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Abstract 
 

Most existing salient object detection algorithms commonly employed segmentation 
techniques to eliminate background noise and reduce computation by treating each segment as 
a processing unit. However, individual small segments provide little information about global 
contents. Such schemes have limited capability on modeling global perceptual phenomena. In 
this paper, a novel salient object detection algorithm is proposed based on region merging. An 
adaptive-based merging scheme is developed to reassemble regions based on their color 
dissimilarities. The merging strategy can be described as that a region R is merged with its 
adjacent region Q if Q has the lowest dissimilarity with Q among all Q's adjacent regions. To 
guide the merging process, superpixels that located at the boundary of the image are treated as 
the seeds. However, it is possible for a boundary in the input image to be occupied by the 
foreground object. To avoid this case, we optimize the boundary influences by locating and 
eliminating erroneous boundaries before the region merging. We show that even though three 
simple region saliency measurements are adopted for each region, encouraging performance 
can be obtained. Experiments on four benchmark datasets including MSRA-B, SOD, SED and 
iCoSeg show the proposed method results in uniform object enhancement and achieve 
state-of-the-art performance by comparing with nine existing methods.  
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1. Introduction 

Saliency detection has attracted much attention recently due to its ability to model the human 
visual attention mechanism, which has its roots in psychology but has been a topic of research 
in diverse areas such as neuroscience, robotics and computer vision [1,2]. Early efforts of 
saliency detection aimed to predict the locations of human eye fixations and introduced the 
fundamental principles of saliency detection. Different from eye fixations prediction, a new 
sub-field in saliency detection called salient object detection has recently emerged and drawn a 
lot of research attentions. It aims at compensating the drawback of previous eye fixation 
prediction models [3-6] on enhancing entire objects. There are two main approaches to salient 
region detection – top-down and bottom up, where the former is task dependent while the latter 
seeks to identify pop-out features that enable the extraction of distinct regions in an image. 
Bottom up saliency models have been developed as a pre-processing step to prioritize the 
search space for object detection tasks reducing the computational overhead [7]. Top-down 
approaches include [8] for scene recognition and [9] for tracking. Saliency detection has also 
been used as a pre-processing step for active segmentation of the objects in point clouds for 
manipulative tasks in robotics. 

Previous salient region detection methods [10-15], which commonly employed 
segmentation techniques include superpixels [16] and mean shift [17] or graph-based 
segmentation [18], exploit contrast and rarity properties on local superpixels or regions. These 
techniques are known to be useful for eliminating background noise and reducing computation 
by treating each segment as a processing unit. However, individual small segments provide 
little information about global contents. Such models have limited capability on modeling 
global perceptual phenomena [19, 20]. Fig. 1 shows a typical example. The entire flower tends 
to be perceived as a single entity by human visual system. However, local-segment based 
algorithms (e.g. [16]) partition the flower into many parts (Fig. 1 (b)), each of which alone 
does not reflect the meaning of “flower”. In contrast, a coarse segmentation (derived from Fig. 
1 (b)) that attempts to keep semantic holism (Fig. 1(c)) which better models such gist. It is 
easily imagined that saliency computation with the help of such coarse segmentation is 
conducive to highlighting entire objects while suppressing background. 

 

 
Fig. 1. Different segmentation for salient object detection, (a) Input image, (b) Over-segmentation, (c) 

Coarse segmentation, (d) Object mask 
 

Since it is important to control segmentation to reflect proper image content, some recent 
approaches benefit from multiscale strategies to compute saliency on both coarse and fine 
scales with fusion. Yan et al. [10] define three levels of sizes for regions and merge a region to 
its neighbor region if it is smaller than defined sizes (Hierarchical Saliency Detection, HS for 
short). Despite good performance of HS, the underlying problem may be that scale parameters 

(a)                               (b)                                 (c)                                  (d) 



4388                                                                Zhou et al.: Salient Object Detection via Adaptive Region Merging 

in HS are crucial to performance. A salient region might not be in the proper level if it is 
smaller than the defined size. In addition, large background regions with close colors may not 
be merged together if they are larger than the defined size. Since appropriate merging may 
facilitate global perceptual phenomena analysis (Fig. 1), to find coincidence of salient object 
in multiscales, in this paper we propose an alternative solution, which generate varied levels 
by merging similar regions. Compared to HS, we use color dissimilarity and an adaptive 
technique during merging, while HS merges according to region size. Main advantages that 
lead to robust performance of the proposed method against HS include: (1) use color 
dissimilarity and their spatial location (rather than region size), reflecting object saliency that 
is often indicated by enclosed strong similarities and neighboring location; (2) use an adaptive 
merging strategy to obtain background and object, which help to better assist highlight objects 
and suppress background; (3) the number of levels in the proposed method is much larger than 
HS where only three scales are considered. It leads to robustness in more generic cases. In 
addition, our method is adaptive, i.e. no specification/manually determination of scale 
parameters is needed like HS. 
 

 
Fig. 2. The block diagram of proposed algorithm 

 
The proposed algorithm can be divided into three stages, such as pre-processing step, 

adaptive region merging step and saliency measurement step, which are plotted in Fig. 2. In 
pre-processing step, an initial segmentation is required to partition the image into 
homogeneous regions for measuring saliency. In this paper, we use SLIC algorithm [16] for 
initial segmentation because it can well preserve the object boundaries. To measure the 
similarity between superpixels, we consider each superpixel as the node of a graph and 
construct the weights by color dissimilarity. Since the weights measure the similarity or 
dissimilarity between a node and its neighbors, we look upon the weight matrix as the 
similarity matrix. In adaptive region merging step, the superpixels which located at the 
boundary of the image are treated as the seeds to start the merging process. However, it is 
possible for a boundary in the input image to be occupied by the foreground object. To avoid 
this case, we optimize the boundary influences by locating and eliminating erroneous 
boundaries before the region merging, which similar to [20]. Then, an adaptive region merging, 
which is adaptive to the image content and it does not need to set the similarity threshold in 
advance, is designed in the proposed framework. A region R is merged with its adjacent region 
Q if Q has the lowest dissimilarity with Q among all Q's adjacent regions. In last step, each 
merged region is just evaluated using three simple region saliency measurements, though more 
complex features and measurements as in [4] can be adopted. Even though like this, we show 

Final saliency 

Ground truth 

Saliency map formulation 

Adaptive region merging  

Pre-processing  
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the proposed method already can achieve competitive results against the best methods among 
the state-of-the-art. 

The contributions of this paper are summarized as follows: 
(1) We propose a novel salient object detection algorithm which is based on adaptive region 

merging. Comparing to other state-of-the-art methods, no threshold is needed in region 
merging process. Under region merging framework, coarse segmentation is conducive to 
highlighting entire objects while suppressing background in salient object detection. 

(2) Performance obtained is similar to other state-of-the-art methods even though simple 
region saliency measurements are adopted for each region. 

The remainder of the paper is organized as follows: Section 2 surveys conventional salient 
object detection algorithms which are related to our approach. We demonstrate framework of 
our saliency detection method in detail in Section 3. Then, we demonstrate our experimental 
results based on four public image datasets and compare the results with other state-of-art 
saliency detection methods in Section 4. The final section concludes the paper by summarizing 
our findings. 

2. Related Work 
The following gives a review of salient object detection algorithms that are related to our 
approach. A comprehensive survey of salient object detection can be found from [1]. The 
review on visual attention modeling [2] also includes some analysis on salient object 
detection. 

Saliency models map natural images into saliency maps, in which each image element 
(pixel, superpixel and region) is assigned a saliency strength or probability. A representative 
work by Itti et al. is presented in [4]. They proposed a biologically inspired visual attention 
model and built a system called neuromorphic vision C++ toolkit. Specifically, they proposed 
the using of a set of feature maps from three complementary channels as intensity, color, and 
orientation. The normalized feature maps from each channel were then linearly combined to 
generate the overall saliency map. Bruce and Tsotsos [21] modeled bottom-up saliency as the 
maximum information sampled from an image. More specifically, their saliency was 
computed as Shannon’s self-information. Oliva and Torralba [22] proposed a Bayesian 
framework for the task of visual search (i.e., whether a target is presented or not.). Zhang et al. 
[23] also proposed saliency detection using natural statistics (SUN) based on a similar 
Bayesian framework to estimate the probability of a target at every location. They also 
claimed that their saliency measure emerges from the use of Shannon’s self-information under 
certain assumptions. Most of the methods [4, 22-24] based on Gabor or DoG filter responses 
required many design parameters such as the number of filters, type of filters, choice of the 
nonlinearities, and a proper normalization scheme. Different from the traditional image 
statistical models, spectral saliency approaches that operate on the Fourier and cosine 
(frequency) spectrum have attracted a huge interest [3]. Guo et al. [25] claimed that what plays 
an important role for saliency detection is the image’s phase spectrum. Hou et al. [26] 
proposed discrete cosine transform (DCT) image signature approach, which defines the 
saliency using the inverse DCT of the signs in the cosine spectrum.  

Early efforts aimed to predict the locations of human eye fixations and introduced the 
fundamental principles of saliency detection. While these methods were purely bottom-up 
(stimulus driven), some researchers proposed models of top-down saliency. These use 
high-level information to guide the saliency computation, equating saliency to the detection of 
stimuli from certain object classes [11]. While bottom-up saliency predicts eye fixations, these 
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methods are useful for high-level vision tasks, such as object recognition and localization. 
However, they require the definition of object classes of interest and are, thus, less generic. A 
compromise is to either consider the responses of object detectors as features for bottom-up 
saliency [27], or to formulate saliency as a mid-level vision task. In this area, substantial 
attention has been devoted to the problem of object saliency [2]. The goal is no longer to 
predict eye fixations or the locations of specific object classes, but to identify the locations of 
salient objects, independent of what these may be [28]. 

Methods in this class are generally based on the earlier principles of bottom-up saliency, e.g. 
local measures of center-surround contrast [11, 28-29]. Center-surround prior is realized as a 
Gaussian fall-off map. It is either directly combined with other cues as weights [28], or used as 
a feature in learning-based methods [11]. This makes strict assumptions about the object size 
and location in the image. Achanta et al. [30] exploited the central-surround principle by 
defining the saliency of a pixel as its distance to the average image. Cheng et al. [12] 
considered a regional contrast based saliency extraction algorithm with mid-level cues which 
simultaneously evaluates global contrast differences and spatial coherence. From an opposite 
perspective, recent works [20, 31] introduce boundary prior and treat image boundary regions 
as background. In [31], the contrast against the image boundary is used as a feature in learning. 
In [15], saliency estimation is formulated as a ranking and retrieval problem and the boundary 
patches are used as background queries. These approaches work better for off-center objects 
but are still fragile and may fail even when an object only slightly touches the boundary. In 
[32], Goferman et al. proposed a context-aware saliency algorithm to detect the image regions 
that represent the scene based on four principles of human visual attention. 

Most methods implement and combine low level cues heuristically. Recently, a few 
approaches have adopted more principled global optimization. The work in [33] treats salient 
objects as sparse noises and solves a low rank matrix recovery problem instead. The work in 
[34] models salient region selection as the facility location problem and maximizes the 
sub-modular objective function. These methods adapt viewpoints and optimization techniques 
from other problems for saliency estimation. In [35], multiple saliency maps from different 
methods are aggregated into a better one.  

It is also worth noting that there are some previous works involving both graph cut and 
saliency detection [12-13, 36]. Those methods differ from ours as they treat the two steps 
separately. Saliency detection is conducted first and resulting saliency maps are then used to 
generate “seeds” or “initial regions” to guide graph cut. The outcome of graph cut is a binary 
segmentation map. For example in [36], seed regions are generated by saliency detection in [3] 
and then “MaxFlow” is applied to solve the min-cut problem. In contrast, our saliency 
detection is induced by the superpixels. According to the regions generated by superpixel 
algorithm, we merge the similar superpixels into a new region. Thereby in our method the 
saliency detection takes place prior to the merging regions. In [12], [13], and [36], the results 
of graph cut highly depend on saliency maps that provide “seeds”, cut performance could 
suffer from a less accurate saliency map that is derived from less good grouping.  

3. Salient Object Detection via Region Merging 
This section details the proposed method for salient object detection. Firstly, the graph 
construction is discussed. Then, an adaptive merging method is described that is used to 
generate coarse segmentation by merging the similar regions according to their color 
dissimilarity. Last, regional saliency measures are introduced which describes the formulation 
of saliency map. 
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3.1 Graph Construction 
Before graph construction, our framework first performs over-segmentation on an input image 
by using SLIC superpixels. The result is a set of compact superpixels that are homogenous in 
color and maintain image boundaries. N=200 superpixels are selected for each input image 
since such number of superpixels suffices for detecting salient objects. Let a graph  

>=< EVG , be defined where verticesV are, and E are graph edges. Let >=< EVG ,  be an 
undirected graph, where Vvi ∈ is a set of nodes corresponding to superpixels. E is a set of 
edges connecting the pairs of neighboring nodes. Each edge Evv ji ∈),( has a corresponding 

weight )),(( ji vvw to measure the dissimilarity of the two nodes connected by that edge. In the 
proposed algorithm, we consider the color dissimilarity between regions since color statistics 
is an important attributes of image region. Specially, considering image pixels iI and jI , the 
dissimilarity is defined as 
 

),(),( jiji IIDIId =                                                               (1) 
 
where ),( ji IID is the color distance metric between pixels iI and jI in the *** baLCIE  

space. Suppose that Bj RI ∈ where BR is a region, the average dissimilarity between 

pixel iI and region BR is defined as follows 
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∈
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where BR is the number of pixel in region BR . It is easy to see that pixels with the same color 
value have the same dissimilarity value under this definition, since the measure is oblivious to 
spatial relations. Hence, rewriting equation (2) such that the terms with the same color 
value jc are grouped together, we get dissimilarity value for each color as 
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where ic is the color value of pixel iI , Bn is the number of distinct pixel colors in region BR , 

and jp is the probability of pixel color jc in region BR . If Ai RI ∈ , the dissimilarity between 

regions AR  and BR can be written as 
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where )( ,iscp is the probability of the i -th color isc , among all sn colors in the s -th region sR , 

{ }BAs ,= . According to equation 4, it is easy to use the color histogram to represent the 
regions AR and BR since color histogram is more robust than the other feature descriptors. The 
dissimilarity of regions AR and BR are measured by computing the difference of the 
corresponding color histogram. Note that we use the probability of a color in the probability 
density function (i.e. normalized color histogram) of the region as the weight for this color to 
emphasize more the color differences between dominant colors.  

Since color histogram is an effective method to represent the regions, it is computationally 
too expensive even for medium sized images. To make our algorithm efficiency, similar to 
[12], we compute color dissimilarity by building a compact color histogram using color 
quantization and choosing more frequent colors. For detailed information about histogram 
based speed up and color space smoothing, please refer to [12]. 

3.2 Region merging strategy 
Based on the graph constructed aforementioned, the next step is to merge the regions with 
similar characteristics. Regions with similar color are merged on the assumption that they 
belong to the same object or the background. The conventional region merging methods merge 
two adjacent regions whose similarity is above a preset threshold [37]. These methods have 
difficulties in adaptive threshold selection. A big threshold will lead to incomplete merging of 
the regions belonging to the object, while a small threshold can easily cause over-merging, i.e., 
some object regions are merged into the background. Moreover, it is difficult to judge when 
the region merging process should stop. In this paper, we present an adaptive minimal 
dissimilarity based mechanism to merge the superpixels.  

Suppose that Q is an adjacent region of R and denote by qi
Q
iQ SS ,,2,1}{

== the set of Q’s 
adjacent regions. The color dissimilarity between Q and all its adjacent regions, 

i.e. ),( Q
iSQd , qi ,,2,1 = are calculated. Obviously, R is a member of QS . If the 

dissimilarity between R and Q is the minimal one among all the color dissimilarities ),( Q
iSQd , 

we will merge R and Q . The following merging rule is defined as: 
 

),(min),(
,,2,1

Q
iqi

SRdQRdifQandRMerge
=

=                                   (5) 

 
The merging rule (5) is very simple but it establishes the basis of the proposed region 

merging process. One important advantage of (5) is that it avoids the presetting of similarity 
threshold for merging control. However, to merge the regions by region growing, we must 
choose some regions as the seeds to start. Since different seed make finally result different, it is 
hard that there is no prior information in the input images. Inspired by [15], we define a 
two-stage merging mechanism in which the superpixels located in the boundary of the image 
as the priors of the background at the first stage to guide the merging process.  

In the first stage, we try to merge the regions, which located in the boundary of the given 
image, with their adjacent regions. Specially, we denote the regions that near the boundary of 
the image as BM . For each region BMB∈ , we form the set of its adjacent regions 

riiB AS ,,2,1}{
== . Then for each iA and Bi MA ∉ , we form it’s set if adjacent regions 
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kj
A
jA

i

i
SS ,,2,1}{

== .it is obvious that
iASB∈ . The color dissimilarity between iA and each 

element
iAS is calculated. If B and iA satisfy the equation (5), then B and iA are merged into one 

region: 
 

iABB ∪=                                                                    (6) 
 

The above procedure is iteratively implemented. Note that in each iteration, the sets of 
background regions will be updated. Specifically, BM expands. The iteration stops when the 
entire background regions BM will not find new merging regions. 

As stated in [11], it is possible for a boundary in the input image to be occupied by the 
foreground object. Using such a problematic boundary as the seeds in adaptive region merging 
may lead to undesirable results, and a typical example is illustrated in the line of Fig. 3. In such 
case, the object is easy to merging into the background, which makes the subsequent results 
inaccurate in salient object detection. Similar to [20], we therefore optimize the boundary 
influences by locating and eliminating erroneous boundaries before the background merging 
(as shown in Fig. 3 (second line)). The major advantage of erroneous boundary removal is that 
it helps to relieve the inaccuracy of using all boundaries in cases that one or more of the 
boundaries happen to be adjacent to the foreground object. Removal of the most irrelevant 
boundary leads to more accurate outputs. 
 

 
Fig. 3. Intermediate results of the region merging process by boundary prior (first line) and optimized 
boundary prior (second line), (a) (b) Intermediate results of first merging round, (c) the final results of 

first merging round, (d) the results of second merging round 
 

After the first stage merging, some background regions will be merged with the 
corresponding background seeds. However, there are some regions survived which cannot be 
merged because they have higher similarity with each other than with the background regions 
(i.e., regions of the object). For each survived region P , we form the set of its adjacent 
regions kiiP HS ,,2,1}{

== . Then for each iH that Bi MH ∉ , we form its set of adjacent 

regions kj
H
jH

i

i
SS ,,2,1}{

== . The color dissimilarity between iH and P is calculated. If 

iH and P satisfy the rule (5), i.e., 
 

),(min),(
,,2,1

iH
jikii SHdHPd

=
=                                                      (7) 

 

(a)                                                          (b)                                         (c)                                           (d) 
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then P and iH are merged into one region. Otherwise, P and iH will not merge. 
This process is terminated when there is no region survived. After the second-stage of 

region merging process is complete, there are some trivial regions, which are inconsistency 
with the background and the objects, cannot be merged into any large regions. We check these 
regions and find that either they are the noise in the background (object) or they are the 
boundary of the object. In former case, the region is surrounded by the background (object) 
and can be merged into background (object); in latter case, the region is located in the middle 
of the background and object, and can be merged into neither background nor object.  

3.3 Region Saliency Measurements 
To show the effectiveness of the proposed region merging and integration scheme, each 
merged region is just evaluated using three simple region saliency measurements, i.e., 
figure-ground contrast, center bias and boundary cropping. Even though like this, we show the 
proposed method already can achieve competitive results against the best methods among the 
state-of-the-art. 

Let iR be a region at the region merging process. We propose the following regional 

saliency measures for iR . 
Figure-Ground Contrast: We compute the figure-ground contrast by comparing a region’s 
color distance to all boundary superpixels. As a merged region constitutes of a set of 
superpixels, the problem boils down to the comparison between two superpixel sets, and is 
defined as: 
 

B

M

M

),(
B

⋅
=
∑ ∈

i

R jifg
i R

RRd
S j                                                    (8) 

 
where BM represents the set containing all boundary superpixels. Notation |·| indicates the 
number of elements in the set, i.e., the number of superpixels. Different from the previous 
regional contrast hypothesis [12], here we only compare a region with a potential background, 
i.e. boundary superpixels according to the verified boundary hypothesis [15, 31]. This is more 
efficient to compute for regions in different levels as boundary set BM is always fixed. 
Center Bias: Statistical results in [2] shows that human attention is center biased, indicating 
that distinctive regions close to image center is likely to be salient [10, 33]. Therefore, the 
mask with a Gaussian distribution )( pG is applied at the image center, and the average 
probability value lying in each region is computed: 
 

i

RRj j
cb
i R

pG
S ij

∑ ∈
=

)(
                                                 (9) 

 
where )( jpG corresponds to Gaussian value of location jp . Although it has been argued in 
[31] that boundary hypothesis is more generic than the center prior, we still find the latter 
useful when there are multiple regions disconnected from image boundary but scattered in the 
whole image. 
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Boundary Cropping: Boundary hypotheses [15, 31] imply that regions touching image 
borders are likely to be background. This phenomenon can be explained by the 
“surroundedness” in Gestalt laws [38]: a region with a complete/closed contour is likely to be 
perceived as figure. We simply incorporate this cue by cropping saliency of regions according 
to numbers of image borders they touch (suppose an image has four borders), defined as: 
 



 ≤

=
otherwise

lif
S ibc

i 0
11

                                                   (10) 

 
where il is the number of image borders that iR touches. Equation (10) implies that a region 
cropped by more than one image borders will be suppressed in the computed intermediate 
saliency map. This measurement can maintain objects that touch none or one border such as 
the half-length portrait in photography. 
Combination of Regional Saliency Measures: Since salient regions are assumed to achieve 
high scores under all three metrics above, linear combination or multiplication can be 
considered. Similar to [15], we chose multiplication as good background suppression is 
observed. Furthermore, bc

iS can effectively suppress image boundary-touching regions if the 

multiplication is used. Hence, the final saliency score for the region iR is defined as: 
 

cb
i

bc
i

fg
ii SSSS ⋅⋅=                                                     (11) 

 
where fg

iS cb
iS bc

iS  respectively denotes the “figure-ground” contrast saliency, “center bias” 
saliency, and “boundary cropping” saliency. This regional saliency score is further assigned to 
the corresponding superpixels and pixels in the image to formulate intermediate saliency 
maps. 

4. Experimental Results and Analysis 
In this section, we evaluate the performance of our proposed algorithm over several datasets 
that are widely used in previous works, e.g. [2, 11, 12]. Next, we describe the datasets shortly 
and report both quantitative and qualitative comparisons of our approach with state-of-the-art 
approaches in detail. To save space, we compare our method with several prior ones, including 
SVO [39], PCAS [40], RC [12] and DRFI [11], which are the top four models or their 
improvements in survey [2]. In addition, we also consider well-known methods, such as CA 
[32], FT [30], HS [10], LRMR [33] and MR [15], that are not covered in [2]. For all methods 
aforementioned, we run the codes from author’s website accordingly and use the results for 
fair comparison. We have not compared with eye fixation models such as Itti’s [4] and Hou’s 
[3] due to different purposes of the methods. 

4.1 Datasets and evaluation measures 
The proposed method is evaluated on four publicly-available datasets with a ground truth in 
the forms of accurate human-marked labels for the salient regions. (1) MSRA-B [28] includes 
5000 images, originally containing labeled rectangles from nine users drawing a bounding box 
around what they consider the most salient object. There is a large variation among images 
including natural scenes, animals, indoor, out-door, etc. We use the salient object (contour) in 
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[11] as binary masks. The ASD dataset [30] is a subset (binary masks are provided) of the 
MSRA-B, and thus we no longer make the evaluation on it. (2) SED [41] contains two subsets, 
the first of which is a single-object database (SED1) with 100 color images and only one 
salient object in each image. The second is a two-object database (SED2), which also has 100 
color images with two salient objects in each image. Pixel-wise ground truth annotation for the 
salient objects in both SED1 and SED2 are provided. (3) SOD [42] is a collection of salient 
object boundaries based on the Berkeley segmentation dataset. Seven subjects are asked to 
choose the salient object(s) in 300 images. This dataset contains many images which contains 
multiple objects making it challenging. (4) iCoSeg is a publicly available co-segmentation 
data set [43], including 38 groups of totally 643 images. Each image is along with pixel-wise 
ground truth annotation, which may contain one or multiple salient objects. In this paper, we 
use it to evaluate the performance of salient object detection. 

We exploit the measures used in [30], i.e., the PR (precision-recall) curve, to evaluate the 
performance of our proposed algorithm and other state-of-the-art methods. Precision is the 
fraction of detected salient pixels belonging to the salient object in the ground truth, and recall 
corresponds to the percentage of salient pixels correctly assigned.  
 

)(
)(

)(
TS

GTS
Tprecision

∩
=                                                (12) 
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where G is the ground truth map, |·| denotes the sum area of masks. )(TS is the binary mask 
obtained by directly thresholding a saliency map using thresholdT . The PR curve is created 
by varying the saliency threshold T from 0 to 255 that determines whether a pixel is on the 
salient object. 

To obtain F-Measure, we follow [30] to segment a saliency map by the threshold τ defined 
as follows: 
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where W and H are the width and height of the saliency map in pixels, respectively, 
and ),( yxS is the saliency value of the pixel at position ),( yx . If the saliency value of a 
superpixel is larger than threshold, it is considered as the part of salient object. In many 
applications, high precision and high recall are both required. We thus estimate the F-Measure 
[30] as: 
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where β is set to 0.3 as suggested in [12] to emphasize the precision. We also exploit mean 
absolute error (MAE) [13] to evaluate all algorithms aforementioned, i.e., 
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where W and H are the width and height of the saliency map in pixels, ),( yxS and 

),( yxG are the saliency value and ground-truth of the pixel at position ),( yx  respectively. 
The reason of using MAE as a compensation criterion is that precision-recall curves are 
insensitive to the uniformness of a saliency map. For example, by pixel-wisely multiplying a 
ground truth map with a 2D Gaussian centered inside the mask with arbitrary variance, one can 
still obtain a good precision-recall curve with such heterogeneous map. On the other hand, 
MAE can be affected by small error accumulation since it sums all pixel-wise errors. With 
these characteristics, we use it as the measurement of the saliency map in our experiment. 
 

 
Fig. 4. Quantitative comparisons of saliency maps produced by different approaches on MSRA-B, SOD 

and iCoSeg dataset 
 

4.2 Quantitative comparison 
The quantitative comparison is shown in Fig. 4 - Fig. 5. Generally speaking, the precision 
indicates the performance of the saliency detection algorithms compared with saliency map of 
ground-truth. To compare the proposed model with others, we always see the precision value 
for different algorithms, for the precision value is the ratio of the correctly detected region over 
the whole detected region. The performance of our method on precision-recall curves is 
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comparable to the most recent techniques including HS, DRFI and MR. Our method 
significantly outperforms DRFI on MSRA-B and iCoSeg. Marginal improvement is observed 
on SED1, SED2 and SOD. Besides, observing PR curves, our method is comparable to HS 
[10] and MR [15] on all the four datasets. Intuitively, our approach has limited ability when 
discovering the right boundary of salient objects in the image that with complex background 
(higher recall). It can be seen from SOD and SED1 dataset that the recall is not so well when it 
compare with DRFI. The reason might be that clutter background affects the region merging 
process (detailed in section 4.4), which leads to false border of the object. However, the 
improvements over state-of-the-arts are slightly better when considering their performance 
and especially the adaptability of our model to different datasets.  
 

 
Fig. 5. Quantitative comparisons of saliency maps produced by different approaches on SED dataset 

 

 
Fig. 6. Visual comparisons of saliency maps on MSRA-B dataset 

 
Adaptive threshold experiments were carried out, where the adaptive threshold is defined as 

two times the mean value of a saliency map [30]. Results are shown in the middle column in 
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Fig. 4 and Fig. 5. Our method achieves both the highest precision and F-measure on MSRA-B, 
SED1 and SED2 datasets, providing further support to the effectiveness of the proposed 
method. Second best precision and F-measure for our method are observed on SOD and 
iCoSeg. For SED1 whose images contain single objects in more complex scenarios, our 
method performs close to DRFI [11]. An observation on SED2 is since this dataset has many 
labeled objects which violate the boundary prior, MR performs less well than other datasets.  

To further evaluate the methods, we compute the MAE values [13]. As shown in the right 
column in Fig. 4 and Fig. 5, our method produces consistently the lowest error on MSRA-B, 
SED and iCoSeg datasets, indicating more robustness against different datasets. Despite good 
performance in precision-recall curves and F-measure, LRMR [33], CA [32], FT [30] and 
SVO [39] have the higher MAE due to the weak background suppression. 

4.3 Visual comparison 
We also provide the visual comparison of different methods in Fig. 6 - Fig. 9. As can be seen, 
our method effectively suppresses background clutter and uniformly emphasizes the 
foreground objects. In most visual comparisons, much clearer object boundaries are obtained 
compared to other methods, e.g. last row in Fig. 6, 1st, 2nd, 4th rows in Fig. 8, and 1st row in 
Fig. 9. In addition, the proposed method is able to deal with images containing clutter 
background (e.g. 1st row in Fig. 6, 6th and 7th rows in Fig. 9). Our region merging scheme 
effectively combines them into background, preserving perceptual homogeneity.  
 

 
Fig. 7. Visual comparisons of saliency maps on SOD  

 
It is also worth pointing out that our approach performs well when the object touches the 

image border, e.g. the first two rows in MSRA-B dataset in Fig. 6, the second row in SOD in 
Fig. 7 and first row in iCoSeg in Fig. 9, even though it violates the pseudo-background 
assumption used in MR [15]. MR, in which the first stage is based on the pseudo-background 
assumption, can not label the saliency seeds correctly when the object slightly touches the 
image border (e.g. 1st row in Fig. 6). Another side-effect of this operation is the risk of missing 
useful object parts. This is consistently observed on SED dataset. As two objects in one image 
may be of different saliency levels, one of the two objects in an image can be “lost” after 
thresholding, leading to a performance drop (e.g. 6th row in Fig. 8). In contrast, such risk is 
avoided in our method as no threshold is used to binarize the saliency map for performance 
boosting. 
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Fig. 8. Visual comparisons of saliency maps on SED dataset 

 

 
Fig. 9. Visual comparisons of saliency maps on iCoSeg dataset 

 
For other state-of-the-art approaches, it can be seen that while SVO [39] detects the salient 

regions, parts of the background are erroneously detected as salient. FT [30], which exploited 
the central-surround principle by defining the saliency of a pixel as its distance to the average 
image, generally detect the foreground from input images. However, it is easy to influence by 
the background that the salient area contains not only salient object but also clutter background. 
As relies mostly on patterns, CA [32] detects the outlines of the saliency objects, while 
missing their interior. By relying solely on color, RC [12] can mistakenly focus on distinct 
background colors, e.g., the sky is captured instead of the iron chain in the third row on SOD 
database. PCAS [40] relies mostly on patterns; hence, it detects the outlines of the saliency 
objects, while missing their interior. LRMR [33], which integrates the high-level priors, focus 
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on the center and the warm color of image. It is worth mentioning that the salient objects with 
warm colors such as red and yellow are more pronounced. HS [10] considers the situation that 
locally smooth regions could be inside a salient object and globally salient color, contrarily, 
could be from the background. However, it is easy to lose the small target, such as the last row 
in SED in Fig. 9. DRFI [11], which is based on multi-level image segmentation, uses the 
supervised learning approach to map the regional feature vector to a saliency score, and finally 
fuses the saliency scores across multiple levels, yielding the saliency map. When most of the 
images contain only one object in training set, it has limited ability to discover all the salient 
objects within one image. 

4.4 Sensitivity to region merging 
As stated previously, the proposed framework detects salient regions depending on the process 
of adaptive region merging. The results of salient object detection are affected by that of the 
region merging more or less. Our method obtains accurate saliency maps mainly based on the 
aspects that the framework can segment the object effectively in region merging process. 
However, this framework may fail for those images in which salient object(s) is hided in more 
complex background. In such case, adaptive region merging algorithm merges the object into 
background and the noise in background is considered as the target falsely, which makes the 
detection results of subsequent salient object detection inaccuracy. 
 

 
Fig. 10. Failure cases of the proposed algorithm, (a) Input images, (b) ground truth, (c) SLIC 
segmentation, (d) region merging result, and (e) the saliency maps of the proposed algorithm 

 
Fig. 10 shows an example.  The lion in Fig. 10 is not “pop-out” as a whole due to the small 

color dissimilarity between the lion and the trees in the background, but it is still a salient 
object due to the object recognition capability of the trained human brain. In adaptive region 
merging framework, the superpixels that located at left, top and right boundary of the image 
are regarded as the seeds to start the merging process. As the color of lion is similar to the 
seeds, it is merged into background in the first stage. Since the snow in the background is 
dissimilar to the trees and the lion, it is segmented as the object in the following process. In the 
process of region saliency measurement, it is detected as the salient object, which was only to 
be expected. Our future work will focus on high-level knowledge, which could be beneficial to 
handle more challenging cases and other kinds of saliency cues or priors to be embedded into 
our framework. 

5. Conclusion 
We propose a bottom-up method to detect salient regions in images based on adaptive region 
merging. Different from most existing salient object detection algorithms that commonly 
employed segmentation techniques to eliminate background noise and reduce computation by 

(a)                       (b)                      (c)                     (d)                      (e) 
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treating each segment as a processing unit, the proposed framework use adaptive region 
merging to combine the similar regions. Based on the merging results, we use three region 
saliency measurements to generate the saliency maps which have capability on modeling 
global perceptual phenomena. We evaluate the proposed algorithm on large datasets and 
demonstrate promising or comparable results with comparisons to state-of-the-art methods. 
For handle more challenging cases, our future work will focus on high-level knowledge and 
other kinds of saliency cues or priors to be embedded into our framework. 
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