Performance Analysis and Problem
Determination in SOA Environments

Vijay Mann®, Venkateswara R. Madduri', and Srividya Shamaiah?

! IBM Research - India
{vijamann,vmadduri}@in.ibm.com
2 IBM India Software Labs, Java Technology Center (JTC)

sshamaia@in.ibm.com

Abstract. SOA environments are typically characterized by large num-
ber of frameworks. These frameworks stack over each other in the runtime
infrastructure and result in deep stack depths and large number of ob-
jects being created, most of which, are short lived. Consequently, problem
determination and performance tuning of such runtime environments is
known to be an extremely difficult task, which requires experience and
expertise. In this paper, we share our experiences working with such pro-
duction SOA runtime environments. Through our experiences we try to
find the answer to the following question: can problem determination
and performance analysis itself be offered as a service in SOA environ-
ments? We note that, in practice Java language and the associated J2EE
stack remains one of the most popular runtime environment for imple-
menting SOA. Since Java provides structured runtime logs, we seek to
find patterns in those logs that can be used to automate performance
analysis and problem determination in SOA environments. We describe
three performance problem case studies, each of which present unique
performance problems in open source benchmark and production SOA
applications. All the case studies highlight the complexity associated
with automated performance analysis. However, we make the case that
at least part of the performance analysis process can be automated and
offered as a service.

Keywords: problem determination, root cause analysis, performance
tuning, garbage collection tuning, service performance tuning.

1 Introduction

Service oriented architecture (SOA) runtime environments are often character-
ized by large number of frameworks. These frameworks stack over each other
in the runtime infrastructure. This results in deep stack depths (it is common
to find stack depths of 100 or more in such environments) and large number
of objects being created, most of which, are short lived. This, in turn, leads to
peculiar performance problems in SOA runtime environments which are hard to
diagnose. Consequently, problem determination and performance tuning of such
runtime environments is known to be an extremely difficult task, which requires
experience and expertise.

G. Pallis et al. (Eds.): ICSOC 2011, LNCS 7221, pp. 307-B20] 2012.
© Springer-Verlag Berlin Heidelberg 2012

308 V. Mann, V.R. Madduri, and S. Shamaiah

In this paper, we share our experiences working with such production and
benchmark SOA runtime environments. Through our experiences we try to find
the answer to the following question: can problem determination and perfor-
mance analysis itself be offered as a service in SOA environments? We note
that, in practice Java language and the associated J2EE stack remains one of
the most popular runtime environment for implementing SOA. Since Java pro-
vides structured runtime logs, such as verbose GC logs and heap dumps, we seek
to find patterns in those logs that can be used to automate performance anal-
ysis and problem determination in SOA environments. In our interactions with
application development, testing and deployment teams, we found that while
there was a wide array of performance tuning tools available, the knowledge and
skill to use them well was not as common. Furthermore, a large time was being
spent in the initial analysis of the problem, most of which can be automated. We
describe three performance problem case studies, each of which present unique
performance problems in an open source benchmark and a production telecom
SOA application. These case studies cover a wide spectrum of performance is-
sues: unavailability due to a memory leak in infrastructure code, high system
CPU due to bad developer code, and high CPU and memory usage caused by
an application design issue that got aggravated due to incorrect runtime policies
and tuning. All the case studies highlight the complexity associated with auto-
mated performance analysis. However, we make the case that at least part of
the performance analysis process can be automated and offered as a service.

The rest of this paper is organized as follows. Section [2 presents our first
case study from an open source benchmark. Sections and [describe the
second and third case studies from a production telecom enterprise application.
An overview of related research is given in Section B We summarize our findings
and conclude in Section [6l

2 Case Study 1: Memory Leak in Infrastructure Code

In this section we present our first case study - an open source benchmark called
“RUBIS” [7]. RUBIS is an open source benchmark that mimics an auction site. It
comes with its own workload driver, and has a web tier that connects to a DB tier.
It has been cited heavily in research papers for performance evaluation [9]. While
using RUBIS as a benchmark for our other research, we noticed that RUBIiS
would stop responding at the end of an experiment and had to be restarted for
the next experiment. We were using the Servlets version of RUBiS and MySQL
JDBC driver. We analyzed the verbose GC log of the application for a constant
load of 100 clients. It revealed that the used heap kept growing all the time even
at constant load (refer Figure . This seemed like a classical memory leak
issue. However, as we found out, the root cause of this memory leak was not as
obvious as most classical memory leaks.

We took two heap dumps of this application within minutes of each other at
constant load and compared them. A quick look at the count of objects in those
two heap dumps pointed us to a set of objects that have grown almost twice

Performance Analysis and Problem Determination in SOA Environments 309

e - i
¢ Used heap MB —— Heap size Used Heap Heap size
140
350
120
300
100
250
@ 8
L200 %80
£ ;
Biso &
12
100
50
0 & A IR LTI D60 6 66 66
Time in Mins Time in Mms
(a) With memory leak (b) After fixing memory leak

Fig. 1. RUBIS heap usage at constant load

Table 1. RUBIS objects with most growth

Count Total-size Type Growth/Shrink
% (by count)
13,743 879,552 com/mysql/jdbc/PreparedStatement$Parselnfo 93.53
13,744 4,288,128 com/mysql/jdbc/PreparedStatement 93.52
13,727 3,294,480 com/mysql/jdbc/ResultSetImpl 93.21
25,644 4,308,192 com/mysql/jdbc/Field 90.43
42,398 2,374,288 java/util/TreeMap 89.98
74,948 2,398,336 com/mysql/jdbc/ByteArrayRow 89.81
394,707 146,608,536 byte|] 88.6
84,891 4,074,768 java/util/TreeMap$Entry 80.9
35,851 1,062,672 int [] 70.22
162,422 53,270,328 char[] 55.64
166,765 6,670,600 java/lang/String 54.48
60,047 2,401,880 java/util/ArrayList 32.87
63,871 2,005,904 java/lang/Object [] 30.35
69,266 4,433,024 java/util/HashMap 2.58
69,731 2,868,872 java/util/HashMap$Entry [] 2.46

12,519 1,001,520 com/mysql/jdbc/ConnectionPropertiesImpl$Boolean 0
ConnectionProperty

31,460 1,258,400 java/util/Hashtable$HashtableCacheHashEntry -4.92

428,033 17,121,320 java/util/HashMap$Entry -11.45
22,517 1,441,088 org/apache/tomcat/util/buf/ByteChunk -16.93
19,856 1,111,936 org/apache/tomcat/util/buf/CharChunk -17.02
17,646 1,552,848 org/apache/tomcat/util/buf/MessageBytes -17.11

their original count and size. Most of these objects were of primitive types, but
a few (and the ones that had grown the most - more than 90%) were related to
PreparedStatement calls in JDBC. A quick breakdown of the objects that grew
the most is given in Table [l

Connection con = db.getConnection(); Connection con = db.getConnection();
PreparedStatement stmtA; x PreparedStatement stmtA; V
for(int i=0;i<NUM_USERS;i++){ stmtA= con.prepareStatement(<SOME_SQL_QUERY>);
stmtA= con.prepareStatement(<SOME_SQL_QUERY>); for(int i=0;i<NUM_USERS;i++){
stmtA.setint(1,i); stmtA.setInt(1,i);
stmtA.execute(); stmtA.execute();
} }
stmtA.close; stmtA.close();

Fig. 2. RUBIS code leaking memory

310 V. Mann, V.R. Madduri, and S. Shamaiah

Since we had the source code of the application with us, we searched for
the usage of PreparedStatement objects and we found the pattern shown in
Figure 2l Recall that a PreparedStatement object represents a precompiled SQL
statement with IN parameters that can be set each time for with the specified
setter methods. This way, it can be reused to execute the SQL statement multiple
times efficiently. However, RUBIS code repeatedly created a lot of “temporary”
PreparedStatement objects inside a loop, but closed only the instance that was
created the last. JDBC specification [4] states that closing a JDBC driver should
close all PreparedStatements associated with a Connection when the Connection
is closed. In this case, the JDBC driver did not close the PreparedStatement
objects at Connection close and maintained a reference resulting in those objects
not getting garbage collected and their number kept increasing, which resulted
in a memory leak.

There are two ways to fix this kind of a leak - either the statement close method
is moved inside the loop or the statement creation is moved above the loop. Both
will fix the memory leak, but the latter is likely to give better performance. We
found that 7 out of 22 servlets in RUBIS were leaking memory at various places
due to this usage pattern. The resulting heap usage graph at constant load after
fixing the memory leak is given in Figure Note that the used heap remains
almost constant as expected.

This case study highlighted a memory leak scenario in infrastructure code
where the leak happened due to a combination of bad usage as well as bad
driver implementation. Furthermore, the root cause turned out to be something
that is not usually perceived as a common cause of a leak [2]. This case study
provides the following performance problem pattern:

Performance Pattern 1: JDBC PreparedStatements can lead to mem-
ory leaks if each instance is not individually closed

This case study also highlighted how automated analysis of verbose GC log at
constant load can detect a memory leak. A subsequent automated analysis of
multiple heap dumps can be used to pinpoint the objects that are the source of
this leak. The final step in the root cause detection - pin pointing the exact code
block that is behind the leak, will probably still require an expert to look at the
application code or thread dumps.

3 Case Study 2: High System CPU Usage

This section presents our second case study, from a SOA telecom application in
production (referred to as TelecomApp in the rest of this paper). This application
served as the home page for millions of mobile phone users. Users could click
and get various multimedia content such as ring tones, wallpapers, live scores,
etc. In production, the main components of this application consist of a cluster
of web portal nodes that connect to a cluster of backend content management
system nodes, which in turn get their data from a database running on a large
multicore machine.

Performance Analysis and Problem Determination in SOA Environments 311

The problem that was reported was of very high CPU utilization at low to
moderate number of clients. A quick look at the CPU logs revealed that the web
portal node had high levels of system CPU (refer Figure [3(a)])

o BSys% DWats
[User% BSys% 0 Wait% mUser% ESys% OWait%

CPU Utilization
CPU Utilization

e R o N YT L@ NY 8R3N8 BRSNS
N A F I YTETITONNBLNS S SO S F oo
R R EEEEER]
888888888888 3888888382838

(a) Before Fix (b) After Fix

Fig. 3. Telecom App high system CPU problem

We analyzed the verbose GC logs available. GC logs looked fine except a very
high number of objects being queued for finalization - close to 40000 of them
(refer Figure [4(a))). Recall that all those objects that have a finalize() method
and are found to be unreachable (dead) by garbage collector, are pushed into a
finalization queue. At some point later, the finalizer thread will dequeue this ob-
ject from the finalization queue and call its finalize() method. Too many objects
being queued for finalization can cause two types of performance degradation:
high CPU utilization because of the finalizer thread’s work and/or high memory
utilization as all the objects that are dead but reachable from an object that is
yet to be finalized, can not be reclaimed.

We took a heap dump in the staging environment to find out the type of
objects that were being finalized. Most of the objects that were in the final-
ization queue were of type “java.util.zip.ZipFile”. We took threadumps that
pointed us to code that was responsible for creation of these objects of type
“java.util.zip.ZipFile”. The code invoked the “getResource(Filename)” method
on the class loader to get handle to the exact path of a particular proper-
ties file. This method, essentially, unzipped all jar files in the classpath, one
by one, to search for the given filename. This resulted in creation of a lot of
java.util.zip.ZipFile objects (each of which have a finalize method) and a lot
of disk read activity. This unzipping of jar files and the associated disk read
activity was the reason behind the observed large system CPU. This code was
repeated in several methods, all of which, were on the critical path of various
client requests. Steps taken to detect the root cause for this problem are shown
in Figure

We fixed this problem by replacing the code that searched for this jar file
in the classpath, by the exact file location of the given file. Immediately, the
system CPU went down (refer Figure [3(b)]). The number of objects queued for
finalization went down as well (refer Figure . Note the initial spike in the

312 V. Mann, V.R. Madduri, and S. Shamaiah

Objects queued for finalization =¥=Before fix =2 After fix

45000

40000 4
35000 4
30000 1

B 25000

£

2 20000
15000

10000 -

5000 1 M{fA

03 T
0 5 10 15 20 25 30 35 40 45
Time in Mins

(a) Finalization activity in TelecomApp GC logs
VerboseGC HeapDump ThreadDumps

- . 9 .
Large number of objects | &/ Large number of java.util.zip.ZipFile
queued for finalization //\\ objects being queued for finalization

[AN

ThreadDumps point out to code creating
a lot of Java.util.zip.ZipFile objects

| java.net.URL fileURL = Thread.currentThread().getContextClassLoader().getResource(fileName); |

A particular properties file was being searched in the classpath in different methods

(b) Steps taken to resolve TelecomApp high system CPU problem

Fig. 4. Root cause analysis of TelecomApp high system CPU problem

objects queued for finalization in both the cases - this happens as a result of all
the classes being loaded from various jars at startup.

This case study highlighted a high system CPU usage scenario where the
problem happened due to bad code. This case study provides the following per-
formance problem pattern:

Performance Pattern 2: High Java object finalization activity could
be a result of related high filesystem/disk activity.

This case study also highlighted how automated analysis of verbose GC log
could have pointed us to abnormal finalization activity. A subsequent automated
analysis of a heap dump could have been used to pinpoint the type of objects
that were being finalized. The final step in the root cause detection - pin pointing
the exact code block that caused the abnormal finalization activity or the high
system CPU usage, would probably still have required an expert to look at the
application code or thread dumps.

Performance Analysis and Problem Determination in SOA Environments 313

4 Case Study 3: High CPU and Memory Usage

In this section we present our third case study from the same TelecomApp that
was described in case study 2. In this case study, we tried to solve the problem
of high memory usage by the application coupled with high CPU utilization.
This resulted in the application running out of heap memory after running for
two or three days and halting with a heap dump getting generated. Application
used the default Optthroughput GC policy in the IBM JDK which is aimed at
optimal throughput.

We started with the production verbose GC log and looked for the used heap.
As shown in Figure [l the used heap curve (blue line) shows the used heap never
goes below 750 M of data (even at night). The used heap becomes the lowest at
night (between 1:30-6:00 am).

Logs also had a very high number of mark stack overflow errors - this happens
when there are too many live objects in the heap (or more precisely very deeply
nested objects) and the stack that GC uses during the mark phase overflows.
Figure [also shows two restarts indicated by the sudden drop in heap size.

Verbose GC log also showed high pause times due to high compaction times.
This pattern was very uniform though out and almost all high pause times were
caused due to high compaction times (refer Figure [B)). Further analysis of the
logs for these high pause times, revealed allocation failures with reason code 16.
Reason code 16 compaction happens when the garbage collector is not able to
increase the amount of free storage by at least 10% [3]. The overhead due to
garbage collection was around 13% (GC overhead=times spent in GC pauses/-
total execution time * 100). Figure [6] also shows that GC keeps freeing memory
- however the freed memory (green curve) keeps decreasing due to fragmentation
and eventually compaction is required (blue lines). Note that heap fragmenta-
tion can also lead to “dark matter” [5] which can not be used for satisfying
allocation requests. Any heap space that lies between two allocated objects and
is less than 512 bytes, is not used by the JVM for allocation requests and is
termed as “dark matter”.

An analysis of the production heap (that got dumped on an out of memory
error) showed a total of 1.2 GB of memory being used out of which close to 585

MB of the retained heap is occupied by objects belonging to two classes (refer
Table [):

1. com.TelecomApp.cache.impl.CacheEntryImpl, and
2. com.TelecomApp.mcs.devices.InternalDeviceImpl.

Note that retained size of an object is its shallow size plus the shallow sizes of
the objects that are accessible, directly or indirectly, only from this object [6].
Table [3] shows the break down of the shallow heap by object types. Recollect
that shallow size of an object is the amount of memory allocated to store the
object itself, not taking into account the referenced objects. One can see that the
top 3 contributors are all related to HashMaps. “java.util. HashMap$Entry” and
“java.util. HashMap$Entry[]” contribute nearly 390 MBs (close to 33% of total
heap size). This hints that both com.TelecomApp.cache.impl.CacheEntryImpl

314 V. Mann, V.R. Madduri, and S. Shamaiah

Heap Usage of WebPortal Node in Production
1800 7]]

1
, " - + -Heap Size (MB)
- —e— Used Heap (MB)

1

1

1600} Night (01:30-06:00 am) :
1

1400

600
400

200 ¢ -

]

[

0 | | | |
23:59:14 13:01:39 17:30:20 23:03:27 12:55:29 17:36:02
Time of day

Fig. 5. Continuous high memory usage in the TelecomApp

-A- Amount Freed (MB) =© -Compact Times (ms)
R —8— Pause Times (ms)

! 5 n
fa 1% 567

af o 0]
1 [0]

| 1000
12,000
9,000

b0 oo d

6,000~

4000

Time (ms)
Memory (MB)

| | h |
£ 0
13:01:39 17:30:20 23:03:27 12:55:29 17:36:02
Time of day

Fig. 6. TelecomApp: Pause times, compaction times and memory freed

and com.TelecomApp.mcs.devices.InternalDevicelmpl comprise of large
Hashmaps. The application development team reconfirmed that the application
internally uses a lot of caches to cache mobile device specific policies for faster
response time. This explained, why the heap usage never goes down drastically.
This seemed like an application design issue since the memory footprint of the

Performance Analysis and Problem Determination in SOA Environments 315

Table 2. TelecomApp production heap dump breakup (sorted by retained heap size)

Type Count Shallow Retained Retained
Heap Heap Heap
(MB) (MB) (%)
com.TelecomApp.mcs.devices.InternalDevicelmpl 8,907 0.680 418.6 33.96
com.TelecomApp.cache.impl.CacheEntryImpl 197 0.011 165.9 13.46
com.ibm.ws.cache.Cache 70 0.022 63.8 5.18
com.ibm.ws.util. ThreadPool$Worker 224 0.029 60.6 4.92
com.ibm.ws.webcontainer.webapp.WebApp 160 0.032 42.2 3.42
com.ibm.ws.webcontainer.httpsession.MemorySessionData 1,402 0.182 40.9 3.32
java.lang.Class 33,406 3.380 29.5 2.39
oracle.jdbc.driver. T4CPreparedStatement 425 0.425 27.4 2.22
com.ibm.ws.webcontainer.httpsession.MemorySessionContext 160 0.035 19.4 1.57
java.lang.String 160,233 4.890 18.3 1.48
com.TelecomApp.mcs.accessors.jdbc.JDBCDeviceRepositoryAccessor 1 0.000 15.3 1.24
com.ibm.wps.state.outputmediators.OutputMediatorFactoryProxy 96 0.003 13.6 1.1
Remainder 25,159,774 1,223 317 25.72

Table 3. TelecomApp production heap dump breakup (sorted by shallow heap size)

Count Total-size Type
1,871,075 305,453,504 array of char
8,558,144 273,860,608 java/util/HashMap$Entry

927,421 114,439,696 array of java/util/HashMap$Entry

1,774,002 56,768,064 java/lang/String

639,453 52,688,552 array of java/lang/Object

92,922 49,771,728 array of byte

901,808 43,286,784 java/util/HashMap

899,467 35,978,680 com/TelecomApp/mecs/themes/PropertyValue

109,740 27,300,328 array of int

26,622 16,834,352 array of com/TelecomApp/mcs/themes/StyleValue
514,376 16,460,032 java/util/Hashtable$Entry

320,675 15,824,400 com/TelecomApp/styling/properties/PropertyDetailsImpl
398,769 12,760,608 com/TelecomApp/styling/impl/engine/StylerImpl
251,689 11,886,160 array of com/TelecomApp/mcs/themes/PropertyValue
324,782 10,393,024 com/TelecomApp/mes/css/version/Default CSSProperty
340,836 9,177,496 array of long

95,246 8,393,000 array of java/util/Hashtable$Entry

338,905 8,133,720 java/util/BitSet

491,191 7,859,056 java/util/HashSet

281,817 7,144,296 array of com/TelecomApp/styling/impl/engine/matchers/SimpleMatcher
284,648 6,831,552 com/ibm/ws/cache/Bucket

203,781 6,520,992 javax/servlet/jsp/tagext/TagAttributeInfo

175 5,708,528 array of org/apache/xpath/objects/Xobject

234,155 5,619,720 com/TelecomApp/styling/impl/device/DeviceStylesDelta
221,120 5,306,880 java/util/ArrayList

application seemed to be more than what the system could provide. However,
the application team maintained that cached entries should automatically expire
every 30 minutes or so and they ruled out a redesign since it would have required
considerable effort.

Verbose GC logs also pointed that the application was using some large ob-
jects. We analyzed the heap dump for the shallow object sizes. There were only
30,000 objects greater than 1024 bytes in a total of close to 25 million objects.
This constitutes almost 0.12% of the heap in terms of number of objects. How-
ever, the cumulative space occupied by these large objects was roughly 222 MB
out of the total 1.2 GB (18.5%). The average object size was 51 bytes, while
the median size was 32 bytes which was also the mode. This indicated that
heap comprised of a very large number of small objects which were interspersed
throughout the heap in between few large objects. A histogram of the shallow
objects is given in Figure 7.

316 V. Mann, V.R. Madduri, and S. Shamaiah

Shallow Object Size Histogram

100000000

10000000

1000000

100000 -

10000 -

Number of Objects

1000 -

100 1

10 4

14
16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K
Obiject Sizes in Bytes

Fig. 7. Histogram of object sizes from the production heap

In order to rule out any memory leaks, a long 10 hour run at low and constant
load was conducted in the staging environment. The heap usage from the verbose
GC log was almost constant through out the experiment which ruled out any
memory leaks. However, the staging environment could not be used to replicate
the long pause times observed in the production system. This was probably due
to the load offered to the system.

Our analysis so far ruled out any memory leaks and the following character-
istics became apparent:

— the heap was fragmented and it resulted in high compaction times and long
periods of sustained high CPU usage, as well as wasted heap space

— the application had a mix of a few large and a lot of small objects

— the application had some short-lived objects and most of the heap seemed
to comprise of relatively long living cached objects.

Garbage collection techniques to resolve the above issues have been discussed
in literature. Given the above application characteristics, we considered two
solutions:

1. Using a generational and concurrent collector: This policy (known as
the gencon GC policy in IBM JDK) is usually recommended for transactional
applications that create a lot of short-lived objects. This policy divides the
heap space into nursery (for new and short lived objects) and tenured space
for old objects. Since this policy uses copying of live objects in the nursery
space during a collection in the nursery (minor collection), it gets rid of
fragmentation in the nursery. However,when the tenured space fills up, a
global collection occurs and unreachable objects are collected, which may
result in fragmentation in the tenured space. Ideally we would have liked to
move all the long lived cached objects into the tenured space and leave the
nursery only for short lived objects.

Performance Analysis and Problem Determination in SOA Environments 317

800 8,000
—=— Nursery Size 1 76,000
- 4 -Free Tenured Heap ' -14,000
—&— Pause Times (ms) !

i

Size (MB)
Time (ms)

M“ |
l .[|

i

T v TCTNESORRTTIR 'Y ([]1] Y.
AU U T TR T "1~ — CROT e

00:00:02 10:49:47 15:37:46 20:40:42 00:26:03 11:53:35 16:16:00
Time of day

Fig. 8. TelecomApp with modified GC policy (Gencon) reduced pause times but small
nursery size resulted in frequent global collections (saw-tooth pattern)

2. Using a pool of objects for the most frequently created objects. This
resolves the problem of fragmentation by reducing creation and collection
of short lived objects. However, this requires either creating a pool for fre-
quently created objects in the application code or using the inbuilt pooling
capability in the IBM JVM [].

We tried both solutions, but realized that the first option was easier to implement
on a production system. We first tried the generational and concurrent collector
with default settings. Garbage collection overhead (percentage of time spent in
GC pauses) went down from 13% to 1.18%. In the default gencon setting, the
size of the nursery heap is set to 55-60 MB and the rest is used as the tenured
space. When this setting was put into production, the high pause times went
away as there was no compaction required (refer Figure 8). However, a saw-
tooth pattern in the used memory and free tenured space (refer Figure 8) also
indicated that the default nursery size was too small. This resulted in too many
minor collections, and objects being promoted into tenured space prematurely.
This also resulted in the tenured space filling up very soon and requiring a global
collection.

The saw-tooth pattern revealed that around 400-550 MB of memory was be-
ing freed from the tenured space in each global collection. We used this as a
yardstick to set the initial size of nursery heap to be 256 MB and the maximum
nursery size to be 512 MB. When this setting was implemented in production
the GC overhead further went down from 1.18% in the default gencon settings
to 0.8% (refer Tabled]). The problem of high CPU usage for a sustained period

318 V. Mann, V.R. Madduri, and S. Shamaiah

Table 4. TelecomApp: performance improvement through GC tuning

GC policy Time spent in Max pause time Mean pause time
GC pauses in seconds in seconds
Optthroughput GC policy 13.07% 11.2 1.35
(original)
Gencon GC policy 1.18% 6.26 0.03
(default nursery size)
Gencon GC policy 0.8% 1.18 0.08

(increased nursery size)

of time (which was being caused by frequent fragmentation and compaction in
the default settings) was also resolved.

This case study highlighted a high CPU usage scenario where the problem
happened due to a combination of application design and infrastructure settings
(garbage collection policy settings). The application suffered high GC overheads
due to heap fragmentation and repeated compaction and this resulted in high
CPU utilization. This case study provides the following performance problem
pattern:

Performance Pattern 3: Sustained levels of high CPU even in the
absence of high load could be a result of heap fragmentation

This case study also illustrated the complexity associated with performance tun-
ing: optimally tuning GC settings for an enterprise application that had an in-
teresting mix of objects (mix of large and small objects, long living and short
living objects) can be non-trivial and hard to automate. However, a few steps
could have been automated: An automated analysis of verbose GC logs could
have pointed us to high pause times which were being caused by high compaction
times. Automated analysis of the heap dumps would have pointed to the exis-
tence of a large number of short-lived objects and a rule based analysis could
have recommended the right GC policy for this scenario.

5 Related Research

Performance analysis and problem determination of enterprise applications is
a broad area. Some performance problems are caused due to resource bottle-
necks such as insufficient CPU or memory, or incorrect runtime infrastructure
settings such as incorrect thread pool or connection pool sizes. These problems
are somewhat independent of the nature of application and there has been a lot
of work in automating problem determination and performance analysis of such
problems. This typically involves statistical analysis of performance or monitor-
ing data from middleware systems [I2][8] to detect any changes or anomalies in
server performance.

On the other hand, analysis of performance problems that are closely tied to
the application design, the application code, application memory usage charac-
teristics and the interaction of the application with its runtime are much harder

Performance Analysis and Problem Determination in SOA Environments 319

to resolve and automate. The case studies presented in this paper belong to this
category of performance problems. In a recent work, Chis et. al [10] present a
solution that discovers a small set of high-impact memory problems, by detect-
ing patterns within a Java heap. They demonstrate that eleven patterns cover
most memory problems, and that users need inspect only a small number of
pattern occurrences to reap large benefits. While this work mainly focuses on
memory footprint issues and overhead of meta data in various Java collection
data structures, it shares our view of using a repository of patterns to automate
performance analysis.

There has also been a lot of recent work done on automating detection of
memory leaks in Java programs [I3|[14,[1T]. While, we made use of standard
heap comparison techniques to detect a memory leak in our first case study,
these newer techniques can further make the process simpler and quicker and
these can be part of an integrated automated peformance analysis service.

6 Conclusion

In this paper we presented our experiences working with enterprise SOA Java
applications that exhibited various performance and scaling problems. We shared
the insights we got while determining the root cause of some of these performance
problems. We diagnosed the availability problem with RUBiS, an open source
benchmark, and found the root cause to be a memory leak that occurred due
to usage error as well as a non-compliant JDBC driver implementation. We
presented two other case studies from a production telecom SOA application.
One of them resulted in high CPU utilization caused due to code that searched
a properties file in the entire classpath. This manifested itself as high number
of finalization objects that get created when various jar files are unzipped. The
last case study demonstrated various garbage collection issues that modern SOA
applications in Java face. Through our analysis we were able to recommend the
correct GC policy and tune its settings. Throughout our journey of fixing these
performance problems, analysis of verbose GC logs and heap dumps proved to
be valuable diagnosis tools that gave us vital clues on the probable root causes.
These logs were readily available from production systems.

Our experience, also demonstrated, that the underlying causes of these prob-
lems tend to be diverse and it is very hard to provide an end-to-end root cause
analysis engine for these problems. In our interactions with application develop-
ment teams, we observed that they do not seem to have all the insights about the
performance implications of their code and the testing and deployment teams
did not have the required skill and experience to diagnose the problems from
GC and heap logs. We believe that a performance analysis service for SOA envi-
ronments that automates the analysis of verbose GC logs and heap dumps, and
determines a high level root cause based on performance patterns such as those
provided by us, can be of great value.

320 V. Mann, V.R. Madduri, and S. Shamaiah

Acknowledgements. We would like to thank Ravi Kothari and Manish Gupta
from IBM Research - India, Ashish Agrawal from IBM Global Business Services,
Rajeev Palanki from IBM Java Technology Center, and Suparana Bhattacharya
from IBM India Software Labs who provided us with valuable suggestions, guid-
ance and much needed support throughout this work.

References

1. Heap fragmentation with IBM 1.3.1 and 1.4.2 JVMs,

http://www-01.1ibm.com/support/docview.wss?uid=swg21196072

2. Java Diagnostics Guide 1.4.2 - Common causes of perceived leaks,

http://publib.boulder.ibm.com/infocenter/javasdk/vir4m2/topic/
com.ibm. java.doc.diagnostics.142/html/commoncausesofleaks.html

3. Java Diagnostics Guide 1.4.2 - verbose GC outut from a compaction,

http://publib.boulder.ibm.com/infocenter/javasdk/vir4m2/
index.jsp?topic=/com.ibm. java.doc.diagnostics.142/html1/id1156.html

4. JDBC 4.0 API Specification Final Release - JSR-000221,

http://java.sun.com/products/jdbc/download.html

5. Mash that trash — Incremental compaction in the IBM JDK Garbage Collector,

http://www.ibm.com/developerworks/ibm/library/i-incrcomp/index.html

6. Retained and Shallow Heap, http://www.yourkit.com/docs/90/help/sizes.jsp

. RUBIS Homepage, http://rubis.ow2.org/

8. Agarwal, M.K., Sachindran, N., Gupta, M., Mann, V.: Fast Extraction of Adaptive
Change Point Based Patterns for Problem Resolution in Enterprise Systems. In:
State, R., van der Meer, S., O’Sullivan, D., Pfeifer, T. (eds.) DSOM 2006. LNCS,
vol. 4269, pp. 161-172. Springer, Heidelberg (2006)

9. Cecchet, E., Marguerite, J., Zwaenepoel, W.: Performance and Scalability of EJB
Applications. In: ACM OOPSLA (November 2002)

10. Chis, A.E., Mitchell, N., Schonberg, E., Sevitsky, G., O’Sullivan, P., Parsons, T.,
Murphy, J.: Patterns of Memory Inefficiency. In: Mezini, M. (ed.) ECOOP 2011.
LNCS, vol. 6813, pp. 383-407. Springer, Heidelberg (2011)

11. Jump, M., McKinley, K.: Cork: dynamic memory leak detection for garbage-
collected languages. In: Symposium on Principles of Programming Languages,
POPL (2007)

12. Mann, V., Agarwal, M.K., Gupta, M., Sachindran, N.: Problem Determination in
Enterprise Middleware Systems Using Change Point Correlation of Time Series
Data. In: IEEE/IFIP NOMS (2006)

13. Mitchell, N., Sevitsky, G.: Leakbot: An Automated and Lightweight Tool for Di-
agnosing Memory Leaks in Large Java Applications. In: Cardelli, L. (ed.) ECOOP
2003. LNCS, vol. 2743, pp. 351-377. Springer, Heidelberg (2003)

14. Xu, G., Rountev, A.: Precise memory leak detection for java software using con-
tainer profiling. In: ACM International Conference on Software Engineering, ICSE
(2008)

EN|

http://www-01.ibm.com/support/docview.wss?uid=swg21196072
http://publib.boulder.ibm.com/infocenter/javasdk/v1r4m2/topic/com.ibm.java.doc.diagnostics.142/html/commoncausesofleaks.html
http://publib.boulder.ibm.com/infocenter/javasdk/v1r4m2/topic/com.ibm.java.doc.diagnostics.142/html/commoncausesofleaks.html
http://publib.boulder.ibm.com/infocenter/javasdk/v1r4m2/index.jsp?topic=/com.ibm.java.doc.diagnostics.142/html/id1156.html
http://publib.boulder.ibm.com/infocenter/javasdk/v1r4m2/index.jsp?topic=/com.ibm.java.doc.diagnostics.142/html/id1156.html
http://java.sun.com/products/jdbc/download.html
http://www.ibm.com/developerworks/ibm/library/i-incrcomp/index.html
http://www.yourkit.com/docs/90/help/sizes.jsp
http://rubis.ow2.org/

	Performance Analysis and Problem Determination in SOA Environments
	Introduction
	Case Study 1: Memory Leak in Infrastructure Code
	Case Study 2: High System CPU Usage
	Case Study 3: High CPU and Memory Usage
	Related Research
	Conclusion
	References

