
 1 

Title:   
Reconstructing the Patient’s Natural History from Electronic Health Records  
   
  
Authors:  

1. Corresponding Author  
Name: Marjan Najafabadipour  
Affiliation: Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain 
Postal Address: Centro de Tecnología Biomédica (CTB), Campus de Montegancedo, 
Universidad Politécnica de Madrid, M-40, Pozuelo de Alarcón, Madrid, 28223  
Email: m.najafabadipour@upm.es  
Mobile: +34612247147  
ORCID: 0000-0002-1428-9330  

  
2. Coauthor  

Name: Massimiliano Zanin  
Affiliation: Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain   
Email: massimiliano.zanin@gmail.com   
ORCID: 0000-0002-5839-0393  
  

3. Coauthor  
Name: Alejandro Rodríguez-González  
Affiliation: Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain   
Email: alejandro.rg@upm.es  
ORCID: 0000-0001-8801-4762  

  
4. Coauthor  

Name: Maria Torrente  
Affiliation: Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain   
Email: mtorrente80@gmail.com  
  

5. Coauthor  
Name: Beatriz Nuñez García  
Affiliation: Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain   
Email: beangarcia@gmail.com  
  

6. Coauthor  
Name: Juan Luis Cruz Bermudez  
Affiliation: Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain   
Email: jlcruz@idiphim.org  
  

7. Coauthor  
Name: Mariano Provencio  
Affiliation: Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain   
Email: mprovenciop@gmail.com  
  

8. Coauthor  
Name: Ernestina Menasalvas  
Affiliation: Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain   
Email: ernestina.menasalvas@upm.es      
ORCID: 0000-0002-5615-6798  

  
  
  
  

  



 2 

Abstract. The automatic extraction of a patient’s natural history from Electronic Health Records (EHRs) is 
a critical step towards building intelligent systems that can reason about clinical variables and support 
decision making. Although EHRs contain a large amount of valuable information about the patient’s medical 
care, this information can only be fully understood when analyzed in a temporal context. Any intelligent 
system should then be able to extract medical concepts, date expressions, temporal relations and the temporal 
ordering of medical events from the free texts of EHRs; yet, this task is hard to tackle, due to the domain 
specific nature of EHRs, writing quality and lack of structure of these texts, and more generally the presence 
of redundant information. In this paper, we introduce a new Natural Language Processing (NLP) framework, 
capable of extracting the aforementioned elements from EHRs written in Spanish using rule-based methods. 
We focus on building medical timelines, which include disease diagnosis and its progression over time. By 
using a large dataset of EHRs comprising information about patients suffering from lung cancer, we show 
that our framework has an adequate level of performance by correctly building the timeline for 843 patients 
from a pool of 989 patients, achieving a correct result in 85% of instances.   

  
Keywords: Electronic Health Records, Natural Language Processing, Temporal Reasoning  

1. INTRODUCTION  

The treatment of a disease does not only depend on the current condition of a patient, but also on his/her past 
medical history. This is why it is crucial for clinicians to have a complete and precise knowledge of the patient’s 
natural history, which includes the disease, its progression over time, and any other significant fact in chronological 
order. As largely recognized in the literature, retrieving the patient’s natural history can help improving clinical 
document summarization [1], clinical trial recruitment [2], clinical decision making [3] and patient’s survival time 
calculation [4]. In addition, accessing this information allows clinicians to evaluate the quality of the provided 
healthcare, and to identify which of its steps require a special attention.  

  
If such clinical information has traditionally been managed and accessed manually, the last decade has witnessed an 
increasing need for the digitization of clinical data. For this purpose, the information about the interactions between a 
patient and clinicians is frequently stored in computerized clinical records, which allow the reconstruction of the 
patient’s natural history - see Figure 1 for a graphical representation. Whenever a patient visits a hospital, one or more 
clinical notes can be digitally generated, describing the patient’s past and present medical condition, diagnosis, disease 
progressions, treatments, lab test results, etc. Note that, while digital in nature, notes are mostly composed of free texts 
and are therefore unstructured. These clinical notes are always written by a professional (physician, nurse, etc.). 
Complementary to notes, clinical reports are digitally generated once a medical process is completed, and they 
consolidate and synthesize the information contained in several clinical notes. For the sake of clarity, throughout this 
paper we collectively call these two sources “Electronic Health Records (EHRs)”, while other non-textual elements 
usually therein included (e.g., echography results) are disregarded for being outside the scope of this study. EHRs are 
therefore unstructured clinical documents describing various medical events related to the patient’s clinical condition 
and the corresponding chronological sequence.  

  

  
Figure 1. An example of a natural history of a patient suffering from lung cancer (top part), and the 

corresponding medical timeline for disease diagnosis and progression (bottom part)  
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Although EHRs contain all the information needed to reconstruct the patient’s natural history, their manual 

analysis can be both costly and time-consuming. Oncology provides an ideal case study to show the importance of 
automatic EHR processing. The different risk factors of cancer, the intra-tumor heterogeneity that implicates the 
patients differences in relation to the same cancer type, and that the same patient presents differences between tumor 
sites, the inter-tumor heterogeneity, the differences in treatment response for the same cancer among patients, and the 
substantial difficulties in predicting tumor dynamics and the associated outcomes are some of the challenges that 
oncologists have to face in the daily clinical practice. When the objective becomes the design of a personalized 
treatment, big data analytics becomes the instrument of choice to tackle this heterogeneity and variability; in turn, this 
requires the extraction and processing of information coming from EHRs. 

  
One of the types of cancer with higher prevalence and higher mortality worldwide, which encounters all of these 

difficulties is lung cancer. This is mainly due to the fact that its diagnosis is made in most cases in advanced stages of 
the disease where surgery is not an option anymore and the tumor burden is high. Diagnosis of lung cancer is usually 
accidental, during a visit to the emergency department when an image test is performed, and a lung nodule or mass is 
detected. From this moment, the patient should visit the medical oncology service, where the oncologist will confirm 
the diagnosis with additional tests if necessary, in order to subsequently receive the most suitable treatment available. 
Depending on the treatment and its frequency, the patient will visit accordingly both the consultation and the day care 
hospital where they receive treatments, along with frequent blood tests, imaging tests, and routine controls by the 
oncology nurses.   

  
In terms of data generation, especially in lung cancer patients, the exploitation of this variety of data stored in 

EHRs from all lung cancer patients may lead to pattern extraction and better understanding of the disease evolution, 
toxicity rates and treatment response and outcomes. However, the process of reconstructing a patient’s natural history 
from EHRs requires the extraction of several key elements, like medical concepts, date expressions, temporal relations 
and the order of medical events from free texts, which in turn entails several challenges:  

  
• Challenge 1 – information extraction: EHRs are mainly written in textual format and have no structure, or 
eventually have a custom structure defined by the hospital, service or the clinician generating them. In addition, 
clinical texts differentiate themselves from standard texts by containing many specific medical metrics, such as 
tumor stage codes. Their identification is challenging as these metrics usually include different symbols (e.g., “.”, 
“-”, “_”, etc.), which are not always used in a standardized way and consequently, limit the use of standard 
ontologies, taxonomies and controlled vocabularies, such as Unified Medical Language System (UMLS) [5] 
[6] and Systematized Nomenclature of Medicine (SNOMED) [7] in their recognition.  

  
EHRs are also very temporal in nature, with frequent mentions of date expressions. These are difficult to annotate, 
due to: (1) the presence of three categories of expressions, i.e. natural (e.g., “3 days ago”, “Today”), conventional 
(e.g., “2016-12-23”, “December 12, 2016”) and professional (e.g., “24hr”) date variables, each with their own 
idiosyncrasies; (2) the existence of domain specific, non-standard and abbreviated date expressions; (3) the 
presence of ambiguous date variables, having more than one meaning; and (4) the uncertainty inherent the 
interpretation of relative date expressions.  
  
• Challenge 2 – linkage of medical events to date expressions:  languages like English and Spanish use the 
interplay of tense and aspect to encode temporal relations. However, the significance of these features may vary 
across domains and tasks. As a prototypical example, medical language, specifically EHRs, may ignore many 
restrictions that are mandatory in standard grammar, such as the fact that each sentence must have a subject. 
Clinical texts are typically ungrammatical, which make the automatic temporal reasoning a difficult task outside 
the medical community.  

  
In addition, temporal relation identification from clinical texts poses a special problem to NLP, as sentences in 
EHRs can be complex, including information about more than one medical events occurring at the same or at 
different time points. The determination of univocal relations between a date expression and the corresponding 
medical event can be very difficult.  
  

Furthermore, another problem emerges from the instant-based representation of medical events. In real 
applications, it is difficult to relate all medical events to their exact occurrence timing. Free texts include diverse, 
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complex, and sometimes non-standard linguistic mechanisms for mentioning temporal relations. In some cases, 
the time associated to a medical event is not even explicitly mentioned.  
  
• Challenge 3 – derivation of the order of medical events from the patient’s EHRs: in order to generate a 
comprehensive medical timeline describing the patient's natural history, and thus exploit the temporal succession 
of medical events, it is firstly necessary to identify the temporal ordering of medical events across EHRs. As 
discussed in [8], this is a challenging problem in general NLP as well as the clinical domain, as the texts across 
patient’s EHR lack logical continuity: the narrative goes back and forth in time, describing medical events that 
have happened at different time points. In addition, in general linguistics, events are often expressed by verbs, 
and thus tense and aspect are the elements used to temporally order them. This is nevertheless not always true in 
the context here tackled, as many medical events are noun phrases [9], and most EHRs are written in past tense.  

  
As a last point, it is important to highlight the problem of information redundancy, a fundamental concept 
associated with EHRs that arises both within and across clinical data sources. The same medical event can be 
mentioned in multiple EHRs, especially because of two reasons: the tendency to re-use past notes to save time, 
i.e. by copying and pasting part of a previous note; and the interest to summarize past information in the newly 
generated EHRs. Two or more medical events are said to be similar (or also coreferential), if they have the same 
semantical category, value (if any) and have occurred on similar or consecutive time points.  To illustrate, consider 
Figure 1, in which the same medical event “Stage II” is mentioned four times on “04/01/2017”, “05/01/2017”, 
“15/06/2017”; these mentions are coreferential, i.e. refer to the same event, and it is then necessary to determine 
its exact and real occurrence date.  
  
Although a great amount of research works has been done on identifying temporal relations from clinical texts, 

the performance of most proposed systems is far from being adequate for practical applications. Most of these systems 
perform temporal reasoning with the help of annotated corpora, which are time consuming and costly to build, and 
whose completeness affects the quality of the analysis. In addition, despite the fact that Spanish is the second most 
popular language in the world with more than 572 million native speakers [10], little attention has been devoted to 
temporal relation discovery from Spanish free texts in the general domain. Finally, and to the best of our knowledge, 
no system has hitherto been proposed for the discovery of temporal relations from Spanish clinical texts.   

  
The main contribution of this paper is to present a novel NLP framework, using rule-based techniques, that 

firstly, accepts Spanish EHRs annotated with medical concepts and date expressions as input, and then is able to relate 
these concepts together for reconstructing the patient’s natural history. We aim to link medical concepts to the 
document creation dates, section dates and within-sentence dates in EHRs. We also propose to go one step further by 
extracting the evolution of medical events from these clinical documents, in order to build the patient’s medical 
timeline, which contain the diagnosis of the disease and its progression over time. In particularly, we have applied this 
framework to generate the medical timelines of disease diagnosis and tumor stage codes for patients suffering from 
lung cancer. Our framework presents a remarkable performance, yielding a correct result in 85% of the instances, as 
validated by using a large set of real EHRs.  

  
Finally, in order to provide our NLP framework with the input of annotated lung cancer diagnosis concepts, 

tumor stage codes and date expressions, we have used a set of annotators, which are developed over Unstructured 
Information Management Framework (UIMA) [11] [12] [13].  

  
The rest of paper is organized as follows. Firstly, Section 2 explains the main related works on temporal relation 

discovery and patient’s medical timeline construction. Afterwards, Section 3 discusses the details of the proposed 
framework by providing solutions for identifying temporal relations and building the patient’s medical timeline. 
Section 4 presents the validation of the framework by using a real data set. Finally, Section 5 discusses the main 
advantages and limitations of the proposed framework, and Section 6 draws some conclusions and outlines future 
lines of work.  

2. RELATED WORK  

The 21st century has seen a considerable amount of research devoted to processing temporal information 
from free texts using statistical machine learning techniques and rule-based methods. The rapid development of 
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temporal relation identification algorithms started with the creation of the TimeML [14] annotation schema for general 
newswire corpus of TimeBank [15]. This corpus contains three types of temporal information: (1) events; (2) time 
expressions; and (3) temporal relations.   

  
The TimeBank corpus was used in three temporal analysis evaluation tasks in the SemEval competitions, i.e. 

TempEval-1 [16], TempEval-2 [17], and TempEval-3 [18]. While the Temp-Eval-1 provided the TimeBank corpus 
for English Language, the TempEval-2 provided this corpus for six languages, including English, Spanish, Italian, 
French, Chinese, and Korean. In TempEval- 2, the Temporal Information Processing based on Semantic information 
(TIPSem) algorithm [19] used Conditional Random Field (CRF) models to recognize temporal relation from Spanish 
free texts. TIPSem achieved a precision of 0.81 in the identification of temporal relations between events and time 
expressions, and a precision of 0.59 in the discovery of temporal relations between events and document creation time. 
Furthermore, while Temp-Eval-3 also provided the TimeBank corpus for Spanish, no systems were presented for 
finding temporal relations from newswire texts.  

  
Although the TimeML10 group has developed a temporal annotation guideline, it only focuses on the news 

article domain. In recent years, the interest for temporal information identification from clinical texts has steadily been 
growing, partly due to the widespread adoption of EHRs [20].  In order to foster research activities on temporal relation 
discovery in the medical domain, the Integrating Biology and the Bedside (i2b2) NLP Challenge [21] was launched 
in 2012, providing an English corpus of discharge summaries annotated with events, time expressions and temporal 
information. Using this corpus, researchers were able to extract a limited set of temporal relations using rule-based 
and machine learning methods. The highest F1 score of 0.69 for the problem of temporal relation identification was 
achieved by two organizations: the Vanderbilt University on one hand, which proposed a rule-based pairwise selection 
with CRF and Support Vector Machine (SVM); and the National Research Council Canada, on the other hand, which 
implemented Maximum Entropy (ME), SVM and rule-based methods. In 2013, a hybrid system was also designed for 
the identification of temporal relations from clinical texts, which combined graph reasoning, and SVM and rule-based 
classification [22]. This system was validated using the test data set (120 clinical notes) of the 2012 i2b2 NLP 
challenge, obtaining an F1 measure of 0.63.   

  
The authors of [23] [24] modeled the temporal information appeared in clinical discharge summaries, written in 

English as Simple Temporal Problem. Based upon this work, an architecture was proposed in [25] for representing, 
extracting and reasoning about temporal information in clinical narrative texts, which was then incorporated both in 
the Medical Language Extraction and Encoding System (MedLEE) [26], and in TimeText [27]. This latter system 
obtained the recall of 79% in the identification of temporal relations from fourteen discharge summaries, which were 
obtained from the clinical data repository at Columbia University Medical Center.   

  
The enabling technologies for temporal relation and timeline discovery from clinical narratives were evaluated 

in [28].  As a result, an extension of ISO-TimeML guidelines was developed for annotation of a corpus of clinical 
notes, which was written in English and was provided by the Mayo clinic, named Temporal Histories for Your Medical 
Events (THYME) [29]. Many systems were developed for extracting events, time expressions and temporal relations 
using THYME in the context of the Clinical TempEval 2015 [30], Clinical TempEval 2016 [31] and 
Clinical TempEval 2017 [32]. These systems used rule-based and machine learning models (e.g., SVM, CRF, 
Recurrent Neural Networks (RNN), logistic regression, etc.) for their implementation.   

  
In Clinical TempEval 2015, BluLab [33] was the only system presented. It used features generated 

from cTAKES with CRF++ methods for identifying relations between medical events and document creation time, 
called DocTimeRel (DR). For DR, BluLab reached an F1 score of 0.702 when the raw texts were used as input, and 
an F1 score of 0.791 when manually annotated events and time expressions were provided. In addition, BluLab also 
used features from cTAKES with the integration of CRF++ and rule-based techniques for the discovery of relations 
between medical events and/or time expressions, called Container Relation (CR). For CR tasks, when raw texts were 
provided as input, BluLab achieved an F1 score of 0.102 without temporal closure, and an F1 score of 0.123 with it. 
In addition, for CR with manually annotated events and time expressions as input, BluLab reached F1 scores of 0.143 
(with temporal closure) and 0.181 (without temporal closure).  

  
In Clinical TempEval 2016, UTHealth [34] submitted two runs for its implementations based on linear and 

structural (HMM) SVM, using lexical, morphological, syntactic, discourse, and word representation features. 
UTHealth run-1 was recognized as the best performing system, with F1 scores of 0.756 and 0.479 for DR and CR 
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respectively, when plain texts were given as input. It also obtained the highest F1 score of 0.573 for CR when the 
manually annotated medical events and time expressions were provided as input. However, for detection of DR when 
the input was given as annotated medical events and time expressions, UtahBMI [35] gained the highest recall of 
0.843. It implemented CRF and SVM models and used lexical, morphological, syntactic, shape, character pattern, 
character n-gram, section type, and gazetteer features.  

  
In context of Clinical TempEval 2017, LIMSI-COT [36] used a combination of RNN with character and word 

embeddings, and SVM models with words and Part of Speech (PoS) tags as features. It obtained the best F1 scores 
for both unsupervised and supervised domain adaptations. For DR, it achieved F1 scores of 0.60 and 0.66 for 
unsupervised and supervised domain adaptions, respectively.  Furthermore, for CR, it obtained an F1 score of 0.40 for 
unsupervised domain adaption and an F1 score of 0.43 for supervised domain adaptions.  

  
An extension of Apache Text analysis and Knowledge Extraction System (cTAKES) [37] was also proposed, 

based on an open-source temporal relation discovery system, and evaluated on the THYME corpus used in 
Clinical TempEval 2015, and on the 2012 i2b2 corpus [38]. This system used multiple supervised machine learning 
models for extracting the document creation time and within-sentence temporal relations. It achieved F1 scores of 
0.807 and 0.321 for DR and CR, respectively, on the THYME corpus by using an SVM classifier. Also, it obtained 
an F1 score of 0.695 for the overall evaluation on all types of relations on the 2012 i2b2 corpus by implementing an 
SVM classifier and rules for coreference pairs. Later, an automated method to generate more high-quality training 
instances for temporal relation discovery was developed [39]. This method semantically expanded gold medical events 
based on UMLS using two within sentence temporal relation classification models. It included SVM as the learning 
algorithm for models. One of the models was developed for the identification of temporal relations between medical 
events and time expressions, while the second was developed for the detection of temporal relations between medical 
events. With the presented method, their temporal relation discovery system was evaluated on the colon cancer set of 
the THYME corpus used in Clinical TempEval 2015 and Clinical TempEval 2016, and achieved the F1 score of 
0.594.  

  
In 2018, it was claimed in [40] that despite of the considerable amount of research done for temporal relation 

identification in clinical texts, the state of art performance was not high enough for practical applications. As a result, 
an SVM-based system was developed for identifying direct temporal relations at sentence level in clinical notes written 
in English. This system is composed of three parts: (1) a pre-processor, which performs tokenization, section 
identification, PoS tagging, dependency parsing and semantic role labeling; (2) an SVM classifier, which discovers 
the direct temporal relation between an event and a time expression within a sentence; and (3) a post-processor, which 
uses deterministic rules to fix common errors emerging in the process. This system was evaluated on 310 discharge 
summaries and obtained an F1 score of 63.77.  

  
In addition, a tree-based bidirectional Long Short Term Memory Network-RNN end-to-end model proposed 

in [41] was adapted to extract intra-sentential temporal relations from clinical texts [42]. This model was evaluated on 
the Clinical TempEval 2016 THYME corpus and obtained an F1 score of 0.629 for the identification of CR.  

  
Discourse structure, logical flow of sentences and context play a great role in the ordering of medical events 

based on temporal relations. However, the cross-EHR temporal ordering is challenging. The following two research 
works focus on the generation of medical event timeline from multiple EHRs written in English.  

  
An annotation schema was developed in the Ohio state university to extend the TimeML annotation guidelines 

to capture medical events from clinical texts written in English [43]. Then, using linear-chain CRF, each medical event 
was also anchored to a coarse time-bin (e.g., before admission, on admission, after admission, etc.) [44]. The temporal 
ordering of medical events mentioned in a single clinical narrative was then implemented using SVM-rank and based 
on the medical events proximity to the admission date [45]. Finally, a framework for aligning medical event sequences 
across clinical narratives was developed based on coreference and temporal relation information using cascaded 
Weight Finite-State Transducer (WFST) [46]. This framework was evaluated on a set of 7 patients (80 clinical 
narratives overall) and obtained an accuracy of 78.9%.  

  
Furthermore, to generate a deep phenotype of individual cancer patients from English Clinical documents, a 

multi-scale information model, known as Deephe, was built on top of Apache cTAKES NLP system [47]. Deep 
phenotype refers to a set of attributes representing the clinical expression of a disease over time.  
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Finally, many of the current state-of-art systems implemented machine learning techniques for temporal 

reasoning tasks by using annotated corpora, provided by the shared tasks. However, the limited size of such corpora 
can unavoidably affect the quality of processing. In addition, only one work is presented for temporal relation 
discovery from Spanish newswire texts and to the best of our knowledge, no systems have been introduced for 
identification of temporal relations from Spanish clinical texts. Also, the extraction of evolution of medical events 
from the patient’s EHRs remains an unsolved problem. Therefore, in line of this research, we propose an NLP 
framework, which is capable of extracting temporal relations from Spanish clinical texts and building the evolution 
of the medical events mentioned across patient’s EHRs on a timeline. 

3. METHODS  

EHRs are rich clinical data sources, containing information about the patient’s medical care. Therefore, we 
introduce an NLP framework to mine EHRs in order to build the patient’s medical timeline. This framework accepts 
the XML Metadata Interchange (XMI) files annotated with medical concepts and date expressions as input and yields 
the natural history of the patient using a medical timeline, which starts with the diagnosis event and includes the 
evolution of the patient’s medical condition. The framework is composed of two components (Figure 2): (1) the 
Temporal Reasoning System, which links medical events to their corresponding date expressions in the EHR; and (2) 
the Timeline Constructor, which generates the patient’s medical timeline. The following subsections provide the 
detailed information about these components.  

  

 
Figure 2. Architecture of the proposed framework  

3.1 TEMPORAL REASONING SYSTEM  
To construct the medical timelines, the medical concepts of interest and date expressions should be connected 

together, by finding temporal relations in the corresponding clinical texts at sentence, section or document level. In 
order to achieve this latter step, we developed a Temporal Reasoning System. This system accepts as input XMI 
documents, containing the annotations of medical concepts and date expressions. Then, it identifies temporal relations 
by building the dependency parse trees using the Universal Dependency Pipe (UDPipe) [48] [49] tool and 
implementing a rule-based approach. Finally, once temporal relations are identified, the Temporal Reasoning System 
stores them into a MySQL structured relational database, named Document. The following Section 3.3.1 describes the 
details of UDPipe for building the dependency parse trees. Then, Section 3.3.2 explains the details of four rules 
implemented in order to identify temporal relations from clinical texts of EHRs.  

3.1.1 UDPipe  

UDPipe [48] [49] is an open-source NLP tool, containing a pipeline of components such as 
tokenization, PoS tagging and universal dependency parsing for multiple languages including Spanish. To generate 
the dependency parse trees, UDPipe uses a fast transition-based neural dependency parser, composed by a simple 
neural network with just one hidden layer and without any recurrent connections, and using locally normalized scores. 
The dependency parser builds an individual parse tree for each individual sentence in the clinical texts.   
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3.1.2 Temporal Relation Identification  

Our objective is to unequivocally identify the date expression of each medical event. For this purpose, we define 
a temporal relation as:  

1. A relation whose date expression modifies the medical event mention at the sentence level. This implies a 
syntactic construction where a medical event mention is directly accompanied by a date expression.   

 
2. A relation whose date expression and medical event mention are arguments of the same predicate at the 

sentence level. When both elements are arguments of the same predicate, they are considered to be temporally 
related. A predicate is usually defined in linguistics as a verb or a noun. A predicate requires one or more 
arguments in different syntactic or semantic rules to complete its meaning. Adjunct is another type of 
grammatical components, which modify or complete the meaning of a predicate. However, opposed to 
arguments, we can remove adjunct from the sentence without making it grammatically wrong.   

 
3. A relation whose section date expression explains the occurrence timing of a medical event mention. Due to 

clinician's time limitations, it is a common practice to write patient information without specifically 
mentioning the date expression for each and every medical event in the same sentence; instead, this 
information is provided as a date in the section headings.  

 
4. A relation whose document creation date expression determines the occurrence timing of a medical event 

mention. Medical events happen in time, i.e. they are temporally associated objects. To keep record of these 
events, clinicians write them in EHRs during each patient’s visit in the hospital. Since clinicians usually have 
limited time for writing the patient-clinician encounter, they usually mention the medical processes followed 
or the conditions discovered on the same day of the patient’s visit without a mention of a date expression at 
sentence or section level. At the coarsest level, medical events are temporally related to the EHR creation 
date.  

  
Based on the above definitions, the Temporal Reasoning System follows four rules to link medical event mentions 

to the date expressions (examples are provided in Table 1 to identify the occurrence date of the medical event “lung 
cancer”):  

Rule – 1: If, at the sentence level, a medical event mention is an ancestor of a date expression in the dependency 
path or vice versa, they form a temporal relation based on syntactic structure, and therefore the medical event 
mention should be linked to that date expression. Otherwise, move to the next rule.  
  
Rule – 2: If, at the sentence level, the medical event mention and the date expression are arguments or adjunct of 
the same predicate, they form a temporal relation based on predicate argument structure, and therefore the medical 
event mention should be linked to that date expression. Otherwise, move to the next rule.  

  
Rule – 3: If the section in which the medical event mention appeared contains a date expression in heading, they 
form a temporal relation, and should hence be linked. Otherwise, move to the next rule.  
  
Rule – 4: If a medical event mention appeared in an EHR, it forms a temporal relation with the document creation 
date and should be linked to it.  
 
Rules of 
temporal 
relation 
identification   

An example that satisfies the rule  An example that does not satisfy the rule  

Rule – 1  Clinical Judgment: lung cancer on 
16/09/2011. – See Figure 3  

The patient was diagnosed with lung cancer 
(stage IIB) and had a surgery on 23/12/2016. – 
See Figure 4  
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Figure 3. Dependency parse tree analysis 
for an example that satisfies Rule – 1 [50] 

  
Figure 4. Dependency parse tree analysis for an 
example that does not satisfy Rule – 1 [50] 

Rule – 2  The patient is diagnosed with lung cancer  
on 16/09/2011. – See Figure 5 

  
Figure 5. Dependency parse tree analysis 
for an example that satisfies Rule – 2 [50] 

The patient has had the lung cancer (stage IIB) 
and a surgery on 23/12/2016. – See Figure 6  

  
Figure 6. Dependency parse tree analysis for an 
example that does not satisfy Rule – 2 [50] 

Rule – 3  Clinical Judgment – 16/09/2011:  
Lung cancer, stage IIB.  

Treatment – 23/12/2016:  
The patient had a surgery due to diagnosis of lung 
cancer on 16/09/2011.  

Rule – 4  Document Creation Date: 16/09/2011  
The 50 years old patient is diagnosed with 
lung cancer and stage IIB.  

Document Creation Date: 23/12/2016  
The patient had a surgery due to diagnosis of lung 
cancer on 16/09/2011.  

Table 1. Examples for the rules of temporal relation identification on the medical event “lung cancer” 

3.2 TIMELINE CONSTRUCTOR  
To approach the problem of dealing with redundant medical events across patient’s EHRs and ordering them into 

a medical timeline, we developed a component named Timeline Constructor. It accepts as input the structured 
information of Document database. It then processes this information to produce the natural history of the patient on 
a medical timeline, which starts with the diagnosis event and includes the evolution of patient’s clinical condition. 
Finally, the timeline is stored into a relational database.   
  

As mentioned in Section 1, when two or more instances of medical events have similar semantical category and 
value (in case of medical events that are metrics e.g., tumor ‘Stage IIB’ is a metric having value “IIB”) and have 
occurred on the same or consecutive time points, they are said to be coreferential. To determine if two or more medical 
events are coreferential (See Listing 1), firstly, the Timeline Constructor temporally orders these events, for then 
evaluating their semantic similarity. Since it accepts the structured information of the Document database as input, it 
does not need to explicitly create complex procedures to discover semantic similarities between medical events. All 
the medical events with the same semantic category and with/without different notation of words or continuous groups 
of words are stored within the same table in the Document database.  
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Listing 1. Pseudocode of Time-line Constructor  

  
Secondly, if the medical event is a metric, value similarity is the second factor to be considered. Therefore, at this 
stage, decisions made by the Timeline Constructor are binary, meaning either multiple instances of medical events 
from the same semantic category have similar values or not. Thirdly, in order for medical events to be coreferential, 
the last factor considered is the occurrence time point. Therefore, the Timeline Constructor determines if two or more 
medical events with similar semantic and value are overlapped or occurred on consecutive time points.    

  
Finally, to generate the timeline of the patient’s medical care, the Timeline Constructor selects the diagnosis 

event with the earliest time point and discards the rest. Then, for the rest of medical events, the Timeline Constructor 
keeps the unique and the earliest instance of the same medical event on the timeline, and discards the rest of redundant 
medical events, as they do not introduce any change of state.  

4. VALIDATION  

In Europe, lung cancer led to the death of 266,000 persons, i.e. 20.8% of all cancer deaths in 2011 [51], and to 
the greatest economic cost of 18.8 billion, i.e. 15% of all cancer cost in 2009 [52], therefore, we here focus on 
validating our framework to reconstruct the natural history of patients, who suffer from lung cancer. To evaluate 
our framework, we used a data set, containing the information of 989 lung cancer patients, which corresponds to 
296,003 EHRs. These EHRs were written in Spanish and were provided by the Hospital Universitario Puerta de 
Hierro Majadahonda (HUPHM) of Madrid. They were divided into two main sources of data, clinical notes 
(corresponding to 281,308 EHRs) and clinical reports (14,695 EHRs).  
  

From these EHRs, clinicians are interested in finding specific patterns in long surviving lung cancer patients. 
The identification of these patterns will help them to detect unknown associations of family history, treatments, 
response to treatments, toxicities, comorbidities and molecular mechanisms, with the patient’s outcome. In order to 
identify long surviving patients, the detection of the date of the lung cancer diagnosis and the evolution of tumor stage 
codes are the key factors.  

  
Therefore, we here evaluate our framework by building the patient’s medical timelines, starting with the lung 

cancer diagnosis event and include the evolution of tumor stage events. However, the first step toward generating such 
a timeline from multiple EHRs is to encode, structure and extract lung cancer diagnosis and tumor stage concepts 
along with the date expressions from clinical texts, as these represent the basis of medical events. This is where the 
need for the NLP annotators comes into play. The input to these annotators is the plain texts of EHRs and the output 
is formatted as a set of XMI files containing annotation results.  

  
To identify the diagnosis concepts, we use the rule-based UMLS Annotator of C-liKES [11], which is built 

upon the UIMA framework. This annotator is designed to annotate noun and noun phrase concepts found in clinical 
texts that have contextually relevant matches in the UMLS as medical concepts. Example of such concepts are “Lung 
cancer”, “Cancer of lung”, “Ca lung”, etc.   
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To recognize the tumor stage codes of lung cancer from clinical texts, we use the Stage Annotator and the 

TNM Annotator presented in a previous work of the authors [12]. These annotators are pattern-based extraction NLP 
modules, which are built over UIMA framework and using the American Joint Committee on Cancer Staging (AJCC) 
8th manual [53] – see Figure 7. The Stage Annotator is capable of identifying the tumor stage grouping codes, which 
are written using roman numerals mixed with alphabets and numbers (e.g., “I-A1”, “IIB”, “I(VA)”, etc.). On the other 
hand, the TNM Annotator can recognize those stage concepts, which contain three parameters of T (the size of tumor), 
N (the number of lymph nodes) and M (the presence of metastasis), modulated by suffixes and/or prefixes for a finer 
tuning of the tumor stages (e.g., “pT1aN0M0”, “cT3_cN1_cM0”, “cT3-N0-M0”, etc.).  

  

  
Figure 7. AJCC 8th edition - lung cancer stage grouping and TNM system [53]  

  
Finally, to extract and normalize date variables appeared in clinical texts, we use a rule-based NLP annotator 

built over UIMA framework, named Temporal Tagger, which is presented in a previous work of the authors [13]. The 
Temporal Tagger is capable of:   

1. Extracting various date expressions, i.e., natural (e.g., “3 days ago”, “Today”), conventional (e.g., “2016-12-
23”, “December 12, 2016”) and professional (e.g., “24hr”) variables, three common ways a date can be written 
in Spanish. Also, it is able to annotate date expressions written in different formats (e.g., DD-MM-YYYY, MM-
DD-YYYY) and styles (numerical, alphabetical, mixed – alphabetical and numerical or even abbreviated date 
expressions). For example, the date “23/12/2016” can be written in different formats and styles as “23/12/2016”, 
“Dec 23, 2016”, “23rd of December 2016”, etc. Since our Temporal Tagger is optimized for Spanish, in which 
the standard date expression is written as DD-MM-YYYY or YYYY-MM-DD, we give priority to these two 
rules over the alternative MM-DD-YYYY and YYYY-DD-MM.  

  
2. Filtrating date expressions that are not likely to be date using their PoS tags. For example, the Spanish word 
“Tarde” has two meaning, “late” and “afternoon”. In this case, the Temporal Tagger ignores from annotating a 
single word “Tarde” if its PoS tag is not a noun.  

  
3. Resolving date expressions with respect to the section date (if any) or document creation date. For example, 
for an EHR with the document creation date of “23/12/2016”, the Temporal Tagger would resolve the date 
referred to by “3 days ago” into “20/12/2016”. If there is a confusion about the time point which an expression 
refers to (e.g., “Tuesday”), the verb tense of the sentence is used to resolve the ambiguity. However, since the 
clinical texts do not follow the standard grammar and may not include a verb and the clinical narratives mostly 
provide information about past, then the relative date expression refers to the past by default.  

  
4. Normalizing date expressions to a standard date format of YYYY-MM-DD.  
  
The following sub-sections explain the conducted experiments, the details of the selected dataset samples used 

in these studies, and their results.  

4.1 EXPERIMENTS  
To evaluate our developed framework, we designed four evaluation tasks: (1) validation of the outputs of the 

Stage Annotator and the TNM Annotator; (2) comparison of the Temporal Tagger with the Spanish versions 
of SUTime and HeidelTime; (3) validation of the output of the Temporal Reasoning System; and (4) validation of the 
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output of the Timeline Constructor.  For the first three evaluation tasks, two computer scientists served as the 
evaluation domain experts under the supervision of clinicians from HUPHM. They were native Spanish speakers and 
participated neither in the design nor in the development of the NLP framework.  Furthermore, for the fourth 
evaluation task, four clinicians from HUPHM conducted the experiments. The details of these evaluation tasks are 
discussed in the following subsections.   

4.1.1 First Evaluation Task – Validation of the Outputs of the Stage Annotator and the TNM Annotator  

As an extension to our previous work [12], the evaluations of the Stage Annotator and the TNM Annotator were 
done by manually analyzing the outputs generated by them. To validate the former, for each stage grouping codes 
mentioned in the clinical texts of EHRs, a comparison was done between the list of the codes automatically provided 
by the annotator and the list of expressions manually extracted by the evaluation domain experts.  
  

Once the comparison is completed for each stage grouping code, the evaluation domain expert rated: (1) True 
Positive (TP), if the tumor stage code was correctly classified by the annotator; (2) False Positive (FP), if the tumor 
stage code was incorrectly classified by the annotator; and (3) False Negative (FN), if the annotator did not classify 
the tumor stage code when it should have. Given the TP, FP and FN, then the Precision = TP / (TP + FP), the Recall 
= TP / (TP + FN), and the F1 = (2 × Precision × Recall) / (Precision + Recall) were measured. In the case of precision 
and recall, confidence intervals were calculated by considering a binomial distribution, with confidence levels of 
95%. The same validation procedure was followed for the validation of the output of the TNM Annotator.  

4.1.2 Second Evaluation Task – Comparison of the Temporal Tagger with the Spanish Versions of SUTime 
and HeidelTime 

The aim of this evaluation task is to compare the performance of our Temporal Tagger [13] with the Spanish 
versions of Stanford SUTime [54] [55] and HeidelTime [56] [57] [58]. Both SUTime and HeidelTime are pattern-
based extraction annotators, capable of recognizing and normalizing date expressions written in textual documents. 
To perform this evaluation task, for each of annotators, a comparison is performed between the list of date expressions 
automatically extracted and the list of expressions manually extracted from EHRs. Once this comparison is completed, 
the values of TP, FP and FN were calculated in order to determine the precision, recall and F1 score values. For recall 
and precision, the confidence intervals were calculated. Finally, a comparison was performed between the results 
obtained from our Temporal Tagger, SUTime and HeidelTime. In previous work of the authors [13], the comparison 
was only performed between the Temporal Tagger and SUTime. Here, the goal is to also compare the Temporal 
Tagger with HeidelTime.  

4.1.3 Third Evaluation Task – Validation of the Output of the Temporal Reasoning System  

The evaluation of our Temporal Reasoning System in processing EHRs involved the verification of its output 
temporal constraints. For each temporal relation generated by our Temporal Reasoning System, the verification was 
done by manually analyzing each EHR for the corresponding temporal relation.   

4.1.4 Fourth Evaluation Task – Validation of the Output of the Timeline Constructor  

The idea of our fourth evaluation task is to measure the accuracy of our Timeline Constructor in generating the 
timelines of medical events. The validation process was performed by manually studying all the EHRs for every 
patient and extracting the corresponding timeline, such that its starting point is the diagnosis, followed by the evolution 
of the tumor stage events. A comparison was done between the timeline manually extracted by the evaluation domain 
experts and the timeline generated by our Timeline Constructor.   

4.2 DATASET SAMPLE SELECTION  
Due to the large pool of EHRs, performing the manual validation on the entire dataset was not feasible for the 

first three evaluation tasks. Therefore, to conduct our experiments, we have decided to perform individual random 
selection of EHRs from the original dataset for each of these individual tasks.   

  
For the first evaluation task, after conducting a study, we realized that the tumor stage grouping and TNM codes 

have appeared in only 8% and 9% of EHRs, respectively. Due to low number of EHRs containing these codes, the size 
of the random sample of EHRs which would yield statistically significant result was too large to be practical. We have 
therefore decided to randomly select a sample of 550 EHRs from the original dataset, such that 50 of them (including 



 13 

25 clinical notes and 25 clinical reports) contain annotations extracted by the Stage Annotator, and 500 (including 250 
clinical notes and 250 clinical reports) of them in which the Stage Annotator claimed there is no annotation in their 
clinical texts. Note that, supposing independence in the errors incurred by the annotator, around 50 of these 500 
negative results could be false negative, thus ensuring that both false positives and false negatives are tested with 
similar precision. The same procedure was followed for the dataset sample selection of the TNM Annotator. This 
practice allowed us to calculate the precision and recall of these annotators individually.  

  
 To select a dataset sample for the second evaluation task, 100 EHRs were randomly chosen from the original 

dataset, including 50 clinical notes and 50 clinical reports. In the context of the third evaluation task, we randomly 
selected 200 temporal relations generated by our Temporal Reasoning System from 200 EHRs, including 100 clinical 
notes and 100 clinical reports. The selection of equal number of clinical notes and reports was aimed at keeping both 
types of documents equally represented in the validation processes.   

  
Finally, a set of chi-squared statistical tests was also performed on the selected samples, to assess their 

representativeness of the entire population in the original dataset. These tests were performed on four significant 
variables: (1) patient’s sex; (2) patient’s age (categorical variable: < 35, 35-40, 45-55, 55-65, 65-75, 75-80, 80 >); (3) 
local progression of the tumor; and (4) systemic progression of the tumor. For the dataset samples in the first and the 
third evaluation tasks, the sample dataset was representative of the entire population (p-value <0.01). For the second 
evaluation task, in all cases, except for the systemic progression, the dataset sample was representative of the entire 
population. A small amount of bias was found in the systematic progression of tumor between the patients of the 
selected dataset sample and the patients of the original sample; note that this is not expected to affect the types of date 
expressions found.  

4.3 RESULTS  
The results of the first evaluation task show that the Stage Annotator achieved a precision of 1.000 ±0.048, recall 

of 0.872 ±0.089 and F1 of 0.932. To find the errors occurred in the annotation process, we analyzed its output 
extensively. By examining FNs, we realized that there are two main reasons for such errors. Firstly, this was due to 
ambiguous ways of writing tumor stage codes, i.e. writing the value of the tumor stage without mentioning that this 
value is referring to the stage of the tumor. For example, the annotator failed to annotate “IV” because there was no 
context word around it mentioning that this value is referring to the tumor stage. Secondly, it also happened that the 
standard system for writing tumor stage codes was not used in clinical texts. For example, instead of “Stage IIIA”, the 
clinicians used “Stage 3A”.  

  
By validating the TNM Annotator, we have seen that it obtained a precision of 0.961 ±0.071, a recall of 

0.881 ±0.089 and an F1 score of 0.919. By examining the FPs, we realized that main reason for such errors were 
incomplete usages of the TNM system (e.g., “cT4” instead of e.g., “cT4 cN0 cM0”). Likewise, the analysis of the FNs 
revealed that these errors occurred due to mentions of TNM codes in combination with some explanations about the 
tumor stage given by the clinician (e.g., “pT2a (pleura) pN1 (fragmented hilar ganglion; margins probably +) M0”).  

  
The results of our second evaluation task are discussed here. As it can be seen in Figure 8 and also as presented 

in the previous work of the authors [13], the Temporal Tagger obtained a precision of 0.927 ± 0.021, recall of 
0.932 ±0.021 and F1 score of 0.93. It outperformed SUTime in terms of precision, recall and F1 
score. SUTime achieved the precision of 0.831 ±0.033, recall of 0.766 ±0.036 and F1 score of 0.797. In addition, the 
Temporal Tagger also outperformed HeidelTime, which obtained the precision of 0.795 ±0.032, recall of 
0.915 ±0.025 and F1 Score of 0.85. Our Temporal Tagger had a better performance in identifying the various formats 
a date expression can be written in and in normalizing relative date expressions. Furthermore, by performing filtration, 
our temporal tagger obtained more correct results compared to SUTime and HeidelTime.   
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Figure 8. Comparison of the results of our Temporal Tagger with SUTime and HeidelTime  

  
The results of the third evaluation task show that from the sample of 200 temporal relations, our Temporal 

Reasoning System correctly identified 178 temporal relations, being wrong in 22 instances, which correspond to a 
correct result in 89% of instances. In order to understand the nature of those errors, we analyzed the obtained results 
to determine which kinds of temporal relations are difficult to be detected through our Temporal Reasoning System. 
It revealed that identifying temporal relations at sentence level is the most complex one, leading to 12 errors, which 
were the consequence of: (1) usage of very complex sentences and ambiguous temporal relations, as for instance, 
“Lung cancer cT2N3M1b stage IV, due to carcinomatous lymphangitis, EGFR mutated (L858R of exón 21), diagnosed 
in November 2014”; and (2) missing usage of the dot “.” or new lines at the end of a sentence, which leads to the 
mixing of two or more sentences. In addition, 10 errors occurred due to the identification of section level temporal 
relations, where the medical events were actually related to the date expressions in the previous sentences (4 
observations) or the document creation time (6 observations).  

  
The results generated from the fourth evaluation task show that the Timeline Constructor correctly extracted 

the complete medical timeline for 843 patients, while failing in 146 instances, which indicates the achievement 
of correct result in 85% of instances. To find the nature of errors occurred, we analyzed the output extensively. 
We realized that the major reason was related to the incorrect temporal relations fed as input to the Timeline 
Constructor. However, we have seen that these errors are not catastrophic as they affect only parts of the timelines of 
patients. For instance, in the clinical text “Treatment – 27 May 2014: A 48-year-old woman with lung cancer (Stage 
IIIA), will be treated with superior lobectomy and 4 cycles of adjuvant QT.”, the Temporal Reasoning System 
inaccurately assigned the section date “27 May 2014” to the event “Stage IIIA”, while this stage should have been 
linked to the document creation time “2014-15-27”. While this error caused the event “Stage IIIA” to be placed 12 
days later than its actual date on the timeline, it did not lead to any errors in relation to the diagnosis event and the rest 
of stage events. In addition, a few errors have been observed due to the limitation of our framework to detect negations 
and probabilistic terms (e.g., “likely to have lung cancer”, “can be excluded from having lung cancer”).  

5. DISCUSSION  

NLP technologies are helping researchers to extract new insights from large clinical and molecular datasets. 
Methodological pitfalls notwithstanding, NLP techniques are already beginning to affect cancer research and clinical 
care, such as early diagnosis and prevention [59], drug discovery [60], matching patients to clinical trials and treatment 
decisions [61].  

  
In an era where data are being generated at an enormous pace — by 2020, it is expected that clinical data will 

double every 3 months, and that the average person will generate more than 1 million gigabytes of health-related data 
in their lifetime — it is increasingly difficult for clinicians to process all the available information that could influence 
treatment decisions. Furthermore, traditional analytics and machine technology have limited capability to utilize large 
complex datasets such as the so-called ‘big data’, and a change of paradigm is needed today to make the most from 
these potential sources of information. A major challenge is determining how to extract valuable information from the 
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enormous amount of data available in EHRs, and research is ongoing to determine the best methodology to analyze 
data and reduce/eliminate unhelpful ‘noise’ [62].  

  
In this paper, our aim was to reconstruct the natural history of patient from EHRs, written in Spanish, using 

rule-based approaches. The alternative, i.e. the adaption of machine learning approaches, requires annotated corpora, 
whose construction is costly and time-consuming. Also, their small size can significantly affect the processing quality. 
We have here shown that the rule-based approach is a viable alternative, which can yield very good results while 
avoiding the aforementioned problems.  
  

The previous results obtained from the Stage Annotator and the TNM Annotator support the idea that these 
annotators have shown an adequate level of performance in the NER process. We observed that the precision of these 
annotators is higher than their recall. However, since we have applied the pattern-based extraction approaches for 
annotation of tumor stage codes from clinical texts, the behavior of these annotators could be improved by extending 
their regular expressions.  

  
We observed that our Temporal Tagger by supporting a set of regular expressions for annotation of natural, 

conventional and professional date expressions yields better results compared to SUTime and HeidelTime. However, 
the performance of this Temporal Tagger could be improved by recognizing and normalizing relative date expressions, 
which can appear in the previous sentences (e.g., “Two months after surgery”, “three days after the CT scan from last 
month”).  

  
In addition, we found that most of the temporal relations generated by the Temporal Reasoning System are 

correct. We have also seen a few errors due to the presence of very complex sentences, usage of ambiguous temporal 
relations, missing of end of sentence indicators, and the limitation of our system to identify temporal relations that 
span over a single sentence.  

  
Furthermore, by implementing a rule-based approach, many of the timelines generated by our Timeline 

Constructor were accurate. A few errors were observed due to feeding incorrect temporal relations into the Timeline 
Constructor. However, these errors only effected some parts of the patient’s timelines. In addition, the behavior of the 
Timeline Constructor could be improved by annotating negations and probabilistic terms.  

  
Finally, although our NLP framework has been developed general enough so that it can be used in every 

medical domain, its use in other languages would require the translation of the developed rules.   

6. CONCLUSION AND FUTURE WORK  

The availability of larger volumes of data is already a reality in healthcare and represents an opportunity for 
clinicians to improve cancer care. However, technical and socio-cultural issues limit their use in practice. The 
challenge is to find a way of processing all the variables that provides simple and useful answers. Another challenge 
is understanding whether a computing tool can adapt to geographical differences in attitudes to healthcare, availability 
of medicines, etc. Importantly, a concerted effort is needed from all stakeholders (healthcare professionals, 
programmers, AI vendors, etc.) to discuss and agree their ideas, attitudes and goals for computing in oncology. This 
is vital to ensure mutual commitment to the development and integration of clinically useful tools and achieving the 
best outcomes for patients.  

 
Medical data are being generated and captured in many ways, and at a pace we can no longer process as 

humans. This includes highly controlled structured data from clinical trials, which currently forms the basis for most 
decision-making. However, most of this data is generated and captured in a less controlled way and in unstructured 
forms, including from registries, electronic patient files, and social media (e.g. patient blogs). Unstructured data are 
much harder to process. Clinical trials will always be important; however, many questions cannot be answered by 
trials, for example the best sequence of treatments for each individual patient. Using real-world data could help answer 
these questions.   

 
In medical Informatics, automatic temporal information extraction from clinical texts has become an active 

area of research. In the line of this area of research, we presented a novel NLP framework for extracting medical 
concepts, date expressions, temporal relations and medical timeline from patient EHRs, written in Spanish. For the 
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annotation of medical concepts and date expression from clinical texts, we used a set of rule-based NLP annotators, 
built upon the Apache UIMA framework. In addition, temporal relations between medical events and date expressions 
at sentence, section and document level were discovered using a Temporal Reasoning System, which implements the 
dependency parsing tree and a rule-based method. Since, TIPSem is the only temporal reasoning system presented for 
Spanish language to identify temporal relations from free texts using machine learning techniques, we have shown 
that our rule-based approach is an alternative system, which can obtain very accurate results while avoiding the 
problems of costly and time-consuming process of creating the annotated corpora and also having low 
processing quality due to the small size of corpora. Furthermore, to generate the patient’s medical timeline from 
multiple EHRs, a Timeline Constructor component was developed for dealing with information redundancy issues 
using rule-based methods. However, this work is an on-going research, in which future efforts will be aimed at the 
derivation of the cross-EHRs evolution of treatment events, which usually occur in a time interval, i.e. they have both 
starting and ending time points, and which are highly dependent on the dosage.  
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