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Abstract

Frequently accessed views in data warehouses are usually materialized in order to accelerate the speed
of querying big data. However, the view materialization itself incurs huge costs. Moreover, some latest
products of non-traditional data warehouse software, such as Apache Hive, still lack the support of ma-
terialized views. In order to select the appropriate views to be materialized with the possible minimized
cost, we propose a novel approach to the materialized view selection problem based on an adaptive ge-
netic algorithm. We establish a cost model that integrates the query, maintenance and storage costs to
evaluate the performance of approaches and measure the fitness of an individual in the genetic algorithm.
In addition, we introduce the adjustable factors for crossover probability and mutation probability, allow-
ing the genetic algorithm to run quickly and avoid premature convergence. We also conduct extensive
experiments for its implementation with Apache Hive, which query and manage large datasets residing in
distributed storage. Both the simulation results and experiments on Apache Hive show that the approx-
imately optimal solution for selecting materialized views can be obtained effectively using the approach
presented.

Keywords: materialized view, multi-dimensional lattice, genetic algorithm, cost model, adaptive, Apache
Hive.

1. Introduction

Online analytical processing (OLAP) operations

usually impose a lot of selection, projection, con-

nection and aggregation computations upon the data

warehouses. As the data sets increase in data ware-

house day by day, the cost used for OLAP operations

becomes extremely high [1]. One of the most effec-

tive ways to solve this problem is to build appro-

priate materialized views in the data warehouse [2].

Since the materialized views store pre-calculated ag-

gregated information, it can answer the query di-

rectly without computation on the base tables, thus

improving query efficiency [3].

However, because - usually - there are many ag-

gregations that can be calculated, often only a pre-

determined number are fully calculated while the
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remainders are solved on demand. The problem

of deciding which aggregations (views) to calculate

is known as the ‘view selection problem’, which

can be constrained by the total size of the selected

set of aggregations, the time to update them from

changes in the base data, or both. The selection of

the appropriate views to be materialized has proven

to be a NP-hard problem [4]. Many approaches to

the problem have been explored, including enumer-

ation algorithms, greedy algorithms, genetic algo-

rithms, etc. Although the adoption of enumeration

algorithms could obviously lead to the optimal so-

lution, they incur high costs. Unlike the other ap-

proaches, genetic algorithms - which are suitable for

solving NP-hard problems - can obtain an approx-

imately optimal solution of the problem after a fi-

nite number of iterations. However, the traditional

approaches based on genetic algorithms usually are

slow at searching the solutions and meanwhile are

prone to premature convergence.

On the other hand, the size of data sets being col-

lected and analyzed in the industry for business in-

telligence is growing rapidly nowadays, making tra-

ditional warehousing solutions prohibitively expen-

sive. Hive, the open-source data warehousing so-

lution built on top of Hadoop, facilitates querying

and managing large datasets residing in distributed

storage [5]. It is now widely used in companies

like Facebook, and almost becomes the standard of

petabyte scale data warehouse [6]. Unfortunately,

While Hive is high-performance at complex data

batch reading and analysis, it lacks efficient tech-

niques for ad-hoc multidimensional query due to the

absence of materialized views.

Therefore, in this paper, we present a novel ap-

proach to materialized view selection based on an

adaptive genetic algorithm. Our approach can select

the appropriate views to be materialized with less

total cost. It improves on current genetic algorithms

by using adaptive adjustment mechanisms that can

accelerate the search speed of the genetic algorithm

and avoid premature convergence. Its implementa-

tion with Apache Hive shows its effectiveness on

the non-traditional distributed data storage based on

Map/Reduce.

The rest of this paper is organized as follows.

Section 2 describes the related principles and defines

the materialized view selection problem. After Sec-

tion 3 presents the cost model of materialized views

that involves cost of query, maintenance and storage,

Section 4 introduces in detail the adaptive genetic

algorithm for solving the materialized view selec-

tion problem. Section 5 compares our approach with

the traditional ones through a simulation case, fol-

lowed by the experimental results of its implemen-

tation with Apache Hive in Section 6. Afterwards,

Section 7 presents the related work. Finally, Section

8 concludes the paper and outlines the future work.

2. The Materialized View Selection Problem

2.1. Description of the Materialized View
Selection Problem

Assume that there exist four tables in the data ware-

house, i.e., Sales, Parts, Customer and Supplier,

whose schemas are defined as follows:

Sales(sp id, p id, s id, c id, sp price)

Part(p id, p name, p type, p price)

Customer(c id, c name, c age, c address)

Supplier(s id, s name, s address, s telephone)

Here, Sales is the fact table that consists of the

measurements of the sales business, whereas Part,
Customer and Supplier are its corresponding dimen-

sion tables that contain descriptive attributes of the

fact table. For decision analysts, what they are inter-

ested in is the summary information of the sp price
measure on different dimensions. Without material-

ized views, it would take a large number of calcu-

lations - such as selection, projection and aggrega-

tion - to get a result for the same query each time.

In contrast, once we have created the materialized

views, the query result is cached as a concrete table

that may be updated from the original base tables

from time to time. Whenever a query addresses the

sp price measure, we convert it into queries against

the underlying materialized tables. This enables

much more efficient access, at the extra storage cost.

We define the problem of materialized view selec-

tion as follows: how are we to select the appropriate
views to be materialized while minimizing the total
costs of queries, maintenance and storage?
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2.2. Multi-dimensional Lattice Model

Different views are unlikely to have the same prob-

ability of being request in a query. Since Hari-

narayan et al. mentioned the extension of their ba-

sic model with some weights of different views [7],

query frequencies have been commonplace in the

optimization formulations of view selection prob-

lem. In order to accurately quantify the query, main-

tenance and storage costs of materialized views, we

first build the multi-dimensional cube lattice accord-

ing to the candidate views, and then choose the ap-

propriate views to be materialized. More specif-

ically, we introduce query frequency properties in

the multi-dimensional cube lattice in order for fre-

quently accessed views to be materialized with high

priorities. For the sake of convenience, Table 1

presents the multi-dimensional lattices and their re-

lated group-by clauses for the example in the pre-

vious section. In addition, Tables 2 and 3 show the

complete SQL query statements Q1 and Q2, for the

lattice nodes of pc and p respectively.

Table 1. Lattices and their corresponding group-by clauses

No. Group-by clause Lattices

1
Part.p type, Supplier.s address,

psc
Customer.c address

2 Part.p type, Customer.c address pc

3 Part.p type, Supplier.s address ps

4
Supplier.s address, Customer.c

sc
address

5 Part.p type p

6 Supplier.s address s

7 Customer.c address c

8 Null none

From the definitions of the complete query state-

ments of pc and p, we know that if pc’s query re-

sults are materialized, the query results of p can be

obtained from pc’s corresponding materialized view,

rather than from base tables through the operations

of selection, projection and aggregation, thus im-

proving the query efficiency.

In order to build the multi-dimensional cube lat-

tice, the queries with the same group-by clause can

be resolved from the candidate view that corre-

sponds to one of the multi-dimensional lattice nodes.

Figure 1 illustrates the multi-dimensional cube lat-

tice for the example indicated in Table 1, with each

node marked with a serial number, the size of the

view and the query frequency.

Table 2. The SQL statement Q1 for Lattice pc

Q1 definition
SELECT Part.p type, Customer.c address,

SUM(Sales.sp price)

FROM Sales, Part, Customer

WHERE Sales.p id = Part.p id and Sales.c id =

Customer.c id

GROUP BY Part.p type, Customer.c address

Table 3. The SQL statement Q2 for Lattice p

Q2 definition
SELECT Part.p type, SUM(Sales .sp price)

FROM Sales,Part

WHERE Sales.p id = Part.p id

GROUP BY Part.p type

In the multi-dimensional cube lattice, there is

only one root node whose corresponding view must

be materialized beforehand. The query results for

other nodes can be gained by the materialized views

of the root node or their direct or indirect parent
nodes. Here, considering a node in a cube lattice,

the direct parent nodes refer to its directly connected

nodes in its adjacent upper layer, whereas the in-
direct parent nodes refer to its indirectly connected

nodes in all its upper nonadjacent layers. Taking the

cube lattice in Figure 1 as an example, ps and sc are

the direct parent nodes of s, whereas psc is the indi-
rect parent node of s.

Fig. 1. A Multi-dimensional cube lattice
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3. Cost Model of Materialized Views

Once the multi-dimensional cube lattice is estab-

lished, we present its cost model in order to accu-

rately quantify the query, maintenance and storage

costs of materialized views in this section.

3.1. Query Cost

The query cost of the materialized views corre-

sponding to the multi-dimensional cube lattice is de-

fined as follows:

QueryCost(Q,M) = ∑
q∈Q

fq(q)qt(q,M) (1)

in which, Q represents the candidate view set in the

multi-dimensional lattice model, M represents the

materialized view set, q represents a view query in

Q, fq(q) represents the query frequency of q, and

qt(q, M) represents q’s query cost in the case where

the materialized view set M already exists. The

value of qt(q, M) can be obtained as follows:

qt(q,M) = min
k∈(F∩M)

Size(k) (2)

Here, F represents the set of q and its direct and

indirect parent nodes in the multi-dimensional cube

lattice. Besides, Size(k) represents k’s query cost in

the case where the materialized view set M already

exists. In other words, we use the size of material-

ized view to denote the query cost on it.

3.2. Maintenance Cost

The maintenance cost of the materialized views cor-

responding to the multi-dimensional cube lattice is

defined as follows:

maintenanceCost(Q,M) =

avgq∈Q fq(q) ∑
v∈M

mt(v,M) (3)

Here, we introduce avgq∈Q fq(q), or the mean

value of the query frequency, to denote the main-

tenance frequency. Besides, mt(v,M) represents v’s

maintenance cost in the case where the materialized

view set M already exists. The value of mt(v,M) can

be obtained as follows:

mt(v,M) = min
k∈(H∩M)

Size(k) (4)

Here, H represents the set of v’s direct and indi-
rect parent nodes.

3.3. Storage Cost

The storage cost of the materialized views corre-

sponding to the multi-dimensional cube lattice is de-

fined as follows:

StorageCost(M) = ∑
v∈M

Size(v) (5)

in which, Size(v) represents v’s storage cost. In this

paper, we use the physical storage size of v as the

benchmark in measuring its storage cost.

3.4. Total Cost Measure Function

With the above cost definitions, we define the total

cost of the materialized view as follows:

TotalCost(Q,M) = QueryCost(Q,M)+

α(MaintenanceCost(Q,M)+β ·StorageCost(M))
(6)

Here, α and β represent the compensation fac-

tors, used to reasonably adjust the query, mainte-

nance and storage costs as a proportion of the total

cost. Because the value of storage cost is not in the

same order of magnitude as that of query cost and

maintenance cost, we set β as follows:

β = avgq∈Q fq(q) (7)

Besides, we set α to 0.5, meaning that the query

cost is more important than the maintenance and

storage costs within the composition of the total

cost. A possible value of α between 0.1 and 1.0

would be consistent with experience.

4. Selection of Materialized Views based on
Adaptive Genetic Algorithm

A genetic algorithm (GA) is a search heuristic that

mimics the process of natural selection [8]. The par-

allelism, self-study nature and robustness of the ge-

netic algorithm make it very effective in solving the
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combinatorial optimization problem [9]. We apply

an adaptive genetic algorithm to solve the material-

ized view selection problem. In particular, we em-

ploy the adaptive adjustment mechanism to accel-

erate the search speed and avoid premature conver-

gence.

4.1. Encoding

Encoding transforms the feasible solution from the

solution space of the problem to the searching space,

in which the genetic algorithm can deal with it. For

our approach, we use the binary coding to transform

the candidate view set of the multi-dimensional cube

lattice into an array of 0-1 integers. More specif-

ically, the node’s serial number corresponds to the

array index, whereas the value of the element deter-

mines whether the view should be materialized. The

array element with a value 1 means that its corre-

sponding view needs to be materialized, whereas 0

means not. For the multi-dimensional cube lattice

given by Figure 1, if the materialized view set M
= 1, 3, 5, 6, 7, we use the following coding array:

1 0 1 0 1 1 1 0

1 2 3 4 5 6 7 8

4.2. Population Initialization

We use a random algorithm to generate n individuals

as the initial population. For the given condition that

the root node view in the multi-dimensional cube lat-

tice must be materialized, it is necessary to assign 1

to the value of the individual’s first code element if

its initial value is 0.

4.3. Fitness Function

In a genetic algorithm, the greater the fitness of the

individual, or the coding array in our approach, the

greater the chance it goes into the next generation.

During each successive generation, the individual

with the greatest fitness in the population represents

the locally optimal solution. We adopt the reciprocal

of the materialized views’ total cost as the value of

the individual’s fitness, which is defined as follows:

Fit(x) =
1

TotalCost(Q,M)CodingArray(M)=x
(8)

4.4. Selection Operator

As a process of screening, selection retains those in-

dividuals with high fitness and eliminates those in-

dividuals with low fitness within a population. The

selection operator ps(x) that denotes the probability

of an individual x evolving to the next generation,

which can be calculated as follows:

ps(x) =
Fit(x)

∑
k∈Population

Fit(k)
(9)

Here, Population represents a group of individuals

and k represents an individual in that population.

4.5. Crossover Operator

To ‘crossover’ means to combine parent individu-

als according to certain rules and produce offspring

individuals. It generates feasible solutions to the

problem and searches the candidate solution at the

same time. In our approach, we apply a two-point

crossover as the crossover operator. An example of

a two-point crossover is shown in Figure 2, in which

we exchange the parent individuals’ code segments

separated by two randomly selected crossover points

to generate the offspring individuals.

Fig. 2. An example of a two-point crossover

Compared with one-point crossover, two-point

crossover can produce the more discrete offspring

individuals, which leads to the higher likelihood of

finding out the more optimized one.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1095



Dongjin Yu, Wensheng Dou

4.6. Crossover Probability

The crossover probability pc determines whether the

two parent individuals perform a crossover opera-

tion. The larger the crossover probability, the faster

the speed of the introduction of new individuals and

the greater the loss rate of individuals with a high

fitness. In contrast, if the crossover probability is

set too small, it may cause a search block or pre-

mature convergence. Michael Negnevitsky, in [10],

suggests that the crossover probability pc be set to

0.7 for the best result. However, a fixed value of

pc may lead to a low search efficiency or prema-

ture convergence. Unlike traditional genetic algo-

rithms, we set pc between 0.4 and 0.99 and adjust

dynamically according to the specific circumstances

of the individual fitness. The probability pc in our

approach is defined as follows:

pc =

⎧⎨
⎩

1− 1.2×Fitavg

Fitmax +Fitmin
0 <

Fitavg

Fitmax +Fitmin
< 0.5

0.4 else
(10)

in which, Fitmax, Fitmin and Fitavg represent the max-

imum, minimum and average values of individual

fitness in the population, respectively. As Formula

(10) indicates, if more than half of the individuals

have their fitness under the average value Fitavg, the

crossover probability will increase so as to introduce

new offspring as often as possible and to improve the

fitness of individuals in the population. Otherwise,

if more than half of the individuals have their fitness

above the average value Fitavg, the crossover prob-

ability will decrease. In this way, it can effectively

slow down the speed of losing individuals with high

fitness and avoid premature convergence.

4.7. Mutation Operator

Mutation changes the values of some of the genes of

individuals to increase the diversity of the popula-

tion, thus alleviating premature convergence. Since

the root view of the multi-dimensional lattice must

be materialized, we only make changes to the gene

elements of non-root views. We randomly select the

non-root view corresponding to the gene element of

the individual. If the value of a given gene element

is 1, we change it to 0. Otherwise, if the value of a

gene element is 0, we change it to 1.

4.8. Mutation Probability

The mutation probability pm determines whether the

parent individuals should perform the mutation op-

eration. Michael Negnevitsky, in [10], suggests

a small mutation probability pm which ranges be-

tween 0.001-0.01 to reflect the little chance of mu-

tation in the nature. We adopt the similar range and

expand it a little for the more likelihood of achieving

the approximately optimized result. In addition, on

the point of convergence, increasing the value of the

mutation probability pm can avoid premature con-

vergence. Otherwise, too large a mutation proba-

bility may degenerate the algorithm into a random

search algorithm. Therefore, unlike traditional ge-

netic algorithms, we define the mutation probability

pm as (11) indicates, so that it can be dynamically

resized as needed.

pm =

⎧⎪⎨
⎪⎩

0.1
Fitavg

Fitmax +Fitmin
> 0.5

0.2× Fitavg

Fitmax +Fitmin
else

(11)

4.9. Terminal Condition of Iteration

Theoretically, the genetic algorithm terminates only

when it obtains the global optimal solution to the

problem. However, this solution is usually un-

known. Therefore, it is necessary to set some ap-

proximate convergence criteria to terminate the exe-

cution of the algorithm. For our approach, we pre-

set a maximum number of iterations that are used as

the termination condition.

4.10. Adaptive Genetic Algorithm Description

The process of an adaptive genetic algorithm (AGA)

for selecting materialized views is shown in Table 4.

5. Simulation Case

In order to evaluate the correctness of the algo-

rithm and the effectiveness of its adaptive adjust-

ment mechanism, we carried out the simulation test

on Windows 7 with an Intel Core 2 Duo E7500 (CPU

2.93 GHz, RAM 2GB). We compared our algorithm,

namely AGA, with the IGA algorithm proposed in

[11] and the QAGA algorithm proposed in [12] for
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solving the problem of selecting materialized views.

The total cost of the materialized views is used as

the criterion to evaluate all three algorithms. The

IGA algorithm employs the improved traditional ge-

netic algorithms for solving the materialized view

selection problem. It increases the processing of in-

valid solutions to avoid the evolutionary stagnation.

However, the improvement mechanism of the IGA

algorithm is different from the adaptive adjustment

mechanism proposed in this paper. Meanwhile, the

QAGA algorithm considers the size and query fre-

quency of the views and employs the greedy strategy

to select top-k views, which can bring the maximum

benefit if the views are materialized. The costs of

the three algorithms for different dimension materi-

alized view selection problems are shown in Table

5, in which the figures are the averages after running

1,000 times.

Table 4. The adaptive genetic algorithm for selecting material-
ized views

input:
sp lattice: the multi-dimensional lattice

p size: the population size

max number: maximum number of iterations

output:
M: materialized view set

1 Begin

2 Initialize the population according to the

encoding rules based on sp lattice and p size
3 g number = 0

4 While (g number < max number)

5 Calculate the selection probability ps
according to Formula (9)

6 Do selection operation according to the

selection probability ps
7 Calculate the crossover probability pc

according to Formula (10)

8 Do crossover operation on the individuals

according to pc
9 Calculate the mutation probability pm

according to Formula (11)

10 Do mutation operation on the individuals

according to pm
11 g number++

12 End While

13 Decode the result and output M
14 End

As Table 5 shows, no matter whether it deals

with the low-dimensional materialized views or the

high-dimensional ones, the AGA algorithm costs

less than the QAGA algorithm. On the other hand,

it has the same cost while solving low-dimensional

materialized view selection problems as compared

with the IGA algorithm, but a lower cost with the in-

creasing scale of the problem. By comparing these

experimental results, we can conclude that using the

AGA algorithm can allow for the selection of the

appropriate views to be materialized with less total

cost.

Table 5. Comparison of the total costs of three algorithms

#D AGA IGA QAGA
3 1,028,670 1,028,670 1,439,535

4 2,652,899 2,652,899 3,075,960

5 7,231,896 7,232,532 8,238,454

6 16,169,889 16,426,069 19,173,406

7 44,156,529 44,192,042 51,577,513

8 101,802,629 102,018,521 115,399,927

Note: #D represents the number of dimensions.

In order to further verify the effectiveness of the

adaptive adjustment mechanism of the AGA algo-

rithm, we employ the AGA algorithm and the GA

algorithm to solve the eight-dimensional material-

ized view selection problem. The only difference

between the AGA algorithm and the GA algorithm

lies in the fact that the crossover probability pc
and mutation probability pm of the GA algorithm

cannot be changed once confirmed. The problem

of eight-dimensional materialized view selection in-

volves 256 candidate views. We set the population

size to 100 and the number of iterations to 500. The

iterative process of the GA algorithm and the AGA

algorithm for solving the eight-dimensional materi-

alized view selection problem is shown in Figure 3,

in which the horizontal axis represents the number

of iterations and the vertical axis represents the total

cost of the materialized views.

As Figure 3 shows, the AGA algorithm nearly

always has the fewer number of iterations than the

GA algorithm does for either one-point crossover

or two-point crossover, considering the same total

cost. As we all know, a fewer number of itera-

tions means less time, or fast speed of execution.

Therefore, we can also draw the conclusion from

Figure 3 that the search speed of AGA may be ini-
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tially slower but later on always faster than that of

GA. In other words, AGA can search steadily to

obtain the approximately optimal solution. In ad-

dition, because AGA introduces an adaptive adjust-

ment mechanism, it will speed up accordingly when

it runs too slowly. Otherwise, it will slow down

to prevent premature convergence. Figure 3 also

shows that the two-point crossover achieves the bet-

ter performance than the one-point crossover does.

Fig. 3. The iterative processes of AGA and GA algorithms

6. Implementation with Apache Hive

The Apache Hive data warehouse software facili-

tates querying and managing large datasets resid-

ing in distributed storage. Considering the advan-

tage of high efficiency, fault tolerance, and price-

performance of Hadoop and Hive systems, they are

frequently deployed as underlying platform for big

data processing. However, in real business use

cases, these data analysis applications typically in-

volve multidimensional range queries [13]. While

Hive is high-performance at complex data batch

reading and analysis, it lacks the support of mate-

rialized view, one of the enablers of efficient multi-

dimensional queries.

In order to make Hive process high volumes of

data in an efficient way, we incorporated our ap-

proach into Apache Hive to support the view ma-

terialization. We constructed a five-node cluster,

in which each node was configured with a four-

core CPU of 2.66 GHz and 4GB memory. We

used hadoop-1.2.1 as the underlying Map/Reduce

and distributed storage framework, and hive-0.10.0

as the target data warehouse. The experimental

data are the sales records of lotions from the well-

known e-commerce companies, which can be down-

loaded from http://www.datatang.com/data/45764.

In order to acquire the enough amounts, we

simply extended the original 3-day records to

one-month records by random. Table 6 shows

the scheme and some sample sales records.

Fig. 4. The full multi-dimensional cube lattice for sales

records

Fig. 5. The partial multi-dimensional cube lattice for sales

records

During the experiment, we queried the sums of

sales value with the groups of brands, selling date,

seller, ID and the combination of above four. The

experiment was continued for 5 rounds, each query-

ing 80 times with the predefined grouping frequency.

Figure 4 presents the full multi-dimensional lattice

model, whereas Figure 5 just shows its partial one,
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Table 6: Sales records: the scheme and the sample records
Brad Selling date Seller Price Volume ID URL

@nature 2013-10-20 Taobao 33.59 1 TB2469686929 htpp:// · · ·
@nature 2014-03-18 Jingdong 31.99 2 JD1298985434 htpp:// · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

which is closer to the real situations. The grouping

frequencies, denoted by Frq in Figure 4 and 5 are

given according to those in the real cases.

Figure 6 shows the time of 80 queries in seconds

for the cases of Not Materialized, All Materialized,
Randomly Materialized and Materialized based on
our approach (AGA).Since the root cuboid is em-

ployed to compute the results for the random non-

group-by queries, it is always being materialized. In

other words, not materialized here just refers to all

non-root cuboids.

Fig. 6. The time in seconds of 80 queries for different ma-

terialized methods with Apache Hive

Figure 7 presents the cost for the cases of Not
Materialized, All Materialized, Randomly Materi-
alized and Materialized based on our approach
(AGA), using the full lattice model, whereas Figure

8 illustrates the cost using the partial lattice model.

From both figures, we can find that our approach in-

curs the less total cost although its maintaining cost

is not reduced considerably. However, the largest

maintenance cost in Figure 8 is ascribed to Random
Materialized 3, but not All Materialized. The rea-

son is as follows: If multiple nodes have the same

direct parent node which has not yet been mate-

rialized, maintaining these nodes would inevitably

re-compute their indirect parent nodes for multiple

times, thus increasing the total maintenance cost. In

other words, the maintenance cost for All Material-
ized is not certainly the largest.

Fig. 7. The cost of different materialization methods with

Apache Hive using full lattice model

Fig. 8. The cost of different materialization methods with

Apache Hive using partial lattice model

In order to further investigate how α in (6) im-
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pacts on our approach, we set α to different values

between 0.1 and 1.0. As Figure 9 illustrates, the re-

sults of comparison are similar no matter how α is

set, because the same cost model is employed. Here,

a smaller α means we care much more about the

query cost. An α of 0 simply means that we care

about only the query cost, but no the maintenance

and storage costs. Figure 9 also shows the query

speed decreases with the growth of α , which is con-

sistent with our cost model.

Fig. 9. The impact of α on the time of 80 queries in sec-

onds on partial model with Apache Hive

7. Related Work

To make virtual views materialized enables much

more efficient access, at the cost of extra data stor-

age and some data being potentially out-of-date. It

is most useful in data warehousing scenarios, where

frequent queries of the actual base tables can be ex-

pensive. During the last decades, researchers have

proposed many different approaches to the selection

of the appropriate views to be materialized [14].

Venky Harinarayan et al. first define a data cube

lattice of the materialized view selection problem

[7]. They propose a greedy algorithm based on a

data cube lattice which achieves good performance.

Chuan Zhang et al. first utilize a genetic algorithm to

solve the materialized view selection problem. They

argue that the genetic algorithm is more practical

and efficient than other heuristic algorithms [15]. In

addition, Zhou et al. present an improved genetic

algorithm, i.e., IGA, to solve the materialized view

selection problem under query cost constraints [11].

IGA can avoid the evolutionary stagnation generated

by invalid cycles, thus greatly improving the effi-

ciency of the materialized view selection. However,

it is unlikely to achieve the similar convergence re-

sults if repeating the evolving process for multiple

times, because both the crossover probability and

mutation probability of IGA are set too big. In ad-

dition, IGA does not employ the greedy strategy,

which our approach does. Therefore, it is possible

to have a decreased fitness during the evolving pro-

cess and thus fails to converge to a steady result. The

QAGA algorithm, proposed by Kumar and Haider in

[12], takes the views query frequency into account.

The materialized view obtained by the QAGA algo-

rithm is said to have a higher query frequency in the

practical situation. However, the QAGA algorithm

does not consider the storage and maintenance costs.

Besides, Xin Li et al. propose a novel Shuffled Frog

Leaping (SFL) algorithm for materialized view se-

lection [16]. Experimental results on the TPC-D

benchmark data sets show that their proposed algo-

rithm out-performs other well-known algorithms in

terms of total maintenance costs and query response

times. Badmaeva presents an algorithm on the ba-

sis of the data domain information for the material-

ized view selection problem [17]. Its advantage is in

supporting the administrator by a proactive method

to select the proper views to be materialized in the

evolution process of the data warehouse.

As for the cost model of materialized views,

there are also many researches presented in the lit-

erature. For instances, in [18], Talebian and Ka-

reem introduce how to measure the query cost of

the materialized views corresponding to the multi-

dimensional lattice model. In [19], Lawrence

presents the cost model for materialized view stor-

age, while, in [20], Wang and Zhang discuss the

storage cost. Most existing metric models, such as

SCVSP [21], MCVSP [21] and MMVSP [1], in-

clude the constraints on storage space or update cost.

Our proposed model however does not consider the

constraints. Instead, we just include and try to min-

imize the storage space and update cost in addition

to the query time in the objective function itself. We

think that the introduction of constraints would bring

about the difficulties or unfairness during the exper-

iments for comparisons, simply because the actual

constraints are arbitrary and thus really hard to be
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reasonably determined. Compared with UVSP, pre-

sented by Harinarayan et al. in [7], which simply

minimizes the query and update time, our model

considers the query cost, update cost and storage

cost and integrates these costs on the same order of

magnitude for a more comprehensive one.

Apache Hive is a widely used data warehouse

system for Apache Hadoop, and has been adopted

by many organizations for various big data analytics

applications. In order to make Hive process increas-

ingly high volumes data in a scalable and efficient

way, Huai et al. aim to maximize the effective stor-

age capacity and to accelerate data accesses to the

data warehouse by updating the existing file formats

[22]. They also improve cluster resource utilization

and runtime performance of Hive by developing a

highly optimized query planner and a highly effi-

cient query execution engine. Although HiveQL of-

fers similar features with SQL, it is still difficult to

map complex SQL queries into HiveQL and man-

ual translation often leads to poor performance. Xu

et al. developed a tool named QMapper to address

this problem by utilizing query rewriting rules and

cost-based MapReduce flow evaluation on the basis

of column statistics [23]. Indexing techniques are

crucial for efficiency and scalability of processing

queries over big data. In [24], Mofidpoor et al. pro-

pose an index-based join technique to speed up the

process and integrate it in Hive by mapping their de-

sign to the conceptual optimization flow. To the best

of our knowledge, however, the researches of Hive-

based materialized views have not yet been carried

out. In other words, we are the first to study the strat-

egy of selecting views to be materialized for Apache

Hive.

8. Conclusion

Evaluation results indicate that Apache Hive

achieves acceptable performance for some data anal-

ysis tasks even compared with some high efficient

distributed parallel databases. Nevertheless, it needs

subtle adjustments of underlying storage facilities

and indexing mechanism [25]. In this paper, we

propose a novel approach to the selection of ma-

terialized views based on an adaptive genetic algo-

rithm. It selects the appropriate views to be materi-

alized for a locally minimized total cost. The exper-

iment with Apache Hive verifies the appropriateness

of the approach and the effectiveness of the adap-

tive adjustment mechanism. Its major contributions

are as follows: (1) It establishes the metric model

that integrates the total cost of the querying, mainte-

nance and storage of materialized views, which can

be used to measure the fitness of the individual in

the adaptive genetic algorithm. (2) Different with

our previous work in [26], it allows for the dynamic

adjustment of the crossover probability and mutation

probability, so as to accelerate the running speed and

avoid premature convergence. (3) To the best of our

knowledge, we present the first implementation of

materialized views for Apache Hive in the literature.

Currently, we only focus on solving the problem

of selecting materialized views effectively. How-

ever, for practical situations, keeping the material-

ized views updated is also a problem that needs to be

solved. In the future, we will investigate approaches

to the maintenance of existing materialized views at

a minimal cost.
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