalTrack)targetTrack;

if (targetLocalTrack.IsValid())

{

if(!targetLocalTrack.ContributorOf(myPlatform) &&

!targetLocalTrack.IsPredefined())

{

writeln_d(" FAIL: Not able to engage-on-remote! ",

myPlatform.Name(), " targeting

",targetTrack.TargetName(), ". NumContributors: ",

targetLocalTrack.NumContributors() );

myArby.addAction(engageAction);

return;

}

}

}

writeln_d (" targetTrack.TrackQuality == ",

targetTrack.TrackQuality());

if (targetTrack.TrackQuality() <

GetRequiredTrackQualityForThreat(targetTrack, myPlatform))

{

writeln_d(" FAIL: track quality not good enough to fire on

target");

myArby.addAction(engageAction);

return;

}

102



if ((myPlatform.WeaponsPendingFor(task.LocalTrackId()) +

myPlatform.WeaponsActiveFor(task.LocalTrackId())) > 0)

{

writeln_d("already have weapons assigned for target track");

myArby.addAction(engageAction);

return;

}

WsfWeapon weapon;

// if (task.ResourceName() != "")

// {

// weapon = PLATFORM.Weapon(task.ResourceName());

// writeln_d("checking if weapon ", weapon.Name(), " can be fired

against track.");

// if (!WeaponCapableAvailableAgainstThreat(weapon, targetTrack)

||

// !InRangeToFire(PLATFORM, weapon, targetTrack,

GetLaunchPercentRangeMaxOnThreat(weapon.Name(), targetTrack),

DefaultPercentRangeMin))

// {

// writeln_d("task defined weapon not available or in range!");

// return;

// }

// }

// else

{

bool weaponUsable = false;

//first weapon found will be used

for (int i=0; i < myPlatform.WeaponCount(); i+=1)

{

weapon = myPlatform.WeaponEntry(i);

writeln_d("checking if weapon ", weapon.Name(), " is

usable.");

if (WeaponCapableAvailableAgainstThreat(weapon, targetTrack)

&&

InRangeToFire(myPlatform, weapon, targetTrack,

GetLaunchPercentRangeMaxOnThreat(weapon.Name(),

targetTrack, myPlatform), DefaultPercentRangeMin))

{

weaponUsable = true;

break;

}

}

if (weaponUsable == false)

{

writeln_d("no usable weapon found!");

103



myArby.addAction(engageAction);

return;

}

}

int salvoCount = GetSalvoForThreat(targetTrack, myPlatform);

writeln_d(" salvo count for ", targetTrack, " is: ",

salvoCount);

engageAction.setSalvoCount(salvoCount);

engageAction.setSalvoCountVote(1);

myArby.addAction(engageAction);

return;

}

end_script

104



script_variables

//expected global externs

// extern Array<WsfGeoPoint> gAvoidPoints;

// extern Array<double> gAvoidRadii;

// Array<WsfGeoPoint> gAvoidPoints = Array<WsfGeoPoint>();

// Array<double> gAvoidRadii = Array<double>();

// ### avoid the zone: 100_brigade_sector ###

// gAvoidPoints[0] = WsfGeoPoint.Construct( "15:01:06.03s

49:23:19.96e"); //lat lon string

// gAvoidRadii[0] = 1852*60.0; //60.0 nm

double cDEFAULT_ALTITUDE = 9144; // ˜30,000 feet

#WsfRouteFinder mRouteFinder = WsfRouteFinder();

bool mDebugDraw = true;

WsfGeoPoint mTargetPoint;

double mTargetSpeed = 300; //300 ms (˜600 knots)

bool mForceRePath = false;

WsfDraw mDraw = WsfDraw();

WsfGeoPoint mCurrentAvoidancePt = WsfGeoPoint();

WsfRoute mCurrentRoute = WsfRoute();

WsfAction pursueAction;

WsfQuantumTaskerProcessor processor;

double cDEFAULT_SPEED = 450.0 * MATH.MPS_PER_NMPH();

double cDEFAULT_ACCEL = 7.5 * Earth.ACCEL_OF_GRAVITY(); //

7.5 G (m/sˆ2)

end_script_variables

script void Pursue_Target_Route_Finder(WsfArbiter myArby, WsfPlatform

myPlatform, WsfProcessor myProcessor, WsfRouteFinder myRouteFinder)

pursueAction = WsfAction.Create();

//continueOn = false;

mForceRePath = true;

//if(first) {

mDraw.SetLayer("pursue-target_route_finder");

mDraw.SetDuration(myProcessor.UpdateInterval());

mDraw.SetLineSize(1);

//shift starting or ending points outside of any avoidances (dont

shrink or ignore the avoidance regions)

//extern Array<WsfGeoPoint> gAvoidPoints;

105



//extern Array<double> gAvoidRadii;

// for (int i=0; i < gAvoidPoints.Size() && i < gAvoidRadii.Size();

i=i+1)

// {

// WsfGeoPoint pt = gAvoidPoints[i];

// double radius = gAvoidRadii[i];

// writeln_d(myPlatform.Name(), " avoiding: ", pt.ToString(), ",

at radius: ", radius);

// mRouteFinder.Avoid(pt, radius);

// }

// first = false;

// }

#writeln_d("precondition pursue-target_route_finder");

if (!myProcessor.IsA_TypeOf("WSF_QUANTUM_TASKER_PROCESSOR"))

{

myArby.addAction(pursueAction);

return;

} // ((WsfQuantumTaskerProcessor)PROCESSOR)

WsfTaskList tasks =

((WsfQuantumTaskerProcessor)myProcessor).TasksReceivedOfType("WEAPON");

//WsfTaskList tasks =

((WsfQuantumTaskerProcessor)myProcessor).TasksReceivedForResource("weapon");

WsfTrackId targetId;

if (tasks.Count() <= 0)

{

myArby.addAction(pursueAction);

return;

}

for (int i=0; i<tasks.Count(); i=i+1)

{

WsfTask task = tasks.Entry(i);

WsfLocalTrack aTrack =

myPlatform.MasterTrackList().FindTrack(task.LocalTrackId());

if (aTrack.IsValid())

{

//check if the target platform is terminated

if (!aTrack.Target().IsValid())

{

((WsfQuantumTaskerProcessor)myProcessor).SetTaskComplete(task,

"SUCCESSFUL");

continue;

}

106



mTargetPoint = aTrack.CurrentLocation();

//set altitude

double desiredAlt = MATH.Max(myPlatform.Altitude(),

MATH.Max(cDEFAULT_ALTITUDE, mTargetPoint.Altitude()));

mTargetPoint.Set(mTargetPoint.Latitude(),

mTargetPoint.Longitude(), desiredAlt);

//continueOn = true;

}

else

{

//lost track for task

//TODO: report incomplete (complete unsuccessful)

//TODO: always report incomplete? what if we fired on the guy?

//proc.SetTaskComplete(task, "UNSUCCESSFUL");

//processor.SetTaskComplete(task, "UNSUCCESSFUL");

//proc.SetTaskProgress(task, "LOST");

myArby.addAction(pursueAction);

return;

}

}

###################################################################################

//writeln_d("executing pursue-target_route_finder.");

if (mForceRePath || (myPlatform.SlantRangeTo(mTargetPoint) >

(3*mTargetSpeed)) ) // if we are more than 2 seconds away from

our target

{

WsfRoute path = myRouteFinder.Route(TIME_NOW,

myPlatform.Location(), mTargetPoint, mTargetSpeed);

if (!path.IsValid() || path.Size() <= 0)

{

writeln_d("***** ERROR: INVALID OR EMPTY PATH!!!");

myArby.addAction(pursueAction);

return;

}

WsfRoute avoidances = myRouteFinder.RouteAvoidances();

if (!avoidances.IsValid())

{

writeln("***** ERROR: INVALID WsfRouteFinder AVOIDANCES!!!");

myArby.addAction(pursueAction);

return;

}

writeln_d("T=", TIME_NOW, ", path size: ", path.Size(), ",

avoidances: ", avoidances.Size());

107



if (mDebugDraw == true)

{

myRouteFinder.DrawAvoidances(myProcessor.UpdateInterval(),

Vec3.Construct(0.5, 0.5, 0.5)); //gray

}

if (path.Size() <= 2)

{

//writeln("WsfRouteFinder path is tiny, fly straight at

target!");

//on the final leg, just fly straight at the path target now

double linearAccel = 7.5 * Earth.ACCEL_OF_GRAVITY();

WsfGeoPoint goTo = (path.Back().Location());

pursueAction = WsfAction.Create(1, goTo, mTargetSpeed, 1, 1);

pursueAction.setAcceleration(linearAccel);

pursueAction.setAccelerationVote(1);

myArby.addAction(pursueAction);

return;

}

if (path.Size() >= 2 && avoidances.Size() >= 1)

{

//check to see if we can just keep flying the same route

WsfGeoPoint avoidance = avoidances[0].Location();

if (mForceRePath == false)

{

double avoidRange =

avoidance.GroundRangeTo(mCurrentAvoidancePt);

double routeError =

mCurrentRoute.DistanceFromRoute(myPlatform.Location());

writeln_d("platform route index: ",

myPlatform.RoutePointIndex(), ", route error: ",

routeError);

if (avoidRange < 185.2 && (routeError < 185.2 ||

myPlatform.RoutePointIndex() > 1))

{

//already flying the correct route, dont repath yet

writeln_d("same route, let it fly");

myArby.addAction(pursueAction);

return;

}

108



}

writeln_d("last avoid: ", mCurrentAvoidancePt.ToString(), ",

current avoid: ", avoidance.ToString());

//else save off this avoidance

mCurrentAvoidancePt = avoidance;

WsfWaypoint wpt = path[0];

wpt.SetRadialAcceleration(500.0);

path.Insert(0,wpt);

path.Remove(1);

mCurrentRoute = path;

// WsfRoute sumRoute = WsfRoute();

// pursueAction = WsfAction.Create(1, sumRoute, 0,

cDEFAULT_SPEED, cDEFAULT_ACCEL, 0, 0, 1, 1);

pursueAction.setRoute(mCurrentRoute);

pursueAction.setRouteVote(1);

pursueAction.setRouteInteger(1);

pursueAction.setRouteIntegerVote(1);

myArby.addAction(pursueAction);

//myPlatform.FollowRoute(mCurrentRoute, 1);

mForceRePath = false;

}

}

end_script

109



script_debug_writes off

//assumes aDraw duration & layer is set

//script void DrawRoute(WsfDraw aDraw, WsfRoute aRoute)

// if (aRoute.IsValid())

// {

// aDraw.SetColor(0,1,1); //teal?

// aDraw.SetLineSize(2);

// aDraw.SetLineStyle("solid");

// aDraw.BeginPolyline();

// for (int i=0; i<aRoute.Size(); i=i+1)

// {

// aDraw.Vertex(aRoute.Waypoint(i).Location());

// }

// aDraw.End();

//

// aDraw.SetColor(1.0,0.3,0.3); //pink?

// aDraw.SetPointSize(4);

// aDraw.BeginPoints();

// for (int i=0; i<aRoute.Size(); i=i+1)

// {

// aDraw.Vertex(aRoute.Waypoint(i).Location());

// }

// aDraw.End();

// }

//end_script

script_variables

bool mDrawRoute = false;

//WsfDraw mDraw = WsfDraw();

//double cDEFAULT_SPEED = 450.0 * MATH.MPS_PER_NMPH();

//double cDEFAULT_ACCEL = 7.5 * Earth.ACCEL_OF_GRAVITY(); //

7.5 G (m/sˆ2)

WsfAction plannedAction;

bool initPlanned = true;

end_script_variables

script void Planned_Route(WsfArbiter myArby, WsfPlatform myPlatform)

if(initPlanned){

plannedAction = WsfAction.Create();

initPlanned = false;

}

110



//writeln_d(myPlatform.Name(), " executing planned_route, T=",

TIME_NOW);

//only command the platform to do something different if its not

currently flying a route

WsfMover aMover = myPlatform.Mover();

if (aMover.IsValid()) {

if (aMover.IsExtrapolating()) {

WsfGeoPoint pt = myPlatform.Location();

WsfRoute ro = aMover.DefaultRoute().Copy(); #now we have a

modifiable route

if (!ro.IsValid()) {

//myAction.Create(1, ro, i, cDEFAULT_SPEED, cDEFAULT_ACCEL,

1, 1, 1, 1);

//myArby.addAction(plannedAction);

return;

}

writeln_d("flying route, name: ", ro.Name(), ", type: ",

ro.Type());

WsfGeoPoint close =

ro.LocationAtDistance(ro.DistanceAlongRoute(pt));

if (!close.IsValid()) {

//myAction.Create(1, ro, i, cDEFAULT_SPEED, cDEFAULT_ACCEL,

1, 1, 1, 1);

//myArby.addAction(plannedAction);

return;

}

close.SetAltitudeAGL(pt.Altitude());

// if (mDrawRoute)

// {

// mDraw.BeginLines();

// mDraw.Vertex(pt);

// mDraw.Vertex(close);

// mDraw.End();

// }

double d1 = ro.DistanceFromRoute(pt);

double d2 = pt.GroundRangeTo(close);

double d3 = -1;

Array<double> turnRad = aMover.PropertyDouble("turn_radius");

if (turnRad.Size() > 0) {

d3 = 2*turnRad[0];

}

int i = 0;

for (; i < ro.Size(); i = i+1)

{

WsfWaypoint wpt = ro.Waypoint(i);

111



WsfGeoPoint rpt = wpt.Location();

//check if we are close to an existing waypoint, if so...

break & fly at that one

if (rpt.GroundRangeTo(close) < 926) {

break;

}

double dist = ro.DistanceAlongRoute(rpt);

if (dist > d1) {

if (d2 > d3) {

ro.Insert(i, WsfWaypoint.Create(close, wpt.Speed()));

}

break;

}

}

if (i >= ro.Size()) {

i = ro.Size() - 1;

}

//go at default speed; this gets overwritten if route waypoint

has defined a speed

//myPlatform.GoToSpeed(cDEFAULT_SPEED, cDEFAULT_ACCEL, true);

//myPlatform.FollowRoute(ro, i);

//plannedAction = WsfAction.Create(1, ro, i, cDEFAULT_SPEED,

cDEFAULT_ACCEL, 1, 1, 1, 1);

plannedAction = WsfAction.Create(1, aMover.DefaultRoute(), i,

cDEFAULT_SPEED, cDEFAULT_ACCEL, 1, 1, 1, 1);

myArby.addAction(plannedAction);

}

}

112



Bibliography

[1] Arkin, R.C. “Survivable Robotics Systems: Reactive and Homeostatic Control”.
M. Jamishidi and P. Eicker (editors), Robotics and Remote Systems for Hazardous
Environments, 135–154. Prentice-Hall, 1993.

[2] Bonasso, R.P., D. Kortenkamp, D. Miller, and M. Slack. “Experiments with an
Architecture for Intelligent Reactive Agents”. Michael Wooldridge, Joerg P. Mueller,
and Milind Tambe (editors), Intelligent Agents II: Agent Theories, Architectures, and
Languages. Springer-Werlag, 1995.

[3] Braitenberg, V. Vehicles: Experiments in Synthetic Psychology. MIT Press,
Cambridge Massachusetts, 1984.

[4] Brooks, R.A. “A Robust Layered Control System for a Mobile Robot”. IEEE Journal
of Robotics and Automation, 2(1):14–23, March 1986.

[5] Cutumisu, M. and D. Szafron. “An Architecture for Game Behavior AI: Behavior
Multi-Queues”. Proceedings of the Fifth Artificial Intelligence for Interactive Digital
Entertainment Conference, 20–27. 2009.

[6] Firby, R. “Task Networks for Controlling Continuous Processes”. Proceedings of the
Second International Conference on AI Planning Systems. Chicago, IL, 1994.

[7] Fu, D., R. Houlette, and J. Ludwig. “An AI Modeling Tool for Designers and
Developers”. 2007 IEEE Aerospace Conference, 1–8. 2007.

[8] Fujita, M. and K. Kageyama. “An Open Architecture for Robot Entertainment”.
Proceedings for the First International Conference on Autonomous Agents, 435–442.
Marina del Rey, CA, 1997.

[9] Gat, E. “Three-Layer Architectures”. D. Kertenkamp, R.P. Bonasso, and R. Murphy
(editors), Artificial Intelligence and Mobile Robots, 195–210. AAAI Press, 1998.

[10] Gomaa, Hassan. Software modeling and design: UML, use cases, patterns, and
software architectures. Cambridge University Press, 2011.

[11] Gordon, E. and B. Logan. GRUE: A Goal Processing Architecture for Game Agents.
Technical report, University of Nottingham Technical Report NOTTCS-WP-2003-1,
2003.

[12] Isla, Damian. “Handling complexity in the Halo 2 AI”. Game Developers Conference,
volume 12. 2005.

113



[13] Koenig, Sven and Reid Simmons. “Xavier: A robot navigation architecture based on
partially observable markov decision process models”. Artificial Intelligence Based
Mobile Robotics: Case Studies of Successful Robot Systems, 91–122, 1998.

[14] Konolige, K., K. Myers, E. Ruspini, and A. Saffiotti. “The Saphira Architecture:
A Design for Autonomy”. Journal of Experimental and Theoretical Artificial
Intelligence, 1997.

[15] Marzinotto, A., M. Colledanchise, C. Smith, and P. Ogren. “Towards a Unified
Behavior Trees Framework for Robot Control”. IEEE International Conference on
Robots and Automation (ICRA 2014). 2014.

[16] Nilsson, Nils J. “Shakey the Robot”. SRI International, 1984.

[17] Sandeep S. Mulgund, Sean L. Guarino Greg L. Zacharias, Karen A. Harper. Situation
Awareness for Pilot-in-the-Loop Evaluation. Technical Report R96011, Charles River
Analytics, 725 Concord Ave. Cambridge, MA 02138, mar 1999.

[18] Simmons, R., R. Goodwin, K.Z. Haigh, S. Koenig, and J. O’Sullivan. “A Modular
Architecture for Office Delivery Robots”. Autonomous Agents 1997, 245–252. ACM,
1997.

[19] Simmons, Reid G. “Structured control for autonomous robots”. Robotics and
Automation, IEEE Transactions on, 10(1):34–43, 1994.

[20] Spronck, P., M. Ponsen, I. Sprinkhuizen-Kuyper, and E. Postma. “Adaptive Game AI
with Dynamic Scripting”. Machine Learning, 63(3):217–248, 2006.

[21] Szita, István, Marc Ponsen, and Pieter Spronck. “Keeping adaptive game AI
interesting”. Proceedings of CGAMES 2008, 70–74, 2008.

[22] Woolley, B. and G.L. Peterson. “Unified Behavior Framework for Reactive Robot
Control”. Journal of Intelligenct and Robotic Systems, 55(2-3):155–176, July 2009.

[23] Woolley, Brian G, Gilbert L Peterson, and Jared T Kresge. “Real-time behavior-based
robot control”. Autonomous Robots, 30(3):233–242, 2011.

[24] Yokote, Y. “The Apertos Reflective Operating System: The Concept and Its
Implementation”. Proceeding of the 1992 International Conference of Object-
Oriented Programming, System, Languages, and Applciations. 1992.

114



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

26–03–2015 Master’s Thesis Oct 2014–Mar 2015

Unified Behavior Framework
For
Discrete Event Simulation Systems

14G344

Kamrud, Alexander J., Captain, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB, OH 45433-7765

AFIT-ENG-MS-15-M-017

Air Force Research Laboratory, Aerospace Systems Directorate
Tech Lead, Jim Zeh
2130 8th St., Bldg 45
WPAFB OH 45433
Phone: (312) 674-6556 Email: james.zeh@us.af.mil

AFRL/RQQD

12. DISTRIBUTION / AVAILABILITY STATEMENT

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

14. ABSTRACT

Intelligent agents provide simulations a means to add lifelike behavior in place of manned entities. Generally when
developed, a single intelligent agent model is chosen, such as rule based, behavior trees, etc. This choice introduces
restrictions into what behaviors agents can manifest, and can require significant testing in edge cases. This thesis
presents the use of the UBF in the AFSIM environment. The UBF provides the flexibility to implement any and all
intelligent agent models, allowing the developer to choose the model he/she feels best fits the experiment at hand.
Furthermore, the UBF demonstrates several key software engineering principles through its modular design, including
scalability through reduced code complexity, simplified development and testing through abstraction, and the promotion
of code reuse.

15. SUBJECT TERMS

Artificial Intelligence, Discrete Event Simulation, Software Engineering, Software Frameworks

U U U UU 126

Dr. Douglas D. Hodson, AFIT/ENG

(937) 255-3636 x4719 douglas.hodson@afit.edu


	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Acronyms
	Introduction
	Research Goal
	Sponsor
	Assumptions
	Thesis Structure

	Intelligent Agent Architectures Background
	Sense-Plan-Act Approach
	Reactive Control Architectures
	Tiered and Hybrid Architectures
	Intelligent Agents in Software
	Choosing an Architecture - Summary

	Publishable Paper
	Additional Details
	AFSIM Background
	IADS Scenario
	UBF Implementation in AFSIM

	Appendix A: Implementation Code
	Appendix B: Simulation Code
	Bibliography

