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ABSTRACT Due to their ability to multiplex users on a resource element (RE), Non-orthogonal multiple
access (NOMA) techniques have gained popularity in 5G network implementation. The features of 5G
heterogeneous networks have necessitated the development of hybrid NOMA schemes combining the merits
of the individual NOMA schemes for optimal performance. The hybrid technologies on 5G networks make
complex air interfaces resulting in new resource allocation (RA) and user pairing (UP) challenges aimed
at limiting the multiplexed users interference. Furthermore, common analytical techniques for evaluating
the performance of the schemes lead to unrealistic network performance bounds necessitating alternative
schemes. This work explores the feasibility of a hybrid power domain sparse code non-orthogonal multiple
access (PD-SCMA). The scheme integrates both power and code domain multiple access on an uplink
network of small cell user equipments (SUEs) and macro cell user equipments (MUEs). Alternative
biological RA/UP schemes; the ant colony optimization (ACO), particle swarm optimization (PSO) and
a hybrid adaptive particle swarm optimization (APASO) algorithms, are proposed. The performance results
indicate the developed APASO outperforming both the PSO and ACO in sum rate and energy efficiency
optimization on application to the PD-SCMA based heterogeneous network.

INDEX TERMS Codewords, Codebooks, NOMA, SCMA, Particle swarm optimization, Ant colony
optimization.

I. INTRODUCTION

Non-orthogonal multiple access (NOMA) has emerged as a
viable candidate for 5G access network protocols. Normally,
Orthogonal multiple access (OMA) schemes have exclusiv-
ity constraints when allocating users to a resource element
(RE) namely; timeslot for frequency division multiple ac-
cess (FDMA), subcarrier frequency for orthogonal frequency
division multiple access (OFDMA) and spreading code for
code division multiple access (CDMA) based schemes. The
significance of NOMA is co-multiplexing users on the same
spectrum resource elements (SREs) via power domain (PD)
or code domain (CD) at the transmitter and successfully sep-
arating them at the receiver by multi-user detection (MUD)
schemes. This culminates in enhanced spectral efficiency
when compared to conventional OMA techniques. NOMA
schemes permit controllable interference by non-orthogonal
resource allocation albeit increase in receiver complexity [1].
However, the multiplexing of multiple users on limited REs
results in cross-tier and inter-tier interference for heteroge-
neous networks necessitating the development of new opti-

mal radio resource allocation (RRA) algorithms to alleviate
the user pairing problems.

Two main classes of NOMA are identified as [2]; power
domain NOMA (PD-NOMA) and code domain NOMA (CD-
NOMA). In PD-NOMA, different power levels based on
each user’s channel quality conditions are used to multi-
plex multiple users on the same time-frequency resources.
At the receiver of PD-NOMA, users are distinguished by
their power levels using successive interference cancellation
(SIC). CD-NOMA is grounded on classic CDMA principles
that apply sparse spreading sequences or non-orthogonal low
cross-correlation sequences. In [3], multiple NOMA schemes
based on low density spreading (LDS) sequences such as
sparse code multiple access (SCMA), multi-user shared ac-
cess (MUSA), pattern division multiple access (PDMA) are
presented. Among various NOMA schemes SCMA exhibits
improved link-level performance compared to other code
domain methods [4]. In [5], the performance of two NOMA
schemes (PD-NOMA and SCMA) is compared. Considering
resource allocation in heterogeneous network scenarios for
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both multiple access (MA) techniques, SCMA is observed
to outperform PD-NOMA. A joint RRA and SIC ordering
algorithm is proposed for downlink power domain sparse
code multiple access (PSMA) based wireless networks [6].
Matching theory and sub-modularity principles are applied
to maximize sum-rate over codebook assignment. An inves-
tigation of RRA in multiple input multiple output (MIMO)-
SCMA in cloud radio access networks is done in [7]. Beam-
forming, joint codebook allocation and user association are
separately implemented to solve the developed sum-rate
maximization optimization problem. To further improve the
performance of the traditional NOMA schemes and optimize
their performance on heterogeneous networks by combining
their individual merits, hybrid schemes are required. This
work proposes a hybrid NOMA scheme that integrates PD-
NOMA and SCMA on the uplink of the 5G heterogeneous
network called power domain SCMA (PD-SCMA). The fea-
sibility of such a system, especially so the development of
a hybrid-generalized-SIC (HG-SIC) receiver that combines
both power and code diversity, the RRA schemes and the
pairing of both MUEs and SUEs, on such a hybrid access
technology network, is a challenging task that needs to be
undertaken.

Mathematical based algorithms have been applied for re-
source allocation in SCMA NOMA networks [2]. There are
numerous works that have solved the resource allocation
(RA) problem in SCMA using analytical Lagrangian opti-
mization based approach. This generally involves defining
the Lagrange function and solving the corresponding dual
problem. Lagrangian optimization can provide optimal so-
lutions although it is mathematically rigorous. One of the
challenges of Lagrangian optimization is the difficulty that
arises when dealing with non-convex problems which usually
requires relaxation to be transformed into convex problems
leading to approximate boundary solutions. More accurate
alternative methodologies are required, hence the proposal
of applying biologically inspired algorithms. Biologically
inspired algorithms are seldom applied for RA in NOMA, de-
spite the fact that they can provide optimization solutions in
NOMA networks. Their adaptive characteristic makes them
appropriate for the constantly changing wireless network
conditions. Meta-heuristic algorithms have the advantage of
simple implementation once optimization solutions can be
formulated into the algorithms’ framework. However, it can
be challenging to represent feasible solutions into meta-
heuristic algorithm structures.

Ant colony optimization (ACO) [8] emulates the behaviour
of ants rummaging for food in nature. During their searching
expeditions ants communicate with each other using indirect
communication, referred to as “stigmergy”. They accomplish
this by leaving pheromone trails for other ants to follow
towards food sources. The paths generated by ants during
their tours represent potential solutions to the optimization
problem. ACO has an inherent parallel and positive feed-
back mechanism which makes it attractive for finding user
multiplexing in NOMA. Random tours in the beginning of

the algorithm can reduce its performance. Introduced in [9],
Particle swarm optimization (PSO) is based on simple social
interaction of birds. Birds often search for food as a swarm
and communicate information regarding their findings within
the flock to maximize their discoveries. In PSO, particles
represent potential solutions to the optimization problem.
Due to its simple implementation and efficiency in solving
continuous problems, PSO is attractive for enabling sharing
of resources in NOMA. Biological optimization algorithms
can be effective in procuring solutions to non-convex prob-
lems that often arise in RA in SCMA. To our knowledge there
is limited work on the application of biological optimization
methods in literature for uplink SCMA NOMA RA except
the work in [10] .

The proposed PD-SCMA for 5G networks enables a new
transmission policy that allows more than two MUEs and
FUEs to be co-multiplexed over the same RE. The developed
HG-SIC receiver combines both the power and diversity
(patterns) gain in MUD. The scheme jointly optimizes the
combinatorial problem of subchannel assignment and power
allocation to maximize the overall system energy efficiency
(EE) of the small cells. Power resources are chosen as the
fundamental multiplexing domain between the MUEs and
SUEs, and code domain as the key multiplexing domain in
the sparse code multiplexing of the SUEs. The complexity of
the system requires alternative RA algorithms. The work then
develops alternative metaheuristic Biological RRA based on
ant colony optimization and particle swarm optimization for
optimizing EE resource allocation in hybrid heterogeneous
networks (HetNets). The performance of this algorithms is
compared to the analytical Lagrangian based approach [11],
which provides upper performance bounds and can easily
result in system design parameter overestimation.

The rest of the paper is organized as follows: Section II
outlines related work on EE RA in SCMA and previous hy-
bridization applications of the above mentioned algorithms.
Section III describes the system model to be adopted in
the paper, and Section IV shows how the EE problem is
formulated. Section V develops the RA and encoding. The
application of RA algorithms is outlined in Section VI with
the receiver algorithm developed in Section VII.Section VIII
evaluates the performance of the algorithms and Section IX
concludes the paper.

II. RELATED WORK
Mathematical based resource allocation methods have been
studied in previous works. Research on codebook based RA
for uplink SCMA with the objective of optimizing subcarrier
and power allocation to maximize total sum-rate is conducted
in [2]. The derived optimization problem is solved using a
matching algorithm. RA for NOMA adopting game theory
approaches is presented in [12]. A user subchannel soap
matching algorithm is proposed to solve the RA problem.
Game theory based uplink power control (PC) in a NOMA
system consisting of two interfering cells is done in [13]. A
distributed PC algorithm is developed and proven to converge
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to the Nash equilibrium. Power minimization efforts for
NOMA are done in [14]. Solutions to the considered NP-
hard optimization problem are derived through relaxation
and application of convex methods. Work on RA in SCMA
enabling ultra reliable low latency communications is con-
sidered in [15]. With the aim of maximizing transmit rate
assuming finite block-length codes, the optimization problem
is solved using Lagrangian based methods and an iterative
algorithm implemented. A comparison of the mathematical
lagrangian based algorithms to the biologically inspired al-
gorithms for a NOMA based HetNet has not been done in
literature. Adaptive codebook design and allocation in energy
saving SCMA networks is presented in [16]. Joint codebook
assignment followed by power allocation is then applied.
Uplink contention based SCMA for 5G networks is studied
in [17]. System-level solutions are derived for UL SCMA
networks in 5G radio access scenarios.

PSO application in maximizing energy efficiency subject
to minimal sum-rate requirement on an uplink multi-user
SCMA system is done in [10]. The non-convex EE maxi-
mization problem is solved using cooperative coevolutionary
particle swarm optimization (CCPSO) algorithm. A power
allocation algorithm based on PSO for application on down-
link NOMA systems is developed in [18]. A fitness function
is defined for energy efficiency and its performance evaluated
through simulations. A PSO motivated power allocation tech-
nique for downlink NOMA IoT enabled systems is presented
in [19]. The performance of the designed PSO approach is
compared to conventional PA methods such as equal power
allocation and water-filling. User-pairing schemes employing
PSO based methods are investigated in [20]. The consid-
ered channel-aware strategies enable transmitters to mini-
mize transmit power for multiplexed users while satisfying
minimum QoS constraints for all users. A dynamic spectrum
allocation method involving an enhanced PSO with mutation
properties is outlined in [21]. The applied PSO is utilized to
solve the non-convex power and rate optimization problem
that arises. The application of PSO on NOMA based HetNets
has rarely been done.

Generally, in different fields, ACO application in rate
adaptive RA with proportional fairness using ACO is done
in [22]. ACO is applied to solve the subcarrier allocation and
sub-optimal power allocation subsequently implemented. An
ACO approach to solve project scheduling problems is given
in [23]. A two-pronged pheromone updating and evaluation
mechanism is implemented for ants to find new solutions. In
[24], parameters of an ACO algorithm are optimized in the
travelling salesman problem (TSP) applications. An example
of the application of hybrid ACO and PSO to optimize
workflow scheduling in a cloud environment is demonstrated
in [25]. The proposed method is aimed at minimizing overall
workflow-time and reducing costs. A hybrid heuristic al-
gorithm composed of PSO and ACO is conceived for task
scheduling scenarios in fog computing smart production lines
in [26]. The proposed technique is targeted at enhancing the
energy efficiency of resource limited devices with high power

consumption. Hybrid ACO based algorithms for NOMA
based networks have been implemented in seldom.

For general RA in NOMA mainly on the downlink, a
unified framework that examines the energy efficiency of an
SCMA low complexity algorithm is investigated in [4]. Op-
timization of RA in dual-hop relays for multi-user SCMA is
studied in [11] with a two-step joint codebook and power al-
location subsequently presented. An RA strategy for SCMA
based downlink system with the aim of maximizing system
throughput is outlined in [27]. Proportional fair (PF) and
modified largest weighted delay first algorithm (M-LWDF)
are applied to solve the optimization problem. Regarding RA
on the uplink, spectrum sharing between LTE and SCMA for
resource allocation is conducted in [28]. Heuristic algorithms
with a target of maximizing overall attainable data rate are
implemented. Device-to-device (D2D) communication in up-
link SCMA targeting sum-rate maximization is considered
in [29]. A low-complexity two-step algorithm combining
heuristic and inner approximation method is employed to
solve the optimization problem. In [30], spectral efficiency
in uplink SCMA considering channel state information (CSI)
estimations is presented. An application of SCMA to wireless
multicast communication to increase multicast capacity is
done in [31]. A sub-optimal algorithm that handles power and
codebook assignment separately is then proposed. Efforts to
maximize sum-rate and fairness in uplink SCMA using joint
channel and power are illustrated in [32]. Iterative algorithms
that jointly allocate codebooks and transmit power in sub-
carriers are implemented with convex programming used to
optimize performance. In [33], a power domain SCMA in
which the power domain and code domain NOMA paradigms
are combined in transmitting multiple user signals over a sub-
carrier on the downlink is presented. SCMA codebooks are
reused by multiple users employing power domain NOMA
(PD-NOMA) to transmit signals non-orthogonally. A joint
power domain and SCMA downlink system is also developed
in [34]. MPA combined with SIC is implemented in the
receiver. A network model that applies hybrid PD-SCMA
technology to a two tier HetNet uplink featuring MUEs and
SUEs user pairing with cross tier interference has not been
developed.

There is limited work on the application of ant colony op-
timization and particle swarm optimization and their hybrids
in resource allocation on power domain sparse code multiple
access networks. Thus, the focus of this work is to develop
hybrid power domain SCMA optimization problem frame-
work, investigate the application of metaheuristic algorithms
(ACO and PSO and a developed hybrid) resource allocation,
compare the performance of the proposed algorithms to
the analytical Lagrangian based optimization which shows
possibilities of system overestimation.

III. SYSTEM MODEL
The network model is a two-tier HetNet consisting of a
centralised single macro base station (MBS) uniformly pop-
ulated by a set of Si = {1, 2, . . . , F} centralised small cell

VOLUME 4, 2016 3



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2990119, IEEE Access

Sefako et al.: Biological Resource Allocation Algorithms for Heterogeneous Uplink PD-SCMA NOMA Networks

base stations (SBSs) and M MUEs as in Figure 1. Each of
the F small cells is populated with K uniformly distributed
SUEs. As in [2], it is assumed an SUE is represented as an
SCMA layer and each user is assigned a RE. The REs are
shared among SUEs while MUEs are co-multiplexed over
the same time-frequency resources using PD-NOMA. In the
uplink HetNet model, REs can be reused between MUEs and
SUEs in small cells as PD-NOMA is coupled with SCMA
in MUE communication, while only SCMA is employed in
small cells.

The network total bandwidth B, is divided into N REs
occupying a bandwidth Bsc = B/N . The transmitter assigns
power level, PSUE,ik,n , to the the kth SUE in ith SBS on
the nth RE and also allocates transmit power, PMUE,i

m,n , to
the mth MUE associated with in ith SBS on the nth RE.
Let hSUE,ik,n and hMUE,i

m,n denote the channel gain of the kth

SUE to the ith SBS on the nth RE, and the channel gain of
the mth MUE on the nth RE associated with the ith SBS.
Define V SUE,IK,N = [µSUE,ik,n ]F×K×N as the RE HG-NOMA
transmitter RE matrix for small cells where µSUE,ik,n = 1

implies that the kth SUE connected to the ith SBS has been
assigned the nth RE. In a similar manner, VMUE,I

M,N can also
be defined such that VMUE,I

M,N = [µMUE,i
k,n ]M×N as the HG-

NOMA RE matrix where µMUE,i
k,n = 1 means that the nth RE

has been allocated to the mth MUE in the ith SBS . Based
on the hybrid power domain SCMA paradigm following the
work in [33], the received signals can be detected using MPA
and SIC. This consideration allows for the reuse of REs
among MUEs and SUEs.

Focusing on the small cell network, the received signal of
the kth SUE on the nth RE in the ith SBS, ySUE,ik,n , after
SUEs multiplexing is expressed as

ySUE,ik,n (t) = V SUE,Ik,n (
√
PSUE,ik,n hSUE,ik,n sSUE,ik,n )︸ ︷︷ ︸
Desired signal

+
K∑
j 6=k

V SUE,Ij,n (
√
PSUE,ij,n hSUE,ij,n sSUE,ij,n )︸ ︷︷ ︸
Ik,n

+
M∑
m=1

VMUE,I
m,n (

√
PMUE,i
m,n hMUE,i

m,n sMUE,i
m,n )︸ ︷︷ ︸

ICT

+wi,k,n, (1)

where sSUE,ik,n is the kth SUE message symbol on the nth RE
in ith SBS, sMUE,i

m,n is the message symbol of the mth MUE
on the nth RE affiliated with the ith SBS. Ik,n is the intra-tier
interference and ICT denotes the cross-tier interference from
theM MUEs.wi,k,n is the noise vector modelled as Additive
Gaussian White Noise (AGWN). The RE matrices V SUE,IK,N

and VMUE,I
K,N are determined in Section V. It is assumed

that each base station has perfect knowledge of channel state
information (CSI).

IV. PROBLEM FORMULATION
The signal to noise-plus interference (SINR) of kth SUE in
ith SBS using nth RE, ΓSUE,ik,n , is given by

ΓSUE,ik,n =
V SUE,Ik,n PSUE,ik,n |hSUE,ik,n |2

Ik,n + ICT + E{|σ|2}
, (2)

where σ2 is the additive white gaussian noise (AWGN). The
upper bound of the attainable sum rate of each user can be
expressed as

RSUE,ik,n = log2(1 + ΓSUE,ik,n ). (3)

The total rate of the system can be expressed as

Rtot =
F∑
i=1

N∑
n=1

K∑
k=1

µSUE,ik,n log2(1 + ΓSUE,ik,n ), (4)

The total power,Ptot, consumed by the system can be written
as

Ptot =
F∑
i=1

K∑
k=1

N∑
n=1

PSUE,ik,n +KPsta, (5)

where Psta is the SUEs static power. The energy
efficiency,ηe, of the system is defined as [10]

ηe =
Rtot
Ptot

. (6)

Therefore, the energy efficiency optimization problem con-
sidering minimum rate requirements can be formulated as

max
V SUE,I
k,n ,PSUE,i

k,n ≥0
{ηe(Rtot, Ptot)}, (7)

subject to :

C1 :
F∑
i=1

K∑
k

N∑
n=1

µSUE,ik,n RSUE,ik,n ≥ Rmink,n ,

C2 :

N∑
n=1

µSUE,ik,n PSUE,ik,n ≤ Pmax,

C3 : PSUE,ik,n ≥ 0,

C4 :
K∑
i=1

µSUE,ik,n +
M∑
i=1

µMUE,i
k,n ≤ df ,

C5 :
K∑
i=1

µSUE,ik,n +
M∑
i=1

µMUE,i
k,n ≤ ds,

C6 : µSUE,ik,n orµMUE,i
k,n ∈ {0, 1},

Rmink,n inC1 is the minimum system sum-rate required for the
SUEs, Pmax in C2 is the maximum transmit power of SUEs,
df in C4 is the degree of RE which means that a RE can
be used at most by df users, C5 implies that the maximum
number of REs utilized by each user is ds, set to ds = 3 in
this work to minimize receiver complexity.
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FIGURE 1: System model

V. RESOURCE ALLOCATION AND ENCODING
A. POWER ALLOCATION
To allocate power to SUEs, a well established method of
water-filling [35] is adopted due to its simple implementa-
tion. Assuming initial minimum power allocation level, let
{h̃SUE,ik,n } be a sorted sequence of channel gains which is
positive and monotonically decreasing. Define di as the step
depth written as di = 1

h̃SUE,i
k,n

, for i = 1, 2, . . . , N , where N is

the number of channels. Then the step depth difference, δi,j ,
can be expressed as

δi,j = di − dj =
1

h̃SUE,ik,n

− 1

h̃SUE,jk,n

(1 ≤ i, j ≤ N), (8)

The power allocation vector level, PSUE,ik,n , can be ob-
tained using [35]

PSUE,ik,n =

{
Pmax −

N−1∑
i

δi,j

}+

. (9)

The implemented power allocation is shown in Algorithm
1.

B. SCMA ENCODING
The encoding where REs are mapped to a set of C code-
books with the number of codebooks that can be generated
determined as C =

(
L
J

)
is used [3], [33]. The SCMA

encoding process in which log2Q binary bits are mapped
to L-dimensional codewords of size Q is illustrated in Fig-
ure 2. Each codebook is assumed to contain Q codewords
with length L which are transmitted over orthogonal radio
resources (such as OFDMA subcarriers). The L-dimensional
codewords that constitute a codebook are sparse vectors with
J non-zero entries where J < L. In this scenario, the
overloading factor can be defined as λ = K/L. For the kth

SUE on the nth RE in ith small cell (SUEik,n), and the mth

macro cell user on nth RE in the proximity of ith small
cell (MUEim,n), a codebook is allocated with codebook
reuse being allowed as in [33]. As codebooks are transmitted

Algorithm 1: Water-filling based Power Allocation

1 Input: N, Pmax
2 Output: P = {PSUE,ik,n |∀i ∈ N}
3 Initialize minimum power allocation, PSUE,ik,n , across

REs
4 for i=1:F do
5 for k=1:K do
6 for n=1:N do
7 Sort SUEs based on their channel conditions,

equation (2)
8 Update power allocation vector P using

equation (8), (9)
9 end

10 end
11 Continue process until convergence reached or

number of iterations exceeded.
12 end

on different wireless channels , the MPA receiver can still
recover the data streams without collisions. Codebook reuse
can improve both the overloading factor and the number of
connections to enable massive connectivity. Optimal SCMA
decoding is achieved using the maximum a priori (MAP)
decoding [36] but the message passing algorithm (MPA)
which offers approximate performance at reduced decoding
complexity is considered in this work.

C. RESOURCE ALLOCATION

Consider the scenario where the kth user is allocated a
maximum of ds REs (equation 7 C5). Let the UE-to-RE
matrix, Ak, be a N × ds matrix where rows represent REs in
the system. To preserve the sparsity of SCMA, there is only
one non-zero entry in each column of Ak which corresponds
to the RE designated to the kth user. For instance, if ds = 2,
N = 4, and user 1 is allocated the first and third REs, its
spreading matrix could be expressed as

VOLUME 4, 2016 5
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FIGURE 2: Example of SCMA encoding with K=6
SUEs,L=4 REs, J=2

A1 =


1 0
0 0
0 1
0 0

 . (10)

For K users in the system, the corresponding SCMA spread-
ing matrix of size N × (Kd(s)) is given by

ANk = [A1, A2, . . . , AK ]. (11)

In (11), the columns are derived in the following manner. The
columns belonging to the kth user are in the range (k−1)ds+
1 to kds. For example, an SCMA system with K = 6, N =
4, ds = 2 operating at full-load could have the following
spreading matrix,

AKN =


1 0 0 0 1 0 0 0 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 0
0 1 0 0 0 0 1 0 0 1 0 0
0 0 0 1 0 0 0 1 0 0 0 1

 .
(12)

Having derived the spreading matrix in (12) UE-RE cor-
relation can be encapsulated in a factor matrix defined as
Fnk = [f1, f2, . . . , fK ], where fnk = 1 implies that kth

UE occupies nth resource element and fnk = 0 means no
resources have been assigned. The elements of the factor
matrix are computed from fk = diag(AkA

T
k ). Consequently,

the factor matrix for the previous example in (12) is given by

Fnk =


1 0 1 0 0 1
0 1 1 0 1 0
1 0 0 1 1 0
0 1 0 1 0 1

 . (13)

The first column of Fnk represent the first UE is allocated the
first and third REs. Similarly, the second UE is assigned the
second and fourth REs as shown in the second column of
Fnk , and the rest of the UEs are assigned as illustrated in the
remaining columns of Fnk . The first row represents the first

RE which is utilized by the first, third and sixth UEs. The
UE-RE scheduling vector,V nsc, can be succinctly written as

V nsc[RE]⇔ [UE1, UE2, . . . , UEK ], (14)

where UEk is allocated a set of ds REs based on the root
mean square (RMS) values of the channel gains. Note that
the RA matrices V SUE,Ik,n and VMUE,I

k,n of Section III are a
subsets of V nsc[RE].

VI. APPLICATION OF RA ALGORITHMS
The conventional application of the lagrangian method in
optimization of (7) is as in [37]. In the alternative algorithms,
user to RE pairing is performed using biological algorithms
based on channel conditions. At the beginning of the RA
process, the biological algorithms embark on a random
search for UE to RE pairs based on SINR conditions. The
random explorations are utilized to initialize the algorithms
in their respective frameworks. Considering the constantly
changing wireless channel conditions, the adaptive nature of
the biological algorithms is exploited to discover channels in
which UEs have better SINR so as to maximize the data rate
at minimum transmit power.

A. LAGRANGIAN BASED OPTIMIZATION
The optimization problem in (7) is a non-convex problem that
needs to be transformed using nonlinear fractional program-
ming Dinkelbach approach [37] before it can be solved using
convex based techniques such as Lagrangian optimization.
The optimization problem in (7) can be re-written as

max
µSUE,i
k,n ,PSUE,i

k,n ≥0
{Rtot − ηe(Ptot)}, (15)

It can be proven that the optimal solution of the subtractive
form of the optimization problem in (15) is reached when
Rtot − ηe(Ptot)} approaches zero. If the objective function
in (7) has undergone transformation to reduce the non-convex
complexity by assuming the binary variable µSUE,ik,n to be
continuous, then the Lagrangian function can be expressed
as

L(R,P, ηe,Ω) = Rtot − ηe(Ptot)}

− λ(
N∑
n=1

µSUE,ik,n RSUE,ik,n −Rmink,n )− γ(
J∑
j=1

µSUE,ik,n − df )

−α(
K∑
k=1

µSUE,ik,n − ds)− β(Pmax −
N∑
n=1

µSUE,ik,n PSUE,ik,n ),

(16)

where Ω = (λ ≥ 0, γ ≥ 0, α ≥ 0, β ≥ 0) are Lagrange
multipliers for relaxed constraints. Constraints in C3 and C6
are absorbed by Karush-Kuhn-Tucker (KKT) conditions. The
dual function can be defined as

g(ηe,Ω) = max
RSUE,i

k,n ,PSUE,i
k,n

L(P,R, ηe,Ω), (17)
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The dual problem can correspondingly be expressed as

min
RSUE,i

k,n ,PSUE,i
k,n

g(ηe,Ω), (18)

In solving the Lagrangian function, (16) is decomposed
into a master problem and K×N subproblems. The solution
of each subproblem is derived by iteratively solving the
subproblem in the corresponding SBS. The equation in (16)
can be written as

L(R,P, ηe,Ω) = Lin+λ(Rmink,n )−γ(df )−α(ds)−β(Pmax),
(19)

where

Lin =
N∑
n=1

µSUE,ik,n RSUE,ik,n +
K∑
k=1

ηeP
SUE,i
k,n

− λ(RSUE,ik, )− γdf − α(ds)− β(PSUE,ik,n ). (20)

Optimal transmit power is obtained by applying KKT condi-
tions in combination with optimization methods,

PSUE,ik,n =
Bsc(1 + γ)∑K

j 6=k Bsc(1 + γ)(ΓSUE,ij,n ) + ln2(λ+ χMUE,i
k,n )

,

(21)

where χMUE,i
k,n = µMUE,i

k,n hMUE,i
k,n . The subgradient method

is employed to update Lagrangian dual variables as follows

λt+1 = λt − ζt1
[
RSUE,ik,n −Rmink,n

]+
, (22)

βt+1 = βt − ζt2
[
Pmax −

N∑
n=1

µi,k,nP
SUE,i
k,n

]+
, (23)

where ζt1 and ζt2 are step sizes of iteration t ∈
{1, 2, . . . , Imax}. When the step sizes are sufficiently small,
the Lagragian multipliers converge to equilibrium points. The
implemented scheduling algorithm is as outlined in Algo-
rithm 2.

B. PARTICLE SWARM OPTIMIZATION(PSO)
1) Principle of Operation

In the basic PSO [9], a particle represents a viable solution
to the objective function F (x) where x is the decision vector
in D dimensional search space. The ith particle position
in the search space can be expressed as a position vector
xi = [xi1, xi2, . . . , xiD] which roves in the search space
with velocity vi = [vi1, vi2, . . . , viD]. As particles traverse
the search space, a fitness function (f ) related to F (x)
is evaluated for each particle and the positions of highest
personal fitness values of particles, fpbest, and the best fitness
value of the entire swarm, fgbest, are stored. Given a swarm
of Pn particles, with the personal best values, Pi,fpbest , and
global best value, Pi,fgbest , of the particles can be expressed
as

Algorithm 2: Lagrangian PD-SCMA Resource Schedul-
ing

1 Input: Maximum number of iterations, Imax
2 Initialize maximum number of iterations Imax Initialize

energy efficiency ηe and equal power
allocation,PSUE,ik,n across REs

3 while (convergence not reached or maximum iterations
exceeded) do

4 for i=1:F do
5 for n =1:N do
6 Initialize Lagrange multipliers (λ, γ, α, β)

Given ηe, compute PSUE,ik,n equation (21 ) ,
Update available resources, equation (7)
(C5&C6),

7 Determine the throughput, equation (4),
8 Update Lagrange multipliers according to

(22), (23),
9 Continue process until convergence reached

or number of iterations exceeded.
10 end
11 end
12 end

Pi,fpbest = arg min[fpbest, xid], (24)

Pi,fgbest = arg min[fgbest, xid], (25)

Particles instantaneously update their velocity vector to attain
their previous best fitness and migrate towards the swarm’s
global best fitness value. Each ith particle’s dth dimension
has velocity, vt+1

id , calculated according to

vt+1
id = wvtid+c1r1(Pi,fpbest−xtid)+c2r2(Pi,fgbest−xtid),

(26)

where w is particles inertia, Pi,fpbest is the personal best
position of the particle, c1 and c2 are personal and social
learning factors respectively. The variables r1 and r2 are
random values normally in the range 0 to 1. Particles’ dth

dimension position is updated as

xt+1
id = xtid + vt+1

id , (27)

where vid is the velocity vector with an equivalent dimension
as the position vector. The dimensions of the search space
varies based on the nature of the optimization problem under
consideration. Information pertaining to particles’ current
positions and their personal bests is stored in matrices Xp

and Yp respectively.

Xp =


x1,1 x1,2 · · · x1,F
x2,1 x2,2 · · · x2,F

...
...

. . .
...

xsk,1 xsk,2 · · · xsk,F

 , (28)
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Yp =


y1,1 y1,2 · · · y1,F
y2,1 y2,2 · · · y2,F

...
...

. . .
...

ysk,1 ysk,2 · · · ysk,F

 . (29)

The ith row ofXp is a F -dimensional vector concatenating
all current position vectors xi from K particles.

2) PSO RE scheduling

In application of PSO to SCMA RA, particles represent
feasible solutions to the RE scheduling optimization problem
which involves codebooks assignment to users. The fitness
function, F (x), is the energy efficiency optimization problem
of equation (7) expressed as

F (x)⇔ max{ηe(R,P )}. (30)

As particles traverse the search space to discover UE-RE
assignments which yield good energy efficiency solutions,
they evaluate the fitness function of equation (30). A particle
in this instance represents the multiplexing of K SUEs using
L-dimensional codewords over N subcarriers to solve the
optimization problem of equation (7) with the associated
constraints. In every Transmission Time Interval (TTI), the
position of each particle, xid represents a feasible RE as-
signment and is constructed to form the resource scheduling
vector defined as a position vector xid = [xi1, xi2, . . . , xiN ],

xid ⇔ V nsc[RE], (31)

where V nsc[RE] is given by equation (14). Particles then
update their personal best positions which corresponds to the
best scheduling solution the particle has discovered thus far.
The global best particle position is updated if the personal
best of the particle at that instant is detected to be better than
the current global best position. The implemented scheduling
algorithm is outlined in Algorithm 3.

C. ANT COLONY OPTIMIZATION (ACO)
1) Principle of Operation

A typical ACO application involves modelling a discrete
combinatorial optimization problem as a construction graph.
The optimization problem is formulated as a graph coloring
problem represented by G = (V,E) where V is the number
of vertices and E is the number of edges. In the Ant Colony
Optimization Assignment Type Problem (ACO ATP) [38],
[39], i nodes are assigned j colors where items are assumed
to be nodes on the graph and objects are represented by col-
ors. Artificial ants generate paths which are feasible solutions
as they travel through the graph. In each path, ants choose
a path Pi,j which represents an assignment of j objects to
i items, and evaluate the fitness function Fi,j(x) which is
related to the objective function being optimized.

Algorithm 3: PSO PD-SCMA Resource Scheduling

1 Input:
2 UEs: U = { 1,...,k,...,UEK }
3 REs: R = {1,...,n,... REN }
4 Initialize: c1, c2, r1, r2, w
5 while (convergence not reached) do
6 for i=1:F do
7 for n =1:N do
8 Generate random positions of particles and

store them, equation (27) & (28).
9 Perform RA, equation (14) ,

10 Update available resources, equation (7)
(C5&C6),

11 Determine the throughput, equation (4),
12 Allocate power, Algorithm 1,
13 Evaluate particle fitness, equation (30),
14 Update,fpbest, equation (24)& (29),
15 if Pi,fgbest > Pi,fgbest then
16 Update, Pi,fgbest , equation (25) ,
17 end
18 Allocate power, Algorithm 1,
19 Continue process until convergence is

reached or number of iterations exceeded.
20 end
21 end
22 end

Pi,j = max{Fi,j(x)}. (32)

They choose the optimal path, P opi,j , that maximizes the
fitness function F opij ,

P opi,j = max{F opi,j (x)}. (33)

An ATP ACO set up often requires two probabilistic rules for
choosing nodes and colors. The first probability, p

′

i,j(t), for
ant a choosing the next node when it is at node i, is given by

p
′

i,j(t) =
τ

′α
i,j(t)η

′β
i,j(t)∑

j∈Sk
i (t)

τ
′α
i,j(t)η

′β
i,j(t)

, (34)

where α, β are pheromone weighting factors, τ
′

i,j , is the
pheromone intensity, η

′

i,j is the desirability, and Ski (t) is set
of feasible nodes from ant a at node i. The desirability of ant
a choosing the next node is given by the heuristic function,
η

′

i,j(t),

η
′

i,j(t) =
1 + |Nk

unassigned|
1 + |Nnei,i|

, (35)

where |Nk
unassigned| is the number of neighbours to the

current node that have not been allocated objects, and |Nnei,i|
is the number of neighbors from the perspective of the ant
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when at node i. The pheromone in previously chosen nodes
is defined as

τ
′

i,j(t) =
F besti,j

|N best
i (t)|

, (36)

where F besti,j is the fitness function of best ant, and N best
i is

the set of feasible nodes from the perspective of best ant at
node i. The second probability, p

′′

i,o(t), of choosing an object
to assign for the current node from the set of objects, No, is
given by

p
′′

i,o(t) =
τ

′′α
i,c (t)η

′′β
i,o (t)∑

j∈No
τ

′′α
i,c (t)η

′′β
i,o (t)

, (37)

where the heuristic function, η
′′

i,o, is defined as

η
′′

i,o(t) =
1 + nprevious−best
1 + navailable−obj

, (38)

where nprevious−best is the number of elements in the set
of previously assigned objects, navailable−obj is the number
of objects available for allocation. The pheromone, τ

′′

i,c, is
updated using

τ
′′

i,c(t) =
nprevious−best
|NBest

i (t)|
. (39)

The fitness function Fi,j of each path which represents a
solution to the optimization problem is calculated along each
path and paths with higher fitness have more pheromones
deposited on them.

2) Ant Colony Optimization(ACO) RA scheduling

On application to SCMA RA, UEs are represented by
nodes and RE allocation patterns are associated with colors.
A path that represents the assignment of n REs to k UEs can
be formulated from equation (14) as

Pk,n ⇔ V nsc[RE]. (40)

The optimal path,P opk,n, that maximizes optimization function
is

P opk,n ⇔ Ṽ nsc[RE]⇔ max{Fk,n(x)}. (41)

The fitness function, Fk,n(x) is given by

Fk,n = max{ηe(R,P )}. (42)

As ants traverse the search space they leave pheromone in
paths that have higher fitness, i.e. RE allocations that have
desirable energy efficient transmission rates in their path
for other ants to follow in future travels. A colony of RA
scheduling decisions is build by ants based on tours in which
they discovered optimal sum rates. The applied ACO SCMA
resource scheduling algorithm is summarized in Algorithm
4.

Algorithm 4: ACO PD-SCMA Resource Scheduling

1 Input:
2 UEs: U = { 1,...,k,...,UEK}
3 REs: R = {1,...,n,... REN }
4 Initialize: α , β , ρ
5 while ( convergence not reached) do
6 for i=1:F do
7 for k=1:K do
8 for n =1:N do
9 Begin ant search for REs in R that

satisfy (7, C1).
10 Perform RA, equation (14),
11 Update available resources, equation 7

(C5&C6).
12 Determine the throughput, equation (4)
13 Allocate power, Algorithm 1,
14 Evaluate fitness function, equation (41).
15 Update pheromone for higher fitness

functions, equation (36) & (39).
16 Continue process until convergence

reached or number of iterations
exceeded.

17 end
18 end
19 end
20 end

D. ADAPTIVE PARTICLE ANT SWARM OPTIMIZATION
(APASO)
1) Principle of Operation

Artificial ant particles possessing both attributes of PSO
and ACO are created and randomly initialized in the search
space. For all ant particles the fitness function F (x) is com-
puted. To improve the performance of PSO a pheromone-
guided mechanism is employed to indicate ant particles with
more fitness. In [40], it is outlined how the inertia weight
provides a balance between exploration and exploitation.
Having a higher inertia weight in the beginning enables
global search, while a lower inertia weight in later stages
of algorithm enhances convergence towards personal and
global best values. In our proposed APASO we consider the
modification of ant particles inertia weight as

w ⇔ τinter, (43)

where τinter is the inter ant particle pheromone given by

τinter = ζ

( ∣∣∣∣∣min(F tpbest(x), F t(x))

max(F tpbest(x), F t(x))

∣∣∣∣∣
)
, (44)

where ζ is a control parameter in the range [0,1], and F t(x)
is the mean fitness of all ant particles at t, and F tpbest(x) is
personal best fitness of ant particles at t. For a d-dimensional
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space, an ant particle has velocity, vt+1
id and position, xtid,

defined by

vt+1
id = τinterv

t
id+c1r1(ptpb−xtid)+c2r2(ptgb−xtid), (45)

xt+1
i = xti + vt+1

i , (46)

where ptpb and ptgb are personal best and global best of ant
particles defined similar to equations (24) and (25) respec-
tively. In equation (45) applying the inter ant particle (τinter)
pheromone to the first term on the right hand side of the
equation enables diversity of ant particles’ search in early
iterations of the algorithm while increasing convergence in
later iterations.

2) Adaptive Particle Ant Swarm Optimization (APASO)
Scheduling

The proposed hybrid technique aims to exploit advantages of
PSO and ACO to attain superior performance to the conven-
tional algorithms. In the beginning stage of the scheduling
process, PSO generates new random particle ants, and the
ACO based pheromone mechanism generates pheromones
for ant particles to mark solutions with higher fitness values.
It is these favourable qualities of the PSO and ACO that
have motivated the hybridization of PSO and ACO in the
proposed APASO. The position of an ant particle is modelled
as scheduling vector in a particular TTI as

xid ⇔ V nsc[RE], (47)

where V nsc[RE] is defined as equation (14). The fitness
function is formulated to solve the optimization problem in
equation (7) as

F (x)⇔ max{ηe(R,P )}. (48)

Each ant particle then stores its position together with its
fitness value, and keeps updating velocity in equation (45) so
that the ant particles maintain their migration towards better
solutions. The mechanics of the APASO algorithm for RE
scheduling in SCMA is summarized in Algorithm 5.

VII. RECEIVER ALGORITHM AND COMPLEXITY
To detect and decode the received signal, the kth SUE at ith

SBS using codebook c detects and removes signals of df − 1
users. Denoting the mean channel gains of users superim-
posed on codebook c as H̃SUE,i

k,c , the receiver algorithm is
outlined in Algorithm 6.

Assume that a codebook in PD-SCMA is allocated to df
users at the same time with each SUE applying MPA df
times and implementing SIC (df -1) times in the process of
detecting and decoding transmitted data. In the case where
C codebooks are assigned to df SUEs, the complexity of the
receiver can be approximated as

O(Imax|ν|p(C)(df )), (49)

Algorithm 5: APASO PD-SCMA Resource Scheduling

1 Input:
2 UEs: U = { 1,...,k,...,UEK }
3 REs: R = {1,...,n,... REN }
4 Initialize c1, c2, r1, r2, w,τinter while (convergence not

reached) do
5 for i=1:F do
6 for n =1:N do
7 Initialize random ant particles search,
8 Allocate resources, equation (14),
9 Determine the throughput, equation (4),

10 Distribute pheromone τinter, equation (44),
11 Evaluate fitness function for all ant particles,

equation (48),
12 Update the velocity and position vectors for

ant particles, equations (45) & (46),
13 Update pheromone, equation (44),
14 Allocate power, Algorithm 1,
15 Continue process until convergence is

reached or number of iterations exceeded.
16 end
17 end
18 end

Algorithm 6: PD-SCMA Based Receiver

1 Input:
2 Received signal from all orthogonal subcarriers, Channel

gain matrix for all users, H̃SUE,i
k,c

3 Initialize maximum number of iterations Imax
4 Set H̃SUE,i

k,n = min H̃SUE,i
k,c

5 Apply MPA on the received signal

6 Output V SUE,Ik,n (
√
PSUE,ik,b hSUE,ik,n xSUE,ik,n ) (SUE k

signal on codebook n in ith SBS).
7 Apply SIC on resulting signal

8 ySUE,ik,n = ySUE,ik,n − (V SUE,Ik,n (
√
PSUE,ik,b hSUE,ik,n xSUE,ik,n )

9 Set H̃SUE,i
k,c = H̃SUE,i

k,c − H̃SUE,i
k,n

10 Repeat process until all SUEs data has been decoded.

where ν is the codebook size, Imax is the maximum number
of iterations, p is the non-zero elements of factor matrix
Fnk = f1, . . . , fn.

VIII. PERFORMANCE EVALUATION
In simulations, it is assumed that SUEs are randomly dis-
tributed in small cells which are uniformly distributed in the
macrocell coverage area. The radii of the macrocell and small
cells are 500m and 20m respectively, and minimum distance
between the small cells and MBS is 40m. The system band-
width is considered to be 10 MHz with the channel model
assumed to characterized by small scale Rayleigh fading with
large scale path loss and 8dB log-normal shadowing . The
maximum transmit power is 21 dBm and Psta = 18 dBm.
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The minimum data rate is assumed to be 5 Mbps.
Figure 3 shows a plot of sum-rate vs number of users in

the network. As the number of users increases the sum-rate
of the system increases, although the gradient of the sum-rate
curve decreases with increasing number of users. APASO
offers better performance than the PSO and ACO achieving
performance close to the analytical Lagrangian. Figure 4

FIGURE 3: Sum-rate vs Number of users

FIGURE 4: Sum-rate vs Total Power

illustrates the variation of the sum-rate of the system vs total
transmit power of users. As the transmit power is increased
the sum-rate of the system increases until a saturation point
is reached beyond which further transmit power increases
do not yield increased sum-rate capacity of the system. The
developed APASO outperforms the other biological algo-
rithms, with the Lagrangian providing an upper bound. The
performance of the Lagrangian in figures 3 and 4 is similar to
that demonstrated in [33].

FIGURE 5: Energy efficiency vs Number of users

In figure 5, it is noted that as the number of users increases
the energy efficiency of the systems decreases. Although the
EE is higher in the beginning, it starts deteriorating with
additional users in the system indicating that after the system
has reached saturation, increasing number of users compro-
mises the performance of the system. The performance of the
algorithms follows a similar trend from Lagrangian to ACO.

FIGURE 6: Energy efficiency vs Number of iterations

In figure 6, the EE of the algorithms is recorded as they
are executed. The developed APASO achieves higher EE
and saturates faster than the other conventional biological
algorithms. The pheromone mechanism adopted in APASO
enhances its ability to find higher fitness ant particle solutions
with higher EE. To evaluate the fairness of the algorithms
in distributing resources among users in the network, Jain’s
fairness metric is embraced. It is defined as in [32] which can
be expressed as
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J =

(∑
K
k=1R

FUE,i
k,n

)2

K ×
∑

K
k=1(RFUE,ik,n )2

. (50)

In (50), the index has a range of 1/J (no fairness) to
1(perfect fairness). In Figure 7, the fairness performance of

FIGURE 7: Fairness vs Number of users

the considered algorithms is outlined. The ACO is observed
to outperform other algorithms in terms of fairness as it has
higher fairness index overall. This implies that the ‘colony’
of solutions derived using pheromone mechanism enables
it to share resources more fairly among users albeit at the
expense of maximizing the sum-rate. Its performance is
followed by PSO and APASO with lagrange showing the
worst performance. This implies that though the lagrangian
algorithm provides better performance in terms of sum rate
and energy efficiency, its the least fair.

A comparison of PD-NOMA, SCMA and PD-SCMA RA
with application of APASO was investigated and the results
of Figures 8 to 10 developed. In Figure 8 the system sum rate
versus total number of users is plotted. As it can be observed,
the hybrid PD-SCMA has significantly higher sum rate than
the other NOMA techniques. Figure 9 shows the system sum
rate versus total transmit power for the three MA schemes.
The hybrid PD-SCMA outperforms the two conventional
NOMA methods. A comparison of the energy efficiency of
the three considered MA schemes against the number of
iterations is displayed in Figure 10. PD-SCMA is seen to per-
form better than the other two traditional NOMA approaches.
The enhanced performance of PD-SCMA as compared to the
conventional NOMA MA schemes can be attributed to the
ability of PD-SCMA to merge access features of PD-NOMA
and SCMA.

FIGURE 8: Sum-rate vs Number of users for different MA
schemes using APASO

FIGURE 9: Sum rate vs total transmit power using APASO
for different MA schemes

IX. CONCLUSION
In this paper, the performance of nature-inspired algorithms,
PSO, ACO and the developed hybrid APASO is investigated
regarding sum-rate maximization, energy efficiency and fair-
ness in a hybrid power domain SCMA setup. The investiga-
tive results show that the performance of APASO is better
than the conventional biological algorithms (PSO and ACO)
with respect to sum-rate and energy efficiency. However,
ACO is observed to have a higher fairness index than the
other considered algorithms. The developed results also show
that the common Lagrangian based optimization can lead to
system performance overestimation. PD-SCMA is observed
to outperform the other considered traditional MA schemes
when only APASO is employed for RA. Future work will
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FIGURE 10: Energy efficiency vs Number of iterations for
different MA schemes using APASO

consider more evolved hybrids with other advanced variants
of biological algorithms that have been proven to be efficient
in solving NP-hard problems. Furthermore, the performance
of succeeding models should feature extended aspects like
signaling overhead, channel uncertainty and many others for
conclusive deductions.
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