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Abstract: Geoacoustic parameter inversion is a crucial issue in underwater acoustic research for
shallow sea environments and has increasingly become popular in the recent past. This paper
investigates the geoacoustic parameters in a shallow sea environment using a single-receiver
geoacoustic inversion method based on Bayesian theory. In this context, the seabed is regarded as
an elastic medium, the acoustic pressure at different positions under low-frequency is chosen as the
study object, and the theoretical prediction value of the acoustic pressure is described by the Fast Field
Method (FFM). The cost function between the measured and modeled acoustic fields is established
under the assumption of Gaussian data errors using Bayesian methodology. The Bayesian inversion
method enables the inference of the seabed geoacoustic parameters from the experimental data,
including the optimal estimates of these parameters, such as density, sound speed and sound speed
attenuation, and quantitative uncertainty estimates. The optimization is carried out by simulated
annealing (SA), and the Posterior Probability Density (PPD) is given as the inversion result based on
the Gibbs Sampler (GS) algorithm. Inversion results of the experimental data are in good agreement
with both measured values and estimates from Genetic Algorithm (GA) inversion result in the same
environment. Furthermore, the results also indicate that the sound speed and density in the seabed
have fewer uncertainties and are more sensitive to acoustic pressure than the sound speed attenuation.
The sea noise could increase the variance of PPD, which has less influence on the sensitive parameters.
The mean value of PPD could still reflect the true values of geoacoustic parameters in simulation.
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1. Introduction

In shallow sea environments, sound propagation is usually constrained and significantly affected
by the geoacoustic parameters such as density, sound speed, and sound speed attenuation in the sea
bottom [1]. The recent importance of study on acoustic problems in shallow sea has magnified the
requirement for correct geoacoustic parameter estimates [2]. To obtain the sea bottom geoacoustic
parameters, there are two methods. One uses the kinds of samplers to get the sea bottom properties
directly, the other uses the acoustic signals to invert for these properties based on the sea bottom
information implicitly carried in the signals, known as geoacousitc inversion. Furthermore, compared
to the method of direct measurement, using acoustic signals to invert geoacoustic parameters are more
efficient, and have attracted wide research interest over the past decade [3–8].

Nowadays, there are two ways to obtain marine environmental parameters. One is direct
measurement, including on-site measurement and post-sampling analysis. The other method is
acoustic inversion. Figure 1a,b show the on-site measurement and geoacoustic parameters inversion
respectively. Compared with direct measurement, the acoustic inversion method can obtain the
acoustic parameters quickly and efficiently, and avoid the waste of manpower and material resources.

Sensors 2019, 19, x FOR PEER REVIEW 2 of 20 

 

 

In shallow sea environments, sound propagation is usually constrained and significantly 
affected by the geoacoustic parameters such as density, sound speed, and sound speed attenuation 
in the sea bottom [1]. The recent importance of study on acoustic problems in shallow sea has 
magnified the requirement for correct geoacoustic parameter estimates [2]. To obtain the sea bottom 
geoacoustic parameters, there are two methods. One uses the kinds of samplers to get the sea bottom 
properties directly, the other uses the acoustic signals to invert for these properties based on the sea 
bottom information implicitly carried in the signals, known as geoacousitc inversion. Furthermore, 
compared to the method of direct measurement, using acoustic signals to invert geoacoustic 
parameters are more efficient, and have attracted wide research interest over the past decade [3–8]. 

Nowadays, there are two ways to obtain marine environmental parameters. One is direct 
measurement, including on-site measurement and post-sampling analysis. The other method is 
acoustic inversion. Figure 1(a) to 1(b) show the on-site measurement and geoacoustic parameters 
inversion respectively. Compared with direct measurement, the acoustic inversion method can 
obtain the acoustic parameters quickly and efficiently, and avoid the waste of manpower and 
material resources. 

 

  
(a) (b) 

Figure 1. (a) On-site measurement, (b) Geoacoustic parameters inversion. 

Past studies revealed that geoacoustic inversion is mainly based on data measured by Vertical 
Linear Array (VLA) or Horizontal Linear Array (HLA). The sea bottom was usually regarded as a 
liquid medium, which only considers three geoacoustic parameters, namely, the compression wave 
(P-wave) speed, the density of the sea bottom, and P-wave speed attenuation. Most of these studies 
used the optimize methods such as Genetic Algorithm (GA) and Simulated Annealing (SA), etc., to 
solve the cost functions and thus get the optimal solution. But in practical application, a VLA or HLA 
carries a high computational cost, and the accuracy of the measured data can be affected greatly by 
the array shape, which is influenced by ocean currents and storms [9]. Therefore, more and more 
geoacoustic inversion based on low-frequency sound propagation characteristics have been 
proposed, and these methods greatly reduce the cost and complexity for recording systems in 
measurement [10–13]. However, the sea bottom was still set like a liquid medium. It has been proved 
that, when the low-frequency acoustic signal propagating in a shallow sea, the influence of shear 
wave (S-wave) in the bottom cannot be ignored [14], the sea bottom should be set as an elastic 
medium. 

In addition, the geoacousitc inversion is typically a highly nonlinear, multi-parameter, and 
multi-optima inversion problem. There is usually not a single optimal solution due to the 
measurement and calculation errors. The inversion results of traditional optimize methods are all 
prone to being trapped by local minima, can only determine the best-fit model and not provide 
quantitatively nonlinear uncertainty estimation of the awaiting inversion parameters. In recent years, 
the Bayesian inversion method underwent considerable development and significantly contributed 

Figure 1. (a) On-site measurement, (b) Geoacoustic parameters inversion.

Past studies revealed that geoacoustic inversion is mainly based on data measured by Vertical
Linear Array (VLA) or Horizontal Linear Array (HLA). The sea bottom was usually regarded as a liquid
medium, which only considers three geoacoustic parameters, namely, the compression wave (P-wave)
speed, the density of the sea bottom, and P-wave speed attenuation. Most of these studies used the
optimize methods such as Genetic Algorithm (GA) and Simulated Annealing (SA), etc., to solve the cost
functions and thus get the optimal solution. But in practical application, a VLA or HLA carries a high
computational cost, and the accuracy of the measured data can be affected greatly by the array shape,
which is influenced by ocean currents and storms [9]. Therefore, more and more geoacoustic inversion
based on low-frequency sound propagation characteristics have been proposed, and these methods
greatly reduce the cost and complexity for recording systems in measurement [10–13]. However, the
sea bottom was still set like a liquid medium. It has been proved that, when the low-frequency acoustic
signal propagating in a shallow sea, the influence of shear wave (S-wave) in the bottom cannot be
ignored [14], the sea bottom should be set as an elastic medium.

In addition, the geoacousitc inversion is typically a highly nonlinear, multi-parameter, and
multi-optima inversion problem. There is usually not a single optimal solution due to the measurement
and calculation errors. The inversion results of traditional optimize methods are all prone to being
trapped by local minima, can only determine the best-fit model and not provide quantitatively nonlinear
uncertainty estimation of the awaiting inversion parameters. In recent years, the Bayesian inversion
method underwent considerable development and significantly contributed to estimating bottom
properties and their uncertainties based on a Bayesian formulation [15–19]. The Bayesian inversion
method is a global optimization algorithm based on the probability theory, applied mathematics,



Sensors 2020, 20, 2150 3 of 19

and optimization theory. It can efficaciously estimate Maximum Posterior Probability (MAP) model
parameters, and then qualitatively and quantitatively analyze the uncertainty of parameter inversion
results from a statistical perspective.

To close the gap, an effort has been made in this study to develop an inversion method for
geoacoustic parameters by using a single acoustic sensor based on Bayesian theory. The significant
impact from the elastic sea bottom on the low-frequency sound propagation in the shallow sea can
be used to inference the geoacoustic parameters. According to Gibbs Sampler (GS) algorithm, the
Posterior Probability Densities (PPDs) of five geoacoustic parameters, including the P-wave speed,
S-wave speed, the density of the sea bottom, P-wave speed attenuation, and S-wave speed attenuation
are given as the inversion results. Further, the effectiveness of this method is verified by the simulation
analysis and an anechoic tank experiment. Before verification, the sound propagation characteristics
were analyzed, which corresponded to the inversion result. For further confirmation, the Transmission
Loss (TL) and the time domain diagram were compared, respectively, which include the measured
results and the simulation results. The comparison shows that measured results are consistent with
simulation results, which proves the reliability of the inversion method.

This paper is organized as follows: the prediction model of the underwater acoustic-field is
described in Section 2 based on Pekeris waveguide. In Section 3.1 the inversion method based on
Bayesian theory is introduced. The cost function is established by measuring sound pressure and
the prediction sound pressure and presented in Section 3.2. The analysis of sound propagation
characteristics is given in Section 4.1 followed by the inversion parameter’s sensitivity and inversion
results of simulation data (simulated in the noiseless and noisy sea environment) in Section 4.2 and
Section 4.3 respectively. The scaling experiment carried out in the laboratory is introduced in Section 5.1
followed by the procedure of the scaling experiment in Section 5.2. The inversion results of the scaling
experiment and verification of the results are presented in Sections 5.3 and 5.4, respectively. Finally,
conclusions are given in Section 6.

2. Prediction Modeling of a Shallow Sea Acoustic Field

The S-wave of the seabed has a significant impact on the propagation of low-frequency acoustic
signals in the shallow sea environments. The environment model in this study is developed based
on Pekeris waveguide [20], and the seabed is regarded as an N-layered elastic medium. A schematic
diagram of the waveguide model is shown in Figure 2. The z-axis indicates the depth of the sea, and
the r-axis represents the propagation direction of acoustic signals. As shown in the figure, ϕ1, ϕpn,
and ψsn are the displacement potential function in the water column, P-wave displacement potential
function, and S-wave displacement potential function in the layered seabed, respectively. ρ1 and c1 are
the density and sound speed in the water column. ρbn, cpn, and csn are the density, compression wave
(P-wave) speed, and shear wave (S-wave) speed, respectively, of the n layer of seabed, αpn and αsn

represent the attenuation of P-wave and S-wave, respectively; these five parameters in each layer of
seabed are the expected inversion objects in this study. Moreover, zs is the depth of the point acoustic
source, z = 0 and z = H are set as the sea surface and seabed in the model.

According to the wave theory, in the frequency domain, the displacement potential functions of
each layer in Figure 2 satisfy the following equations:

1
r
∂
∂r

(
r
∂ϕ1

∂r

)
+
∂2ϕ1

∂z2 + k2
1ϕ1= −4πδ(r, z−zs), 0 ≤ z <H1 (1)

 1
r
∂
∂r

(
r
∂ϕpn
∂r

)
+

∂2ϕpn

∂z2 + k2
pnϕpn = 0

∇×∇×ψsn − k2
snψsn = 0

, Hn ≤ z <Hn+1 , n ≥ 1 (2)

 1
r
∂
∂r

(
r
∂ϕpN
∂r

)
+

∂2ϕpN

∂z2 + k2
pNϕpN = 0

∇×∇×ψsN − k2
sNψsN = 0

, z ≥ HN (3)
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where δ(r, z) is the source function, kmn=ω/cm (m=1,p,s and n=1 . . . N) is the wave number of each layer
and ω=2πf 0 is the angular frequency of the point acoustic source at f 0.
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The general solutions of Equations (1)–(3) can be expressed as follows:

ϕ1(r, z,ω) =

∞∫
0

Z1(z, ξ,ω)J0(ξr)ξdξ, Z1(z, ξ,ω) =

A · sin βz 0 ≤ z <zs

B · sin β1z + C · cos β1z zs< z <H1
(4)


ϕpn(r, z,ω) =

∞∫
0

Zpn(z, ξ,ω)J0(ξr)ξdξ

ψsn(r, z,ω) =
∞∫
0

Zsn(z, ξ,ω)J1(ξr)ξdξ
,
{

Zpn(z, ξ,ω) = Pup
n e−iβpnz + Pdown

n eiβpnz

Zsn(z, ξ,ω) = Sup
n e−iβsnz + Sdown

n eiβsnz Hn ≤ z <Hn+1 , 1 ≤ n < N (5)


ϕpN(r, z,ω) =

∞∫
0

ZpN(z, ξ,ω)J0(ξr)ξdξ

ψsN(r, z,ω) =
∞∫
0

ZsN(z, ξ,ω)J1(ξr)ξdξ
,
{

ZpN(z, ξ,ω) = PNeiβpNz

ZsN(z, ξ,ω) = SNeiβsNz z ≥ HN (6)

where βmn =
√

k2
mn − ξ2 (m = 1,p,s and n = 1 . . . N), ξ is the horizontal wavenumber, J0 and J1

are the first order and second-order Bessel functions, respectively, and A, B, C, Pn and Sn are the
indeterminate coefficients of the potential functions in each layer, the high mark ‘up’ and ‘down’ are
used to representative the upgoing waves and downgoing waves in these potential functions. In the
water column, the relationship between sound pressure p and potential function ϕ1 is p =ρ1ω2ϕ1.

Based on the point source condition, the boundary conditions on the fluid/solid interface for
H1 (continuous normal displacement, continuous normal stress, and zero tangential stress) and
Hn+1(continuous normal displacement, continuous normal stress, continuous tangential displacement,
and continuous tangential stress), the relationship between these coefficients can be written as a
(4N+1)th order matrix equations, which is shown in Equation (7).(

ai j
)
(4N+1)×(4N+1)

·

(
bi j

)
(4N+1)×1

=
(
ci j

)
(4N+1)×1

N ≥ 1 (7)
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The various indeterminate coefficients, such as A, B, C, Pn and Sn, can be solved by (bij) (4N+1) ×1 =

[(aij)(4N+1) ×(4N+1)]−1. (cij) (4N+1) ×1. Substituting bij into Equations (4)–(6) further result in the potential
functions in each layer. When replacing the coefficients in Equations (4)–(6), the expressions of
displacement potential function in Figure 2 can be obtained. The expressions of sound pressure p in
the water column, as the study object in inversion, can also be obtained with Equation (8).

p(r, z,ω) = ρ1ω
2

∞∫
0

Z1(z, ξ,ω)J0(ξr)ξdξ (8)

p
(
r j, z,ω

)
=

S(ω)ρ1ω2∆ξ
√

2πr
ei(ξminr j−

π
4 )

Ns−1∑
l=0

[
Z1(z,ξl)e

irminl∆ξ
√
ξl

]
ei 2πl j

Ns (9)

ξl = ξmin + l∆ξ, l = 0, 1, 2, . . . , (NS−1), rj = rmin + j∆r, j = 0, 1, 2, . . . , (NS−1), ∆r · ∆ξ = 2π/NS.
For the integral term of sound pressure in Equation (8), the Fast Field Method (FFM) considers the

impact of lateral waves in the calculation and can measure the sound pressure easily and reliably [21].
It is chosen to describe the p for inversion in this study. It first discretizes the horizontal wavenumber ξ
and the propagation distance r of Equation (9), and then the integral term is solved directly by using
Fast Fourier Transform (FFT) [22].

3. Inversion Method

3.1. Bayesian Inversion Theory

Set the experiment measured data vector as d with elements di, and let m represent the model
vector composed of the awaiting inversion geoacoustic parameters mi. Both di and mi are considered
random variables that are related via Bayes’ rule [23]

P(m |d ) = P(d |m )P(m)/P(d) (10)

The P(m|d) is the posterior probability density (PPD). P(d|m) is the conditional probability density
function (PDF) of m under given d, P(m) is the prior PDF of m and representing the available parameter
information independent of the data d, P(d) is the PDF of d. As the P(d) is independent of m, and the
P(d|m) can be regarded as the likelihood function L(d|m) for the measured data [23], the Equation (10)
can be written as:

P(m |d ) ∝ L(m)P(m) (11)

The L(m) is determined by the form of the data and the statistical distribution of the data errors,
including both measurement and model errors. Considering that it is difficult to obtain an independent
estimate of the error statistics in practice, the assumption of unbiased Gaussian errors is used in
processing, the form of the likelihood function is

L(m) = P(d |m ) ∝ exp[−E(m)] (12)

where E(m) is the cost function. After normalizing

P(m |d ) =
exp[−E(m)]P(m)∫

exp[−E(m′)]P(m′)dm′
(13)

The integration domain spans an M-dimensional parameter space, M is the number of awaiting
inversion parameters.

In Bayesian theory, the posterior probability density (PPD) of m can be regarded as the inversion
results. To interpret the M-dimensional PPD requires us to estimate the properties of the parameter
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value, uncertainties, and inter-relationships, such as the MAP model m̂, mean model m and marginal
probability distributions P(mi|d). These properties are respectively defined as:

m̂ = Argmax
{
P(m |d )

}
(14)

m =

∫
m
′

P(m
′
∣∣∣d)dm

′

(15)

P(mi|d) =
∫
δ(mi −mi

′)P(m
′
∣∣∣d)dm

′

(16)

3.2. Cost Function

A sufficient cost function is necessary to evaluate the geoacoustic parameters using the Bayesian
inversion method. Via Bayes’ rule, the cost function is developed based on the likelihood function
L(m)under the assumption of the Gaussian data errors [24].

L(m) =
F∏

f=1

1

πK
∣∣∣∣C f

m

∣∣∣∣ exp
{
−

[
p f

mea − p f
pre(m )]

T
(C f

m)
−1[

p f
mea − p f

pre(m )]
}

(17)

where p f
mea(m) presents the measured sound pressure data at Kreceive positions by a single sensor

under the f th frequency, p f
pre(m) and C f

m respectively present the model prediction sound pressure
data and the covariance matrix under the same condition.

Consider the model prediction sound pressure p f
pre(m) can be expressed as:

p f
pre(m) = A f eiθ f p f

FFM(m) (18)

where p f
FFM(m) is the sound pressure computed via the FFM, Af and θf is the magnitude and phase of

the unknown complex source at each frequency. To remove the dependence on Af and θf by setting the
∂L(m)/∂A f = ∂L(m)/∂θ f = 0 [25], the maximum likelihood solution of the source is

A f eiθ f
=

[
p f

FFM(m)
]∗

p f
mea∣∣∣∣p f

FFM(m)
∣∣∣∣2 (19)

where * denotes the conjugate transpose.
Ignoring the spatial correlation of the data, the common approximation of diagonal covariance

C f
m = v f I, where vf is the unknown variance at the f th frequency and I is the identity matrix, the

L(m)can be simplified written as:

L(m) =
F∏

f=1

1

(πν f )
K exp

−
B f (m)

∣∣∣∣p f
mea

∣∣∣∣2
ν f

 (20)

where Equation (20) represents the normalized Bartlett disqualification:

B f (m) = 1−

∣∣∣∣[p f
FFM(m)

]∗
p f

mea

∣∣∣∣2∣∣∣∣p f
mea

∣∣∣∣2∣∣∣∣p f
FFM(m)

∣∣∣∣2 (21)
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To obtain a maximum-likelihood estimate of the data variance by setting the ∂L(m)/∂v f = 0,
the maximum likelihood solution of the variance estimate is:

ν̂ f =
B f (m)

∣∣∣∣p f
mea

∣∣∣∣2
K

(22)

Substituting Equation (22) into Equation (20) and Equation (12), the cost function E(m) becomes

E(m) = K
F∑

f=1

In
[
B f (m)

∣∣∣∣p f
mea

∣∣∣∣2] (23)

where the Maximum Posterior Probability model m̂ for measured data with unknown variances can be
found by minimizing the E(m), using a global optimization scheme.

As can be seen from Figure 3, in the research, the simulated annealing (SA) is used to optimize
the m̂ of expecting geoacoustic parameters from Equation (23). The Gibbs sampler (GS) algorithm
is applied to compute the PPD moments as defined in Equations (10)–(13), and the sample model
is accumulated by SA at temperature T = 1 [26]. In Section 5, the genetic algorithm (GA) is also
used to optimize the m̂, which is regarded as a compression to verify the inversion method proposed
in this paper. For SA settings, the starting T0 = 100, cooling rate ξ = 0.99, the number of samples
n = 10000, and the type of perturbation is non-uniform. For GA settings, the population of each
generation is pop = 1000, the type of coding is binary coding, the maximum generation is 100, the type
of selection is roulette wheel selection, the cross-over rate is 0.95, and the mutation rate is 0.05. GS
settings corresponded to the SA settings. A block diagram of the research is shown in Figure 3.
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4. Simulation Results

Considering the shallow sea environment, where the seabed is regarded as a semi-infinite elastic
medium, the following research is conducted based on the model with a 1-layered elastic bottom. In
this model, the inversion objects are five geoacoustic parameters, namely, the P-wave speed cp, S-wave
speed cs, the attenuation coefficient for the two speeds αp and αs, and seabed density ρb. The true
values of waveguide parameters in the simulation are presented in Table 1.
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Table 1. The simulation parameters of ocean environment.

Parameters Simulated Value

Depth H/m 100
Sound speed c1/m·s−1 1500

Sea-water density ρ1/ g·cm−3 1.025
P-wave speed cp/m·s−1 2000
S-wave speed cs/ m·s−1 1000

Seabed density ρb/g·cm−3 1.5
P-wave attenuation αp/dB·λ−1 0.5
S-wave attenuation αs/ dB·λ−1 0.5

4.1. The Analysis of the Acoustic Propagation Characteristics

In a simulation, the transmission loss (TL) was chosen to reveal the change of acoustic propagation
characteristics, and the TL is defined as Equation (24).

TL = 20lg

∣∣∣∣∣∣∣p
(
r j, z,ω

)
pre f

∣∣∣
r=1m

∣∣∣∣∣∣∣, pre f =
eikr

r
(24)

where the p(rj, z, ω) was calculated by Equation (22).
Figure 4 reveals the comparison results of the TL under different geo-acoustic parameters in the

simulation. Figure 4a to Figure 3e show the influence of cp, cs, ρb, αp, and αs on acoustic propagation
separately. The changing values of each parameter were set to the simulation true value deviation
±10%; when one of the above parameters changed, the other parameters remained fixed. In Figure 4a–e,
the solid blue line represents the calculation results under the simulated true values, where the dotted
black line and the dashed red line indicate the calculation results under the changing values. Figure 4f
revealed the comparison of TLs’ anomalies when the value of each parameter was changed, and the
change bounds were set between −10% to +10% of the true value [27].
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It can be deduced from Figure 4a–e that the change of five parameters has a different impact on the
acoustic propagation characteristics. Keeping the other simulation conditions fixed, the Transmission
Loss (TL) changes the most when the cp and cs are varied. When ρb changes, the variation in the
Transmission Loss (TL) is relatively prominent. When the αp or αs is changed, the variation in the
Transmission Loss (TL) is the least obvious. The anomaly values of the five parameters in Figure 4f
reveal that, in the discus bounds, these parameters are in the descending order of degree of influence
on TL are cp, cs, ρb, αp, and αs. In this situation, the influence order of degree of five parameters on
acoustic propagation characteristics can be preliminarily summarized as: cp>cs>ρb>αp>αs.

4.2. The Analysis of the Inversion Parameters’ Sensitivity

Using the simulation environmental conditions, as mentioned above, Figure 5a–e respectively
represent the numerical variations of the cost function E(m) with the change of a single parameter. In
each search bound of the parameter, E(m) touches the minimum value only at the true simulated value
of the parameter, which can avoid the impact of the local optimum solution on the optimization of the
cost function in the subsequent algorithm. Nonetheless, with the change of those five parameters, the
range of E(m) variation is different. It can be seen from Figure 5f, that within the search bounds of five
parameters, the parameters are in the descending order of degree of influence on E(m) are cp, cs, ρb, αp

and αs. Therefore, the influence order of the degree of five geoacoustic parameters on p(r, z) can be
defined as: cp > cs > ρb > αp > αs. This further verifies our results discussed in Section 4.1.
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4.3. The Inversion Results

In this section, based on the research basis in Sections 4.1 and 4.2, the feasibility and reliability of
the inversion method are discussed with simulation. The focus of discussion is the application effect of
the inversion method in noisy shallow sea environment. It can be seen from the literature [28], that the
energy spectrum level of the noise in shallow sea could be −40 dB (0dB@1Pa), the energy spectrum
level in simulation is set as −40 dB.

Figures 6 and 7 show the PPDs of the five geoacoustic parameters in the noiseless and noisy sea
environment respectively. In each figure, the vertical axis represents the probability, and true value
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means the simulated value indicated by the red line. The mean value and variance of inversion results
are represented by the green segment in which the mean value is shown at the middle of the segment.
The length of the green segment reflects the variance of each parameter.

Sensors 2019, 19, x FOR PEER REVIEW 10 of 20 

 

 

   
(a) cp (b) cs (c) ρb 

   
(d) αp (e) αs (f) Comparison 

 

Figure 5. The sensitivity of the cost function (E(m)) for the five geoacoustic parameters. (a) to 
(e)corresponds to the cp, cs, ρb, αp, and αs, respectively. (f) corresponds to the comparison of five 
parameter’s influence on E(m). 

4.3. The Inversion Results 

In this section, based on the research basis in Section 4.1 and 4.2, the feasibility and reliability of 
the inversion method are discussed with simulation. The focus of discussion is the application effect 
of the inversion method in noisy shallow sea environment. It can be seen from the literature [28], that 
the energy spectrum level of the noise in shallow sea could be -40 dB (0dB@1Pa), the energy spectrum 
level in simulation is set as -40 dB. 

Figure 6 and Figure 7 show the PPDs of the five geoacoustic parameters in the noiseless and 
noisy sea environment respectively. In each figure, the vertical axis represents the probability, and 
true value means the simulated value indicated by the red line. The mean value and variance of 
inversion results are represented by the green segment in which the mean value is shown at the 
middle of the segment. The length of the green segment reflects the variance of each parameter. 

(a) cp (b) cs (c) ρb 

Sensors 2019, 19, x FOR PEER REVIEW 11 of 20 

 

 

(d) αp (e) αs 

Figure 6. Five geo-acoustic parameters’ Posterior Probability Density (PPD) in the noiseless sea 
environment. The red lines mean the true value of each parameter in simulation. The green segments 
represent the mean value of the inversion results and their variance. 

(a) cp (b) cs (c) ρb 

(d)αp (e) αs 

Figure 7. Five geo-acoustic parameters’ PPD in the noisy sea environment. The red lines mean the 
true value of each parameter in simulation. The green segments represent the mean value of the 
inversion results and their variance. 

It can be inferred that, in simulation, the maximum value of the probability density of each 
parameter is near to its true value, and the sharpness of the probability density curve shows the 
sensitivity of the cost function to each parameter: cp, cs>ρb>αp and αs (Figures 6-7). Further, the results 
are lining with the findings presented in Sections 4.1 and 4.2. Comparing Figure 6 and Figure 7, we 
can find that for the same parameter the PPD in Figure 7 is wider. 

The marginal probability distribution between two parameters is presented in Figures 8-9, which 
shows the uncertainty of different parameters. The true value of each parameter in the simulation is 
indicated with a white dashed line. It can be seen clearly from the figures that all the true values are 
close to the highest probability of PPD. 

 

Figure 6. Five geo-acoustic parameters’ Posterior Probability Density (PPD) in the noiseless sea
environment. The red lines mean the true value of each parameter in simulation. The green segments
represent the mean value of the inversion results and their variance.

Sensors 2019, 19, x FOR PEER REVIEW 11 of 20 

 

 

(d) αp (e) αs 

Figure 6. Five geo-acoustic parameters’ Posterior Probability Density (PPD) in the noiseless sea 
environment. The red lines mean the true value of each parameter in simulation. The green segments 
represent the mean value of the inversion results and their variance. 

(a) cp (b) cs (c) ρb 

(d)αp (e) αs 

Figure 7. Five geo-acoustic parameters’ PPD in the noisy sea environment. The red lines mean the 
true value of each parameter in simulation. The green segments represent the mean value of the 
inversion results and their variance. 

It can be inferred that, in simulation, the maximum value of the probability density of each 
parameter is near to its true value, and the sharpness of the probability density curve shows the 
sensitivity of the cost function to each parameter: cp, cs>ρb>αp and αs (Figures 6-7). Further, the results 
are lining with the findings presented in Sections 4.1 and 4.2. Comparing Figure 6 and Figure 7, we 
can find that for the same parameter the PPD in Figure 7 is wider. 

The marginal probability distribution between two parameters is presented in Figures 8-9, which 
shows the uncertainty of different parameters. The true value of each parameter in the simulation is 
indicated with a white dashed line. It can be seen clearly from the figures that all the true values are 
close to the highest probability of PPD. 

 

Figure 7. Five geo-acoustic parameters’ PPD in the noisy sea environment. The red lines mean the true
value of each parameter in simulation. The green segments represent the mean value of the inversion
results and their variance.



Sensors 2020, 20, 2150 11 of 19

It can be inferred that, in simulation, the maximum value of the probability density of each
parameter is near to its true value, and the sharpness of the probability density curve shows the
sensitivity of the cost function to each parameter: cp, cs > ρb > αp and αs (Figures 6 and 7). Further,
the results are lining with the findings presented in Sections 4.1 and 4.2. Comparing Figures 6 and 7,
we can find that for the same parameter the PPD in Figure 7 is wider.

The marginal probability distribution between two parameters is presented in Figures 8 and 9,
which shows the uncertainty of different parameters. The true value of each parameter in the simulation
is indicated with a white dashed line. It can be seen clearly from the figures that all the true values are
close to the highest probability of PPD.
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For the parameters cp, cs and ρb, the inversion results are similar in the two different marine
environments, such as Figure 6a–c, Figure 7a–c, Figure 8a–c,e,f and Figure 9a–c,e,f. It is summarized
that noise has less effect on the inversion results of sensitive parameters.

To clearly figure out the effect of noise on inversion results, Table 2 gives various inversion results
between above two conditions. The value of each parameter is within the mean ± variance in the table.
We can easily see that in the noiseless environment, the mean values of the inversion results are closer
to the true value, and the variances are smaller. The sea noise could increase the variance of inversion
results, but the mean of inversion results still could reflect the true values in simulation.

Table 2. Inversion parameter list. The true values, search bounds and inversion values are shown.

Parameters True Values Search Bounds Inversion Values (Noiseless) Inversion Values (Noisy)

cp/m·s−1 2000 1800, 2200 2000.9367 ± 14.5002 2001.7484 ± 25.9427
cs/m·s−1 1000 900, 1100 996.5609 ± 9.1982 1000.9983 ± 11.7670
ρb/g·cm−3 1.5 1.35, 1.65 1.5040 ± 0.0121 1.5063 ± 0.0152
αp/dB·λ−1 0.5 0.45, 0.55 0.4974 ± 0.0046 0.5023 ± 0.0053
αs/dB·λ−1 0.5 0.45, 0.55 0.4989 ± 0.0050 0.5015 ± 0.0.0067
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Figure 10 shows the comparison of TLs in the different sea environment. As can be seen from
Figure 10, the inversion results are both consistent with the simulation results. The results in Figure 10
and Table 2 proved that no matter whether it is applied to a noiseless or noisy sea environment, the
developed inversion method is reliable.
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Figure 10. The verification of simulation results. The solid blue line means the Transmission Loss
(TL) measured in the simulation and the dashed red line represents the TL simulated by inversion
result. (a) the comparison of TL in the noiseless sea environment; (b) the comparison of TL in the noisy
sea environment.
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5. Results of Measured Data

5.1. Introduction to the Scaling Experiment

Suppose in a shallow sea waveguide, the various acoustic parameters (sound speed, sound speed
attenuation and density) remain unchanged, the geometric parameters for the waveguide are scaled
down by N times whereas the sound frequency is scaled up by N times, as H′ = H/N, zs = z/N, z′ = z/N,
r′ = r/N, and f′ = Nf. In this case, the relationship between the original pressure p and the scaled
pressure p′ can be obtained: p′(r′, z′, ω′) = Np(r, z, ω), and both the fluctuation and distribution of the
original acoustic field remain unchanged in the scaled acoustic field [29].

Figure 11 displays the transmission losses under four scaling conditions, namely N = 0.1, 1, 10,
100. The corresponding sound frequency and water depth are 150 × 0.1 Hz, 150 × 1 Hz, 150 × 10 Hz,
150 × 100 Hz, and 100/0.1 m, 100/1 m, 100/10 m and 100/100 m, respectively. The acoustic source depth
zs and receive depth zr are 20/0.1 m, 20/1 m, 20/10 m, 20/100 m and 10/0.1 m, 10/1 m, 10/10 m, 10/100 m
respectively. The values of various acoustic parameters are set to be the same as the true value in
Section 4.
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150 × 100 Hz.

The results of the theoretical analysis and the simulation indicate that the propagation of a
high-frequency underwater acoustic signal in small-sized acoustic fields such as in a tank can be used
to simulate the propagation of low-frequency underwater acoustic signals in large-sized environments
such as the ocean. Thus, we carried out a scaling experiment, keeping in mind that the experiments
performed in a tank in the laboratory have the advantages of stable environmental conditions, simple
equipment distribution, and low cost.

5.2. Procedure and Data Processing of the Scaling Experiments

The experimental data were eventually utilized to validate the above-mentioned inversion method.
The automatic measurement system is shown in Figure 12a,b. The experiment used a Poly Vinyl
Chloride (PVC) slab (size: 1.53 m × 1.1 m × 0.105 m) to simulate the semi-infinite elastic bottom.
A high-frequency underwater sound wave is transmitted by a source at a fixed position, and the
wave is received by a single acoustic sensor at different positions with equal lengths. To increase the
accuracy of the measurement, the acoustic sensor was fixed on a precision micro-worktable. With the
micro-worktable, the acoustic sensor can move 2 mm every time with an error of less than 20 um,
and a computer was used to control the micro-worktable and acquire data. When the measurement
finishes at one position, the micro-worktable automatically takes the acoustic sensor to the next position
according to the desired direction.
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Figure 12. (a) Experimental measurement system, (b) The movable micro-worktable for
measurement equipment.

Table 3 shows the measurement parameters used in the experiment. The depth of source
zs = 87 mm, the depth of acoustic sensor zr = 10 mm, the depth of water layer H = 182 mm. The sound
speed c1 = 1450.212 m·s−1(obtained by the empirical formula with the water temperature in tank, the
temperature is measured by the temperature recorder of Star-Oddi company [30]).

Table 3. The measurement parameters of the anechoic tank experiment.

zs /mm zr /mm H /mm c1 /m·s−1

87 84 182 1450.212

During the measurement experiment process, the source was fixed and transmitted the CW signal
with the center frequency 135 kHz. The acoustic sensor was fixed on the movable walkway with
a sampling rate at fs = 20 MHz. The starting point was 60 m away from the source position. The
sampling rate of each measurement point was repeated ten times to reduce the influences of random
error. After completing the one-point measurement, the walkway drives the acoustic sensor to move
away from the transmitter by 2 mm, and repeated the same for 719 points. Figure 13a shows the TL
measured in the experiment. Figure 13b shows the time-domain diagram of the 50th to 150th receiving
signal received during the experiment. The red lines in Figure 13b represent the arrival time of the
direct signal, the surface reflection signal, and the bottom reflection signal at the reception point from
the 50th to the 150th. The measurement parameters are shown in Table 3. It can be inferred from
Figure 13b that the arrival time of each path signal achieved by the simulation is consistent with the
actual arrival time, which verifies the reliability of the measurement experiment.

Sensors 2019, 19, x FOR PEER REVIEW 15 of 20 

 

 

  
(a) (b) 

Figure 12. (a) Experimental measurement system, (b) The movable micro-worktable for measurement 

equipment. 

Table 3 shows the measurement parameters used in the experiment. The depth of source zs=87 
mm, the depth of acoustic sensor zr=10 mm, the depth of water layer H=182 mm. The sound speed 
c1=1450.212 m·s-1(obtained by the empirical formula with the water temperature in tank, the 
temperature is measured by the temperature recorder of Star-Oddi company [30]). 

Table 3. The measurement parameters of the anechoic tank experiment. 

zs /mm zr /mm H /mm c1 /m·s-1 
87 84 182 1450.212 

During the measurement experiment process, the source was fixed and transmitted the CW 
signal with the center frequency 135 kHz. The acoustic sensor was fixed on the movable walkway 
with a sampling rate at fs=20 MHz. The starting point was 60m away from the source position. The 
sampling rate of each measurement point was repeated ten times to reduce the influences of random 
error. After completing the one-point measurement, the walkway drives the acoustic sensor to move 
away from the transmitter by 2 mm, and repeated the same for 719 points. Figure 13(a) shows the TL 
measured in the experiment. Figure 13(b) shows the time-domain diagram of the 50th to 150th 
receiving signal received during the experiment. The red lines in Figure 13(b) represent the arrival 
time of the direct signal, the surface reflection signal, and the bottom reflection signal at the reception 
point from the 50th to the 150th. The measurement parameters are shown in Table 3. It can be inferred 
from Figure 13(b) that the arrival time of each path signal achieved by the simulation is consistent 
with the actual arrival time, which verifies the reliability of the measurement experiment. 

 

(a) (b) 
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5.3. Analysis of Inversion Results

Table 4 shows the inversion values of the seabed and search bounds of five parameters. In the
processing of experimental data, the SA Settings are identical to the ones in Section 4.3.

Table 4. Inversion parameters: the search bounds and inversion values are shown.

Parameters Search Bounds Inversion Values

cp/m·s−1 2200–2500 2397.3563 ± 31.9997
cs/m·s−1 1100–1300 1187.9400 ± 6.8722
ρb/g·cm−3 1.0–1.8 1.2451 ± 0.0758
αp/dB·λ−1 0.1–1.1 0.6616 ± 0.2489
αs/dB·λ−1 0.1–1.1 0.8705 ± 0.1468

Figure 14 shows the PPDs of the five geoacoustic parameters. The vertical axis represents the
probability, and GA means the inversion result of GA indicated by the red line. The mean value and
variance of inversion results are indicated by the green segment in which the mean value is shown at
the middle of the segment. The length of the green segment reflects the variance of each parameter.
We can easily see from Figure 14 that different parameters have different sensitivities.
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Figure 14. Five geo-acoustic parameters’ PPD. Red lines mean the inversion result of each parameter
by GA. Green segments represent the mean value of the inversion results and their variance.

The PPDs of cp, cs and ρb are relatively narrow in their prior search bounds, which proves cp, cs, ρb
are more sensitive to the cost function, and have fewer uncertainties. The PPDs of αp, αs are flat in their
prior search bounds, which means that αp and αs are not sensitive to the cost function. The sharpness
of the probability density curve shows the sensitivity of the cost function to every parameter: cp, cs >

ρb > αp, and αs. The inversion results obtained via the measurement experiment data are consistent
with the simulation results discussed in Section 4.

Figure 15 represents the 2D marginal of the PPDs, where the dashed white line indicates the
GA inversion result of each parameter, and the values of the variance represent the magnitude of the
uncertainty. As shown in Figure 15a,b,e, the result of GA is near or at the highest probability. While in
the Figure 15c,d,f–j, we can see that there is a little deviation between those two kinds of inversion
methods, but for each parameter, the result of GA is within the margin of error. The density of the
plastic plates was known in the measurement experiment, which was 1.2 g·cm−3. It is very near to the
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inversion value, which proves the viability of the inversion results. Thus, it is concluded that: cp, cs,
and ρb are more sensitive and have fewer uncertainties to acoustic pressure than αp and αs.
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5.4. The Verification

To verify the effectiveness of the inversion method, two different approaches are used as shown
in Figure 16a,b. Figure 16a shows the comparison of the TLs obtained through measurement and
simulation. As can be seen from Figure 16a, the measurement results are consistent with the simulation
results. Figure 16b represents the signal amplitude of the measurement and simulation results in the
time domain. Here, the two kinds of results showed a very high correlation, which reaches 0.89 when
the effect of the transmitter, after it is off, is not considered. The after off effects of the transmitter are
shown in Figure 16b. Thus, the approaches used here prove that the inversion results are credible.
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simulated by inversion result. The after off effects of the transmitter are highlighted by arrows.
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6. Conclusions

A method of geoacoustic parameter inversion is proposed based on Bayesian Theory. Considering
the S-wave of the seabed has a significant impact on the propagation of low-frequency acoustic signals
in the shallow sea environments. Here, the five geoacoustic parameters, namely P-wave speed (cp),
S-wave speed (cs), seabed density (ρb), p-wave attenuation (αp), and s-wave attenuation (αs) are
inverted. In this paper, we used simulated data and the experimental data to verify the feasibility of
the inversion method. The Posterior Probability Densities (PPDs) of the five parameters are obtained
using the cost function based on the Bayesian inversion theory. The PPDs and 2D marginal PPDs
provide parameter estimates and uncertainties. It is summarized that cp, cs, and ρb in the seabed have
fewer uncertainties and are more sensitive to acoustic pressure than αp and αs.

Before verification, the acoustic propagation characteristics are analyzed, which corresponded to
the inversion result. Our analysis results showed that in shallow sea environments, the influence order
of the degree of five parameters on acoustic propagation characteristics could be summarized as cp > cs

> ρb > αp > αs.
In the simulation, we find that the sea noise could affect the inversion results. In the noisy

environment, the PPDs of every parameter will be wider than in the noiseless environment, the mean
of PPD still could reflect the true values of geoacoustic parameters in simulation, and noise has less
influence on the inversion results of sensitive parameters.

For further confirmation, the Transmission Loss (TL) and the normalized signal amplitude were
compared, respectively, which include the measured results and the simulation results. The comparison
shows that measured results are consistent with simulation results. Additionally, the density of the
Poly Vinyl Chloride (PVC) plates was obtained in the measurement experiment; it was 1.2 g/m3,
which is very close to the inversion value (1.2451 ± 0.0758g/m3). All these prove the credibility of the
inversion method.

These results obtained from the geoacoustic inversion method will provide in-depth knowledge
‘from the basic principle to the advanced application of underwater acoustic sensors in the shallow sea
acoustic propagation’ and will meet the growing interest in the need for correct geoacoustic parameter
estimates and the uncertainties of the parameters.
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