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Abstract: Hyperspectral images reconstruction focuses on recovering the spectral information from
a single RGBimage. In this paper, we propose two advanced Generative Adversarial Networks (GAN)
for the heavily underconstrained inverse problem. We first propose scale attention pyramid UNet
(SAPUNet), which uses U-Net with dilated convolution to extract features. We establish the feature
pyramid inside the network and use the attention mechanism for feature selection. The superior
performance of this model is due to the modern architecture and capturing of spatial semantics.
To provide a more accurate solution, we propose another distinct architecture, named W-Net,
that builds one more branch compared to U-Net to conduct boundary supervision. SAPUNet and scale
attention pyramid WNet (SAPWNet) provide improvements on the Interdisciplinary Computational
Vision Lab at Ben Gurion University (ICVL) datasetby 42% and 46.6%, and 45% and 50% in terms of
root mean square error (RMSE) and relative RMSE,respectively. The experimental results demonstrate
that our proposed models are more accurate than the state-of-the-art hyperspectral recovery methods

Keywords: hyperspectral imaging; generative adversarial network; attention mechanism; feature
pyramid; boundary supervision

1. Introduction

Hyperspectral imagery can provide richer information than ordinary cameras, and can be used
for a variety of applications, such as image classification [1], understanding environmental changes,
and so on. Traditional cameras use sensor filters to transform the incoming light spectra into three color
channels, but the projection process leads to the loss of multiple spectral signals. The missing spectral
data play an important role in classifying objects based on their spectral properties. Thus, hyperspectral
imaging has become an active area of research [2–6]. Reconstructing hyperspectral image for every
pixel is a severely ill-posed problem.

To obtain narrowband hyperspectral data in consecutive wavelengths, a number of hardware
design methods have been proposed [7–9]. The approaches involve carefully designing the lighting
sources, reducing the resolution in one of the acquisition axes (spatial, temporal), and using multiple
color filters to complete the reconstruction [10–12]. However, these methods rely on rigorous
environment conditions and extra equipments.

Recently, hyperspectral reconstruction from a single RGB image has attracted considerable
attention due to its rapid speed, easy-access, and low cost. The core of this method involves exploiting
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the correlation between RGB values and their corresponding hyperspectral radiance [3,13].
Arad et al. [3] created a sparse dictionary of hyperspectral signatures and their corresponding RGB
projections, which could then be used as a priori information to map RGB vectors to spectra.
These solutions often learn non-linear mapping from RGB to hyperspectral images based on a large
number of training data.

Convolutional neural networks (CNNs) have achieved success in various computer vision tasks.
CNN-based methods were also introduced for hyperspectral recovery [4,14–16]. Nguyen et al. [14]
used a radial basis function (RBF) network to learn the mapping from RGB to spectra. More recently,
Yan et al. [16] applied the traditional isometric feature mapping (Isomap) algorithm to reduce the
dimensions of hyperspectral data, then trained a neural network based on nonlinear mapping between
the RGB color space and three-dimensional embedding. Xiong et al. [4] developed a unified deep
learning framework, named hyperspectral convolutional neural network (HSCNN), for hyperspectral
recovery from both RGB and compressive measurements. These methods were proven to obtain
state-of-the-art results on the ICVL dataset [3]. However, the manifold reduction method requires
knowing the spectral response of the RGB camera in advance, and the upsampling process in HSCNN
also requires the prior understanding of an explicit spectral response function corresponding to the
integration of hyperspectral radiance to RGB values. This restricts the applicability of this kind of
method when the spectral response function is unknown or difficult to obtain in practice.

Generative adversarial networks (GANs) have been vigorously studied and have been proven
to be suitable for image-to-image translation tasks. The discriminator improves the image quality
when the fake image is blurred from the generative model. GANs can learn the mapping, adapting
to the training data with different kinds of loss functions. We propose a low cost and learning-based
end-to-end approach to reconstruct the spectra from a single RGB image. The pixel-to-pixel GAN [17]
offers a GAN-based framework for a variety of applications. We used this GAN-based algorithm
to learn a generative model of the joint spectro-spatial distribution of the data manifold of natural
hyperspectral images. We selected the generator U-Net, which provides the best performance amongst
the available alternatives. However, U-Net has the disadvantage of low quality and low resolution,
blurring the detail when zooming out the images. To solve this problem, we replaced U-Net with
our proposed scale attention pyramid network, named SAPUNet, which overcomes the problem.
Based on SAPUNet’s promising results, we propose another distinct architecture that replaces the
U-Net structure with W-Net with boundary supervision.

Our contributions can be summarized as follows:

(1) We present a novel end-to-end GAN-based approach for hyperspectral reconstruction that
requires only a single RGB image. The proposed pipeline reconstructs the hyperspectral data
without requiring of the spectral response function in advance.

(2) We propose SAPUNet, which optimizes the U-Net architecture by using scale attention modules
to fuse local and global information. The feature pyramid and attention mechanism inside the
network for feature selection improves the accuracy of hyperspectral reconstruction.

(3) We further designed the W-Net structure based on SAPUNet using boundary attention with
a feature fusion scheme, deriving SAPWNet, which performed the best on the ICVL dataset.

2. Related Work

A number of methods have been proposed to address this hyperspectral recovery task.
Some snapshot hyperspectral cameras are designed for obtaining spectral signals [2,18]. A combination
between hyperspectral and RGB cameras was developed for capturing hyperspectral data at high
spatial and spectral resolution [9,13,19]. Oh et al. [12] reconstructed hyperspectral images using
multiple consumer digital cameras, using different RGB cameras with different spectral sensitivities.
Takatani et al. [11] proposed a low-cost algorithm by augmenting a consumer camera with a tube of
reflectors, but this method to sacrifices the spatial or spectral resolution. Kawakami et al. [20] proposed
a method that fuses a low-resolution hyperspectral image with a high-resolution RGB image to obtain
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a high-resolution hyperspectral image. These methods always require many components or rely on
rigorous environment conditions. Obtaining hyperspectral images via a single RGB image would be
convenient to implement, portable, and affordable.

The more recent hyperspectral reconstruction algorithms using only a single RGB image without
any extra equipment are more effective. Arad et al. [3] collected prior hyperspectral data for the
construction of a sparse hyperspectral dictionary based on a sparse dictionary. However, the method
is dependent on the dictionary. Akhtar et al. [13] developed data clustering with a Gaussian process
to replace the dictionary atoms. Aeschbacher et al. [21] developed A+ [22] from super-resolution to
hyperspectral reconstruction. Antonio et al. [23] proposed using a constraint sparse coding method to
reconstruct illumination-free spectra based on learning the prototype set. Yan et al. [16] used isometric
feature mapping to reduce natural scene spectra to a low dimensional space, then transformed
three-to-many mapping (RGB to spectrum) to three-to-three mapping (RGB to 3D embedding of
spectra), finally using a low-dimensional manifold reconstruction method for spectral recovery.
This approach avoided establishing any priors based on the reduction from three-to-many to
three-to-three mapping. This is typically accomplished by knowing the spectral response of the
consumer RGB camera in advance.

CNNs have now become the dominant approach in different vision challenges due to the
ability to automatically extract useful features. More efficient and powerful frameworks are more
generalized, such as AlexNet [24], ResNet [25], and DenseNet [26]. They use 1×1 convolution instead
of the fully connected layer to generate the heatmap and some deconvolution layers are used for
pixel-wise labelling. Qiu et al. [27] used CNN to analyze spectral data to identify rice seed varieties.
Nguyen et al. [14] proposed learning mapping from white-balanced RGB values to reflectance spectra
based on a radial basis function (RBF) network. Xiong et al. [4] proposed a CNN structure suitable
for this task from super-resolution and obtained promising results. Based on [4], Shi et al. [28]
replaced plain convolution with residual block, adopted the dense structure to replace residual block,
and produced more accurate results. Gallinani et al. [29] used a CNN-based encoder-decoder structure
to recover hyperspectral signals. Alvarez-Gila et al. [30] proposed spatial context-aware adversarial
UNet-GAN (SCAUNet-GAN) for hyperspectral reconstruction, which uses U-Net [31] as the generator.

Compared with the above methods, our proposed models offer more accurate solutions for
improving the image detail of hyperspectral reconstruction. We developed a U-Net structure with scale
attention pyramid modules, which are directed to form a feature pyramid at each level. We proposed
W-Net, which has dilated convolution that produces even more accurate results.

3. Adversarial Spectra Reconstruction via RGB

This section describes the core model of our methods, along with some of the important GAN
development in our proposed models.

3.1. Analyzing the Physical Model of Natural Spectra Reflectance

We wanted to reconstruct the hyperspectral information from a single RGB image of a natural
scene. This appears to be a server ill problem, that involves three-to-many mapping. The spectra of
natural scenes lie in a low-dimensional manifold [16]. The mathematic model can be expressed by

i (λ) = l (λ) r (λ) (1)

where l (λ) and r (λ) represent the illumination and reflectance intensity at wavelength λ. If we stack
all spectra into a matrix I, we obtain

I =

 i1 (λ1) · · · iM (λ1)

· · · · · · · · ·
i1 (λN) · · · iM (λN)

 =

 l (λ1) 0 0
0 · · · 0
0 · · · l (λN)


 r1 (λ1) · · · rM (λ1)

· · · · · · · · ·
r1 (λN) · · · rM (λN)

 (2)
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where M and N denote the number of pixels and the number of bands, respectively. The rank of
I is low-dimensional; thus, three-to-many mapping is achievable due to the sparsity of the natural
hyperspectral information, and the response of the RGB sensor may reveal more of the spectral
signature [3].

3.2. Adversarial Learning

Compared with CNNs, training GANs does not require any approximation method. GANs have
attracted attention due to their demonstrated ability to generate real samples following the underlying
data densities [32]. The discriminator D aims to distinguish between fake data, which are synthesized
by generator G and real training data, whereas G learns to fool the discriminator by generating samples
as close as possible to the probability distribution of real images. GANs are generative models that
learn mapping from a random noise vector z to output image y, whereas conditional GANs learn
mapping from an observed image x and random noise vector z. Such conditioning input has been
proved useful for more sophisticated applications [17].

The classic GAN architecture is instable. The gradient vanishing problem is caused by the sigmoid
cross-entropy loss function; the effective solution involves adopting Earth-Mover (EM) distance or
Wasserster-1 as loss function for the discriminator [33,34]. A novel discriminator with an infinite ability
to separate real from generated samples was designed for optimizing and computing loss function [34].
GANs with infinite modelling ability are probably the reason for collapsed generators.

Related to conditional GANs, the vanilla GAN objective is always adopted as a loss [35].
However, it suffers from training instability. Wasserstein GAN (WGAN) [15] overcame the problem by
using weight clipping to enforce a Lipschitz constraint on the critic. We employed the WGAN objective
function as the adversarial loss function. The objective of a conditional WGAN is expressed as:

Ladv = min
G

max
D∈R

E
Irgb ,Ihs∼pdata(Irgb ,Ihs)

[
log D

(
Irgb, Ihs

)]
− E

Irgb∼pmodel(Irgb)

[
log
(

1− D
(

G
(

Irgb

)))]
(3)

where R is the set of 1-Lipschitz function, Ihs is the original hyperspectral image, Irgb denotes
the corresponding RGB image, pdata(Irgb, Ihs) is the data distribution, and pmodel(Irgb) is the model
distribution. The RGB image is the only input to G. When training, G tries to minimize the adversarial
loss, while D tries to maximize it.

To learn a mapping exactly from a 3-dimensional image to 31-dimensional spectral channels,
we used the L1 distance, named content loss, to guide the generator to be close enough to the ground
truth. Combining content loss with an adversarial objective can produce more spatially consistent and
less blurred results. The final objective including adversarial and content loss then becomes

L∗ (G, D) = Ladv + λL1 (G) = Ladv + λ E
Irgb ,Is∼pdata(Irgb ,Ihs)

[
∥∥∥Ihs − G(Irgb)

∥∥∥
1

(4)

where λ is the scalar weight used to leverage the two loss terms, which was set to 100 in all experiments.
Although using L1 loss only fails to reconstruct high-frequency crispness, it can capture the global
image structure, for which we do not need an entirely new framework to enforce correctness for
global information.

The flow of our methods for spectral reconstruction is shown in Figure 1. We first prepared
entirely aligned RGB and hyperspectral image pairs from the ICVL dataset, which were extracted as
real pairs. Then, we proposed two generator structures, SAPUNet and SAPWNet, which establish
feature pyramids and use attention mechanism to select feature layers. The generator G takes Irgb
as the input and generates the corresponding hyperspectral result. The discriminator D is now fed
two pairs of images and discriminates if they are real or fake. G and D are both trained iteratively in
an adverse manner.



Sensors 2020, 20, 2426 5 of 17

Real pair

{Irgb, Ihs}

Fake pair
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Figure 1. Overview of our two adversarial feature pyramid spectral reconstruction models. SAM,
scale attention modules.

3.3. Generator: SAP-UNet Architecture

The encoding structure always adopts feed-forward networks, which increase training loss due
to the decreasing gradient with increasing network depth [25]. Deeper networks can lead to better
model expressiveness, which can improve the performance of hyperspectral reconstruction. To solve
these problems, we first replaced the feed-forward network by a residual network. Each layer in the
residual block performs convolutions with filters to generate a heap of feature maps, then these feature
maps are batch normalized and passed through a rectifier non-linearity (ReLU) activation function to
produce the input of next convolution. A residual block output xl is defined as:

xl = Fl(xl−1 : ωl) + xl−1 (5)

whereFl(xl−1 : ωl) is defined as a sequence of convolutions followed by ReLU and the batch normalization,
and xl is the output of lth layer. F only computes the residual and adds xl−1 instead of calculating xl directly.

Residual blocks transmit gradients directly to the previous layer, and low-level signals can
propagate to any high-level feature through identity mapping [36]. These two superior properties are
particularly useful for hyperspectral reconstruction because we want a network deep enough to recover
image detail and we need low-level features to restore the whole image structure. We can understand
these two characteristics according to the gradient flow in the network. By applying the recursion in
Equation (3) several times: (xl+1 = xl +Fl+1(xl : ωl+1) = xl−1 +Fl(xl−1 : ωl), etc), we will have:

xj = xi +
j−1

∑
m=i
Fm+1(xm : ωm+1) (6)

where xj and xi represent the output of deep and shallow residual blocks, respectively.
Thus, any low-level feature can be passed directly into high-level feature space by adjusting the
parameters of the residual block. The gradient can be easily calculated by backward propagation.
We express the derivative of the loss from the chain rule of backpropagation:

∂φ

∂ωi
=

∂φ

∂xj

∂xj

∂xi

∂xi
∂ωi

=

(
∂φ

∂xj
+

∂φ

∂xj

j−1

∑
m=i

∂Fm+1(xm : ωm+1)

∂xi

)
∂xi
∂ωi

(7)
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Gradient propagation is decomposed into two directions, ∂φ
∂xj

and ∂φ
∂xj

∑
j−1
m=i

∂Fm+1(xm :ωm+1)
∂xi

. The former
ensures the gradient is transmitted directly to the shallow network; the latter guarantees that the
transmission will not disappear. This delivery ensures that deeper network structures can be trained.

We used U-Net based on dilated convolution to extract features. The dilated convolution has
a parameter named expansion rate to the convolutional layer, which defines the spacing of the values
when the convolution kernel processes the data. This convolution method can discard the pooled
layer to output the full-resolution feature map while still obtaining a large receptive field. We used
the output of different blocks of U-Net to form the feature pyramid layer after the pooling layer.
Thus, the high-level feature layer of the feature pyramid had a larger receptive field, while the
lower-level feature layer had a smaller receptive field.

Then we used a scale attention module (SAM), which can produce a scale-level weight matrix by
convolution, to indicate which scale should be noticed [37,38]. The scale attention module provides
global context prior attention to select the scale-wise feature and fuses the information of three different
scale contexts by offering scale-level attention value.

As shown in Figure 2, the SAP-UNet encoding network consists of five large blocks. The size of
the feature map for each scale is 1/8 of the input size. To better extract context from different layers,
we used the feature map of the last three large blocks after the convolution of different scales to build
the feature pyramid. As shown in Figure 3, the bottleneck layer generates an attention feature layer
after global average pooling convolution. This global pooling method provides global context as
a guidance for feature pyramid to select scale attention. We obtain the attention feature from the global
average pooling after 1 × 1 convolution with batch normalization and a sigmoid activation function.
Then, we multiplied the attention feature and added the original input to obtain the feature map of the
scale layer. Finally, we used bilinear interpolation to adjust a feature pyramid of the same size and
performed 3 × 3 convolution to reduce channels after concatenating the feature maps.
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Figure 2. Complete architecture of the Scale Attention Pyramid U-Net with dilated convolution at
different rates.



Sensors 2020, 20, 2426 7 of 17

Conv

Conv 1x1

Globe average pooling

Sigmoid

Residual Block

Figure 3. Architecture of the Attention Module Block.

3.4. Generator: SAP-WNet Architecture

In addition to the U-Net with residual blocks described above, we propose a branch-widening
network as an alternative solution, the SAP-WNet model, which is shown in Figure 4. The encoding
network is similar to SAP-UNet and employs a scale attention module as well. We widened the
structure and imposed a novel branch on the right side to optimize the network training process.
We used the edge image extracted by the Canny algorithm to conduct the deep supervision.
This method can guide the network to concentrate on reconstructing the recovery image detail through
providing more semantic features. W-Net sums the boundary attention feature with the original
U-Net on each scale, followed by 3 × 3 convolution and up-convolution to form the final module
representation, which contains information about different receptive fields. Finally, the pixel-wise
prediction is formed by connecting the fine-grained layers.

The W-Net structure with deep supervision has characteristics suitable for hyperspectral
reconstruction. We wanted to reconstruct hyperspectral information from a single RGB image,
which is a server ill-posed problem. Insufficient priors would cause edge blurriness in an image
that has rich information. However, the pixels with significantly changing intensity values always
contain extremely important characters with strong representation. The most important aspect of our
design is that we can use boundary supervision to guide the network to identify the edge information
with a novel fusion scheme. The concatenation and summation operators on each scale explicitly
boosts the feature representation which has the potential to provide a more accurate model. The W-Net
model can provide higher reconstruction fidelity, providing sufficient boundary features compared
with U-Net.
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Figure 4. Complete architecture of the Scale Attention Pyramid W-Net with dilated convolution at
different rates.

3.5. Markovian Discriminator

In the traditional discriminator structure, a final probability is given with the SoftMax function
to process the whole image. However, this does not fit our task, where every image patch must
be reserved. We adopted the PatchGAN method [39] that only penalizes structure at the patches
scale. A fixed-size patch discriminator can be used for arbitrarily large images. We designed the
architecture of PatchGAN as shown in Table 1. This discriminator takes the image as a Markov random
field, assuming independence between pixels separated by more than a patch diameter. We used
this discriminator convolutionally on the generated image and averaged all responses to offer the
ultimate probability.

Table 1. Model parameters of the discriminator.

# Layer Weight Dimension Stride

1 Conv 64×32×5×5 2
2 Conv 64×64×5×5 1
3 Conv 128×64×5×5 2
4 Conv 128×128×5×5 1
5 Conv 256×128×5×5 2
6 Conv 256×256×5×5 1
7 Conv 512×256×5×5 2
8 Conv 512×512×3×3 4
9 Fc 512×1×1×1 0
10 Sigmoid - -

After the last layer, a convolution was used to map to a 1-dimensional output, followed by
a sigmoid active function. Every convolution layer was activated with leaky ReLUs, with a slope of 0.1.
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3.6. Materials and Implementation Details

Arad et al. [3] created a large database of hyperspectral images of natural scenes. The database
images were acquired using a Specim PS Kappa DX4 hyperspectral camera and a rotary stage for
spatial scanning. It contains 240 images with 1392 × 1300 spatial resolution over 519 spectral bands
(400–1000 nm in roughly 1.25 nm increments). The database includes down-sampled data with
31 spectral channels from 400 to 700 nm in 10 nm increments. It is by far the most comprehensive
natural hyperspectral database. We trained our network on 160 pairs of RGB and hyperspectral images
from the down-sampled data. We chose 40 images as the validation dataset for parameter fine-tuning.
The remaining 40 images were used as the test set to evaluate the performance of the algorithms.

The Chakrabarti dataset consists of 50 images under daylight illumination both outdoors
and indoors. The real-world hyperspectral scenes were captured by using Nuance FX, which is
a commercial hyperspectral camera. The camera acquires hyperspectral images by sequentially
tuning the filter through a series of 31 narrow wavelength bands, approximately 10 nm in bandwidth
from 420 to 720 nm.

The network performance was optimized using the Adam solver. We set base learning to
0.0001, reduced by a factor of 0.8 as training error saltation. The momentum and weight decay
were set to 0.9 and 0.0001, respectively. The proposed network was trained with an i7-8086K CPU
and 2 1080Ti GPUs. Due to the limitation of our computer hardware, we adjusted the original
1392 × 1300 hyperspectral images during the training phase to 256 × 256 images. Training images
were resized to 256 × 256 based on the bilinear interpolation algorithm. The generator G accepted
input images of size 256 × 256 and yielded image sizes of 256 × 256 pixels. Note that we evaluated the
final result based on 256 × 256 pixels, not the original size. We set the batch size to 1, which was proven
to be effective for image generation tasks during training. We alternated between one gradient descent
step on D, then one step on G. Training was stopped after 700 epochs. Notably, the performance
could be improved by increasing the epoch number. For optimization, we trained the models with
a combination of adversarial loss and content loss. At inference time, we applied a 50% dropout
and instance normalization to obtain the desired results. The training phase required nearly 36 h
for the SAPWNet-GAN. All network implementation was based on the top of Pytorch. Pytorch is
a fast-maturing deep learning framework being increasingly used by researchers. Pytorch defines
mathematical functions and calculates the gradients automatically.

3.7. Evaluation Metrics

The performance of the hyperspectral reconstruction was evaluated using four metrics: root mean
square error (RMSE), relative RMSE (RMSERel), mean peak signal-to-noise ratio (PSNR) and structural
similarity (SSIM).

RMSE was used to evaluate the accuracy of the reconstructed images compared with ground
truth. RMSE computes over the spectral dimension for every pixel and averages the entire pixels in
the image.

RMSE =

√
∑i,c(Pgtic

− Precic
)2

Pnum
(8)

where Pgtic
and Precic

denote the value of the c spectral channel of the i-th pixel in the ground truth
and the recovered image, respectively; Pnum is the size of the hyperspectral image with pixel count
multiplies number of spectral channels.

RMSERel represents RMSE relative to the value of the real signal.

RMSERel =

√
∑i,c(Pgtic

− Precic
)2

PnumPgtic

(9)

PSNR is a common metric of the ratio of peak signal and noise.
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PSNR = 20 · log10

(
255

RMSE

)
(10)

SSIM is a classic index of image quality assessment, which is more suitable for human visual
perception systems. SSIM evaluates the image quality with the combination of brightness, contrast,
and structure.

SSIM(prec, pgt) =
(2µprec µpgt + 6.5)(2σprec ,pgt + 58.5)

(µ2
prec + µ2

pgt + 6.5)(σ2
prec + σ2

pgt + 58.5)
(11)

where pgt is the ground truth, prec is the recovered image, µpgt is the mean of pgt, µprec is the mean of
prec, σ2

pgt is the variance of pgt, σ2
prec is the variance of prec, σprec ,pgt is the covariance of prec and pgt.

4. Experimental Results and Discussion

This section outlines the quantitative experiments we used to evaluate the performance of our
approach on public hyperspectral datasets [3,40]. The two datasets included complex scenarios that
cover various materials, shadows, and indoor scenes.

4.1. Evaluation on the ICVL Dataset

We evaluate our approach on the ICVL dataset [3], which contains hyperspectral images in natural
scenes. Figure 5 depicts the quality of spectra reconstruction obtained with our approach and other
algorithms compared to the ground-truth. We selected two images at three different wavelengths
to examine the spatial consistency of the results. The error map was calculated using the RMSE on
a scale of ±255 [20]. The images recovered using our method were consistently accurate across the
wavelength axis irrespective of scene materials. The images recovered by [3,30] contain some artifacts
to different degree. The method proposed by Arad et al. [3] is severely dependent on the number of
dictionary atoms. A sparse dictionary may produce considerable error, which would contaminate the
data. Alvarez-Gila et al. [30] used U-Net to form the SCAUNet-GAN for hyperspectral reconstruction.
However, this method only concatenates all the features using the skip-connection, which ignores
the semantic gap between different levels. In contrast, we propose a hyperspectral reconstructing
learning approach that restores sharp images in an end-to-end manner with no dimension reduction
process. We used multi-scale information to synthesize the local and global context to reconstruct the
hyperspectral information at feature level. The experiment showed that our method produced the
most accurate results with fewer artifacts.

Table 2 shows quantitative evaluation results of the competing methods in terms of RMSE in the
[0–255] range, RMSERel, PSNR, and SSIM for the whole test set. This table shows an average per-pixel
error drop of 42% in terms of RMSE and 46.6% in terms of RMSERel using SAPUNet-GAN compared
to [3] over the test set. SAPUNet-GAN achieved comparable performance to [3]. SAPWNet-GAN
yielded the best result in our experiment, with decreases of 0.82% and 5.7% compared with
SAPUNet-GAN for RMSE and RMSERel, respectively.

Table 2. A summary of the results of the conducted experiments including RMSE, RMSERel, PSNR
and SSIM over the ICVL dataset [3].

Metric Arad et al. [3] Alvarez-Gila et al. [30] SAPUNet-GAN SAPWNet-GAN

RMSE 2.633 1.457 1.455 1.445
RMSERel 0.0756 0.0401 0.0398 0.0378

PSNR 27.641 - 31.647 32.532
SSIM 0.847 - 0.916 0.932
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Figure 5. Reconstruction images from the ICVL dataset [3]. From top to bottom, ground-truth,
SAPWNet-GAN, SCAUNet-GAN [30], sparse coding [3], and error map of the SAPWNet-GAN.
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To evaluate the visual quality and spectral signature accuracy, Figure 6 shows four examples of
error maps on a scale of ±255 from the ICVL dataset at a wavelength of 570 nm. SAPUNet-GAN and
SAPWNet-GAN produced notably fewer errors than sparse coding and SCAUNet-GAN. For spectral
signature accuracy evaluation, we conducted experiments using four spatial points of error maps
over 400–700 nm as shown in Figure 7. We selected each spatial points identified by the colored dots
in Figure 6. Compared with sparse coding, the results produced by GANs were much closer to the
ground-truth. Our SAPUNet-GAN produced better results than SCAUNet-GAN. SAPWNet-GAN
provide highest reconstruction fidelity compared with the selected alternatives.
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Figure 6. Visual comparison of the hyperspectral recovery of four selected images at 570 nm from
the ICVL dataset [3]. From top to bottom: sparse coding [3], SCAUNet-GAN [30], SAPUNet-GAN,
SAPWNet-GAN, and ground-truth.
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(a) (b) (c) (d)

Figure 7. Spectral signatures of four selected spatial points identified by the colored dots from Figure 6
over 400–700 nm.

4.2. Chakrabarti Dataset

We conducted an experiment with the model trained on the ICVL dataset. The results showed that
the models provide generalization performance. Table 3 indicates that our methods outperformed the
other algorithms for real-world images. Notably, the indoor performance of all methods was slightly
worse compared to outdoors. The reason for this is the lack of luminance in indoor scenes and the
generated models were trained on outdoor images. However, our methods still produced superior
performance than the other state-of-the-art methods.

Table 3. The quantitative results on the dataset [40].

Datasets Metric Arad et al. [3] Yan et al. [16] SAPUNet-GAN SAPWNet-GAN

Outdoor subset RMSE 3.466 3.661 2.893 2.687
PSNR 24.225 26.024 26.131 26.316
SSIM 0.769 0.805 0.817 0.835

Indoor subset RMSE 5.685 4.872 4.904 4.782
PSNR 18.323 22.146 22.173 22.468
SSIM 0.696 0.717 0.721 0.757

Some complex scenes may result in larger absolute error even with a better visual quality
compared to simple scenes. To normalize this effect, we calculated the success percentage of
estimated pixels whose average absolute error was below specific values. We evaluated our method
against the alternative algorithms in [3,6,14,16,20] using the proposed error metric. Arad et al. [3]
created a sparse dictionary of spectra and corresponding RGB projections to map RGB vectors to
spectra. Yan et al. [16] proposed a manifold-learning method to reconstruct hyperspectral images.
Nguyen et al. [14] used a RBF network to learn the mapping from white-balanced RGB values from
reflectance spectra. Parmar et al. [6] introduced controlled lighting to recover 31 spectral bands.
Kawakami et al. [20] combined a low-resolution hyperspectral image and a high-resolution RGB
image to acquire high-resolution hyperspectral data. Figure 8 shows the cumulative absolute error
where higher curves indicate more accurate results. We measured the ratio between the absolute
RMSE and the maximum radiation for each image on a scale of 0–255. The success percent indicates
the percentage of test examples included in all spectral channels achieving an error ratio below the
abscissa value. Empirically, the error ratio of 3 was considered the threshold of visually plausible
results. Our method performed favorably against the alternatives.
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Figure 8. Quantitative evaluation on the Chakrabarti dataset in comparison with several state-of-the-art
hyperspectral reconstructing methods: Yan et al. [16], Arad et al. [3], Nguyen et al. [14],
Kawakami et al. [20].

4.3. Ablation Study for SAPWNet

We conducted an ablation experiment to demonstrate the effectiveness of the different components
of the proposed SAPWNet with the ICVL dataset. We trained the different models with the same
images as the training set, and used 40 new images as the test set for evaluation. We analyzed
the following modules: feature pyramid, scale attention module, and W-Net, which implements
boundary supervision in additional branch, as described above. These experiments showed that
different factors affect the final result. As listed in Table 4, the hyperspectral reconstruction GAN
based on U-Net (HSGAN) without any auxiliary components produces similar performance to Arad’s
method [3]. We firstly implemented the feature pyramid structure, which produced 16.6%, 8.2%, and
6.1% improvements in terms of absolute RMSE, PSNR, and SSIM, respectively. When we replaced scale
attention module with the feature pyramid to evaluate the performance, the improvements were almost
32.4%, 7.4%, and 12.1%, respectively. To optimize the visual quality of the recovered hyperspectral
image, W-Net with boundary attention was introduced, which did not affect the learning of the main
branch. Combining W-Net and the scale attention module produced the best result, creating 0.7%,
2.8%, and 1.7% improvements compared with no supervision network in terms of RMSE, PSNR and
SSIM, respectively.

Table 4. Detailed analysis of the proposed SAPWNet with different settings. HSGAN, hyperspectral
reconstruction GAN with U-Net generator; FP, feature pyramid without scale attention; SAM, scale
attention module; W-Net, using W-Net replacing the U-Net.

Network RMSE PSNR SSIM

HSGAN 2.586 27.224 0.756
HSGAN(FP) 2.155 29.463 0.817
HSGAN(SAM) 1.455 31.647 0.916
HSGAN(W-Net) 1.639 31.339 0.912
HSGAN(SAM+W-Net) 1.445 32.532 0.932

5. Conclusions

In this paper, we proposed two advanced adversarial CNN-based generative models for
hyperspectral reconstructing from a single RGB image. We first designed SAPUNet, which establishes
feature pyramids and uses an attention mechanism to select feature layers. The method uses local
and global information corresponding to different sizes of receptive fields. Based on the promising
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SAPUNet results, we further presented the W-Net model, which replaces U-Net. This context fusion
and boundary supervision at feature scales method yielded the best results. The experimental results
showed that our approach both qualitatively and quantitatively outperforms the state-of-the-art
methods. Nowadays, researchers are focusing on spectra reconstruction in the visible bands. Spectral
recovery for infrared images deserves to be studied in the future. The sparsity of signals in the infrared
range is probably lower than in visible bands. For this task, a larger number of input bands in the
infrared range is required to achieve similar accuracy as with visible bands.
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writing–original draft preparation, P.L. All authors have read and agreed to the published version of
the manuscript.
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