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Abstract: 

This paper reports a comparison between various imaging procedures based on time- and frequency-

domain features applied to eddy current data collected on an Aluminium alloy benchmark sample containing 

a set of small notches with various depths. Historically, the pulsed eddy current method was introduced to 

improve the performance of eddy current testing in terms of increased penetration depth and lift-off 

invariance by exploiting time-domain features analysis precluded when using single- or multi-tone 

excitations. In this work, such analysis is instead accomplished by using a swept-frequency excitation signal 

along with an optimized pulse-compression procedure. This approach allows the user to deliver more energy 

to the system with respect to the pulsed approach, thus improving the resultant signal-to-noise-ratio (SNR) 

without losing the capability of time-domain feature extraction. The imaging procedure makes use of 

amplitude and phase features of both frequency- and time-domain data where time-phase is defined through 

the Hilbert transform of the pulse-compression output. Detection capability of various imaging strategies, 

namely A-, B- and C-scans, are compared in terms of inspection depth and lift-off robustness by using the 

SNR merit factor. It is shown that time-domain features outperform frequency-based ones in terms of SNR 

for the case of deeper defects and that phase features are robust against lift-off variations for both time and 

frequency domains. In addition, the analysis of time-amplitude images clearly evidences the presence of lift-

off invariant points. To our knowledge, this is the first experimental evidence of the lift-off invariance points 

retrieved after applying pulse-compression in combination with coded excitation instead of using directly 

pulsed, multi-tone or single-tone sinusoidal signals. This not only confirms previous results achieved by the 

authors, but also demonstrates that pulse-compression eddy current can represent a valid solution to combine 

the advantages of pulsed and sinusoidal excitation strategies. 
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I. Introduction 

In the last decades, many research efforts have been devoted to increase the performances of Eddy 

Current Testing (ECT) mainly by means of Multi-Frequency (MF) or Pulsed Eddy-current (PEC) signals [1-

8], or by exploiting electrical resonance phenomena [9]. By exciting the Sample Under Test (SUT) at several 

frequencies simultaneously or through time-multiplexing, the defect detection can be enhanced and at the 

same time useful information can be inferred about detects’ depth and height through the analysis of the 

response at different frequencies. This is because the skin effect makes high frequencies less penetrating in 

the sample than low frequencies. Various strategies have been reported in literature to optimize the MF-ECT 

relying on both hardware and software solutions [10-14]. Proper probes capable of increasing the ECT 



sensitivity while lowering the effect of Lift-Off (LO) variation have been developed [15]; similar results 

have been also reached by using coded excitations, tailored signal and image processing procedures [16-17].  

On the other hand, PEC uses short excitation signals that excite a continuous band of frequencies 

covering all the range of interest for the specific sample [1,4,7]. Time-analysis of PEC signals has proved to 

be extremely powerful in association with feature extraction procedures for the sake of both defect detection 

and characterization [18-19] and in addition PEC signals exhibit characteristic Lift-Off Invariance (LOI) 

points that can be useful to reduce LO noise [20-23]. Starting from PEC data, frequency analysis can be 

implemented by exploiting the Fourier analysis. Therefore, PEC is significantly richer in information than 

MF-ECT, but it is generally characterized by a lower Signal to Noise Ratio (SNR) values since MF signals 

are more energetic. This amount of information is usually not completely exploited since most of the PEC 

applications deals only with time-domain analysis. As a matter of fact, few works in literature compares the 

effectiveness of the two approaches and the possibility to gain advantages by the contextual usage of both 

[24-26]. 

In this framework, the goal of the present paper is to quantitatively compare the performance of imaging 

procedures proposed for frequency- and time-domain features in terms of SNR, and qualitatively in terms of 

defect detection capability of each feature. For the fair comparison in both time- and frequency-domain, an 

imaging procedure is implemented relying on the theory of Eddy Current (EC) diffusion. In addition, as a 

peculiar result of the present paper, instead of starting from PEC data, the time- and frequency- domain 

analysis is implemented by using a Swept Frequency (SF) “Chirp” excitation in combination with Pulse-

Compression (PuC), henceforth referred as PuC-ECT. This approach allows the typical PEC output signals 

to be retrieved after the application of the PuC while assuring contextually the typically high SNR values of 

MF analysis, thus combining the positive characteristics of both techniques. A further goal is to evaluate the 

robustness of the various features proposed in this paper, against LO noise and verifying if LOI points are 

retrieved on the impulse responses estimated trough PuC.  

The paper is organized as follows: in Section II the basic theory of eddy current is summarized 

highlighting its diffusive nature. Starting from this, in Section III the imaging procedures for both time and 

frequency domains are illustrated. Section IV elaborates on the combination of swept-frequency “chirp” 

signals and PuC theory to implement the proposed PuC-ECT technique. The experimental setup and the data 

collection procedure are described in Section V while in Section VI the experimental results are illustrated. 

Conclusions and perspectives are drawn in Section VII. 

 

II. Theoretical background on Eddy Current diffusion theory 

 
The generation and the detection of EC inside a conductive material depend on the physical and 

geometrical properties of the SUT and are governed by the Maxwell’s equations. In the application of the 

Maxwell’s equations three different frequency regimes can be considered: static, quasi-static and time-

varying. In the ECT application the second case is usually considered, which is the (magneto) quasi-static 

approximation in a conductive non-magnetic medium [27]. In a good conductor for which 𝜎 𝜔휀⁄ ≫ 1, the 

displacement current �̅� = 𝑗𝜔휀�̅� is dependent on the frequency and its value is negligible for low 

frequencies, hence considered null. For more details on the basic theory of electromagnetism, the reader is 

referred to the existing literature, see for instance [28]. 

In the quasistatic approximation, the ECT physics is described as a diffusive phenomenon and indeed one 

can derive from the Maxwell’s equations the following magnetic diffusion equations in 3D  

𝜕𝐽 ̅
𝜕𝑡
⁄ = 1 𝜇𝜎⁄ 𝛻2𝐽 ̅  (a) 

(1) 𝜕�̅�
𝜕𝑡⁄ = 1 𝜇𝜎⁄ 𝛻2�̅�  (b) 

𝜕�̅�
𝜕𝑡⁄ = 1 𝜇𝜎⁄ 𝛻2�̅�  (c) 

where the term α𝑚 =
1
μσ⁄  is the ‘Magnetic Diffusivity’ and indicates how fast the electric and magnetic 

fields can penetrate i.e. diffuse inside the conductive sample and reach the steady-state after applying an 

excitation [29-30]. 

Let assume for simplicity, a 1D ideal problem in which an electromagnetic plane-wave propagates along 

𝑧 direction, coming from negative 𝑧 values and impinging perpendicular to the inspection surface of a semi-



infinite SUT placed at 𝑧 = 0. The steady-state solution to Eq. 1(a) for the conduction current density inside 

the SUT, i.e. 𝑧 ≥ 0, can be written in phasor notation as: 

𝐽(̅𝑧, 𝑡) = 𝐽(̅0, 𝑡)𝑒
−
𝑧
δ𝑒
−𝑗(

𝑧
δ
 −ω𝑡)

= 𝐽(̅0, 𝑡)𝑒
−
𝑧
δ𝑒
𝑗𝜔(𝑡−

𝑧
𝜔𝛿
)
 

(2) 

where δ(𝑓) is the ‘Skin Depth’ and is defined as: 

𝛿(𝑓) =
1

√πμσ𝑓
= √

2

ωμσ
 (3) 

Considering a sinusoidal excitation, in Eq. 2 the term 
1

δ
 is the angular wavenumber k and therefore, the 

known quantity 𝑣𝑝 =
2𝜋𝑓

𝑘
 or in this case the ‘Phase Velocity’ of the eddy current diffusion can be written as:  

𝑣𝐸𝐶(𝑓) = 2𝜋𝑓𝛿(𝑓) = 2√π𝑓α𝑚 (4) 

Although the model considered is very simple, the solution to this problem is useful to describe the EC 

phenomenon and indeed the skin depth defined in Eq. 3 is at the basis of the ECT technique. In addition, by 

considering Eq. 3 and Eq. 4 together, which is rarely exploited, it is possible to define similar imaging 

procedures for both time- and frequency- domains and hence compare, fuse and evaluate both approaches. 

To provide a better insight into the proposed imaging procedures, more details about the physics behind the 

previous equations is necessary. 

Eq. 2 does not represent a propagating wave but instead it describes an evanescent wave whose 

magnitude decays exponentially with depth while its phase angle varies linearly with depth but non-linearly 

with the frequency. Precisely, the exponential decay of the amplitude is regulated by the well-known Skin 

Depth 𝛿(𝑓) parameter and the phase lag is determined by the phase velocity 𝑣𝐸𝐶(𝑓). Therefore, each 

frequency 𝑓 is associated with a characteristic inspection range (depth) δ(𝑓) and a characteristic velocity of 

diffusion 𝑣𝐸𝐶(𝑓). Signals with higher frequencies penetrate less inside the SUT and diffuse faster, while 

lower frequency ones diffuse in larger depths but slower. If a broadband excitation is used instead of a single 

frequency, the diffusion is also associated to a dispersive process that modifies the excitation waveform 

depending on the depth inside the sample. 

At the same, it is possible to associate to a given depth d from the surface inside the sample two 

characteristic frequency and time values, denoted by 𝑓∗(𝑑) and 𝑡∗(𝑑) respectively and expressed by the 

following relations: 

𝑓∗(𝑑) = (𝜋𝜇𝜎𝑑2)−1 ⇒ δ(𝑓∗(𝑑)) = 𝑑;   𝑡∗(𝑑) = (2 ∗ 𝑑)/𝑣𝐸𝐶(𝑓
∗(𝑑)) = (𝜇𝜎𝑑2) (5) 

The function 𝑓∗(𝑑) indicates the frequency value for which the skin depth δ(𝑓∗(𝑑)) is equal to 𝑑. Thus, 

𝑓∗(𝑑) is the optimal frequency to detect inner defects placed at distance 𝑑 from the inspection surface. The 

function 𝑡∗(𝑑) gives the diffusion time needed for an evanescent wave of frequency 𝑓∗(𝑑) to reach the 

distance 𝑑 from the surface and come back when “reflected” by an inhomogeneity such a void, crack and 

generic defects. These two quantities relate nonlinearly depth with frequency and time by considering the 

diffusion law and starting from these relations it is possible to define a 3D imaging procedure for both 

frequency- and time-domain features. 

It is worth to note that in real cases, the expressions in Eq. 5 must be corrected to consider the shape of 

the exciting coil, SUT’s geometrical characteristic, and the spectrum of the excitation signal. However, these 

basic relations are still useful to design the excitation signal and to define the signal and image processing 

algorithms, as will be illustrated in the next section.  

 

 



III. Imaging procedure for time- and frequency- domain 

 
To develop the imaging procedures, following ideal procedure was considered: a short pulse excites the 

system in a frequency range [𝑓1, 𝑓2 > 𝑓1] covering the inspection range ζ of interest, i.e. ζ ∈ [δ(𝑓1), 𝛿(𝑓2)] 
and with a constant excitation power spectrum.  

Data are collected on a regular x-y grid of 𝑁𝑥 × 𝑁𝑦 points over the SUT’s inspection surface and for each 

point the time response y(𝑡, 𝑥, 𝑦) is collected. If [𝑓1, 𝑓2] interval is large enough, y(𝑡, 𝑥, 𝑦) can be considered 

as a good approximation of the impulse response ℎ(𝑡, 𝑥, 𝑦) of the SUT, collected at any x-y measurement 

point. Here and henceforth this condition is assumed to be satisfied and ℎ(𝑡, 𝑥, 𝑦) will be used to indicate a 

single measurement output. 

Starting from the measurement of ℎ(𝑡, 𝑥, 𝑦), by applying the Fourier transform, 𝐻(𝑓, 𝑥, 𝑦) =
ℱ{h(𝑡, 𝑥, 𝑦)}, the amplitude 𝐴𝐻(𝑓, 𝑥, 𝑦) = |𝐻(𝑓, 𝑥, 𝑦)| and the phase ϑ𝐻(𝑓, 𝑥, 𝑦) = Arg{H(𝑓, 𝑥, 𝑦)} of the 

spectrum can be obtained.  In the time domain, to obtain a full analogy between the two approaches, the 

time-phase concept in ECT is introduced by exploiting the Hilbert Transform as proposed in thermography 

 

Fig.1. Example of the time and frequency features extraction from the output signal based on linear sampling in the 

inspection range ζ 

 

Fig. 2. Example of the imaging procedure. From left to Right: Impulse response of a single scan point presented as A-

scan, B-scan and C-Scan acquired based on the set of A-Scan data for the same scan area 



NDT by Mandelis and co-workers and then applied by various authors [31-32]. Firstly, the analytic signal 

Γℎ(𝑡, 𝑥, 𝑦) = ℎ(𝑡, 𝑥, 𝑦) + 𝑗ℋ{ℎ(𝑡, 𝑥, 𝑦)} is calculated, where ℋ{∙} is the Hilbert transform, then the  time-

amplitude 𝐴ℎ(𝑡, 𝑥, 𝑦) = ℎ(𝑡, 𝑥, 𝑦) and time-phase ϑℎ(𝑡, 𝑥, 𝑦) = Arg{Γℎ(𝑡, 𝑥, 𝑦)} are extracted. Hence, for 

each measurement point, four signals as obtained, one for each of the four features.  

Starting from these four signals, the imaging procedures are implemented by sampling the signals to 

provide linearly spaced samples in inspection depth instead of time and frequency. According to the theory 

of EC diffusion introduced in Section II, considering the desired inspection depth 휁 being linearly subdivided 

to 𝑁𝜁  intervals, such that: ζ⃗ = [ζ1, ζ1 + 𝑑ζ, ζ1 + 2 ∙ 𝑑ζ,⋯ , ζ1 +𝑁ζ ∙ 𝑑ζ], where dζ is the desired depth 

resolution, i.e. 𝑑휁 =
휁
𝑁𝜁
⁄ , both time and the frequency axes can be subdivided in 𝑁ζ intervals as well. The 

resulting time and  frequency axes are defined by the two non-linearly spaced vectors: 𝑓 = 𝑓∗(ζ⃗)= 

𝜋𝜇𝜎(휁⃗2)
−1

and 𝑡 = 𝑡∗(휁⃗) = 𝜇𝜎(휁⃗2) and the average values of 𝐴𝐻 , 𝜗𝐻 , 𝐴ℎ , 𝜗ℎ are calculated for each depth 

interval. At the end of the procedure four vectors  𝐴𝐻⃗⃗ ⃗⃗ ⃗⃗ [𝑚], 𝜗𝐻⃗⃗⃗⃗⃗⃗ [𝑚], 𝐴ℎ⃗⃗ ⃗⃗ ⃗[𝑚], 𝜗ℎ⃗⃗⃗⃗⃗[𝑚], with 𝑚 ∈ [1,𝑁ζ], are 

obtained that are used in the image formation step. Figure 1 summarizes the sampling procedure described 

above.  

To use the same terminology adopted in ultrasonic NDT and henceforth for clarity, these four vectors will 

be considered as A-scan data sets. Once all four𝑁𝑥 ×𝑁𝑦 A-scans are retrieved, they can be combined to 

generate B-scans along 𝑥 − ζ or 𝑦 − ζ  planes at a given 𝑥𝑘 or 𝑦𝑙 value respectively and C-scans for each ζ𝑚 

value, i.e. depth, as depicted in Figure 2 for the Aℎ feature.  

The aim of this paper is to quantitatively and qualitatively compare the B- and C-scan images obtained 

with the four features, i.e. 𝐴𝐻 , 𝜗𝐻 , 𝐴ℎ , 𝜗ℎ, in term of defect detectability and image SNR in order to compare 

and evaluate the efficiency of time-domain analysis with respect to the frequency-domain analysis. To 

accomplish this goal, a crucial point is the measurement of the set of responses ℎ(𝑡, 𝑥𝑘 , 𝑦𝑙), 𝑘 ∈ [1, 𝑁𝑥], 𝑙 ∈

[1,𝑁𝑦] by using swept-frequency PuC-ECT instead of PEC, as will be explained in the next section. 

 

IV. Swept-Frequency excitation and Pulse compression-ECT 

 
The diffusive nature of EC hampers the detection of deep defects due to the exponential decrease of the 

eddy current density within the SUT’s thickness and the associated dispersion phenomenon, see Eq. 2. As a 

result, the SNR of ECT signals due to deep defects is usually very low affecting the quality of A-, B- and C- 

scans introduced in Section III. To increase the SNR of signals and related images, and hence improving 

contextually the defect detection capability, PuC can be used in ECT in combination with both swept-

frequency or pseudo-noise signals [14,26] instead of standard PEC.  

PuC is a technique developed for estimating the impulse response ℎ(𝑡) of a Linear Time Invariant (LTI) 

system in noisy environments and more general, when high SNR values must be achieved. If a non-

ferromagnetic SUT is considered and non-linear phenomena in the sensors are avoided, an ECT 

measurement setup can be modelled as an LTI. Hence, PuC-ECT can be successfully applied. Here only the 

useful key aspects for the present procedure will be summarized. For a detailed theory of PuC, the reader is 

referred to [33,34]. 

Suppose that in a PEC scheme the SUT is excited by a short pulse 𝑠(𝑡) that can be considered a good 

approximation of the Dirac’s delta function: 𝑠(𝑡)~𝛿(𝑡). Since realization of an ideal Dirac’s delta is not 

practically possible, this approximation is acceptable if the bandwidth of 𝑠(𝑡) covers all the range of 

characteristic frequencies of the defects’ signals. For each (𝑥𝑘 , 𝑦𝑙) measurement point the output will be 

𝑦(𝑡, 𝑥𝑘 , 𝑦𝑙) = 𝑠(𝑡) ∗ ℎ(𝑡, 𝑥𝑘 , 𝑦𝑙)~ℎ(𝑡, 𝑥𝑘 , 𝑦𝑙), where ℎ(𝑡, 𝑥𝑘 , 𝑦𝑙), as previously mentioned, is the SUT’s impulse 

response at any measurement point and ∗ is the convolution operator. In PuC-ECT, instead of exciting the 

SUT with 𝑠(𝑡), the excitation is provided through a coded signal 𝑥(𝑡) covering the same frequency range of 

interest as 𝑠(𝑡) but having an arbitrary duration. The new output signal 𝑦𝑃𝑢𝐶(𝑡, 𝑥𝑘 , 𝑦𝑙) is described by the 

convolution as follows: 𝑦𝑃𝑢𝐶(𝑡, 𝑥𝑘 , 𝑦𝑙) = 𝑥(𝑡) ∗ ℎ(𝑡, 𝑥𝑘 , 𝑦𝑙).  
If exist another signal 𝜓(𝑡) such that 𝑥(𝑡) ∗ 𝜓(𝑡)~𝑠(𝑡), ℎ(𝑡, 𝑥𝑘 , 𝑦𝑙) can be then retrieved by filtering 

𝑦𝑃𝑢𝐶(𝑡, 𝑥𝑘 , 𝑦𝑙) with 𝜓(𝑡). Indeed, we obtain: 

ℎ𝑃𝑢𝐶(𝑡, 𝑥𝑘 , 𝑦𝑙) = 𝜓(𝑡) ∗ 𝑦𝑃𝑢𝐶(𝑡, 𝑥𝑘 , 𝑦𝑙) = 𝜓(𝑡) ∗ 𝑥(𝑡)⏟      
~𝑠(𝑡)

∗ ℎ(𝑡, 𝑥𝑘 , 𝑦𝑙)~𝑠(𝑡) ∗ ℎ(𝑡, 𝑥𝑘 , 𝑦𝑙)~ℎ(𝑡, 𝑥𝑘 , 𝑦𝑙) (6) 

𝜓(𝑡) is called ‘matched filter’ and in most of the PuC schemes 𝜓(𝑡) is nothing but the time-reversed input 

signal amplitude modulated by a proper weighting/window function 𝑤(𝑡): 𝜓(𝑡) = 𝑤(𝑡)𝑥(−𝑡) [33]. The 



choice of 𝑤(𝑡) is made to optimize the trade-off between SNR gain and reconstruction fidelity for the specific 

application. In this paper, in order to retrieve a good estimate of ℎ(𝑡, 𝑥𝑘 , 𝑦𝑙) the 𝑤(𝑡) was selected based on 

reactance transformation [34] that allows the maximal reduction in sidelobes of impulse response after PuC.  

Practically, the main advantage of the using of PuC is that when 𝑥(𝑡) is a proper coded signal, its duration 

T is almost independent of its bandwidth B; this allows delivering more energy to the system, hence 

increasing the SNR. In recent years, PuC has been applied in ECT by some of the authors using various 

excitation signals. In this paper the linear swept-frequency “chirp” signal is employed, although the use of 

properly designed non-linear chirp signals could be beneficial to further improve the SNR for deeper defects 

[34].  

A generic “chirp” signal is a sinusoidal signal characterized by a nonlinear accumulated phase function 

𝛷(𝑡): 𝑥(𝑡) = 𝐴 𝑠𝑖𝑛(𝛷(𝑡)). An instantaneous frequency is defined as 𝑓𝑖𝑠𝑡(𝑡) =
1

2𝜋

𝑑Φ(𝑡)

𝑑𝑡
 and starting from an 

arbitrary continuous trajectory of 𝑓𝑖𝑠𝑡(𝑡) in the time interval of 0 to T, the related chirp signal could be 

obtained by calculating 𝛷(𝑡) by integration. When 𝑓𝑖𝑠𝑡(𝑡) is a linear function of time, the chirp is called 

“linear”. In this latter case, 𝑓𝑖𝑠𝑡(𝑡) is usually expressed by 𝑓𝑖𝑠𝑡(𝑡) = 𝑓1 + (𝑓2 − 𝑓1)
𝑡
𝑇⁄ , where 𝑓1 and 

𝑓2 are the start and stop frequencies respectively. The resulting phase is given by: 𝛷(𝑡) = 2𝜋 (𝑓1. 𝑡 +
𝐵

2𝑇
. 𝑡2) 

where 𝐵 = (𝑓2 − 𝑓1). The chirp bandwidth is equal to |𝐵| and if 𝑓2 > 𝑓1 the chirp is called “UP”, otherwise 

“DOWN”. Linear chirp is undoubtedly the most used waveform in PuC schemes such as RADAR, ultrasonic 

inspections, acoustics, etc. Henceforth we consider only linear UP chirp signals for which |𝐵| = 𝐵.  

The instantaneous frequency is also strictly related to the Power Spectral Density (PSD) of the resulting 

chirp. For a linear chirp, if the time-bandwidth product is large enough T ∙ B ≫ 1, the PSD is almost flat and 

confined within the interval [𝑓1, 𝑓2].   

Starting from a linear chirp excitation signal, for each measurement point the four features are extracted 

according to the block diagram reported in Figure 3: the Fourier analysis is directly applied to the chirp 

output signal 𝑦𝑃𝑢𝐶(𝑡, 𝑥𝑘 , 𝑦𝑙) for retrieving 𝐴𝐻(𝑓, 𝑥, 𝑦) and 𝜗𝐻(𝑓, 𝑥, 𝑦). This is because 𝑥(𝑡) covers uniformly the 

frequency range of interest. The time-domain signals, 𝐴ℎ(𝑓, 𝑥, 𝑦) and 𝜗ℎ(𝑓, 𝑥, 𝑦) are retrieved after the 

application of the PuC. In particular, to contextually calculate the PuC output and its Hilbert transform, 

𝑦𝑃𝑢𝐶(𝑡, 𝑥𝑘 , 𝑦𝑙) is filtered by the analytic signal of the matched filter 𝜓(𝑡), i.e. Γ𝜓(𝑡), to retrieve the analytic 

signal of the estimated impulse response Γℎ(𝑡). 
 

 

Fig. 3. Schematic representation of time analysis and PuC scheme providing as output the analytic signal 

of the estimated impulse response 



V. Benchmark sample and measurement setup 

Measurement scans and the subsequent imaging procedure were executed on a specimen with known 

artificial defects. The specimen was a plate made of 2024-T3 aluminium alloy with an electric conductivity 

equal to 18.8 MS/m, a magnetic permeability of 1.26 H/m, and a thickness of 2 mm.  

All the defects were small notches having a length of 3 mm and width of 0.1mm, with varying depths 

from the inspection surface. Starting from D1 to D8 their depth varied respectively from 1.6 mm to 0.2 mm 

with a step of 0.2 mm. D9 is a through-hole notch. For each defect except D9, a set of [N𝑥 = 41 × N𝑦 = 31] 

measurements were collected over a regular grid of 1 mm× 1 mm. Figure 4 depicts a sketch of the sample 

and one of the typical scans realized over a defect. 

The ECT probe used was the same described in [12,14] consisting of a rectangular excitation coil, a GMR 

sensor, a permanent magnet and a signal conditioning system. The excitation coil was realized with 288 turns 

and had dimensions of 22 mm×10 mm×1.6 mm. During the scans, its main axis was oriented parallel to the 

sample surface and aligned along the notches’ direction. The GMR sensor (NVE- AAH002-02) measured the 

component of the B field parallel to the surface and perpendicular to the coil axis, i.e. perpendicular to the 

notches’ direction. A permanent magnet biased the field measured by the GMR to 30% of the saturating 

field value. This allowed working in the range of linear sensitivity of the sensor.  

Each scan was realized by keeping constant the LO value of the sensor with respect the sample. In 

addition, for the defects from D5 to D8 scans at four different LO values (0 mm, 1 mm, 2 mm, 3 mm) were 

collected to test the imaging procedure in the case of LO variation.  

The block diagram of the whole measurement setup is reported in Figure 5. A virtual instrument (VI) 

realized with LabVIEW™ generated the digital signal that was sent to an Arbitrary Waveform Generator 

(AWG- Agilent™ 33220A) implementing the digital to analog (D/A) conversion of the selected excitation 

waveform. The AWG output drove a power amplifier (20-20 Kepko™ Bipolar Power Operational Amplifier) 

that furnished the power to supply the EC-Probe with the excitation signal 𝑥(𝑡). A digital multimeter 

(Agilent™ 34401A) allowed the optional measurement of the excitation current for checking the 

correspondence with the wanted amplitude. The ECT probe was moved on the SUT by means of an x-y 

translation system driven by the VI. The output voltage of the GMR sensor 𝑦𝐺𝑀𝑅(𝑡) was conditioned and 

processed to retrieve the measurement information: 𝑦𝐺𝑀𝑅(𝑡) was sent to a signal conditioning unit consisting 

of a cascade of a Analog Devices™ AD620 instrumentation amplifier with unitary gain and a Stanford 

Research System SR 560 bandpass filter. The conditioned signal was digitized by means of a National 

Instruments™ analog-to-digital (A/D) conversion board. Finally, the output digital signal 𝑦𝑃𝑢𝐶[𝑛] was sent 

to the VI to be stored and further processed. 
The signal used to excite the coil was a linear chirp with a wide bandwidth starting from f1=540 Hz to 

 

Fig. 4. (a) Top view of the sample with 9 defects and a sample scan grid path around defect D2 (b) Side view of the 

sample (c) Detailed views of A, B and C (d) Side view of the defect D8 (e) Front view of defect D8 

 



f2=54 kHz with a duration of 40 ms. According to Section IV, the time-bandwidth product was quite large, 

TB ≈ 2000, ensuring a high SNR value as well as a flat spectrum over all the bandwidth. 

 

 

 

 
Fig. 5. Block diagram of the measurement setup 

 

 

Fig. 6. B-scan (𝑦 − 휁) visualization for the defect D5 for all the four features. It can be noted that each feature 

produces different patterns 



 

VI. Experimental Results 

Once all the scans were acquired, the first analysis implemented was the visualization of the B-scan for 

all the features (𝐴𝐻, 𝜗𝐻, 𝐴ℎ, 𝜗ℎ) for the various defects and for each scan line. As example of such analysis, 

Figure 6 reports the 𝑦 − 휁 B-scans obtained for the defect D5 at various 𝑥 values for all the features. In all the 

cases, the detect was clearly visible even if amplitude features 𝐴𝐻 and 𝐴ℎ produced images with higher 

contrast than phase features 𝜗𝐻 and 𝜗ℎ. It is also possible to see that the defect’s pattern had a different shape 

for each feature, and this was verified for 𝑥 − 휁 B-scans and for all the defects as well. As example, Figure 7 

depicts the best 𝑦 − 휁 B-scan images for the all the defects D1-D8 and for each feature. It was not 

straightforward to quantitatively compare the images quality and the effectiveness of the various features in 

terms of defect detection and characterization. On the other hand, by visualizing 𝑥 − 𝑦 C-scans at different ζ 
values, strong similarities emerged between the images produced by all the features that made possible a 

quantitative comparison. 

Recently, some of the authors [14,17,35], showed that C-scan images of 𝐴𝐻 and 𝜗𝐻 features are 

characterized by patterns closely resembling Hermite-Gaussian (HG) modes. The HG order depends on the 

relative orientation of sample surface, coil axis and the measured B component [36,37]. Precisely, for small 

defects, i.e. in the limit of validity of the Born approximation for the field scattered by the defect, the defect’s 

image pattern is well approximated by the 2D convolution of the true geometric shape of the defect with a 

characteristic HG mode acting as Point Spread Function (PSF) [35]. It was also shown that for the present 

setup, the natural mode is a 𝐻𝐺(1,1) mode of order (1,1) characterized by a quadrupolar pattern that expands 

laterally as the frequency decreases.  

Once the imaging procedure of Section III was applied, it was found that also 𝐴ℎ and 𝜗ℎ images are 

characterized by the same 𝐻𝐺(1,1) pattern, as it is illustrated in Figure 8 for the same defect D5. Therefore, this 

 

Fig. 7. Stack of the B-Scans (𝑦 − 휁) for the eight defects and for all the features. Each slice represents the B-Scan for the 

maximum SNR value for each defect and feature 



fact was verified for all the defects, while extending the results reported in [14,17] and confirming that each 

sensor exhibits a characteristic HG pattern.  

Figure 9 summarizes the characteristics of the various imaging procedures by showing the best 𝑦 − ζ B-

scan (Figure 9(a)) and 𝑥 − 𝑦 C-scan images (Figure 9(b)) obtained for D5 for all the features. Except the sign 

and the noise level, the C-scan defect patterns are essentially the same while B-scan defect patterns are 

significantly different from each other. If the image analysis is limited to C-scans, the HG hypothesis can be 

extended to all the features and this is useful since allows analysing all the various images with the same 

processing algorithm and it makes easy to quantitatively compare them in terms of images’ SNR, henceforth 

denoted as 𝐼𝑀𝑆𝑁𝑅 . The same image processing procedure and the same definition of 𝐼𝑀𝑆𝑁𝑅 introduced in 

[14] were indeed exploited, both relying on the a-priori assumption of the 𝐻𝐺(1,1) characteristic: for each 

defect/feature, a 2D bandpass filter is applied to each C-scan corresponding to a different ζ𝑚 − th depth 

value. Then, for each depth ζ𝑚, the 𝐼𝑀𝑆𝑁𝑅(ζ𝑚) value is calculated as quantitative measure of the “image 

goodness”.  

Precisely, for each 2D image, the 𝐼𝑀𝑆𝑁𝑅value was defined as: 

𝐼𝑀𝑆𝑁𝑅 =
𝑚𝑎𝑥{ |𝐼𝑀𝛤|} − mean{𝐼𝑀𝛤}

std𝐼𝑀𝛤

=
𝜇IM
𝜎IM

 (7) 

where   and   are complementary parts of the image containing and not containing the defect respectively.  

To quantitatively compare time- and frequency-domain imaging procedures, for each feature the resulting 

SNR values 𝐼𝑀𝑆𝑁𝑅
 (ζ𝑚),  were analysed as a function of ζ. The resulting trends provides the means to 

 

 

Fig. 9. Optimal images obtained for the defect D5 starting from the B- and C- scans reported in figures 6 and 8. a) best 

B-scans and b) best C-scans corresponding to 𝐼𝑀𝑆𝑁𝑅(ζ
∗) The image reported are those exhibiting the highest images 

SNR values 

 
Fig. 8. 𝑥 − 𝑦 visualization of the C-scans measured for the defect D5. For all the features the defect pattern is very 

similar and well described by a Hermite-Gauss mode 



compare the defect detection capability of the various features and to quantitatively evaluate their defect 

characterization capability. For instance, the maximum 𝐼𝑀𝑆𝑁𝑅(ζ
∗) value achieved for a given defect and for 

a given feature was selected as the indicator of the “defect detection capability”, since this parameter 

quantifies how better the defect is detected and visualized by the specific imaging procedure. The feature 

exhibiting the highest SNR peak value can be thus considered as the best one in terms of defect detection. 

Moreover, some characteristics of these trends such as the ζ∗ value at which 𝐼𝑀𝑆𝑁𝑅 is maximum, the rise- 

and fall- slope of the 𝐼𝑀𝑆𝑁𝑅 curves as well as their onset and offset values can be correlated with defect 

properties such as the depth. The analysis of the 𝐼𝑀𝑆𝑁𝑅 curves for all the defects and for all the features 

allowed a first significant comparison between the effectiveness of the time-domain and the frequency-

domain approaches, leading to quite interesting results. 

In addition to this, following the analysis reported in [17], the imaging procedure was applied and the 

𝐼𝑀𝑆𝑁𝑅 curves calculated even in the case of random-varying LO value during scans. This allowed the 

comparison of the robustness of the various features with respect to LO variation. The analysis of  𝐼𝑀𝑆𝑁𝑅 

curves are reported in the next subsections 

 

VI.1. Fixed lift-offs 

For all the defects (D1-D8), scans were acquired with a fixed LO value of 0 mm, corresponding to the 

minimum distance between the sensor case and the SUT. For all the features and for all the defects the 

𝐼𝑀𝑆𝑁𝑅(ζ) curves are plotted in Figure 10 while the maximum 𝐼𝑀𝑆𝑁𝑅(ζ
∗) values are reported in the bar plot 

of Figure 11  

Aℎ and ϑℎ   provide significantly higher 𝐼𝑀𝑆𝑁𝑅 values than 𝐴𝐻 and ϑ𝐻 for deepest defects (D1-D6), 

revealing that time-domain imaging exhibits a better defect detection capability for the proposed analysis 

procedure in these cases. 𝐴𝐻 and 𝐴ℎ give higher 𝐼𝑀𝑆𝑁𝑅 values than the corresponding phase features ϑ𝐻 and 

ϑℎ even though the latter exhibit more regular trends that could be better used to estimate some defect 

parameters such as the depth.  

As depicted in Figure 10 left, if 𝐼𝑀𝑆𝑁𝑅 curves for ϑ𝐻 be plotted as a function of frequency (in dB scale), it 

will show an almost linear decay after the peak whose slope decreases monotonically as the depth increases. 

Once the 𝐼𝑀𝑆𝑁𝑅 curves plotted as a function of the inspection depth ζ, this characteristic is represented by a 

linear increasing onset depth ζ𝑜𝑛. Instead, Aℎ and ϑℎ curves show respectively onset times and rising slopes 

that vary almost linearly with the defects’ depth. A quantitative analysis of the correlation between these 

𝐼𝑀𝑆𝑁𝑅 curves’ features and the defects’ depth is beyond the scope of the present paper and it will be 

thoroughly elaborated in a subsequent work, however, by looking more carefully at Figure 10, it is possible 

to note that: 

(i) the difference in the 𝐼𝑀𝑆𝑁𝑅 peak values between amplitude and phase features decreases as the 

defect’s depth increase and for D1 phase features are slightly better than amplitude ones; 

 

Fig. 10. 𝐼𝑀𝑆𝑁𝑅 curves reconstructed for all the defects and for all the features as a function of the frequency and time 

(a) and as a function of the inspection depth ζ (b). 



(ii) the difference in the 𝐼𝑀𝑆𝑁𝑅 peak values between time and frequency features increases as the 

defect’s depth increases; 

(iii) the 𝐼𝑀𝑆𝑁𝑅 peak value changes non-linearly with the defect depths reaching a plateau for the 

shallowest defect. 

Furthermore, besides considering defect detection capability and depth estimation, it is also worth to 

analyse the spatial resolution of the imaging procedure and if and how defects’ patterns change with the 

depth. Figure 12 reports the C-scan images corresponding to the maximum SNR value, i.e. 𝐼𝑀𝑆𝑁𝑅(ζ
∗) for all 

features of defects D1, D3, D5 and D7. The HG pattern shape is common to all defects even if it is larger for 

deeper defects, confirming a worsening of the EC spatial resolution as the inspection depth increases. This is 

expected due to the diffusion nature of eddy currents, but some strategies were proposed to increase spatial 

  
Fig. 11. Maximum SNR values for the four features and for all the defects 

 
Fig. 12. C-scan images at maximum SNR values for the four features and for the defects D1, D3, D5 and D7 

 



resolution by considering the Hermite-Gaussian hypothesis [35] or the use of the so-called Q-transform [38]. 

In perspective, the combination of both these approaches can significantly improve the 𝑥 − 𝑦 and the ζ 
resolution. It would be also worth applying the virtual wave approach developed for thermography together 

with the proposed imaging procedures [39]. 

 

VI.2. Random Lift-offs 

As stated earlier, we compared the time- and frequency-domain analysis also in the presence of random 

LO variations, following the same strategy used in [17]. For defects from D5 to D8, scans were collected at 

different LO values (𝐿𝑂0 = 0 𝑚𝑚, 𝐿𝑂1 = 1 𝑚𝑚,  𝐿𝑂2 = 2 𝑚𝑚, 𝐿𝑂3 = 3 𝑚𝑚) and then, for the imaging 

procedure, for each measurement point a LO value was selected randomly among the four. Therefore, 

starting from real experimental data, a scan affected by a very strong LO variation noise was simulated. For 

example, Figure 13 illustrates how the C-scans of the defect D5 are affected by the random LO. By 

comparing these images with those depicted in Figure 8, it can be seen that A𝐻 and Aℎ images are strongly 

affected by LO so that at a first glance no defect pattern can be distinguished among the noise. On the other 

hand, ϑ𝐻 and especially ϑℎ images are deteriorated by noise but still preserve enough SNR to detect the 

defects. 

The robustness of ϑ𝐻 feature against LO noise was already demonstrated in [17]. Figures 13 and 14 

demonstrate that the proposed ϑℎ feature for ECT is not only robust against LO noise, but also it provides an 

even stronger robustness than phase imaging in frequency domain. Furthermore, by carefully analysing Aℎ 

images, it can be noted that for some specific depth/time values (time interval index equal to 8), the defect 

pattern can be clearly distinguished with SNR values comparable with the ones obtained by the phase 

features. 

 

Fig. 14. C-scan feature for TA of defect D5 (left), and zoom view of the defect area (right) 

 

 
Fig. 13. 𝑥 − 𝑦 visualization of the C-scans measured for the defect D5 in the case of random LO variation between 0 

and 3 mm 



This phenomenon is highlighted in Figure 14 that visualizes a zoom of the Aℎ C-scan in a specific 

inspection depth (i.e. time) interval. For particular ζ values, the Aℎ images are significantly less affected by 

LO noise. We hypothesize that these values correspond to the time intervals in which LOI points fall in the 

reconstructed PEC response after PuC [40-41].  

To confirm this hypothesis, Figure 15 reports various ℎ𝑃𝑢𝐶(𝑡, 𝑥𝑘 , 𝑦𝑙) signals (see Eq. 6) obtained at 

several scan points and for each LO value. The effect of LO variation is evidenced by the four different 

amplitude levels of the signals. However, for some time intervals, as the highlighted in the plot by the red 

solid circles, all the signals cross almost at the same value, which is assumed to be the LOI point. Other LOI 

points or regions can be also identified at different time values. The Aℎ images corresponding to time 

intervals 𝑡𝑘 = 𝑡
∗(휁⃗𝑘) in which a LOI point falls, exhibit robustness against LO noise as well.  

These results to our knowledge represent the first experimental evidence of LOI point not found by PEC 

or a single-tone excitation but instead retrieved from coded excitation and after the application of a 

remarkable filter, i.e. PuC. Furthermore, this fact confirms that PuC-ECT can replace the standard PEC 

without losing the attractive features of the technique while providing higher SNR values. This observation 

is also in line with the LOI phenomenon general behaviour in ECT reported by other authors [42,43] since it 

may represent the diffusive nature of the eddy currents in general. 

To evaluate the robustness of the time- and frequency-domain imaging features against LO variations, 

several scans affected by random LO were simulated by hundred times repetition of the random process and 

plotting the SNR curves for all the repetitions versus the inspection depth ζ. The simulations were carried out 

by starting from experimental data collected for each x-y point at various LO values. By following the same 

strategy described in Section IV of [17], hundred random cases were made through a repetition loop.  

In Figure 16 all the 𝐼𝑀𝑆𝑁𝑅 curves retrieved from the hundred simulated scans with random LO are plotted 

in grey, their mean value is solid black line and 𝐼𝑀𝑆𝑁𝑅 curves attained at various fixed LO values are solid 

colour lines. 

It is clearly evidenced that: 

(i) the A𝐻 feature is highly affected by LO noise and for the tough working conditions simulated, it 

is completely unable to detect even the shallowest defect, as showed in [17] for MF-ECT data; 

(ii) the ϑ𝐻 feature instead is very robust against LO and the 𝐼𝑀𝑆𝑁𝑅 curves remain quite regular and 

depth-dependent also in the extreme simulated scenario, see [17]; 

(iii) the ϑℎ feature also is very robust against LO and the 𝐼𝑀𝑆𝑁𝑅 curves achieve higher value than 

those obtained for ϑ𝐻 in the case of deepest defects; 

 
Fig. 15. Impulse response ℎ (𝑡) of defects D5 to D8 for LO values from 0 mm to 3 mm. Red circles indicate the 

LOI points  



(iv) the Aℎ feature also is in general not robust against LO except for the inspection depths 

corresponding to LOI points. 

This latter point implies that for the Aℎ feature in presence of LO noise, the ζ∗ value at which 𝐼𝑀𝑆𝑁𝑅 

reaches its maximum cannot be used to estimate the defect depth since it is forced by LOI. On the other 

hand, the ϑℎ feature on average seems to be the better one in terms of detection capability and LO 

robustness. 

 

VII. Conclusion and future work 

In this work, a comparison between PuC-ECT imaging procedures relying on both time- and frequency-

domain analysis was performed based on experimental data collected on a benchmark sample. A swept-

frequency chirp excitation signal was used, and the time analysis was implemented on the signals retrieved 

after the application of the pulse-compression procedure and and of the Hilbert transform. Experimental data 

were collected at different LO values and were used to evaluate the features in fixed and simulated random 

LO cases. The results showed that the adopted scheme allows the contextual exploitation of the advantages 

of both PEC and MF-ECT methods. Higher amount of energy delivered by the chirp excitation signal with 

respect to pulsed excitation assures high SNR values and hence an improvement of defect detection 

capability. The advantages of PEC approach with respect to MF-ECT (high sensitivity to deep defects, LO 

noise robustness and LOI point) are retrieved using PuC as well. For fixed LO values, time and frequency 

domain features give similar results in terms of defect detection, although time-domain imaging features 

exhibit a quite better SNR than the frequency-domain ones for deeper defects, i.e. D6 to D1.  

For random variable LO values, phase feature of both time- and frequency-domain imaging are very 

robust against the LO noise, while amplitude feature especially in frequency domain is strongly degraded as 

it was shown through comparison of the IMSNR curves for defects D5 to D8. The frequency amplitude was not 

able to detect even the shallowest defect D8 in presence of the random LO noise while other features were 

able to detect the defects, even though with different IMSNR values. Despite this general behaviour, time-

amplitude feature can exploit the presence of LOI points. The images obtained for the time intervals in which 

the LOI points fall, are very robust to LO noise providing SNR value comparable or higher than the phase  

 
Fig. 16. 𝐼𝑀𝑆𝑁𝑅curves obtained in presence of random LO noise for all features and for D5-D8 as a function of the 

inspection depth ζ. 𝐼𝑀𝑆𝑁𝑅 curves retrieved from hundred simulated in grey; their mean value is plotted with the 

black line; 𝐼𝑀𝑆𝑁𝑅 curves attained at various fixed LO values are coloured. 



features. In general, the proposed time-phase feature seems to be a good and reliable tool for the 

improvement in defect detection capability of PuC-ECT.  

In the future, the PuC procedures will be further optimized, and spatial and depth resolution of imaging 

procedures will be increased. By using Hermite-Gauss deconvolution [35] the shape of the defect on the 𝑥 −
𝑦 plane can be estimated while the use of the Q-transform together with the virtual wave approach can lead 

to a significant improvement of the image resolution along the ζ axis [38-39]. In addition to the improvement 

in post-processing algorithms, some hardware and software improvements will be beneficial to achieve 

better detectability, depth and lateral resolution. For example, the use of array of sensors can reduce 

acquisition time while further increasing the defect detection capability and the lift-off robustness. Machine 

learning techniques can also help on fruitfully fuse and integrate the information provided by the time- and 

frequency-domain analysis. 

It will be also of interest to explore the possibility of combining various images to improve the ECT 

performances in terms of both defect detection and classification.  
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