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Secure Function Evaluation on Mobile Devices

Henry Carter, Chaitrali Amrutkar, Italo Dacosta, and Patrick Traynor
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Abstract. Mobile applications increasingly require users to surrender private or
context-sensitive information, such as GPS location or social networking data.
To facilitate user privacy when using these applications, Secure Function Evalua-
tion (SFE) could be used to obliviously compute functions over encrypted inputs.
The dominant construction for desktop applications is the Yao garbled circuit,
but this technique requires significant processing power and network overhead,
making it extremely expensive on resource-constrained mobile devices. In this
work, we develop Efficient Mobile Oblivious Computation (EMOC), a set of two
SFE protocols customized for the mobile platform. Using partially homomorphic
cryptosystems, we develop protocols to meet the needs of two popular appli-
cation types: location-based and social networking. Using these applications as
comparison benchmarks, we demonstrate execution time improvements of 99%
and network overhead improvements of 96% over the most optimized garbled
circuit techniques available. Our results show that mobile application developers
should reconsider implementing garbled circuits due to their extreme resource us-
age, and instead rely upon our equivalently secure and significantly more efficient
alternative.

1 Introduction

The confluence of high-speed connectivity and device capability has led to the recent
surge in mobile application development. While software common to desktop comput-
ing (e.g., word processing, email) exists in this space, the most popular mobile applica-
tions often provide services based on a user’s current context (e.g., location [5], social
interconnections [1], etc.). Such applications allow users to make more informed de-
cisions based on their surroundings. However, these applications also regularly expose
sensitive data to potentially untrusted parties.

Cryptographers have long worked to develop mechanisms that allow two parties to
compute shared results without exposing either individual’s sensitive inputs or requiring
assistance from a trusted third-party. Such techniques are referred to as Secure Func-
tion Evaluation (SFE), and provide a set of powerful primitives for privacy-preserving
computation. While garbled circuits have been known for nearly 30 years [26], effi-
cient realizations of such schemes have only become possible recently [19, 16, 9, 13,
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20]. However, their use on mobile devices, where the nature of applications are dif-
ferent and the use of context sensitive information is the norm and not the exception,
has just begun to be assessed [11]. In the past, special-purpose protocols using partially
homomorphic encryption [7, 10, 27, 6] have been developed and optimized for specific
SFE applications (e.g. cryptographically verifiable voting). This technique promises
significant performance gains, but has yet to be applied to mobile applications.

In this paper, we develop specialized protocols designed to perform privacy-preserving
versions of operations commonly found in applications running on mobile phones.
Our Efficient Mobile Oblivious Computation (EMOC) techniques use partially homo-
morphic cryptosystems to restate secure computation as a series of simple arithmetic
operations over encrypted inputs. Specifically, we design and implement two privacy-
preserving protocols and demonstrate their use in two popular application classes: location-
based Twitter feeds (a geographic proximity test protocol) and a social networking tool
to identify nearby “friends of friends” (a private set intersection protocol). Comparing
these applications with equivalent garbled circuit constructions, we demonstrate that
our applications can produce the same results at computational and bandwidth costs
reduced by orders of magnitude in some cases.

In so doing, we make the following contributions:

– Design privacy-preserving mobile applications replacing garbled circuit con-
structions with homomorphic cryptographic primitives: We design custom privacy-
preserving protocols to meet the specific resource constraints of the mobile plat-
form. We then implement these protocols in applications representative of two of
the most popular mobile application classes: location-based messaging and social
networking. We prove that our applications provide equivalent security guarantees
to their SFE-based counterparts.

– Propose canonical evaluation tests for mobile SFE applications: In the desk-
top world, canonical tests for SFE efficiency have existed for several years. The
existence of this common frame of reference for performance between varying
techniques has fostered significant growth in the number of schemes available
and the performance efficiencies of those schemes. However, these desktop ap-
plications are not representative of the types of privacy-preserving computation
that would be most useful on the mobile platform (e.g. it is unlikely two mobile
users need to securely compute AES). As no such representative test applications
have been developed for the mobile platform, we propose a set of test applications
to facilitate further study in developing efficient mobile SFE. We will soon open
www.foryourphoneonly.org as a common repository for mobile SFE ap-
plications, providing the research community with a set of existing mobile SFE
techniques to compare new techniques as they are developed.

– Characterize SFE mobile performance profiles: The relative performance capa-
bilities of garbled circuits on the mobile platform is largely unknown up to this
point. In this work, we use our proposed test applications to conduct an extensive
performance analysis of five well-known SFE compilers on the Android mobile
platform to determine their feasibility in practice. We demonstrate that our custom-
designed SFE protocols offer improvements in execution time as high as 99% and
network overhead improvements as high as 96% over the most optimized garbled
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circuit techniques. Moreover, we examine several garbled circuit optimizations that
have never been compared on any platform [16, 13, 20, 15], providing a set of test
data to build on in future mobile SFE research.
Our proofs and performance evaluations demonstrate that the performance gains

achievable through partially homomorphic constructions merit special protocols for cer-
tain functions. Moreover, our results call for the reevaluation of the recent claims made
by Huang et al. [12] that general circuit compilers provide comparable efficiency to
custom protocols - we show empirically and rigorously that this claim does not hold
for functions representing the most common applications on the resource-constrained
mobile platform.

2 Related Work

With the development of the “garbled circuit” SFE protocol, Yao demonstrated the
possibility of two peer users computing a function without exposing their private in-
puts [26]. For years following, implementations of the protocol were too computation-
ally intensive for practical use. In 2004, Malkhi et al. produced the first practical im-
plementation of Yao garbled circuits in the program Fairplay [19]. Fairplay provided
a high-level language and compiler for building the logical circuits that are used to
compute functions securely (i.e., without revealing either party’s inputs to the other).
Fairplay offers the same privacy guarantees as the trusted third party model without
requiring an actual third party. Building upon the Fairplay compiler, Kruger et al. de-
veloped a technique for replacing garbled circuits with ordered boolean diagrams [16]
to improve Fairplay’s speed for certain functions. Huang et al. developed a technique
for pipelining circuit construction and evaluation, allowing for circuits to scale to any
size without filling up the memory of the constructing machine [13]. More recently,
Mood et al. developed a memory-saving circuit generation technique using an inter-
mediate compiler language [20], while Kreuter et al. developed a technique for highly
parallelizeable large-scale circuit evaluation [15]. These efforts have produced a practi-
cal means for performing secure computation in a desktop environment. However, gar-
bled circuit evaluation still requires significant processor and memory overhead when
producing and evaluating circuits, and exchanging encrypted inputs. Even with the im-
proved performance of Kruger’s OBDD and Huang’s pipelining approach, and con-
sidering Kerschbaum’s assertion that communication overhead is of little importance in
secure computation [14], garbled circuits are likely to be too expensive for the hardware
constraints of mobile devices. Huang et al. began exploring this question in a work ex-
amining the performance of pipelined circuits on mobile phones [11]. We thoroughly
evaluate this question in our work.

One possible solution to this problem lies in the relatively young area of homo-
morphic encryption. Henecka et al. demonstrated that homomorphic encryption can
be used in conjunction with garbled circuits to provide performance improvements for
some SFE problems [9]. However, many special-purpose protocols have been designed
to use only partially homomorphic encryption to preserve privacy in applications such
as private set intersection [7, 3, 6], voting applications [10], and distributed location
privacy [27]. In addition, several protocols for private information retrieval [21] and

3
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private stream search [2, 23] leverage this partially homomorphic property of certain
encryption schemes to search and compare encrypted data in a manner that prevents the
machine performing the search from learning anything about the data. The benefit of
the currently available partially homomorphic encryption schemes is that they are ef-
ficient, even on mobile devices [24]. Considering the extreme processing and memory
constraints found on the mobile platform, a new set of custom protocols developed for
the mobile platform is necessary. While Huang challenges this notion [12], our paper
presents privacy-preserving protocols that demonstrate the efficiency gains of custom-
designing SFE protocols over general garbled circuit compilers on the mobile platform.

3 Cryptographic Assumptions

Before we define and prove the security of our applications, we specify the requirements
for the underlying primities. We also state basic assumptions that are necessary for the
security of our protocols to hold.

3.1 Homomorphic Cryptography

The main tool our protocols use in guaranteeing the privacy of all inputs is the homo-
morphic property of certain cryptosystems. For a cryptosystem to be homomorphic,
there must be some operation that, when performed on two ciphertexts, causes some
predictable change to the underlying plaintexts. Our EMOC protocols capitalize on
one homomorphic property: multiplicative homomorphisms. In a multiplicative homo-
morphic scheme, the product of two ciphertexts is equivalent to an encryption of the
product of two plaintexts. Specifically, for a multiplicative homomorphic encryption
scheme Ek(), given two plaintext messages X,Y ∈ M ; ciphertexts C,D : Ek(X) =
C,Ek(Y ) = D:

C ×D ≡ Ek(X × Y ) (1)

3.2 Public Key Encryption

The second requirement for cryptosystems used in our protocols is that they be public
key encryption schemes. All of these protocols require that one of the participants in
a two-party computation must perform homomorphic operations over encrypted data.
This user must be able to encrypt his own inputs, but be unable to decrypt the result
of the homomorphic operations. This operation is clearly only feasible in a public key
cryptosystem, where the user performing homomorphic operations does not possess the
decryption key. In addition, we assume any cryptosystem used will produce ciphertexts
that are indistinguishable under chosen-plaintext attack (i.e. semantically secure).

3.3 Threat Model

In developing the protocols used in our applications, we make two assumptions to pro-
vide results in a fair and secure manner. The first is that finding a trusted third party is
difficult or impossible. As an example, while a number of websites currently offer to
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=

Alice (red pin) selects the area she is willing to receive messages 
within.  Bob's location (blue pin) is within this area.

Bob selects the entries from Alice's matrix that correspond 
to his region and multiplies by E(1).

Alice decrypts Bob's
products and finds a 

plaintext 2 x 1 = 2

Fig. 1: Proximity Test Protocol. Alice builds a location matrix with encryptions of ‘1’
in every entry except those that correspond to the area she is willing to receive tweets
within. In her travel area, she enters encryptions of ‘2’. Bob selects the entries that
correspond to his travel area, multiplies each entry by an encryption of ‘1’, and returns
the product to Alice. When Alice decrypts, she knows that: if any value is a ‘2’, Bob’s
tweet is relevant to her. If every value is a ‘1’, Bob’s tweet is not relevant to her location.

provide the location of friends within a certain physical radius, they can not be trusted
to not process, store or sell such data.

The second assumption is that all privacy guarantees in Section 5 hold against a
semi-honest adversary. As defined in Lindell and Pinkas’ work [18], this means that
an adversary will follow the protocol as written, using valid inputs, but will attempt to
learn as much as possible outside the jointly computed results by studying logs of all
communications. Since this protocol is meant to guarantee the privacy of inputs, we can
do nothing if the user chooses false inputs designed to corrupt the protocol. Many gar-
bled circuit implementations also makes this same assumption, proving security based
on semi-honest adversaries [19, 16, 9, 13, 18]. Not only is our model equivalent to the
current security model for two-party computation, we assert that this model is realistic
and useful for certain context-sensitive mobile applications in the market. Our protocols
developed under this threat model will also provide a foundation for seeking protocols
that can guarantee privacy against other adversarial models.

4 EMOC Application Protocols

In this section, we describe in detail the EMOC protocols, applied in two sample ap-
plications. We first present a protocol for geographic proximity testing in a Location-
Based Twitter application, which allows Alice to subscribe to Bob’s tweets without
either party revealing their location. Second, we present a private set intersection pro-
tocol in our Social Graph connectivity tool, which allows Alice and Bob to determine
where their social networks overlap without exposing the identities of all of their friends
- an application with potential use when meeting new (and untrusted) people. As a sim-
plified proof of concept, we develop a protocol for solving the canonical millionaire’s
problem in the technical report version of this work [4].

5
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4.1 Geographic Proximity Test

Location-based messaging, especially for advertisements, has recently received signif-
icant attention. Beyond advertising based on location, it offers the potential for useful
applications such as a proximity test to alert two people if they are close enough to
arrange a meeting. It could also be combined with applications like Twitter to allow for
location-based tweet filtering and following. However, these applications must query
the physical location of a users, which could compromise the user’s privacy. To resolve
this information leakage, we present a protocol for securely computing when two users
are within a chosen proximity of one another. While used in a specific application here,
the protocol can be used in any location-based mobile application. The ability to specify
an input region of any shape or size allows the proximity test to provide a result at any
desired granularity, from the same building to the same city.

Problem Definition Assume two Twitter users, a follower Alice and a tweeter Bob.
Since Bob generally tweets about events in his vicinity, Alice wishes to receive tweets
from Bob only when she is nearby. Alice selects as her input an area around her current
location where, if Bob tweets close to this area, she wants to receive the tweet. Bob
inputs an area around his current location where his tweets would be relevant. The goal
is to compute whether the area where Alice wishes to receive Bob’s tweets intersects
with the area where Bob’s tweets are relevant.

Description of the Protocol Before the protocol is initiated, both parties must define
the following elements:

– A multiplicative homomorphic encryption scheme Epk(·). In all figures, this will
be denoted as E(·).

– A matrix of size M × N where each cell corresponds to a physical region within
the city where Alice and Bob are located. Imagine the matrix as a grid laid over a
city map. Each cell has a publicly known correlation to the city location beneath it.
Before receiving any of Bob’s location-based tweets, Alice selects an area of her city

of any shape or size that defines the area where she wants to receive tweets (Figure 1).
She then generates an M × N location matrix LA. For each cell, Alice inputs a ‘2’ if
that cell corresponds to the area where she wishes to receive tweets, and ‘1’ if it does
not. She then encrypts each cell in the matrix with her public key pkA. When Alice
checks Bob’s Twitter feed, she initiates the protocol by sending LA to Bob.

When Bob receives Alice’s location matrix LA, Bob then selects the cells in LA
that correspond to the region where his tweet is relevant, and for each of the n cells,
he re-randomizes the entry by multiplying in an encryption of the value ‘1’. Bob then
returns an array of the n resultsR to Alice. Upon receivingR, Alice decrypts the values
using her private key to find n values, either ‘1’ or ‘2’. She then sends this decrypted
array of values back to Bob to complete the computation.

If any of the values returned is a ‘2’, the area where Bob’s tweet is relevant inter-
sected with the area where Alice wished to receive tweets, and Bob can respond by
delivering his latest tweet. If all the values returned are ‘1’, the area where Bob’s tweet
is relevant does not intersect with the area Alice wishes to receive tweets, and Bob need
not respond. In this manner, Alice never learns Bob’s precise location and vice versa.
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E(H-1("Charlie")) E(H("Charlie"))

E(H("Dale"))

E(H("Erika"))

E(H("Francis"))

x
x
x
x

E(B1*1)

E(random)

E(random)

E(random)

=

=

=

=

Bob multiplies each entry 
by all of Alice's encryptions. 

If an entry matches, the result will be 1 
times Bob's random blinding factor

E(B1)

E(B2)

E(B3)

E(B4)

x

x

x

x

T(B1)

T(random)

T(random)

T(random)

Alice returns the decrypted/truncated 
values.  Any that match a truncated 

blinding factor are a match

Fig. 2: Private set intersection: Bob homomorphically multiplies each entry in his array
by every entry in Alice’s array. He then multiplies in a unique blinding factor for all
of the resulting values. Alice receives these values, decrypts them, and truncates all but
the least significant t bits, which she returns. If these t bits match the least significant t
bits of the blinding factor multiplied in that entry, Bob knows there is a match.

4.2 Private Set Intersection

Social networking applications are a popular channel for communicating with a mobile
device. However, they are also a potential channel to leak private information about a
user’s social life. If two mobile users were to meet at a party or conference, one might
only want to allow the other into her social network based on the friends they already
have in common. However, there is currently no application which allows this without
revealing both users’ entire social graphs. This application offers a means for securely
revealing only the friends common to both users while maintaining the privacy of the
rest of both social graphs. Again, we couch our protocol in an application that is highly
relevant to mobile users. However, the protocol can be used in general to compute the
intersection of any two sets without revealing any element outside of the intersection.

Problem Definition Assume two participants, Alice and Bob, who are both members
of a social network. Each participant assigns a subset of the social network members
as their friends. Given both Alice and Bob’s lists of friends, we wish to compute which
members of the social network are friends with both Alice and Bob while keeping the
rest of their friend lists private.

Description of the protocol Before the protocol can be initiated, the following elements
must be defined:

– A multiplicative homomorphic encryption scheme Epk(·) which allows for modu-
lar multiplication over some cyclic group G. In all figures, this is denoted E(·).

– A secure keyed hash algorithm.
– A security parameter t.
– A predetermined number of friends N to be compared.
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To initiate the protocol, Alice begins by generating a query arrayQA of sizeN . She
does this by generating a hash key KH and hashing each of her friends’ names. She
then stores these hashes in random order inQA. Alice then encrypts each entry with her
public key pkA and then sends QA, KH , and pkA to Bob.

Upon receiving QA, Bob hashes each member of his friend list using KH . Then,
he finds the multiplicative inverse of each hash within the group G which is the group
of elements over which Alice’s public key can encrypt. As we will later observe, if
one of Bob’s hashes matches one of Alice’s, the product of her hash and his inverted 1

hash will be ‘1’. At this point, Bob encrypts each of his inverted hashes with Alice’s
public key pkA. He then generates two arrays of lengthN2. For the first array, he homo-
morphically multiplies each of his encrypted and inverted hash values by all of Alice’s
encrypted hash values, performingN2 comparisons. In the second list, he generatesN2

random elements of the group G, which he also encrypts with Alice’s public key. He
then homomorphically multiplies the elements in this array of blinding factors B with
the elements in his array of compared values, generating the result of homomorphic
computation R (Figure 2). Finally, Bob sends R back to Alice.

When Alice receives R, she decrypts each element using her private key, which
yields an array of N2 random values from the group G due to Bob’s blinding factors.
She then sends back only the t least significant bits of each decrypted value to Bob.

Bob receives the decrypted values from Alice and for each entry in her results, he
compares the bits returned with the least significant t bits of the blinding factor he mul-
tiplied into that entry. If the results match, it means that entry contained a ‘1’, implying
that a friend matched. To calculate which friend matched, Bob simply uses integer di-
vision on the index, where i ÷ N is the original index of the matching friend. Thus,
Bob can identify which members’ of the social network he shares with Alice. Bob then
sends the list of names in the intersection back to Alice to complete the computation.

Correctness Argument We quantify here the probability that Bob will have a false
positive when matching the last t bits of the blinding factor with Alice’s returned result.
Since the hash function is assumed to be pseudorandom, multiplying a pseudorandom
number x by the multiplicative inverse of a pseudorandom number y−1 yields a pseu-
dorandom number z. After this value is multiplied by a random blinding factor b and
truncated to the least significant t bits, it is apparent that the probability of the least
significant t bits of b matching the least significant t bits of z ∗ b, is 1

t2 , or no better
than randomly selecting bits. This value t can be increased to yield a higher probability
of correctness or decreased to hide more information about the resulting hashes. The
amount of information revealed by t bit truncation is defined in section 5.

5 Privacy Guarantees

In this section, we define our threat model and prove the privacy guarantees of both
EMOC protocols. For each protocol, we show two properties: the security of the two-
party computation and the amount of information revealed by the result of computation.

1 This does not mean Bob inverts the hash to recover the preimage; rather, the mathematical
inverse of the hash value mod p.
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5.1 Definitions

In all of our protocols, we assume the standard definition of a semi-honest adversary,
described in Lindell and Pinkas’ [18]. Essentially, this states that both parties will follow
the protocol as written but will attempt to learn information beyond the computed result
from transcripts of the interaction. This assumption is also made by related efforts in
this space [19, 16, 9, 13, 18]. To prove a protocol secure against semi-honest adversaries,
we use the concept of indistinguishability between Alice’s view in a real execution and
a simulator’s generation in an ideal execution. In the ideal world, two participants A,B
send their inputs a, b to a trusted third party which performs some computation and
returns the result f(a, b). The proof idea is to show that a simulator S in the ideal world
can simulate A’s view in the real protocol.

Definition 1 Semi-honest security: For any deterministic functionality f(x, y) and semi-
honest parties P1 and P2, we say that protocol π securely computes f in the presence
of semi-honest adversaries if there exists ppt algorithms S1 and S2 such that:

S1(x, f(x, y))x,y∈{0,1}∗
c
≈ viewπ1 ((x, y), outputπ(x, y))x,y∈{0,1}∗ (2)

S2(x, f(x, y))x,y∈{0,1}∗
c
≈ viewπ2 ((x, y), outputπ(x, y))x,y∈{0,1}∗ (3)

5.2 Location Privacy

Theorem 1 Location Privacy: Assuming the encryption scheme used in the proximity
test protocol is semantically secure, the proximity test protocol is secure in the presence
of semi-honest adversaries.

Proof. We prove the security of the protocol separately for each participant.
Alice is corrupt: For the proximity test protocol, we define f(x, y) as follows:

given inputs (x, y) that are the grid locations where Alice and Bob wish to send and re-
ceive messages, f(x, y) is a shuffled set of size c grid locations which, if an intersection
exists, contains the intersecting grid locations. The variable c is defined as the number
of grid locations in Bob’s input y. We now prove that a simulator SA operating in the
ideal world can simulate Alice’s view of the real world. SA is constructed as follows:

SA is given input (x, f(x, y)), where x is Alice’s input and f(x, y) is the result as
defined above. Upon receiving Alice’s initial message containing her encrypted location
matrix LA, SA encrypts each element in f(x, y) with Alice’s public key and returns
m1 = E(f(x, y)), completing Alice’s view of the interaction.

We now show that SA’s message is indistinguishable from Alice’s view of a real
execution. First, we know that for any encrypted element in f(x, y) at location i:

E(f(x, y)i)
c
≈ E(1 ∗ 1)

c
≈ E(1 ∗ 2) (4)

Based on the semantic security of our encryption scheme, each encryption of an entry
in f(x, y) is indistinguishable from an encryption of the result of Bob’s homomorphic
operations. Second, we know trivially that the decrypted values in m1 are identical
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to Bob’s message in a real interaction, as both simply contain the values in f(x, y).
Therefore, the proximity test protocol is secure when Alice is corrupt.

Bob is corrupt: We construct the simulator SB as follows: SB is given (y, f(x, y)),
where y the grid locations where Bob will be sending messages, and f(x, y) is the result
as defined above. SB prepares a location matrix LA by storing the values in f(x, y) in
the grid locations in y. For any grid location not in y, SB stores a ‘1’. SB then generates
an encryption key pair and encrypts each entry of LA under the public key PKSB

. It
then sends the message m1 = E(LA)||PKSB

. When SB receives the shuffled array R
containing the result of Bob’s homomorphic operations, SB simply decrypts each entry
in R using SKSB

and returns m2 = D(R).
We show that Bob’s view in a real execution and an interaction with SB are indis-

tinguishable. For each element of f(x, y) and for each entry in the matrix LA:

E(f(x, y)i)
c
≈ E(1)

c
≈ E(2) (5)

Based on the semantic security of the encryption scheme, Bob cannot distinguish be-
tween encryptions of the resulting values and encryptions of the values Alice would en-
crypt in a real interaction. The public key PKSB

, being randomly generated, is clearly
indistinguishable from Alice’s public key.

The second message is clearly indistinguishable, since in both the real view and the
simulated view, the message contains a randomly ordered array containing the values
of f(x, y). Therefore, the proximity test protocol is secure when Bob is corrupt.

Information Revealed: We now show the probability of either participant guessing
the exact location of the other participant. Given Alice and Bob’s areas of willingness
to send/receive messages x, y, the number of entries in the location matrix n, and the
result of the protocol f(x, y), both parties know the size of the intersection between
their send/receive areas as well as the number of cells in Bob’s sending area. In the
worst case, either all of Bob’s sending area is contained within Alice’s receiving area or
vice versa. Consider if Bob’s area is contained within Alice’s, without loss of generality.
Alice has probability 1

|x| of guessing which cell contains Bob’s actual location, and
Bob has probability 1

n of guessing Alice’s location since he does not know the size
or shape of Alice’s receiving area outside of his own sending area. Thus, given g =
max(|x|, |y|), the maximum probability of guessing the other party’s location is 1

g .

5.3 Private Set Intersection Privacy

Theorem 2 Private Set Intersection Privacy: Assuming the encryption scheme used in
the private set intersection Protocol is semantically secure and that the secure hash
function used is pseudorandom and one-way, the private set intersection protocol is
secure in the presence of semi-honest adversaries.

Proof. Again, we prove separately the security of our protocol for Alice and Bob.
Alice is corrupt: We define the function f(x, y) as follows: given inputs (x, y),

which are the list of friends for Alice and Bob respectively, f(x, y) = x ∩ y. We now
construct a simulator SA in the ideal world that, given x and f(x, y), is capable of
simulating Alice’s view of a real interaction:
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SA is given (x, f(x, y)) as defined above. Upon receiving Alice’s initial message
containing an array of encrypted friend hashes, SA generates an array of n2 random
blinding factors B1, ..., Bn2 ∈ G, encrypts them with Alice’s public key, and returns
message m1 = E(B). Upon receiving Alice’s second message, the decryption and
truncation of m1, SA responds with message m2 = f(x, y).

We now show that both of SA’s messages are indistinguishable from their coun-
terparts in Alice’s view of a real execution. For the first message, we again make two
points. First, we know that, for i = 1...n2 and friend names x, y:

E(Bi)
c
≈ E(H(x) ∗H−1(y) ∗Bi) (6)

Based on the semantic security of the encryption system, SA’s encryption of the blind-
ing factor is indistinguishable from Bob’s result gained by homomorphic multiplication.
Second, we know for any two names x, y:

Bi
s
≈ H(x) ∗H−1(y) ∗Bi (7)

Based on the definition of statistical indistinguishability, the result Alice sees in both a
simulated and a real interaction appears random. Therefore, the private set intersection
protocol is secure when Alice is corrupt.

Bob is corrupt: We construct simulator SB as follows: SB is given (y, f(x, y)).
SB begins by generating a random key Kh for the agreed symmetric hash, a random
public key encryption pair PKSB

, SKSB
, and an array F of the pre-defined length n.

SB then enters the hashes of the names in f(x, y) in uniformly random indices of F .
For the remaining unfilled entries, SB generates random numbers from the range of the
hash. Bob then encrypts each entry with PKSB

and sends m1 = E(F )||PKSB
||Kh.

Upon receiving Bob’s response R, SB decrypts the response with SKSB
and returns

m2, which is the last t bits of each entry inD(R), where t is the predetermined security
parameter for the length of the resulting values.

We show that Bob’s view in a real execution of the protocol and an interaction with
SB are indistinguishable. Considering m1, for each entry in F and for each hashed
name x, given a uniformly random group element r:

E(r)
c
≈ E(x) (8)

Based on the semantic security of our encryption scheme, Bob cannot distinguish be-
tween an encryption of a hashed name and an encryption of a random value. Again,
since SB and Alice both generate their keys randomly, they are indistinguishable.

Considering m2, we see that, given a random key, for any two names x, y:

H(x)
c
≈ U

c
≈ H(y) (9)

Based on the pseudorandomness of the hash function, any hashes produced will be
indistinguishable from randomness. Because of this, these samples will remain indis-
tinguishable after any polynomial time operations are performed over them. Therefore,
for any non-matching entry inm2 and any names x, y, z, where x is in Bob’s friend list,
y is in Alice’s, z is randomly chosen by SB , and T () is the truncation function:

T (H(x) ∗H−1(y))
c
≈ T (H(x) ∗H−1(z)) (10)

11

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Therefore, the private set intersection protocol is secure when Bob is corrupt.

Information Revealed: We now show the probability of either party guessing the
input of the other party. For an instance of the protocol we are given inputs x, y that
are the inputs of both parties (without loss of generality), some number t which is
the number of bits returned by Alice in the third message, some number n which is
the security parameter of the hash function, and f(x, y) which is the intersection of
the inputs. Alice receives only the list of names in f(x, y), so the probability of her
guessing any friend in Bob’s friend list outside of this intersection is random selection
over all possible friends. Bob receives the last t bits of Alice’s hash values multiplied
by the inverse of his own hash values. To reverse this value back into the name of one
of Alice’s friends, Bob must examine all possible values for the n − t truncated bits,
and must invert the hash of Alice’s friend’s name. Therefore, Bob’s ability to learn any
of Alice’s friends not in the intersection is no better than random over the possible
truncated values and the possible hash pre images, 1

2(n−t)+n .
We do note a slight difference in the security guarantees provided by our protocol

and the guarantees of garbled circuits. While garbled circuit constructions keep all data
cryptographically secured by the garbling function, our scheme reveals to Bob t bits of
each of Alice’s hashed inputs multiplied by the multiplicative inverse of Bob’s hashed
inputs. However, based on the pseudorandomness and one-wayness of a secure keyed
hash, we maintain that in practice it is still computationally infeasible to recover the
remaining bits of the hashed value and reverse the hashed value to the correct preimage.

6 Performance Analysis

While developing new SFE protocols is useful, the main contribution of our work is
the establishment of an efficient means for performing SFE on the mobile platform.
Another contribution is our canonical test set that will facilitate future comparisons
between techniques and encourage additional development of efficient mobile SFE
schemes. Using these tests, our results demonstrate that through custom designed pro-
tocols, we can take advantage of optimizations that are not available to general-purpose
garbled circuit compilers. This allows our protocols to execute in time that would be
usable by the average mobile user. We also provide baseline statistics that compare a
variety of garbled circuit techniques that have yet been untested on the mobile platform.

6.1 Mobile SFE Benchmarking Applications and Metrics

To demonstrate the efficiency of a given secure function evaluation technique, we chose
two protocols that are widely applicable in mobile applications: a geographic proximity
test and a private set intersection protocol. As we have already shown, these particular
functions would be very useful in some of the most popular mobile applications. As
such, they are a critical benchmark when examining new mobile SFE techniques.

In addition to presenting these test applications, we propose a set of metrics to com-
pare efficiency between techniques executing the test applications. The first is average
execution time, taken over 10 executions with 95% confidence in the error margin. To
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Protocol Input size SFE scheme Avg. exec. time (sec.) Network use (KB)

Proximity Test 500 cells

EMOC 0.0259 (± 0.0054) 129.536
OBDD 23.1480 (± 0.0351) 1,765.764

Parallelized 26.2353 (± 0.0836) 1,854.049
PAL 35.1888 (± 0.0487) 2,029.439

Pipelined 11.1293 (± 0.0332) 603.497
Fairplay NA NA

Private Set Intersection
20 friends

EMOC 3.8381 (± 0.0034) 109.120
OBDD 124.4921 (± 0.2809) 2,879.016

Parallelized 107.8990 (± 0.4249) 2,669.284
PAL 130.7570 (± 0.2013) 3,025.966

Fairplay NA NA
16 friends Pipelined 45.7061 (± 0.1254) 3,401.133

Table 1: Our experimental results. Values are present for the maximum input size mea-
sure across all applications for accurate comparison. In the private set intersection pro-
tocol, the Pipelined execution environment required input size to be a power of two.

demonstrate feasibility for practical use, we use inputs that correspond to real values
a user might present to such an application. The second metric is total network usage
between both parties, measured as the number of bytes exchanged during the protocol.
As mobile devices are often required to function with costly network connections (both
in terms of energy and billing), minimizing the amount of traffic required between two
parties is critical to efficient performance.

To demonstrate the practicality of our protocols in comparison to existing gar-
bled circuit compilation techniques, we perform the experiments defined above for our
scheme as well as five other garbled circuit compilation techniques. We selected these
techniques because they represent the full range of general garbled circuit compilers
available. We opted not to include the TASTY framework by Henecka et al. [9] in this
work, as this framework requires circuits to be constructed and optimized by hand on
a per-function basis. The focus of our work is to show the performance benefits of
our scheme against garbled circuit compilers designed to compile any general secure
function from a higher level language.

The first garbled circuit technique we evaluate is Fairplay [19], the standard desktop
implementation of Yao’s garbled circuit technique. Next, we examine Kruger’s Ordered
Binary Decision Diagram optimization [16], which produces smaller, more efficient
garbled circuits through a modified representation. Third, the Parallelized scheme by
Kreuter et al. [15] incorporates a number of optimizations for evaluating large circuits
in parallel on server-class machines. The fourth scheme we evaluate is the Pseudo-
Assembly Language (PAL) Compiler by Mood et al. [20], which produces circuits in a
memory-efficient manner using an intermediate circuit compiler language. Finally, we
examine the pipelined evaluation technique of Huang et al. [13], which splits garbled
circuits into layers that can be generated and evaluated separately.

For all of the garbled circuit compilation techniques except the pipelined evaluation,
we split the scheme into two phases: preprocessing and execution. For the preprocess-
ing phase, we compiled the garbled circuits on a desktop and then examined their eval-
uation times, the execution phase, on the mobile device. To assure fair representation
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Fig. 3: Proximity test execution times. Note that for the online execution, for all input
sizes our application runs in a fixed amount of time while all garbled circuits show
increasing execution times with increasing input size.

across techniques, we either compiled the circuits ourselves using compiler framework
provided by the technique author or had the author compile the same SFDL circuit
description on their own machines. In our own protocols, we consider the time Alice
takes to generate her query as the preprocessing phase, while the online communica-
tion between Alice and Bob constitutes the evaluation phase. In the case of pipelined
circuit evaluation, no such preprocessing phase exists, since the circuits are generated
in layers during the online evaluation between the two parties. While this inability to
amortize computation costs is a performance weakness when compared to other SFE
techniques, we chose to perform separate experiments that compare their pipelining ex-
ecution time against our combined preprocessing and online execution time. For these
experiments, we acquired the same mobile framework implementation developed by
Huang et al. [11]. While this does not provide a true picture of the efficiency gains in
our amortized execution, it still demonstrates the significant performance gains of using
partially homomorphic encryption instead of garbled circuits for mobile SFE applica-
tions.

We evaluated all precompiled garbled circuits on the standard Java Fairplay plat-
form, which we ported to an Android application. Our own protocols were written in
C and cross-compiled to run natively using the Android toolchain [8]. All performance
figures were taken on the Samsung Nexus S smartphone.

6.2 Results

The results in Table 1 clearly demonstrate the advantages of our custom protocols over
every garbled circuit technique tested. In both test applications, we see a significant
increase in execution time and network usage for all garbled circuit implementations,
even in the comparison of total execution time in Figures 3b and 4b. Because general
purpose compilers cannot take advantage of optimizations inherent to specific func-
tions, they tend to produce circuits with irregular performance profiles. This is clearly
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Fig. 4: Private set intersection execution times. For every garbled circuit technique ex-
cept the pipelined circuits, we were only able to run experiments up to inputs of size 20
due to the large memory requirements of Fairplay.

seen in Figures 3a and 4a, where garbled circuit techniques do not consistently outper-
form one another between applications. For example, in the proximity test protocol, the
OBDD scheme outperforms the parallelized scheme. However, this ordering is reversed
for the private set intersection protocol. Ultimately, these fluctuations in performance
are eclipsed by the gains achieved through our custom designed protocols, where online
execution times were at least 96% better than the fastest garbled circuit technique. In
the best case, our techniques reduced execution time by three orders of magnitude.

One advantage of our protocols is that for increasing input sizes, our proximity
test protocol only requires an increase in preprocessing time, while the online execu-
tion remains constant across all input sizes. By contrast, every garbled circuit technique
showed increasing execution times as input size increased, emphasizing this significant
benefit of our customized protocols. In addition, the optimizations that are incorporated
into garbled circuit schemes do not consistently provide any benefit on the constrained
mobile platform. For example, the highly parallelized scheme performs about as well
as non-parallelized garbled circuits, simply because most mobile phone hardware con-
tains single-core processors. In the case of the pipelined evaluation circuits, we see an
optimization that solves the problem of memory-intensive preprocessing (i.e., circuit
generation), but does not allow for amortized execution time. EMOC provides a solu-
tion with an efficient preprocessing phase, where each precomputed ciphertext requires
only 256 bytes of memory, as well as faster amortized execution. Contrary to Huang
et al. [12], these results show that custom protocols significantly outperform the best
available garbled circuit optimizations on mobile devices.

In addition to faster execution, our protocols significantly reduce the amount of net-
work overhead compared to garbled circuit techniques. For the proximity test protocol,
we observed a 78% reduction from the best garbled circuit technique, pipelined exe-
cution. In the private set intersection protocol, the improvement swelled to 96% over
the best garbled circuit technique, the parallelized circuits. This improvement is due
largely to the fact that our protocol does not use oblivious transfers to exchange inputs.
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In theory, there exist a number of oblivious transfer schemes that perform with efficient
(O(n)) communication overhead [22]. However, it is clear that these efficiencies do not
always carry over in practice. In the case of our private set intersection protocol, we
exchange theoretical “efficiency” for practical usefulness by employing techniques that
use less network overhead in exchange for complexity that is theoretically less efficient
(O(n2)). See Appendix A for more results on the network usage of each technique.

7 Conclusion

As mobile phones become more popular, new techniques will be needed to protect
the private information used in many of their applications. Garbled circuit construc-
tions offer an increasingly realistic solution in the desktop space, but require too much
processing power and network overhead to be practical on the mobile platform. By
replacing garbled circuits with homomorphic encryption operations, our EMOC proto-
cols demonstrate that certain privacy-preserving functions can be evaluated with great
efficiency on the mobile platform. In addition, our canonical test applications provide
a common reference point when comparing SFE techniques on the mobile platform.
Using these metrics, our performance evaluation demonstrates improvements in our
protocols of greater than 99% over the most efficient garbled circuit constructions,
as well as an initial characterization of the performance capabilities of several gar-
bled circuit optimizations on the mobile platform. Based on these results, we present
our protocols as an efficient method for implementing SFE into some location-based
and social networking applications. To foster further research into efficient mobile
SFE, we make our test metrics and applications available to the research community at
www.foryourphoneonly.org and encourage other authors working in this space
to post their implementations as well.
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A Network Usage Experiment Results

In addition to our primary metric of average execution time, we examined the total net-
work traffic exchanged for each SFE technique in both test applications. To capture the
amount of data exchanged, we used the “Shark for Root” Android application to capture
network traffic [17], then examined the data in Wireshark [25]. The graphs below show
the results for the proximity test application (Figure 5) and the private set intersection
application (Figures 6, 7). For PSI, the pipelined circuit evaluation technique only ac-
cepted input sizes that were powers of two. For this reason, we show the results in a
separate graph. It is important to note that for all garbled circuit techniques except the
pipelined circuit evaluation, these graphs do not include the data required to initially
send the circuit from the generating party to the evaluating party. Depending on the
application and input size, these circuit files could be as large as 935 KB.
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Fig. 5: Proximity test network usage. Note that even the most optimized garbled circuit
evaluation technique requires over four times the amount of network traffic used by
EMOC.
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Fig. 6: Private set intersection network traffic without initial garbled circuit exchange.
For every garbled circuit technique shown in this graph, we were only able to run ex-
periments up to inputs of size 20 due to the large memory requirements of Fairplay.
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