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Abstract

Motivation: Understanding how viruses co-evolve with their hosts and adapt various genomic

level strategies in order to ensure their fitness may have essential implications in unveiling the

secrets of viral evolution, and in developing new vaccines and therapeutic approaches. Here, based

on a novel genomic analysis of 2625 different viruses and 439 corresponding host organisms, we

provide evidence of universal evolutionary selection for high dimensional ‘silent’ patterns of infor-

mation hidden in the redundancy of viral genetic code.

Results: Our model suggests that long substrings of nucleotides in the coding regions of viruses

from all classes, often also repeat in the corresponding viral hosts from all domains of life.

Selection for these substrings cannot be explained only by such phenomena as codon usage bias,

horizontal gene transfer and the encoded proteins. Genes encoding structural proteins responsible

for building the core of the viral particles were found to include more host-repeating substrings,

and these substrings tend to appear in the middle parts of the viral coding regions. In addition, in

human viruses these substrings tend to be enriched with motives related to transcription factors

and RNA binding proteins. The host-repeating substrings are possibly related to the evolutionary

pressure on the viruses to effectively interact with host’s intracellular factors and to efficiently es-

cape from the host’s immune system.

Contact: tamirtul@post.tau.ac.il

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Viruses are subcellular particles, consisting of encapsulated genomic

material, that replicate only inside the living cells of other organ-

isms. Being under permanent pressure to escape from the defense

mechanisms of the cell and at the same time driven by an essential

requirement to ensure optimal conditions for efficient and selective

replication, viruses are forced to continuously co-evolve with the

host by adapting various properties and mechanisms, often uncom-

mon to cellular organisms (Domingo, 2005; Firth and Brierley,

2012; Gale et al., 2000; Gibbs et al., 2005; Holmes and Drummond,

2007; López-Lastra et al., 2010). These mechanisms can involve the

recruitment and/or modification of cellular factors, but are also in-

herent in the nucleotide composition of the viral genomic sequences

themselves. In particular, viral genomes, and specifically coding

regions, not only determine protein products, but also include add-

itional, overlapping, information encrypted in the combination of

synonymous codons. This information does not affect the protein

encoding (i.e. phenotypically ‘silent’), and is associated with differ-

ent biophysical and evolutionary aspects related, among others, to

the amplification of the genomic coding potential, to the regulation
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of viral gene expression and to the mediation of intercellular interac-

tions (Brierley, 1995; Cuevas et al., 2012; Firth and Brierley, 2012;

Gale et al., 2000).

Accordingly, it is reasonable to anticipate that the genomic foot-

prints of virus host co-evolution could be seen in the form of com-

mon compositional signatures shared both by viral and host

genomes. Indeed, examination of such signatures has revealed corre-

spondences between the genomes of viruses from different specific

groups and their hosts (Barrai et al., 1990; Cardinale and Duffy,

2011; Greenbaum et al., 2008; Jenkins et al., 2001; Kerr and

Boschetti, 2006; Lobo et al., 2009; Mihara et al., 2016; Pride et al.,

2006; van Hemert et al., 2007). For example in Bahir et al. (2009)

and Mihara et al. (2016) a significant correlation between GC con-

tent of bacteriophages with their prokaryotic hosts was demon-

strated (although no significant associations were found for other

taxonomic groups). In Greenbaum et al. (2008), Lobo et al. (2009)

and Shackelton et al. (2006) it was shown that CpG pairs are under-

represented in many RNA and most small human DNA viruses, in

correspondence to dinucleotide frequencies of their hosts. Further

motivated by the possibility that a complete dependence on the

translational machinery of a cell might subject the codon usage of

viral genes to host selection pressures, various studies have focused

on exploring the similarity between the codon usage preferences in

viruses and their hosts. These studies revealed numerous examples

of viral codon usage either matching or significantly deviating from

the codons usage for corresponding organisms from different taxo-

nomic domains (Bahir et al., 2009; Barrai et al., 2008; Carbone,

2008; Cheng et al., 2012; Coleman et al., 2008; Gu et al., 2004;

Kunec and Osterrieder, 2016; Lobo et al., 2009; Lucks et al., 2008;

Mueller et al., 2006; Sau et al., 2005, 2007; Su et al., 2009; Zhao

et al., 2008). Nevertheless, almost all of the previous works exam-

ined a limited number of specific viral families and were mostly

based on comparisons of very basic (low-dimensional) composition-

al characteristics of genomic sequences such as: GC content, dinu-

cleotides, codons and more generally short oligomers. Although

these features may present, to some extent, evidence for possible

virus-host co-adaptation, they cannot fully capture longer patterns

of information. For example, transcription factors binding sites

(TFBS), the binding site of micro-RNAs, RNA binding proteins

(RBPs), spliceosome, sequences related to immune system (e.g.

CRISPR), etc., can typically be longer than 10 nt and can vary

among different viruses, cells and host organisms; therefore they

cannot be fully described by simple features spanned by short nu-

cleotide k-mers. Since viral genomes co-evolve with their hosts and

adapt the function and expression of their genes to interact with

intracellular environments, we expect such longer patterns to appear

both in the viral and in the cellular coding regions and play role in

controlling the viral fitness.

In this study we performed for the first time a large scale compu-

tational analysis of long patterns of silent functional information

that repeat in coding regions of viruses and their associated hosts.

Our analysis was based on the largest viral-host dataset analyzed so

far that contains most of the available virus-host associations and

covers 2625 unique viruses of all classes and 439 different hosts

from all kingdoms of life. We have shown that the coding regions of

many viruses tend to undergo evolutionary selection for inclusion of

repeating substrings that are on average longer or more abundant

than expected in random, and cannot be explained by the encoded

viral/host proteins or by basic genomic features such as the preferen-

ces for synonymous codons/codon pairs or distribution of nucleotide

pairs. Nor can they be explained by gene transfer mechanisms or by

canonical mechanisms of protein recognition by the immune system

alone. Our approach was inspired by universal methods for data

compression without any prior knowledge of its statistical charac-

teristics (Ulitsky et al., 2006; Ziv and Lempel, 1977) and is based on

the idea that various aspects of viral fitness are encoded in the com-

position of synonymous codons by possibly long patterns of nucleo-

tides that tend to appear in the coding regions of both viral and host

genomes. Our results provide evidence of a complex genomic level

evolutionary adaptation of viruses to their hosts and may have im-

portant implications in understanding the viral evolution and devel-

oping novel antiviral vaccines and therapeutic approaches.

2 Materials and methods

In this section we briefly summarize the most important rationale of

our methodology. The details appear in Supplementary Sections S1.

1–S1.7.

2.1 Data preparation
The associations of viruses to their host organisms were retrieved

from the GenomeNet Virus-Host Database (virus-host DB) (Mihara

et al., 2016). In total we collected 2625 unique viruses comprised of

147 286 coding sequences and mapped to 439 unique hosts. To

date, this is the largest virus-host analysis, based on most of the

known virus-host associations reported (see also Supplementary

Section S1.1).

2.2 Average repetitive substring scores
We defined two types of scores called: average virus-repetitive sub-

strings (AVRS), and average host-repetitive substrings (AHRS); as

their names suggest, these scores quantify the average length of all

possible substrings that repeatedly appear in the coding sequences of

a virus itself, and/or in the coding sequences of its host (i.e. AVRS

and/or AHRS, respectively). They are motivated by the assumption

that evolution shapes the viral coding sequences to improve their

interaction with the intra-cellular environment. Thus, if longer (than

expected from compositional biases driven by neutral evolutionary

forces) substrings of a coding region tend to appear also in host and/

or other viral coding sequences, it may suggest that these substrings

are associated with functional synonymous motives related to vari-

ous aspects of viral replication and have been selected by evolutions

to improve viral fitness, e.g. via adaptation to the cellular gene ex-

pression machinery or to the innate immune system. These scores

can potentially capture known and unknown (or hidden) high di-

mensional (longer than a single codon or short k-mers) information

encoded in the genomic substrings of nucleotides of an arbitrary

length. They can be efficiently and systematically applied to a large

scale set of viruses and their related hosts in an unsupervised man-

ner, i.e. without a prior knowledge on the intrinsic genomic struc-

ture shaped by these associations, and with no prior knowledge on

the substring length. In addition, as was previously demonstrated in

(Zafrir and Tuller, 2017; Zur and Tuller, 2015), such scores are able

to capture complex information that does not appear in single

codon/codon-pairs distributions and in particular to be used for pre-

dicting the expression levels/protein levels of a gene from its

sequence.

The AVRS/AHRS scores are computed as follows (see more

details in Supplementary Section S1.2): (i) Build a suffix array

(Manber and Myers, 1993)-this can be done in O(jH(V)j) (Gusfield,

1997); (ii) For each position i in a viral coding sequence S, use the

suffix array from (i) to find the longest repetitive substring Si that

starts at that position, and also appears at least once in H(V) (for
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AVRS)-this can be done in in O (jSj). In case of AVRS, common sub-

strings found in the overlap regions of two coding sequences where

excluded (this genomic overlap may be due to different mechanisms

of the coding capacity enhancement common in viruses, such as: al-

ternative splicing, frameshifts, overlapping reading frames, etc.); (iii)

The AVRS/AHRS of a sequence S is the average length of all the sub-

strings Si. The total time complexity of the algorithm is

O(jH(V)j þ jSj). The scores are computed for each viral coding se-

quence individually.

2.3 Sequence homology
In order to make sure that host-specific information reflected by

AVRS/AHRS cannot be attributed only to sequence similarity due to

host-virus or virus-host horizontal gene transfer (HGT), as well as

to repeats in viral genomes due to gene duplications or transfer of

similar sequences from the host, viral sequences coding for proteins

that are suspected to be homologous to at least one protein of the

related host (virus-host homology), and/or to at least one other pro-

tein of the same virus (virus-virus homology), where excluded from

the subsequent statistical analysis. To this end, we constructed a

local BLAST (Altschul et al., 1990) database comprising all down-

loaded host/virus proteins. Each viral coding sequence was trans-

lated, and the resulting protein sequence was queried against the

database of host/virus proteins. Any match within the proteome of

the corresponding virus/host with e-value<0.0001 was defined as

homologous and the corresponding viral sequence was excluded

from further analysis. We used BLAST version 2.4.0 (http://blast.

ncbi.nlm.nih.gov).

2.4 Randomization models and statistical analysis
To test our hypothesis regarding the selection for longer repetitive

substrings, we used the following two randomization models: (i)

Dinucleotide Randomization that preserves both the amino acids

order and content, and the frequency distribution of 16 possible

pairs of adjacent nucleotides (dinucleotides); (ii) Synonymous

Codon Randomization that preserves the amino acids order and

content, mono-nucleotide composition and the codon usage bias

(see also Supplementary Section S1.3).

If, indeed, there was a selection for high dimensional information

patterns that could not be explained by the basic genomic features

preserved in these models, then we would expect longer substrings

of viral nucleotides to be repeated in the host or in the virus itself to

a greater extent than in the corresponding randomized variants; re-

spectively the AVRS/AHRS scores are expected to be higher in the

wildtype than in comparison to randomized genomes.

Empirical P-values and Z-scores, unless stated otherwise, were

drawn from the empirical null distribution generated by the above

randomization models. The P-value estimates the probability to

get in random a value that is the same as, or more extreme than

the observed result. The empirical Z-score estimates how far the

observed result is from the mean value in standard deviation units

derived from the null distribution (see Supplementary Section S1.4).

3 Results

3.1 Overview of the analysis
The general stages of our study are as follows (see more details in

Supplementary Section S2.1 and Supplementary Fig. S4): Virus-host

data was downloaded and preprocessed. In order to demonstrate

the evolutionary selection for long patterns of silent functional infor-

mation captured by AVRS/AHRS measures, we compared the

wildtype viral sequences to 1000 corresponding randomized var-

iants generated by each of the described above randomization mod-

els. We use the term ‘silent’ patterns in this paper since the null

model maintains the amino acid composition of the original encoded

proteins in the virus. Thus, the AHRS/AVRS can be explained only

by aspects of the coding sequence that are not related to the amino

acid composition (i.e. ‘silent’).

First we analyzed the AHRS scores for each virus-host pair

independently (one virus can have several hosts and vice versa):

Consequently, sequence-specific AHRS scores and their empirical

P-values and Z-scores with respect to both randomization models

were computed for each viral coding region separately. In addition,

virus-specific AHRS scores and the corresponding P-values and

Z-scores were computed globally for each virus by combining all its

available coding sequences. Coding regions/viruses for which the

sequence-specific/virus-specific AHRS scores were found to be sig-

nificantly higher than in both randomizations models (P<0.05)

were designated as AHRS-significant, i.e. selected for long host-

repetitive substrings. AHRS-significant coding regions were further

analyzed in order to investigate whether the propensity to be

selected for long host-repetitive substrings is related to the function-

al properties of the corresponding proteins. Also in order to check

whether certain sectors of a coding sequence tend to be enriched

with longer host-repetitive sequences more than others, local ana-

lysis of AHRS in 3 different equal parts of each coding sequence was

performed. In addition, explicit relations between the global AHRS

scores in AHRS-significant viruses and different low-dimensional

genomic features (LDF) of their coding sequences, such as: Effective

Number of Codons (ENC), Codon Pairs Bias (CPB), Dinucleotide

Bias (DNTB), CpG and GC content and the total length of coding

sequences were examined. Finally, a similar analysis was performed

to study the AVRS scores of a virus against itself (for viruses with at

least two different coding sequences).

3.2 Evidence of universal selection for long patterns of

silent functional information inside viral coding regions
Our analysis suggests that the coding regions of many viruses

from all classes, which infect different organisms from all domains

of life, tend to undergo evolutionary selection for long patterns of si-

lent functional information that may be important to their fitness.

These patterns are encoded in viral genomic substring repeats in the

coding regions of viruses and in the coding regions of their hosts;

these substrings are generally longer than a single codon, codon

pairs, or short k-mers of nucleotides (median¼39, for positions

with P<0.05); see details in Supplementary Section S2.4 and

Supplementary Figure S8. Furthermore, they cannot be entirely

explained by simple characteristics (i.e. LDFs) of the genomic

sequences (such as amino acids order and content, compositions of

mono and di-nucleotides, codon bias, etc.). Specifically, a regression

model taking into account a combination of these features demon-

strates that only up to 15–50% of the variance can be explained by

them (P<4.58 � 10�7). The results of comparison of these features

to the AHRS statistics of the corresponding genomes, demonstrated

explicitly that selection for long host-repetitive patterns cannot be

explained merely by their relation to more basic genomic features

(see Supplementary Sections S1.5 and S2.3 for more details).

Specifically, we have found that many of the analyzed viruses

and their hosts undergo significant enrichment for mutually long

substring. Thus, more than 56% of the analyzed human viruses and

90% of the analyzed bacteriophages, undergo an evolutionary pres-

sure to maintain genomic substrings that also tend to repeat in the
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Fig. 1. Selection for long host-repetitive patterns of silent functional information in viral coding regions. A summary of the analyzed hosts and viruses that under-

go significant enrichment for mutually long sub-sequences. Each vertical bar corresponds to viruses infecting a specific host organism (in bacteria-a specific

genus) and is partitioned into class specific segments; every segment corresponds to percentage of viruses belonging to its corresponding class (y-axis) and is

assigned a specific color. Further, each segment is composed of two stacked parts: the lower part with full color interior represents the portion (out of all host-

specific viruses) of AHRS-significant viruses (P<0.05 w.r.t both randomization models); and the upper part with black interior (but with borders of the corre-

sponding color) represents the rest of the viruses (P�0.05 w.r.t at least one randomization model). The numbers (e.g. x/y) shown under each bar indicate the

number of viruses (e.g. x) that show significant enrichment out the total number of viruses checked (e.g. y); thus, for each class-specific segment, the sum of its

two parts (significant and not significant) represent the total portion of viruses of this class within all viruses related to the organism described by the bar, and the

sum of all segments is equal to 1. Horizontal bars visualizes the total percentage of AHRS-significant viruses in each host domain. We can see that coding regions

in 47, 36, 39, 27, 25 and 90% of viruses from different classes that infect one or several vertebrates, metazoa, plants, fungi, protists and bacteria organisms (cor-

respondingly) undergo an evolutionary pressure to maintain long genomic substrings that also tend to repeat in the coding regions of at least one related host

3244 E.Goz et al.
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coding regions of at least one related host (Fig. 1). These substrings

are apt to be on average significantly longer (virus-specific AHRS

P<0.05) than expected if only lower-dimensional silent functional

information was selected for (i.e. we expect only 5% of viruses to be

selected for by chance). The distribution of their corresponding

virus-specific AHRS values is shown in Supplementary Figure S6A.

In a similar manner we demonstrated that viral coding regions not

only contain patterns that are repeated in the coding regions of their

hosts, but also tend to include silent local patterns that repeat in other

coding regions of the virus itself. Specifically, we found that such pat-

terns are selected in the course of viral evolution in 47, 46, 27, 50, 33

and 90% of viruses from different classes (that infect vertebrates,

metazoa plants, protists, fungi and bacteria correspondingly), are on

average significantly longer (virus-specific AVRS P<0.05) than in

random and cannot be explained by the encoded proteins, compos-

itional/mutational bias or by homologs and overlaps within the same

viral genome; see more details in Supplementary Section S2.2 and

Supplementary Figure S5. Distribution of the corresponding virus-

specific AVRS scores as well as additional analysis can be found in

Supplementary Figure S6B–D.

3.3 Enrichment of de-novo sequence motifs,

transcription factors and RNA binding proteins

found in human viruses
Following, and in order to further understand how the

patterns found promote viral fitness, we performed comprehensive

analysis of the significantly long substrings using an algorithm

for finding de-novo sequence motifs (Heinz et al., 2010) that appear

in human viruses more than expected by the our null model (see

Supplementary Section S1.7). Next, we compared these motifs

against known information of TFBS and RBPs, taken from the

JASPAR (Khan et al., 2018) and RBPmap (Paz et al., 2014)

databases.

We found enrichment of transcription factors (TFs) related to

the following classes: Basic helix-loop-helix factors (bHLH), C2H2

zinc finger factors and Tryptophan cluster factors, and enrichment

of RBPs for the HNRNPxx, PABPxx and SRFSx proteins. We also

found that generally these viral genomes tend to include more TF

and RBP binding sites than expected from a Null model (P<0.04);

see more details in Supplementary Section S1.8 and Supplementary

Tables ST3–ST6. This provides one interesting explanation regard-

ing the function of some of the detected sub-sequences.

3.4 Selection for long host-repetitive silent patterns

depends on the protein’s function
The genomes of all known viruses encode structural proteins, which

serve as building units of viral particles or are responsible for the

interaction with the host receptors and invasion to the cell. In add-

ition, most of the viruses express some replication enzymes, such as

reverse transcriptase or RNA/DNA polymerase, according to their

mode of replication, transcription and regulation. The rest of the

viral proteome is responsible for diverse regulatory/accessory func-

tions, which are mostly uncharacterized and often specialized to the

life cycle of the particular virus.

Here we aimed at refining the resolution of the genome level ana-

lysis previously presented, and finding out whether specific group of

proteins is more favored by selection for long synonymous patterns

than others. To this end, we classified the analyzed viral genes to

five mutually exclusive functional groups (see also Supplementary

Section S1.6): surface genes, structural genes, enzymes, hypothetical

(putative proteins) and unclassified (accessory or regulatory

proteins). In Figure 2 we show that 13, 28, 18, 15, 21% of the cod-

ing sequences belong to surface genes, structural genes, enzymes and

genes corresponding to putative and unclassified proteins have sig-

nificantly high sequence specific AHRS scores (P<0.05 with respect

to both randomization models). We can see that structural proteins

that do not function as host recognition elements are characterized

by the highest portion of AHRS significant genes (28%, Fisher exact

test P<1 � 10�16). On the other hand, among proteins expressed

on the viral surface, which participate in recognition of the host

receptors and often susceptible to higher mutability, the number of

AHRS significant genes is the smallest (13%). The enzymes (18%)

and other unclassified proteins show an intermediate level of selec-

tion for long host-repetitive patterns.

In order to reinforce the claim that our conclusions cannot be

attributed only to sequence lengths, the analyzed viral coding

regions were divided into four bins according to their length. The

percentage of AHRS significant genes in different functional groups

was analyzed for each bin independently. Again, we observed that

Fig. 2. Selection for complex host-repetitive silent functional patterns

depends on protein’s function. The upper panel (in blue) represents the num-

ber of coding sequences within each functional group. The bars in the middle

panel (green, yellow and red, respectively) represent the percentage of

significant (AHRS P<0.05 w.r.t both randomization model, green); semi-

significant (AHRS P< 0.05 w.r.t only one randomization models, green);

non-significant (AHRS P>0.05 w.r.t. both randomization models). Black lines

represent the mean length of significant (solid line) and non-significant (dot-

ted-line) coding sequences in each group. We can see that those structural

proteins are encoded by the highest portion of AHRS significant coding

sequences. On the other hand, surface proteins have the smallest number of

AHRS significant coding sequences. The enzymes and other proteins show

an intermediate level of selection for long host-repetitive patterns. Each green

bar (at the bottom) is divided into three parts, corresponding to the local

AHRS analysis in the 50 , middle, and 30 segments of a coding sequence. In

each part the percentage of AHRS-significant genes with the highest local

AHRS found in this part is indicated. We can see that for each gene group,

most of the sequences used to have the highest local AHRS in the middle

part; the percentage of genes with the highest local AHRS in the 30 part was

found to be the smallest
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within most of the bins the structural group contains the highest

number of AHRS-significant genes and the surface group and

enzymes contain the lowest number. Therefore, our conclusions can-

not be attributed only to the lengths of the coding regions (see

details in Supplementary Section S2.6). This finding is in agreement

with stronger codon usage resemblance of viral structural genes to

their host sequences demonstrated in Bahir et al. (2009), and may be

attributed to higher expression levels required from this functional

group. Thus, this group should be under stronger selection for opti-

mal gene expression codes; the higher expression levels may also

have stronger effect on the host immune system, triggering stronger

selection to include longer pattern similar to the host.

Finally, we were interested in checking whether there is a prefer-

ence for longer host-repetitive subsequences in specific parts of cod-

ing sequences. To this end, we divided each coding sequence into

three equal parts, corresponding to the beginning, the middle and

the end of the sequence, and calculated local AHRS scores inside

each one of them. We found that for each gene group, most of the

sequences used to have the highest local AHRS in the middle part;

the percentage of genes with the highest local AHRS in the 30 part

was found to be the smallest. This pattern may be related to the fact

that initiation and termination (of translation and transcription),

encoded in the coding region ends, tend to be non-canonical in

viruses (e.g. initiation via IRES), while the regulation at the middle

of the coding region is more conserved relatively to the host (Clyde

and Harris, 2006; Gale et al., 2000; Groat-Carmona et al., 2012;

Jackson, 2005; Kieft, 2008; López-Lastra et al., 2010; Thurner

et al., 2004). In addition, this pattern may be related to the fact that

often ends of the viral coding regions tend to include various func-

tional structures which naturally decrease the efficiency of the host

CRISPR immune system (Rath et al., 2015); this corresponds to a

weaker selection pressure for sequence similarity to the host.

4 Discussion

We suggest two major mechanisms that can explain the reported

results (see Supplementary Fig. S9): First, it is possible that the rela-

tion between long patterns in the viral coding sequences and viral

fitness is related to the effect of these patterns on gene expression.

Viral genomes include various types of motifs that are recognized by

the host gene expression machinery; since the same (host) gene ex-

pression machinery processes both the viral and the host genes these

motifs tend to appear both in the host and in the virus. Indeed, our

analysis demonstrates that the long-subsequences found are enriched

with sequence motifs (longer than singe codons) related to TFBS and

RBPs.

Second, it is also possible that some of these patterns are related

to the evolution of the virus for escaping the host immune system. It

is important to emphasize that in our analysis the amino acid con-

tent of the viral genes was controlled for; thus, the reported signals

cannot be, trivially, attributed only to the classical mechanisms,

such as viral recognition by the host (e.g. antibodies), as these mech-

anisms are traditionally believed to be based on interactions between

proteins. However, it is plausible that they are related to alternative

known and/or unknown immune mechanisms. One such relevant

mechanism in bacteria is given by clustered regularly interspaced

short palindromic repeats (CRISPR) (Krieg, 2002). This mechanism

is based on creating fragments from the viral genome that are tran-

scribed to short RNA molecules (crRNAs); these short RNA mole-

cules match a certain region in the viral genome and ‘guide’ a

protein complex (CAS-crRNA complex) that cuts the viral genome

in this region and inactivates the virus. Since this mechanism is

based on the recognition of short genomic sub-sequences that should

appear in the virus/phage but not in the host, this may trigger

evolution of the nucleotide composition of the virus/phage to be

similar to the host. This may result in similar patterns of codons,

and longer sequences that appear in the phage and the host, explain-

ing especially high levels of AHRS-significant viruses in the bacteria

reported here.

The fact that the enrichment with viral-host shared pattern is the

strongest in bacteria, in comparison to other viruses, may be related

to various reasons: First, as discussed above, it may be related to

viruses escaping the bacterial-specific immune mechanisms such as

CRISPR. Second, it may be related to higher effective population

size in bacteria and bacterial viruses, which is expected to contribute

to higher selection efficiency (Kimura et al., 1963). Finally, this may

be related to the fact that non-bacterial viruses tend to use more

non-canonical gene expression regulatory mechanisms and codes.

Our analysis demonstrates that the tendency to share sub-

sequences with the host varies among proteins. Specifically, we have

analyzed separately groups of proteins with different functions,

found high enrichment for structural proteins (see Fig. 2), and show

that this result is not associated with the length of the virus ORFs.

One explanation for that is related to the fact that these proteins

tend to be more highly expressed and thus are under stronger selec-

tion for gene expression optimization, as is well known for non-viral

genes; see for example (dos Reis and Wernisch, 2009). In addition,

our analysis shows that up to 15–50% of the variance related to the

shared host-virus sub-sequences can be explained by LDFs (e.g.

codon bias; see the Results). Among others, this correlation may be

related to the fact that viruses that undergo stronger selection for

LDFs (e.g. due to larger effective population size or higher selection

pressure) also tend to undergo stronger selection for shared long

subsequences with the host in their coding region; for example, as

explained above, both signals may contribute to improved expres-

sion levels.

It is important to emphasize, that similarly to viral adaptation to

the host, silent features of the coding regions are expected to affect

also related phenomenon, such as HGT. In this case a transferred

gene is expected to be successfully expressed in a new host if its si-

lent features are compatible (Medrano-Soto et al., 2004; Roller

et al., 2013; Tuller, 2013, 2011; Tuller et al., 2011). Thus, although

the host-homologous genes were excluded from our analysis, many

of the results reported here may be generalized to the case of HGT.

It is important to emphasize that a central HGT mechanism is trans-

duction, the process in which bacterial DNA is moved from one bac-

terium to another by a bacteriophage (Soucy et al., 2015). Thus, the

reported relations between (i) the host silent patterns and (ii) the

transferred gene silent patterns have much overlap: The fact that

viral fitness is related to the similarity of its silent patterns to the

host should directly improve its ability to transfer genes; it is also

directly related to the fact that the silent aspects/codes in the trans-

ferred genes are more adapted to the new host since the virus under-

goes evolution to be better adapted to the host.

Our results provide evidence of a complex, genomic level, evo-

lutionary adaptation of viruses to their hosts and may have import-

ant implications for understanding viral evolution and for

developing novel antiviral vaccines and therapeutic approaches.

Various future direction and studies should be considered: First, the

fitness and evolution of viruses can be tracked experimentally after

decreasing and increasing their AVRS/AHVRS scores. Second, ex-

perimental and computational approaches for engineering viral

coding regions for improving and decreasing their fitness based on
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the optimization of their AVRS/AHRS should be developed. Third,

it will be interesting to perform further specific study related to the

functionality of some of the virus-host repetitive sequences, or to

the ways the host immune system may have been adapted to these

silent/signals. This may require the deciphering of novel immune

system pathways. Finally, it should be important to consider the

possible effect of the non-trivial synonymous patterns reported here

when developing models for viral molecular evolution; it may also

be interesting and challenging to track the evolution of these pat-

terns in viruses.
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