
 

 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 
Manuscript version: Author’s Accepted Manuscript 
The version presented in WRAP is the author’s accepted manuscript and may differ from the 
published version or Version of Record. 
 
Persistent WRAP URL: 
http://wrap.warwick.ac.uk/116427                            
 
How to cite: 
Please refer to published version for the most recent bibliographic citation information.  
If a published version is known of, the repository item page linked to above, will contain 
details on accessing it. 
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions. 
 
© 2019 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/. 
 

 
 
Publisher’s statement: 
Please refer to the repository item page, publisher’s statement section, for further 
information. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk. 
 

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:wrap@warwick.ac.uk


 

A delay in processing for repeated letters: Evidence from megastudies 

Iliyana V. Trifonova and James S. Adelman 

University of Warwick 

 

 

 

 

 

 

 

 

 

Corresponding author: 

Iliyana V. Trifonova  

Department of Psychology 

University of Warwick 

COVENTRY 

CV4 7AL 

United Kingdom. 

I.V.Trifonova@warwick.ac.uk 

  



2 
 

 

Abstract 
 

Repetitions of letters in words are frequent in many languages. Here we explore whether these repetitions 

affect word recognition. Previous studies of word processing have not provided conclusive evidence of 

differential processing between repeated and unique letter identities. In the present study, to achieve 

greater power, we used regression analyses on existing mega-studies of visual word recognition latencies. 

In both lexical decision (in English, Dutch, and French) and word naming (in English), there was strong 

evidence that repeated letters delay visual word recognition after major covariates are partialed out. This 

delay was most robust when the repeated letters occurred in close proximity but not in immediate 

adjacency to each other. Simulations indicated that the observed inhibitory pattern of repeated letters was 

not predicted by three leading visual word recognition models.  Future theorizing in visual word 

recognition will need to take account of this inhibitory pattern. It remains to be seen whether the 

appropriate adjustment should occur in the representation of letter position and identity, or in a more 

precise description of earlier visual processes. 

 

Keywords: visual word recognition; repeated letters; regression; megastudies; computational modeling; 

letter processing 
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1. Introduction 
 

Reading alphabetic languages requires the successful identification of letters and their position within the 

word. In this way, the perceptual system discriminates between lexical units that bear strong form 

resemblance. It can determine the difference between two words with the same length but differing by a 

single letter (“orthographic neighbors”, such as farm– form; Coltheart, Davelaar, Jonasson, & Besner, 

1977), have the same letters but in a different order (from-form), or have different length, but many 

common letters (though - through). One of the goals of orthographic processing research has been to 

explain how this discrimination is achieved and how bottom up sublexical processes such as encoding of 

letter identities and their position mediate recognition of the whole word unit. The empirical results have 

motivated the development and revision of visual word recognition models in which those initial 

perceptual stages are implemented in their encoding schemes. These schemes determine the models’ 

predictions regarding the word candidates that are considered and, ultimately, the factors affecting lexical 

selection. An example of such a factor that will be on focus in this work is the presence of letter 

repetitions in words.  

Letter repetitions are frequent in many languages, especially in words with more than one syllable. 

Understanding how strings with repetitions are processed is therefore vital for understanding reading. The 

exploration of repeated letter units could be informative as to how the visual system processes identical 

elements in early stages of word recognition and is intrinsically related to the letter identity and letter 

position encoding. In this context, repeated letter effects have received relatively little attention in the 

orthographic processing literature which has been more focused on the problem of letter positional 

uncertainty (e.g. Kinoshita & Norris, 2009; Lupker, Perea, & Davis, 2008; Perea & Lupker, 2003; 2004; 

Peressotti & Grainger, 1999; Schoonbaert & Grainger, 2004; Van Assche & Grainger, 2006; Welvaert, 

Farioli, & Grainger, 2008) and the need to incorporate a mechanism for positional ambiguity in the 

encoding schemes of the visual word recognition models (e.g. Davis, 2010; Gomez, Ratcliff & Perea, 

2008; Grainger, Granier, Farioli, Van Assche, & van Heuven, 2006; Grainger & van Heuven, 2003; 

Norris & Kinoshita, 2012) .  

The problems of letter repetition and positional uncertainty might be deeply intertwined: The initial 

ambiguous location of a single letter a might well be perceived as two letters a in two distinct locations 

and vice versa. Exploring the repeated letters effect in more depth might therefore have important 

implications for further developing the encoding schemes of the visual word recognition models. We will 

therefore first review some relevant computational models (Davis, 2010; Grainger & van Heuven, 2003; 

McClelland & Rumelhart, 1981; Norris, 2006) and their encoding schemes with an emphasis on the 
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processing of letter repetitions and its consequences. We will further review the relatively inconsistent 

previous experimental evidence for repeated letter effects. This will motivate an alternative approach to 

the problem of repeated letters: regression analysis on response times from large databases of visual word 

recognition tasks (megastudies). The results of the regression analysis on the empirical data will then be 

compared with the predictions of the discussed computational models regarding effects of letter 

repetitions.  

Research on letter position encoding schemes is often motivated by a comparison with the one of the most 

influential models in visual word recognition, the Interactive-Activation (IA) model (McClelland & 

Rumelhart, 1981). This model explains lexical selection by means of spreading activation in a cascaded 

and interactive manner between representations located in three levels of a hierarchical structure (feature, 

letter, word). Word nodes that are consistent with the perceptual input get activated, while inconsistent 

ones get inhibited. Once activated, word candidates suppress each other through lateral inhibitory links 

and compete until the activity of a single word reaches an activation threshold associated with lexical 

selection. This model has a slot-based scheme in which every letter is assigned to a specific slot - which 

defines its position within the word - and projects its activity only with regard to this slot. The letter a in 

first position will activate words containing the letter a in first position and will inhibit others that start 

with a different letter. It will not activate words in which a is in another position. This model could 

therefore not predict any effect of letter repetition since its slot-based encoding scheme treats two 

identical letters in different positions as two different letters. The IA model could explain how the reading 

system could discriminate between words with equal length and different letter identities in some of the 

positions but is not in accordance with evidence from the masked priming literature suggesting that the 

perceptual system has a considerable degree of positional tolerance.  

Contrary to the prediction of the IA model (McClelland & Rumelhart, 1981), primes formed by letter 

transpositions (anwser-ANSWER) produced as strong priming effects as those identical to the targets 

(Forster, Davis, Schoknecht, & Carter, 1987). In addition, letter strings formed by transposing letters from 

a base target word have been demonstrated to be orthographically more similar to the target than strings 

with replaced letters in the corresponding mismatched positions. This finding has been observed with 

adjacent transpositions, such as jugde from the target judge, as opposed to the replaced letter control 

prime jupte (Perea & Lupker, 2003), and has been extended to nonadjacent cases (e.g., caniso–CASINO; 

Lupker, Perea, & Davis, 2008; Perea & Lupker, 2004). The slot-based scheme was also falsified by 

studies demonstrating a priming effect with relative position primes in which the absolute order of the 

letters was disrupted by either letter deletions (e.g., blcn-BALCON, Grainger et al., 2006; Peressotti & 

Grainger, 1999), or insertions in the primes (e.g., juastice–JUSTICE; Van Assche & Grainger, 2006; 



5 
 

Welvaert, Farioli, & Grainger, 2008). These results suggest that an absolute position specific encoding in 

the slot-based scheme is inaccurate and motivated the proposal of alternative letter position and identity 

encoding mechanisms.  

Several interactive activation framework models with different encoding schemes were later developed. 

In this work, the focus will be on two of them: The relative position parallel open bigram model (Grainger 

& van Heuven, 2003) and the Spatial Coding Model (Davis, 2010), which are both based on the 

interactive-activation architecture but have entirely different schemes with which they account for the 

transposed letters and relative position priming effects. In the parallel open bigram model, the letter level 

representations from the IA model are replaced by representations of open bigrams.  They are in the 

relative position map level, at which the letter positions are encoded after letters have been initially 

identified. Position encoding is achieved through activating bigram units containing information of the 

position of one letter relative to the others, or more specifically, whether a letter is located to the left or to 

the right of the other letters in the word (up to two intervening letters). The word SILENCE is therefore 

represented by the open bigrams SI, SL, SE, IL, IE, IN, LE, LN, LC, EN, EC, EE, NC, NE, CE. In 

analogy to the letter nodes in the IA model, the open bigram nodes are connected to orthographic word 

representations with excitatory and inhibitory links. Bigrams consistent with the input get activated and 

feed forward to the word nodes. Words containing active bigrams receive activation, while those lacking 

consistent bigrams get inhibited. As in the IA model, lexical competition mechanisms are implemented by 

inhibitory lateral connections between the nodes at the word level. In this encoding scheme, transposed 

letter and relative position primes will contain most of the targets’ constituent representations in the form 

of open bigrams. These primes will pre-activate targets more strongly than corresponding control primes 

that contain fewer consistent bigram units.  In this way, the model could successfully simulate both 

transposed letter and relative position priming effects. When stimuli contain letter repetitions, fewer 

bigrams will be activated than with stimuli composed of unique letters, and therefore the expectation is 

that the open bigram model would be likely to predict inhibitory effects of repeated letters (as noted by 

Schoonbaert & Grainger, 2004).  

The Spatial Coding Model, unlike the relative position open bigram model (Grainger & van Heuven, 

2003), retains the letter representations in its architecture. Unlike the IA model, however, the letter 

position and identity encoding scheme is not channel specific. In the Spatial Coding Model, a consistent 

letter of the input could increase the activity of a word node containing that letter, even if it appears in a 

different position. An important conceptual difference between the Spatial Coding Model and the other 

two previously described models is that the same (letter) units encode letter identities in different 

positions, and so the set of letter units involved in representing from and form will be identical, unlike 
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IA’s channel specific scheme, in which r in position 2 is different from r in position 3, or the open bigram 

model which will encode these words with two nonidentical sets of bigram representations (FR, FO, FM, 

RO, RM, OM and FO, FR, FM, OR, OM, RM, respectively). The open bigram model, therefore, has a 

local-context dependent encoding scheme and uses different set of representations to encode words 

containing the same letters, but in different positions (such as anagrams). Word recognition modeling 

with contextual representations such as open bigrams was also implemented by Whitney in her SERIOL 

model (Whitney, 2001). This model was developed independently from the relative position open bigram 

model and differed in several ways. One major difference was the serial assumption of information 

acquisition as opposed to the parallel one in the model of Grainger and van Heuven. In SERIOL, there is 

a location gradient across letter features which affects the accumulation of letter information. The 

activation of the features decreases from left to right and determines the activity in the letter level. The 

leftmost letters receive sufficient activation earlier and fire in a sequential manner. Letter order 

information is thus established through the temporal firing pattern of the letters. This temporal positional 

encoding is then translated into nontemporal one through the means of open bigrams. Unlike the model of 

Grainger and van Heuven, in SERIOL the bigrams are generated in a serial manner in which the bigrams 

containing the leftmost letters are available earlier than the ones containing the rightmost letters in the 

string. Despite their differences, both SERIOL and the model of Grainger and Van Heuven have a local-

context specific encoding scheme. The Spatial Coding Model (Davis, 2010), on the other hand, has a 

local-context independent encoding scheme, in which the same letter representations will be activated in 

cases of anagrams.  

In the Spatial Coding Model, the letter positions in word representations are represented by spatial 

patterns. To incorporate letter position uncertainty, each letter position code of the input stimulus has the 

shape of a normal distribution, rather than a single value, with its spread representing positional 

uncertainty. The position code of the letter in the stimulus is assigned dynamically after a rapid left to 

right serial scan. The spatial pattern of the input is compared to the spatial pattern of a stored word 

representation, a procedure called superposition matching. The matching algorithm includes computing 

the signal-weight difference functions for each letter of the word representation, sums up all the 

difference functions and finally divides the obtained peak of the superposition function by the length of 

the word representation. In the case of an identity prime, a perfect match score of 1 is obtained, as all the 

difference functions are perfectly aligned with a mean of 0 (and peak value of 1 in the simplified case of 

no identity uncertainty). In the cases of transposed letter primes, not all the difference functions are 

perfectly aligned to 0, and so in the cases of the positional mismatches, the individual letter peaks do not 

align with those of the other letters in the stimulus. Smaller, non-central, values will be added to the 

superposition function, resulting in a lower overall peak for the superposition function, but the total match 
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score is still high. Relatively high match scores will also be calculated for primes with (few) insertions or 

deletions. Separate mechanisms in the model’s architecture are responsible for the penalization in cases of 

length mismatch between the word representation and the input, and for inhibition from inconsistent 

stimulus letters.  

The Spatial Coding Model has an explicit mechanism that deals with repeated letter cases. It uses bins of 

clones of letter receptors that interact and cooperate with the final goal of achieving the maximum match 

score between the input and a word representation while not allowing for the same letter unit (repeated or 

not) to contribute more than once for this calculation. With this mechanism, the Spatial Coding Model 

effectively treats repeated letters as different items and is unlikely to predict any effect of letter repetition, 

unless the effect occurs due to other uncontrolled lexical or sublexical factors.   

Given these models’ different mechanisms relate to repeated letters, comparing simulations of these 

models to data on repeated letters could be informative for both repeated letter processing per se and the 

conceptual debate of whether the encoding of letter position and identity should have a local-context 

dependent element or not. Should the encoding of additional letter a depend on whether a is already 

present in the string or not?  

This is important, because as had been noted, although the manner at which letters can be combined to 

form words is quite rich, letter repetitions are common. This is particularly true for words with more than 

one syllable, in which the likelihood of observing a repeated letter identity is higher, especially in the 

cases of vowels or high frequency consonants. Word recognition experiments targeting letter repetitions 

have produced mixed and inconclusive results. Schoonbaert and Grainger (2004) used the masked primed 

lexical decision task to compare nonword primes formed by deletion of either repeated or unique letters 

(balace vs balnce from the target BALANCE) and no difference in priming was found. Nor was a 

repeated letter effect found in their subsequent experiment, in which they used the items that had served 

as primes as nonword targets: Items formed by deletion of a repeated letter were rejected as quickly as 

those formed by deletion of a unique letter. However, the design of their masked-priming experiment also 

included a between-target manipulation of letter repetition: Both words and nonwords containing letter 

repetition took significantly longer to recognize than items without repeated letters.  

In another masked-priming lexical decision study, with prime manipulations using insertions, rather than 

deletions in primes (Van Assche & Grainger, 2006), a difference was not found between three related 

prime conditions, some of which containing repeated letters. They were constructed by doubling a letter 

in the target (jusstice-JUSTICE), inserting a letter already present in the target in another nonadjacent 

position (justisce), and inserting a different letter in the target (juastice). These related primes all 
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produced the same priming effect relative to an unrelated control.  In sum, the masked-priming lexical 

decision procedure of these studies did not provide evidence of differential processing of repeated and 

unique letter identities within words.  

Results from two other studies, however, suggest that the presence of letter repetition could affect 

processing difficulty. Gomez et al., (2008) reported a two-alternative forced choice perceptual 

identification experiment in which nonword letter strings were recognized significantly less accurately 

than strings without repeated letters. The authors interpreted these results as an evidence that repeated 

letters were more difficult to perceive causing preference towards a foil with no repetition. Norris, 

Kinoshita and van Casteren (2010) argued that an effect of letter repetition was probably not observed in 

the Schoonbaert and Grainger (2004) masked-primed lexical decision study due to the lack of sensitivity 

of the task as well as the use of long stimuli with nonadjacent repetitions. Using shorter stimuli, Norris et 

al. demonstrated a stronger priming effect in the cases in which a two-replaced-letter primes were 

constructed by doubling a letter from the target (uueer-UNDER), than using two different letters (ulger-

UNDER), with a masked-priming same-different task but not with lexical decision task. Again with 

shorter stimuli, they also showed that deletion of an adjacent repeated letter (anex-ANNEX), has a 

smaller disruption of the form priming effect than deletion of a unique letter (eupt-ERUPT), suggesting 

differential cost of deleting a repeated versus deleting a unique letter from the target. The authors 

interpreted these results as evidence of imprecise position encoding at early stages and “leakage” of letter 

identities to nearby positions, enhancing priming in cases of adjacent repetitions.   

To support the identity “leakage” explanation of the obtained advantage of the repeated substitution 

primes over the nonrepeated ones, Norris et al., (2010) simulated these experiments with the Bayesian 

Reader model of word recognition (Norris, 2006) with an extension for positional uncertainty.  The 

Bayesian Reader is a model from a different class than the interactive activation framework models 

described so far. Like the IA model (McClelland & Rumelhart, 1981), however, the original version of 

the Bayesian Reader had a position and length-specific encoding scheme. In the Bayesian Reader, words 

are represented as points in multidimensional space. Word coordinates are implemented by concatenating 

vectors which encode the presence or absence of a letter in a specific position, thus effectively acting as 

slots. The original model incorporates only letter identity uncertainty by adding Gaussian noise to each of 

the words’ coordinates. Unlike the Interactive Activation Model and its successors, word recognition is 

not achieved through spreading activation mechanisms. Rather than increasing the activation of word 

representations consistent with the input, word recognition is implemented by gradual accumulation of 

noisy perceptual evidence and optimal mapping of the noisy input to one of the lexical entries. In the 

Bayesian Reader framework, readers are described as ideal observers who use Bayesian inference to 
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combine perceptual evidence with prior linguistic knowledge (word probabilities) to perform a word 

recognition task in an optimal way. With the accumulation of evidence, word likelihoods are calculated, 

that is, the probability of observing the input given that a particular word was presented. This calculation 

is based on the variance of the input distributions and the distance between the mean coordinates of the 

input distributions at a given time and the ideal (average) coordinates of each word in the perceptual 

space. The posterior word probability, that is, the probability that the input was generated by a particular 

word, is then calculated for each of the lexical entries from the prior word probabilities (their frequency) 

and the likelihoods of the words.  

Though recognition through accumulation of noisy evidence is one of the basic assumptions of the 

Bayesian Reader, as a simplification, its original version implemented only identity uncertainty. The 

extended version described by Norris et al., (2010) included positional uncertainty, but the model’s 

encoding scheme remained length specific. The positional ambiguity in the sampling process was 

achieved by randomly drawing letter positions from normal distributions centred over the real letter 

positions rather than being represented as a single value (for which the authors draw parallels with Gomez 

et al.’s, 2008 model). Although with this extension, the Bayesian Reader successfully simulated the 

repeated letter advantage in substitution primes, thus supporting the “leakage” mechanism of letter 

identities described by the authors, the model could not simulate the deletion prime results from the same 

study due to its length-specific encoding scheme. The length-specific limitation was later addressed by 

Norris and Kinoshita (2012) who proposed a different version of the model that also included calculations 

of likelihoods of letter insertions and deletions that affected the calculation of the posterior word 

probabilities.  

The results of Norris et al. (2010) provided evidence that the repetition of letter identity might play a role 

in the recognition of the whole word unit. They also demonstrated that such an effect could be simulated 

successfully with the Bayesian Reader model of word recognition (Norris, 2006) when the model 

incorporates positional uncertainty. Furthermore, the study of Norris et al. (2010) raised an important 

methodological concern regarding the choice of approach to problems such as repeated letters. They 

could have confirmed some methodological issues in investigating repeated letter effects, such as lack of 

sensitivity of the masked-primed lexical decision task for researching a phenomenon occurring at early 

perceptual stages and possibly susceptibility to top-down lexical influences. It is not, however, 

immediately clear how the mechanism of leakage they propose could explain the results of Gomez et al. 

(2008) that suggest that repeated letter targets are harder to process as well as the overall target type effect 

reported by Schoonbaert and Grainger (2004) also hinting at inhibitory, rather than facilitatory effect of 

letter repetition. It is also not clear how such a leakage mechanism would affect nonadjacent repetitions 
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with longer distances between the repeated identities and whether a repeated letter effect will still be 

present in longer items, in which it is in fact more common for a repetition to occur.  

A methodology that could be effective for the investigation of repeated letter effects for several reasons is 

a regression approach on megastudies data containing reaction times of visual word recognition tasks in 

several languages - English, Dutch, and French (e.g., Balota et al., 2007; Brysbaert, Stevens, Mandera, & 

Keuleers, 2016; Ferrand et al., 2010; Keuleers, Lacey, Rastle, & Brysbaert, 2012). The English, British, 

Dutch 2 and French Lexicon projects (ELP, BLP, DLP2, and FLP) contain disyllabic and multisyllabic 

words in which letter repetitions occur often. The number of repeated letter observations could provide 

greater power for observing a possible effect than that in previous studies exploring repeated letters using 

factorial designs. The regression approach could also overcome other limitations of factorially designed 

studies such as correlation problems (as factors could be covaried out), particularly problematic in visual 

word recognition, experimental biases in the stimuli selection, list effects, dichotomization of continuous 

variables (see Balota, Yap, Hutchison, & Cortese, 2012 for a detailed discussion of the advantages of this 

methodology over factorial designs). It will also allow for a direct cross linguistic comparison of the 

effect, exploring whether effects generalize across the processing of different languages or is linked to the 

idiosyncrasies of individual languages.  

Additionally, due to the large number of items, the regression approach allows a deeper investigation of 

the effect. This includes exploration of repetition effects of different distances (i.e., adjacent repetitions, 

nonadjacent repetitions with various number of intervening letters) by adding separate predictors 

encoding the presence or absence of a repetition within each distance. Additional evidence in this 

direction could help reconcile inconsistencies in the literature, such as differential effects observed with 

primes with deleted repeat vs unique letters in adjacent repetitions (Norris et al., 2010), and the absence of 

that effect in the case of nonadjacent repetitions (Schoonbaert & Grainger, 2004).  

Another theoretically motivated question relates to possible dependence of the repetition effect on the 

consonant-vowel status of the repeated letters. There is evidence suggesting a differential role of 

consonants and vowels in word processing and the importance of the word CV structure at initial stages 

of lexical access (e.g., Acha & Perea, 2010; Chetail, Balota, Treiman, & Content, 2015; Chetail, Drabs, & 

Content, 2014; Chetail, Treiman, & Content, 2016; Lupker et al., 2008). Moreover, vowel letters and 

vowel repetitions are more common (see Table 1) and their higher frequency could modulate any letter 

repetition effect. To investigate possible differences in the processing of repeated consonants and vowels, 

with so many items, separate variables can be constructed for each letter type.  
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The present study explored whether the presence of letter repetitions affects visual word processing 

difficulty and whether repetition distance and consonant-vowel status moderate this effect. The 

investigation was conducted with the regression approach on response times from visual word recognition 

tasks in English, Dutch and French.  Simulations of the open bigram model (Grainger & van Heuven, 

2003), the Spatial Coding Model (Davis, 2010) and the Bayesian Reader model (Norris & Kinoshita, 

2012) were also included with the purpose of evaluating the models’ predictions for the effect and the 

plausibility of their letter position and identity encoding schemes. Norris et al. (2010) have already 

addressed the problem of repeated letters with adjacent repetitions and have demonstrated empirically and 

computationally facilitatory effect of repeated letters in primed word recognition tasks. More extensive 

simulations on megastudy data will clarify of whether the repeated letter effect in the Bayesian Reader 

could be extended to unprimed lexical decision task within different distances between the repeated 

letters.  

 

2. Method 
 

2.1. Dependent Variables 

 

The mean correct item latencies across participants of the lexical decision task were obtained from the 

English Lexicon Project (Balota et al., 2007), the British Lexicon Project (Keuleers et al., 2012), the 

Dutch Lexicon Project 2 (Brysbaert et al., 2016), and the French Lexicon Project (Ferrand et al., 2010). 

Word naming latencies were acquired from the English Lexicon Project. We used the raw unscaled 

response time (RT) measures to facilitate the interpretation of the results.  

 

2.2. Independent Variables 

 

2.2.1. Variables of Interest (Repeated Letters) 

 

The variables of interest were constructed with the purpose of observing the effect of repetition of letter 

identity on visual word recognition.1 Two factors were considered while calculating the variables. These 

were the consonant-vowel status of the repeated letter and the distance between the letter repetition, or 

how far from each other the two letters with the same identity were. The repetition distance was measured 

                                                           
1 The R codes including methods and results are available in the Trifonova & Adelman (2019) dataset. 
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by the number of intervening letters between the repeated ones. There were separate variables for each 

possible repetition distance. Such a division allowed us to explore whether the letter repetition effect was 

dependent on the distance between letters with same identities. The variables of interest therefore encoded 

all the possible instances in which a consonant or a vowel letter could be repeated within a certain 

distance. Each repeated letter variable represented the number of times a consonant or vowel repetition 

within a specific distance occurs in a word. Here are several examples with English words and their 

corresponding repeated letters values. The variable repetition of consonants with distance 0, summed the 

number of repeated consonant letters with no intervenor (adjacent repetition), such as c in the word accept 

(aCCept) and d and s in address (aDDreSS). For these words the variable had the values 1 and 2, 

respectively. The variable consonant repetitions with distance 1 (one intervening letter between the 

repeated ones) had a value 1 for the word coconut (CoConut), as one letter, c, is repeated within that 

distance, and 2 for the word suspended (SuSpenDeD), in which both s and d appear twice. The variable 

with a consonant repetition with distance 2 had the values 1 for hundred (hunDreD) and 2 for accountant 

(accouNTaNT) and so on. The vowel repetition variables were constructed in the same way. If no 

repetition was present for a certain condition, the corresponding variable had a value of 0. Words in 

which one letter appeared more than twice and therefore had two or more possible distances between 

repetitions of the same letter were discarded from the analyses to avoid additional complexity. 

The repeated letter variables were constructed in this way for all languages under investigation, with two 

variations in French. The diacritic-sensitive version took into account diacritic marks and treated letters 

with and without diacritics as different. With this algorithm, there was no letter repetition in zèbre. The 

diacritic-insensitive version counted letter repetitions only after all diacritic marks were removed from the 

items; the rare diacritics in English and Dutch were always removed. This calculation encoded a 

repetition of e in zebre as it was not sensitive to the presence of the diacritic mark. The two separate 

calculations were performed to provide an appropriate baseline for the evaluation of visual word 

recognition models with no implementation of diacritic marks in their encoding schemes. Comparing the 

effect of letter repetition in behavioral data and in models’ simulations therefore required diacritic 

insensitive repeated letter measures. Apart from employing two separate algorithms that treated diacritics 

differently, the repeated letters variables were constructed in the same way as for the analyses of the other 

lexicon projects.  

2.2.2. Control variables 

 

Due to the fact that the investigation was crosslinguistic and the three languages (English, Dutch, French) 

had their own idiosyncrasies, the list of covariates was not identical across the different lexicons. 



13 
 

However, care was taken so that important control factors were included in the regression models of each 

of the languages.   

English Lexicon Project. The control variables obtained from the English Lexicon Project (Balota et al., 

2007) were: logarithmically transformed subtitle (SUBTLEX-US; Brysbaert & New, 2009) contextual 

diversity and word frequency measures; number of letters; orthographic neighborhood size (number of 

orthographic neighbors, Coltheart N; Coltheart et al., 1977); phonological neighborhood size (the number 

of words differing by a single phoneme); Levenshtein orthographic distance (OLD20, the average 

orthographic Levenshtein distance of the 20 nearest neighbors, Yarkoni et al., 2008); Levenshtein 

phonological distance (PLD20); number of morphemes; as well as two different measures of bigram 

frequency: mean bigram frequency and bigram frequency by position. Apart from avoiding confounds in 

the behavioral regression results, bigram frequencies were important controls as the predictions of one of 

the word recognition model under evaluation could be sensitive to these measures (the relative position 

open bigram model; Grainger, & van Heuven, 2003). To control for any possible effects of letter 

frequency, we calculated and included in the model mean type 1-gram position specific and position 

nonspecific frequencies based on the frequency of occurrence of each letter in the English Lexicon word 

list. The quadratic term of the number of letters variable was also included as a predictor (New et al., 

2006; Yap & Balota, 2009). 

In addition to the control factors provided in the English Lexicon Project (Balota et al., 2007), several 

additional phonological variables were constructed and added to the regression models, based on 

phonological transcriptions acquired from CELEX (Baayen, Piepenbrock, & van Rijn, 1993). Words that 

were not found in the CELEX database were excluded from the analysis. The additional variables were: 

first phoneme, primary lexical stress position, number of phonemes, number of syllables, and several 

phonological consistency measures. The first phoneme variable was entered as a categorical variable 

whose levels were each of the possible phonemes that could appear as an initial sound in English. The 

primary lexical stress position variable was dummy coded and reflected the stressed syllable in a word, 

primary stress on first syllable serving as a baseline. The consistency measures reflected the consistency 

of mapping of print to sound and included feedforward onset, feedforward rime, feedback onset and 

feedback rime consistency of the first syllable as well as four composite measures of the same type which 

represented the mean consistency across all the syllables in a word (see Yap & Balota, 2009, for a 

detailed discussion of consistency measures). As the construction of the consistency measurements 

depended on the syllabification of the words, special care was taken so that orthographic and 

phonological syllabifications matched before performing the calculations. In the cases of inconsistent 

syllabification between the phonological and orthographic forms, the orthographic syllable was adjusted 
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to the phonological one. The ratio between the orthographic Levenshtein distance (OLD20) and the 

phonological Levenshtein distance (PLD20) was also included as a separate measure of phonological 

consistency (Yap & Balota, 2009). Heterophonic homograph entries such as bow that had multiple 

pronunciations for the same orthographic form and therefore multiple values of the phonological variables 

(phonological consistencies, phonological neighborhood, stress pattern) were not included in the analyses 

(N = 370).  

British Lexicon Project. The control variables obtained from the British Lexicon Project were: two 

different measures for orthographic neighborhood size (Coltheart N and OLD20), number of letters, as 

well as the number of syllables in a word. The quadratic term of the number of letters variable was also 

included as a predictor (New et al., 2006; Yap & Balota, 2009). The logarithmically transformed word 

frequency measures in Zipf scale and the contextual diversity measures were obtained from SUBTLEX-

UK and were also added as control variables in the regression analyses (van Heuven, Mandera, Keuleers, 

& Brysbaert, 2014). 

As in the English Lexicon Project (Balota et al., 2007) analyses, the additional phonological variables, 

calculated based on the phonological transcription in CELEX (Baayen et al., 1993) were also included as 

control predictors. These were first phoneme, primary lexical stress, number of phonemes, all first 

syllable and composite phonological consistency measures. In addition, the phonological neighborhood 

size and the average phonological Levenshtein distance of the 20 nearest neighbors (PLD20) were 

calculated using the vwr package (Keuleers, 2015) as implemented in R version 3.4.1 (R Core Team, 

2017). The ratio between OLD20 and PLD20 was included as an additional phonological consistency 

measure (Yap & Balota, 2009). Heterophonic homographs were not included in the analyses (N = 298). 

In addition, mean type-based bigram frequency was calculated by counting the number of times a bigram 

appears in all English words from the CELEX database (Baayen et al., 1993), regardless of bigram 

position and word length (see Westbury & Buchanan, 2002, for the description of a similar measure). For 

example, the bigram frequency of ac was increased after encountering both back and act. The frequencies 

of all bigrams in a word were then summed and divided by the number of word letters minus one. The 

vwr package in R (Keuleers, 2015) was used for acquiring the list of words. The mean positional bigram 

frequency was calculated in a similar way, the only difference being that the bigram counts were 

performed for the specific bigram position, rather than for all positions. This measure was bigram 

position, but not word length specific, i.e. all words that contained the bigram in the specific position 

(relative to the beginning of the word) contributed to its count. The bigram ac in position 1 was counted 

in both act and action, but not in back, where ac in position 2 was counted instead. Mean positional and 
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nonpositional 1-gram frequencies were calculated in an analogous manner and were included to control 

for possible letter frequency effects. 

To control for possible morphological effects, two morphological variables were included in the analyses. 

The first variable was constructed by counting the number of morphemes after immediate segmentation of 

the lemma. The second variable represented the number of elements after the inflectional transformation 

of the wordform. The morphological database from CELEX (Baayen et al., 1993) was used for the 

construction of these variables. 

Dutch Lexicon Project 2. The control variables obtained from the Dutch Lexicon Project 2 were number 

of letters, number of syllables, SUBTLEX2 word frequency (added as a control after a logarithmic 

transformation), number of phonemes, orthographic Levenshtein distance (OLD20), the phonological 

Levenshtein distance provided in the lexicon (PLD30)2, Coltheart N. As this lexicon also provided ratings 

of concreteness and age of acquisition, these were also added as control variables. 

In addition, bigram and 1-gram frequency measures were calculated in an identical way as for the 

analyses of the British Lexicon Project. Mean bigram and 1-gram frequencies and positional bigram and 

1-gram frequencies were therefore included in the model. The number of elements after immediate 

segmentation of the lemma was added as a morphological factor. This calculation was performed on the 

morphological analyses provided by CELEX (Baayen et al., 1993). 

French Lexicon Project. The control variables provided in the French Lexicon Project (Ferrand et al., 

2010) and included in the regression model were two measures of word frequency (cfreqmovies and 

cfreqbooks). The logarithmically transformed sum of both frequencies and their quadratic term were 

added as suggested by Ferrand et al. (2010) as a frequency measure accounting for largest amount of 

variance. Other important controls provided by the lexicon and included in the model were number of 

letters and number of syllables.3 In addition to these variables, several other important lexical 

characteristics were obtained from the Lexique 3 database (www.lexique.org; New, Brysbaert, Veronis, & 

Pallier, 2007; New, Pallier, Brysbaert, & Ferrand, 2004). The phonological transcription of the words was 

                                                           
2 The Dutch Lexicon 2 project provided phonological neighborhood distance measure that was equal to the 
average phonological Levenshtein distance of the 30 nearest neighbors, unlike the measure in the English Lexicon 
project, in which the number of neighbors was 20.  
3 The are methodological differences between the lexicon projects. In the English Lexicon Project, unlike the other 
projects, the stimuli were presented in uppercase and the nonword material in most of the cases was generated by 
changing one letter from a baseword. The other lexicons used a lowercase presentation and nonword generation 
algorithms that were design to minimize serial scanning mechanisms for example by changing the proportions of 
different letters between the nonwords and the basewords as a function of the stimulus length. Methodological 
differences such as these might be the source of some of the observed effects, such as a stronger word length 
effect in the English Lexicon Project.     
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used to extract the identity of the first phoneme, which was entered as a categorical variable. The 

orthographical Levenshtein distance (OLD20) and the phonological Levenshtein distance (PLD20) were 

entered as measures of neighborhood densities. The number of morphemes of the word item was also 

added as a predictor. In the cases in which several possible values were matched to the same orthographic 

form, a preference was given to the biggest value (larger number of morphemes). In addition, 

nonpositional and positional mean type bigram and 1-gram frequencies were calculated for each of the 

items. The calculations were based on the Lexique 3 word list with items without spaces and dashes. The 

list was generated from the vwr package in R (Keuleers, 2015). 

 

3. Results 
 

3.1. Lexical Decision Task 

 

A hierarchical regression analyses was performed on the lexical decision latencies of the selected items 

from each of the lexicons.4 The first step included all described control variables. The total proportion of 

variance explained in each of the regression models was R2 = 54.37% for the English Lexicon Project 

(ELP), R2 = 44.39% for the British Lexicon Project (BLP), R2 = 43.48% for the Dutch Lexicon Project 2 

(DLP2), and R2 = 42.94% for the French Lexicon Project (FLP). In the next step, the repeated letter 

variables were added to the models. Their inclusion significantly improved all models: English, F(26, 

28202) = 10.304, p < .001; British, F(20, 24872) = 7.949, p < .001; Dutch, F(28, 18021) = 11.44, p < 

.001, and French, F(28, 31532) = 8.144, p < .001. These variables accounted respectively for an 

additional ΔR2 = 0.43%, ΔR2 = 0.35%, ΔR2 = 0.99%, and ΔR2 = 0.41% unique variance. 

3.1.1. Adjacent repetitions 

 

The coefficients of the repeated letter variables can be seen in Figure 1. When the repeated letters were 

adjacent, there was a 5 ms significant facilitation effect for vowel repetitions and a small (3 ms) 

nonsignificant facilitation effect for consonant repetitions in the ELP regression. In the BLP regressions, 

the 4 ms inhibitory effect was significant for consonants, while there was no effect (0 ms) for adjacent 

vowel repetitions. In the DLP 2 regression model, the results for the adjacent repetitions showed 

dissociation between consonants and vowels, with consonants having a significant 5 ms inhibitory effect, 

while vowels produced significant 7 ms facilitation effect. In the FLP regressions, the 9 ms effect of 

                                                           
4 Full regression tables are available as a supplementary material. 
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adjacent consonant repetitions was inhibitory and significant. The effect of adjacent vowels was different, 

depending on whether diacritic marks were disregarded or not, with the variables, constructed with the 

diacritics sensitive algorithm having an inhibitory nonsignificant 6 ms effect, while the same variable 

produced significant 29 ms facilitation when diacritics were not taken into account. Overall, the results 

suggested a small facilitation effect of vowel repetitions, except for the diacritics-sensitive vowel variable 

in the French Lexicon project, while the effect of the adjacent consonants trended towards small 

inhibition, except for in the ELP model, in which it was not significant5. 

3.1.2. Nonadjacent repetitions (1-3 intervening letters) 

 

When the repetitions were within a 1-to-3-intervening-letters distance, all consonants and vowels 

variables in all lexicons indicated a significant inhibitory effect. In ELP this effect was in the range 11 ms 

to 13 ms when the distance was within 2 intervening letters and dropped to 4 ms and 8 ms for the 3 

intervening letters variables, vowel and consonant repetitions, respectively. In BLP, the effect size was in 

the range 7 ms to 11 ms for the vowel repetitions and 4 to 12 ms for consonant repetitions. The effect was 

slightly smaller in size, but quite consistent in DLP2. It ranged between 3 ms and 9 ms with a similar 

pattern for vowels and consonants. In FLP, the effect of repeated letters within the 1 to 3 letters distance 

was in the range from 7 ms to 12 ms for vowels and 7 ms to 9 ms for consonants. 

3.1.3. Nonadjacent repetitions (more than 3 intervening letters) 

 

When the repetitions were within a longer than 3 intervening letters distance, the pattern of results was 

not as consistent and clear as the one in the previous distance interval. However, as in the previous 

distance interval, the pattern was generally inhibitory.  There were some differences within the lexicons 

as well as between the consonants and vowel repetitions. In ELP, 7 of the repeated letter variables within 

that distance indicated significant inhibitory effect. In this lexicon the vowel repetitions in the longer 

distances peaked and indicated large effects. A similar peak was also observed in the BLP results for the 

vowel repetitions, while none of the consonant variables within that distance interval showed a significant 

effect. In DLP2, there were significant inhibitory effects of the 4 letters distance for both letter types, as 

well as for the 5 and 9 letters distance vowels repetition. In FLP, the only significant variables that 

                                                           
5 To investigate the possible effect of the frequency of the geminates (adjacent repeated letters), a separate 
analysis was performed on subsets of words containing one geminate. This frequency measure replaced the 
variables encoding adjacent repetition. It represented the number of occurrences of the geminates in the wordlists 
of the main regression analyses. All other variables were identical to the one in the main regression analyses. The 
results indicated significant facilitation effects of geminate frequency in ELP (β = -0.018, t = -4.759, p < .001); BLP (β 
= -0.011, t = -2.923, p = .003), DLP2 (β = -0.004, t = -4.271, p < .001), and a significant inhibitory effect in FLP (β = 
0.009, t = 4.110, p < .001).  
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encoded repetition within that distance interval were the consonant repetition variables with 5 and 6 

intervening letters between the repetitions. 

3.1.4. Lexical Decision (up to ten-letters-long words) 

 

Regression models were also fitted on subsets of the words from all lexicons, that were up to ten letters 

long. This was done with the purpose of providing a common basis of comparison between the behavioral 

data on these subsets and simulation results of computational models, where not all models accommodate 

longer words in their simulators. The diacritics-insensitive variables were used for the French Lexicon 

Project analyses, as diacritic marks were not implemented in two of the models under examination, and 

coefficients from the Bayesian Reader did not substantially differ when diacritics were used. The 

coefficients of the repeated letter variables on these subsets can be seen in Figure 2. Overall, the patterns 

did not deviate from those observed with the slightly bigger datasets. The adjacent vowel repetitions were 

either nonsignificant (ELP, BLP) or trended towards facilitation (DLP2, FLP with no diacritics), while the 

adjacent consonant repetitions had either null or small inhibitory effect. The results at the 1-3 intervening 

letters distance were broadly significant and inhibitory.  The pattern at longer distances was mainly 

inhibitory, but not all variables were significant.  

 

3.2. Lexical Decision Task Simulations  

 

3.2.1. Spatial Coding Model 

 

Lexical decision task simulations were run with the Spatial Coding Model (SCM; Davis, 2010) on the 

data sets of words up to ten letters long from ELP, BLP, DLP2 and FLP using the SCM simulator6. Prior 

to each simulation, the model’s vocabulary was set to the word list of the corresponding lexicon project. 

The vocabularies contained all words from the lexicon projects, except for those longer than 10 letters. 

The resultant lexical decision latencies of the correctly recognized words were then entered in regression 

models as the dependent variable. The control predictor variables were identical to the ones in the 

corresponding regression models on behavioral data and were held constant across models’ simulations. 

These variables explained R2 = 36.11%, R2 = 75.81%, R2 = 67%, R2 = 57.73% of the variance in the 

model’s reaction times for ELP, BLP, DLP2 and FLP, respectively. In the next step, the repeated letter 

variables were added to the models. All models were significantly improved, except for the English 

Lexicon Project model: English, F(18, 25314) = 1.452, p = .097; British, F(18, 24837) = 8.887, p < .001; 

                                                           
6 Downloaded from http://www.pc.rhul.ac.uk/staff/c.davis/SpatialCodingModel/ 
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Dutch 2, F(18, 18388) = 8.322, p < .001, and French, F(18, 26779) = 62.34, p < .001. These variables 

accounted respectively for an additional ΔR2 = 0.07%, ΔR2 = 0.15%, ΔR2 = 0.27%, and ΔR2 = 1.7% 

unique variance. 

The effects of the repeated letter variables predicted by SCM for the four datasets can be seen in Figure 3. 

The model’s predictions did not agree with the patterns observed in the empirical data. The consistent 

inhibitory pattern in the distance of 1-to-3 intervening letters was not present in the SCM simulation 

results. The model predicted several very small significant effects in the different lexicons, many of 

which were in the opposite direction. In FLP, SCM predicted a relatively strong inhibitory effect for 

adjacent vowel repetitions (4 cycles). This effect was, however, facilitatory in the corresponding 

empirical diacritics-insensitive regression model.  

 

3.2.2. Relative Position Open Bigram Model 

 

Lexical decision task simulations were also run with the Relative Position open bigram Model (RPM; 

Grainger, & van Heuven, 2003) on the same reference data sets as the ones used for the SCM simulations. 

The RPM simulations were run with the easyNet software (http://adelmanlab.org/easyNet/). The model’s 

vocabulary was set to the corresponding lexicon word list prior to each simulation. Only the correctly 

recognized words were included in the analyses (see Figure 4 for number of observations in each dataset 

and patterns of repeated letter effects). The control predictors explained R2 = 23.23%, R2 = 23.74%, R2 = 

22.82%, R2 = 19.41% of the variance of the model’s reaction times for ELP, BLP, DLP2 and FLP, 

respectively. Adding the repeated letter predictors improved all four models: English, F(18, 22938) = 

6.853, p < .001; British, F(18, 21869) = 11.263, p < .001; Dutch 2, F(18, 17455) = 4.771, p < .001, and 

French, F(18, 21054) = 9.086, p < .001. These variables accounted respectively for an additional ΔR2 = 

0.41%, ΔR2 = 0.7%, ΔR2 = 0.38%, and ΔR2 = 0.62% unique variance. 

As can be seen in Figure 4, RPM tended to predict inhibitory, rather than facilitatory, effects of repeated 

letters. However, in most of the datasets, the effects were larger for the adjacent repetitions and were not 

consistent in the 1-3-letters distance interval, therefore also failing to capture the empirical data pattern. 

 

3.2.3. Bayesian Reader Model 

 

Lexical decision task simulations were run with the Bayesian Reader Model (BRM; Norris & Kinoshita, 

2012) on the data sets of words up to ten letters long from ELP, BLP, DLP2 and FLP. The simulation 



20 
 

software was that provided by Norris and Kinoshita as a supplementary material to their paper. Prior to 

each simulation, the model’s vocabulary was set to the word list of the corresponding lexicon. Words 

longer than 10 letters were excluded from the vocabularies. The mean reaction times of the correctly 

recognized words (“Yes” responses) were then entered in the regression models as the dependent 

variable. The “yes” threshold was set to .90. The control predictor variables were identical to the ones in 

the corresponding behavioral data regression models and the simulations with the previous two models. 

These variables explained R2 = 62.29%, R2 = 84.85%, R2 = 86.76%, R2 = 79.35% of the variance in the 

model’s reaction times for ELP, BLP, DLP2 and FLP, respectively. When the repeated letter variables 

were added, all but the DLP2 models were significantly improved: English, F(18, 24637) = 2.419, p < 

.001; British, F(18, 24837) = 8.844, p < .001; Dutch 2, F(18, 18388) = 1.308, p = .171, and French, F(18, 

26779) = 5.093, p < .001. These variables accounted respectively for an additional ΔR2 = 0.07%, ΔR2 = 

0.1%, ΔR2 = 0.02%, and ΔR2 = 0.07% unique variance.  As the Bayesian Reader Model has an 

implemented version that is diacritics-sensitive, separate French Lexicon Project simulation was also run 

with items and vocabulary with preserved diacritics. The control variables explained R2 = 81.07 % of the 

variance in the model's reaction times. The repeated letter variables improved the model significantly, 

F(18, 28120) = 2.157, p = .003. The results of the Bayesian Reader Model simulations are displayed in 

Figure 5. The model did not predict a consistent pattern of the repeated letter effects and did not capture 

the inhibitory repeated letter effects in the shorter repetition distances.  

 

3.3. Word Naming Task 

 

A linear regression model was also fitted with the latencies from the word naming task, obtained from the 

English Lexicon Project (Balota et al., 2007). The same control variables were entered in the model as the 

ones in the lexical decision model for this lexicon project. These variables explained R2 = 54.52% of the 

variance. The model was significantly improved after adding the repeated letters predictors, F(26, 28206) 

= 11.822, p < .001. They explained additional ΔR2 = 0.49% unique variance. The effects of repeated 

letters can be seen in Figure 6. Overall, the pattern was the same as the one in the lexical decision data. In 

the word naming results, however, both adjacent repetitions had a significant facilitation effect and were 

slightly larger in size than those in the lexical decision results (10 ms for vowel repetitions and 7 ms for 

consonant repetitions). This facilitation effect was followed by consistent inhibitory effects in the interval 

of 1-to-3 intervening letters for both letter types. In the more than three letters distance interval, most of 

the variables, especially the vowel repetitions were significant, and, as in the lexical decision data, there 

was a peak of the inhibitory effect in the long-distance vowel repetitions.  
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4. Discussion 

 

The presence of letter repetitions in words significantly predicted reaction times of lexical decision and 

word naming tasks, after controlling for important lexical and sublexical variables. Regressions showed 

that the presence of nonadjacent letter repetition delays visual word recognition. The inhibitory repeated 

letter effect was robust in the cases in which the repeated letters were intervened by one, two or three 

letters.  The effect was less consistent but still generally present with increasing distance between the 

repetitions. The effect was observed in all three languages under consideration: English, Dutch, and 

French. This replication implies that the inhibition of letter repetition might be linked to a general 

mechanism in visual word recognition rather than to idiosyncrasies of a single language. The obtained 

results are in accordance with the reported target type effect in the methodologically similar primed 

lexical decision task in the Schoonbaert and Grainger’s (2004) study, in which targets containing 

nonadjacent repetitions took longer to process. However, they disagree with the methodologically less 

similar masked priming data, reported by these authors and by Van Assche and Grainger (2006), which 

provided no evidence for differential processing between repeated and unique letter identities. The results 

are also broadly consistent with Gomez et al.’s (2008) perceptual identification data that showed lower 

accuracies for stimuli containing repetition in comparison to stimuli with no repetition. A difference 

between their results and the results presented here is that Gomez et al. reported inhibitory repeated letter 

effects in both adjacent and nonadjacent repetitions, while the inhibitory pattern in the present study is 

more consistent in the cases of nonadjacent repetitions. 

In the cases of adjacent repetitions, the effect had alternating patterns, suggesting that adjacent repetitions 

might be a special case of letter repetitions. The results also implied a possible dissociation between 

consonants and vowels and double letter processing in different languages.  In English, the inhibitory 

effect was less consistent for consonants and trended towards facilitation in the cases of vowel repetitions. 

In Dutch, the vowel-consonant dissociation was clearly observed, with repeated consonants producing a 

small but significant inhibitory effect, while repeated vowels had a small but significant facilitatory effect. 

In French, the adjacent consonants preserved their inhibitory pattern. It should be noted that adjacent 

vowel repetitions are extremely rare in French, mostly occurring in loanwords, while in Dutch they are 

quite common. Given the constraints of French orthography, the sensitivity of the pattern for vowels to 

the processing of diacritics suggests that words with the bigram ée are read quicker than those containing 

ee or oo, which are very often loanwords.  The differential effects might therefore result from the adjacent 

double letters idiosyncrasies of the language.  
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The different patterns of adjacent repetition might be due to counteractive processes that are not 

associated with cases of nonadjacent repetition and possible benefits of the letters being in contiguous 

positions.  Such an interpretation is consistent with the idea that adjacent repetition (letter doubling) 

should be coded as an additional dimension, that is separate from letter identity and letter position. This 

idea arises in studies and models of spelling (e.g., Fischer-Baum & Rapp, 2014; Glasspool & Houghton, 

2005; Tainturier & Caramazza, 1996). Tainturier and Caramazza argue that graphemic representations are 

multidimensional structures and grapheme doubling is encoded separately from grapheme identity. In 

their study, they reported a case of dysgraphic patient in which the presence of adjacent letter repetition 

was preserved even when the letter identity and order information was severely distorted (e.g., giraffe - 

GAFFICATE).  The special status of repeated adjacent letters has also been supported by evidence from 

visual word recognition research. It has been demonstrated that participants are more likely to 

misperceive the number of letters in a word and report a word with repetition (WEED instead of WED) if 

it was presented with a distractor word with another double letter (WOOD) than with a distractor word 

with no repetition (WORD; Fischer-Baum, 2017).  

Another possible cause of the diminished inhibitory effect in the cases of adjacent repetitions might be 

linked to the proposed letter identity “leakage” to nearby positions (Gomez et al., 2008; Norris et al., 

2010) that could possibly be less detrimental in the cases of same adjacent identities than in the cases of 

nonadjacent ones. It should also be noted that two adjacent repeated letters could differ from two unique 

ones, especially in the cases of consonants, in that in most cases, in the languages considered in this 

study, these would map into a single phoneme, rather than into two phonemes. This would lead to 

shortening of the phonological length (number of phonemes) relative to a case with two different adjacent 

letters. However, any phonological contribution to the effect due to this reason was dealt with by 

including the number of phonemes as a covariate.  

The finding of inhibitory effects of letter repetitions suggests that there is a mechanism related to the 

rapid processing of identical sublexical elements (such as letters) that has not been previously described 

in the visual word recognition literature.  Such a mechanism might be linked to a smaller number of 

activated abstract representations in the cases of repetitions compared to cases with no repetitions. This 

explanation is conceptually consistent with the architecture of the open bigram model (Grainger & van 

Heuven, 2003) as well as with the argument of Schoonbaert and Grainger (2004) that the open bigram 

model would predict an inhibitory effect of repeated letters due to duplications of open bigrams and 

therefore a smaller number of active representations in cases of repeated letters. In accordance with their 

proposal, the open bigram model indeed predicted consistent inhibitory effects of repeated letters and in 

this sense was conceptually most accurate. However, the specific prediction of the model on word lists of 
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four lexicon projects did not match the observed pattern as it overestimated the inhibitory adjacent-

repetition effect and underestimated the nonadjacent one, therefore depicting the wrong inhibitory pattern 

than the one in the lexicon projects.  

A possible explanation for the wrong predictions of the open bigram model (Grainger & van Heuven, 

2003) could be the encoding scheme of the model and more specifically, the manner of which open 

bigrams are constructed. One factor affecting the predictions is the three-letter distance constraint on how 

open bigrams are generated (silence consists of SI SL and SE but not of SN, SC and another SE). Another 

factor affecting the model’s predictions is the left-to-right manner of open bigram construction that 

privileges internal letters as they participate in more bigrams. This tends to disadvantage of the last three 

letters of the word, for example, as they appear in the first position of only two, one and zero open 

bigrams, respectively (nce from silence will generate respectively NC, NE, and CE, and no bigram). In 

this way, in words in which one letter does not appear more than twice, as in the present lexicon subsets, a 

repeated bigram is only possible to occur either when the repeated letters are adjacent or when they are 

intervened by only one other letter. The latter case is further constrained on the repeated letters not 

appearing at external positions within the word. For these reasons, many words with nonadjacent letter 

repetitions are in fact not encoded with fewer units, a possible prerequisite for a prediction of an 

inhibitory effect.  As the pattern of predictions of the open bigram model by Grainger and van Heuven 

(2003) does not agree with the nonadjacent inhibitory effects of repeated letters, a revision of the 

encoding scheme might be appropriate that could include some relaxation of the current constraints.  

It was, perhaps, less surprising that the spatial coding scheme (Davis, 2010) also did not contribute to a 

successful simulation of the repeated letter effects, as the scheme contains explicit mechanism that 

prevents repeated letter identities from playing a different role than nonrepeated ones. This mechanism 

comprises cooperative competitive interactions between banks of receivers (clones of receptors) for each 

letter in a word representation (word template). When there are repeated letters in both the input and the 

word template, multiple receivers in a single bank would become active. This would force a competition 

between the activated receivers for the selection of a winner. This selection is based on the signal-weight 

differences between the input and the word template, which equal 0 in the cases in which the letters 

appear in their expected positions. In the current implementation of the model, the resolution in cases of 

multiple activated receivers occurs immediately and without any cost. This could explain why the Spatial 

Coding Model did not predict the observed inhibitory pattern of repeated letters and in cases even 

predicted effects in the opposite direction. The results obtained in this study therefore present a challenge 

for the Spatial Coding Model and possibly signal the necessity of implementing a time penalization for 

resolving cases with repeated letters. This solution was, in fact, already suggested by Davis (2010) for the 
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discrepancy between the model’s mechanisms and the reported inhibitory effect of repeated letters in 

targets of the study of Schoonbaert and Grainger (2004). The disambiguation and allocation to the 

corresponding positions of two identical units (letters) already recognized by the system as separate 

objects could therefore be another possible explanation of the observed inhibitory repeated letter effect.  

Another way to approach the repeated letter problem could be in terms of the Bayesian Reader framework 

described by Norris and Kinoshita (2012), in which there is graded positional uncertainty: Evidence for a 

letter in a given position is also (weaker) evidence for nearby positions. A Bayesian decision maker 

receiving noisy data from two identical letters in different positions should therefore place some 

likelihood on the source of these data being a single instance of that letter somewhere in the middle, 

which will be evidence for a different string, typically a nonword, slowing responses to words in lexical 

decision. By contrast, this possibility does not need to be considered when there are no repetitions of 

letters. Although the Bayesian Reader model (Norris & Kinoshita, 2012) did not predict a consistent 

inhibitory pattern from repeated letters, such an explanation is conceptually consistent with the broader 

theoretical framework with a specific model enhanced with a more perceptually veridical likelihood 

calculation. 

Another possible explanation to an extent follows up from the problem of a smaller number of abstract 

representations and more specifically, the shared identity of letter objects in cases of repetition.  It might 

be the case that repeated identities force serial processing due to functional specialization and modularity 

of the processing components (letter receptors) associated with each letter identity. In such a scenario, 

processing of two identical elements might not be achieved in the rapid parallel manner, in which it has 

been previously demonstrated that letters are perceived (Adelman, Marquis, & Sabatos-DeVito, 2010), as 

the same component might be involved in encoding of two or more letters at once, therefore resulting in 

some processing delay, albeit not in predictable sequence. This delay differs from that considered for the 

Spatial Coding Model (Davis, 2010) both in that it affects one or other of the letters, but not both, and in 

that this delay is tied to an early stage of perception rather than a later stage of resolution of letter 

repetition in the lexical unit. 

The problem of repeated letter identities might also be approached in terms of exploring how the visual 

system establishes the numerosity of objects with similar identities. It might be the case that the inhibitory 

repetition effect might result from limitations of the perceptual system in either very early low-level 

stages or later more abstract levels in the form of incapability of dissociating between two identical 

(letter) units. The perceptual system could perceive the two identical letters but cannot perceive that they 

are two, that the same letter representation is present at two different locations.  In this case, the identity 

of both letters is recognized but it is the numerosity that is yet to be established. Such an assumption is 
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consistent with the repetition blindness phenomenon and the problem of registering two different tokens 

of the same type. Kanwisher (1987) found that participants were unable to report the second occurrence 

of a word from a word list in a rapid serial visual presentation (RSVP), when words were presented for a 

117 ms followed by a mask and when the two occurrences were intervened by a small number of items. 

Since the effect was larger with a smaller number of intervenors, Kanwisher argued that the effect was not 

due to people forgetting the items. She also discarded the possibility that the tokens were not perceived. 

In Experiment 3 of her study, she demonstrated that when the word lists were truncated after the second 

occurrence of the repeated word, or its corresponding nonrepeated control word, and participants had to 

report the final item in lists of various length, their accuracy was higher when the final word was repeated 

than when it was not. Kanwisher posited that the repetition blindness phenomenon is not related to 

inability of recognizing the type of the occurrences, but rather to “individuating” the items as two tokens 

of the same type.  

Two apparent differences between Kanwisher’s study (1987) and the present are: the serial versus the 

parallel presentation of the repeated items; their scale (words vs. letters). However, the problem of 

perceiving several occurrences (tokens) of the same letter (type) has also been explored with a parallel 

presentation of letter strings containing repetitions. Kanwisher (1991) used word and nonword stimuli 

which were displayed in the original RSVP presentation, a “moving” RSVP presentation with each 

incremental letter shifted one character to the right, and a simultaneous presentation in which the whole 

string was briefly flashed. The word stimuli containing repetition were chosen so that the deletion of a 

second occurrence generated another genuine word (manager – manger). The repetition blindness effect 

was observed in all three presentation conditions, with the simultaneous repeated condition being least 

detrimental.  

Another account of the repetition blindness effect was proposed by Luo and Caramazza (1996). They 

argued that the recognition system might be less sensitive to a type node shortly after it has already been 

perceived (a refractory period). They suggested that the processing of successive or concurrent stimuli 

continues after their presentation and the recognition of two identical items might overlap in time in both 

RSVP and simultaneous visual presentations. In their study, they manipulated the onset of the encoding of 

two critical items in both type of presentations.  The authors assumed that in the simultaneous 

presentation, the distance between the repeated elements affects the temporal overlap of their processing. 

In their experiment, five letters and three dollar signs were displayed in eight consecutive clocklike 

positions within a circle. In the RSVP presentation, the letters appeared sequentially in a clockwise 

direction and were either preceded or followed by the dollar signs. In the repeated condition, the repeated 

letters appeared within a distance of one intervening letter and were either the second and the fourth or the 
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third and the fifth within the letter sequence. The start location of the stimuli presentation was any of the 

eight possible clock locations.  In the simultaneous presentation, all letters and dollars were briefly 

displayed at the same time. The results indicated lower accuracy in the repeated conditions in both 

presentation modes with a stronger repetition blindness effect in the RSVP condition. In a follow-up 

experiment, the authors further investigated the repetition blindness effect in simultaneous presentation by 

manipulating the distance between the repeated elements in terms of number of other intervening letters 

(0-3). The results showed that the effect was stronger within distances 1 and 2 than distances 0 and 3 and 

indicated an inverted U-shaped repetition blindness effect as a function of distance.  The authors 

explained the results in terms of a type refractory period in which the sensitivity of the recognition system 

to a certain type is reduced after stimulation and is recovering to its resting levels.  If two identical stimuli 

are encoded with a minimal delay and the second stimulation is received shortly after the first one, the 

excitation level of the type node is still peaking above its resting level, a priming facilitation effect might 

occur (repetition priming). As, however, after peaking, the activity of the node drops below its resting 

level, if the second stimulation happens while the node recovers to its resting state (the refractory period), 

this will lead to a delayed encoding of the second stimuli and an inhibitory effect proportional to the 

distance away from the resting level. Luo and Caramazza suggested that the effect of the repetition lag 

(distance) can be explained with the activity of the type node which after peaking first decreases below 

resting level and then recovers back to resting level resulting in the reversed U-shape of the repetition 

blindness effect. The reported repetition distance effects by these authors are consistent with the results of 

the present study, in which the adjacent repeated letter condition induces less inhibition than the 

immediate nonadjacent conditions, which in turn have more consistent effect than the longer repetition 

distances.   

In another study related to the repetition blindness effect, Mozer (1989) showed that participants were less 

accurate when they had to report the number of letters in a briefly presented display when a string of 

letters was formed by repeating the same letter (DDDD) than when it was formed by different letters 

(NRVT). He referred to this effect as “homogeneity effect” and argued that it is dependent on the 

common form of the items. He extended his findings and demonstrated that a repeated letter effect can 

also operate on the level of abstract letter identities. When the task required recognition of the letter 

identities, rather than just counting the visual objects, the number of two nonadjacent repeated letter 

targets presented in different case was still harder to perceive than the number of two distinct letters.  

Participants were less accurate when they reported the total number of As and Es in a display of two CVC 

strings when the display contained repeated letters (BEC mes) than when the target letters were not 

repeated (ner TAL). Mozer proposed a model of parallel processing of information from different visual 

fields. The repeated letter (homogeneity) effect is caused by spatial uncertainty and imprecision in 
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retrieving the exact location information of the two repeated objects. As the system differentiates between 

the two instances of a single object by the difference in their location, in stages that have insufficient 

spatial information it is unable to process their number. Mozer argued that the repetition blindness 

phenomenon described by Kanwisher resembles the homogeneity effect in his study. The difference in the 

mechanisms of the two effects, according to him, were that the insufficient processing time in the rapid 

serial visual presentation led to inability for the events to be tagged to a temporal serial position in a 

sequence, while the homogeneity effect in parallel processing were caused by inefficient spatial tagging.  

In both cases, the information of the number of identical objects therefore could not be retrieved. Mozer 

also suggested that serial attentional scanning could decrease spatial uncertainty and weaken the 

homogeneity effect. 

Another possible cause of processing delay could be the increased positional ambiguity when letters are 

repeated. With identical signals coming from separate locations, making it more difficult for the visual 

system to allocate two identical letters to their corresponding positions than two different letters. In this 

case, the identity of both letters is established, and it is the positional encoding that is delayed, possibly 

leading to increased processing difficulty. Such an interpretation is, however, not consistent with the 

evidence provided by Adelman (2011) from a two-forced choice perceptual identification task showing a 

similar take-off of the accuracy function in conditions in which the foils were formed by identity 

substitution and a condition with transposition, suggesting that information about identity and position 

gets resolved in a similar timeframe.  

This evidence was considered in the design of the Letters in Time and Retinotopic Space (LTRS; 

Adelman, 2011) model. Although LTRS describes perceptual timing mechanisms that could explain 

effects of different prime types, it does not describe downstream lexical processing mechanisms that 

would be affected by these timings when entirely consistent information (i.e., the target alone) is 

presented. The model perceives items of information at different times, so identifying one of a set of 

repeated letters is ambiguous between several possibilities unless there is other disambiguating 

information. So, although the model is highly sensitive to (excess) repeated letters in primes, it is 

sensitive to repeated letters in lexical decision targets only insofar as they make some non-identical 

primes more ambiguous. The model could be extended to include less efficient processing of repeated 

letters, by adjusting the attention equation so that repeated letters do not receive as high a processing rate 

as unique letters. This would delay responding to these items, because the total processing rate would be 

lower, increasing the average latency to perception of the first letter, and hence delaying the start of 

lexical processing. This would not provide evidence as to the nature of the delays in letter processing, 

although there is evidence from other paradigms that such delays exist. 
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In summary, the possible causes of the repeated letter effects include lower number of active 

representations, resolution of the position of the repeated letters at later processing stages, capacity 

limitations due to serial processing of repeated letters, inability of the processing system to tokenize the 

letter types at early perceptual stages, increased ambiguity in cases of repeated letters. It might also be the 

case that multiple of the aforementioned mechanisms underly the inhibitory repeated letter effect. For 

example, it might be the case that the perceptual system is indeed unable to establish the numerosity of 

the letters at early stages and requires additional time to establish that the positional uncertainty for a 

single identity is higher than that of other identities (even after a certain period of time) and therefore the 

source of that information should come from (at least) two separate locations. There is also a possibility 

that the repeated letters effects might be driven by other non-perceptual phenomenon not yet addressed in 

the current literature. The control variables that were included, however, consisted of the major lexical 

and sublexical factors, including but not limited to frequency and size measures in multiple levels. We, 

therefore, consider it unlikely for the effect to be driven by effects such as letter frequencies or any of the 

known possible factors.   The clear presence of an inhibitory effect within megastudies, established here, 

will require complementary experimental efforts to determine its cause. 

In conclusion, the results of the present study demonstrated a robust inhibitory effect which was 

replicated in all three languages under consideration. The effect was stable in the cases of one, two and 

three intervening letters, it was broadly consistent in larger distances and decreased in the cases of 

adjacent repetitions.  The observed inhibitory pattern of repeated letter effects in the regression analyses 

was not predicted by three leading computational models and it is not yet reflected in any mechanism in 

the visual word recognition literature. These results have important implications for development of 

theories of visual word recognition and, more specifically, for understanding letter position and identity 

encoding and sublexical orthographic processes mediating lexical access. The obtained effects should 

motivate additional research in that direction, as well as additional theoretical and computational 

modelling effort with the purpose of the better understanding of the processes involved in the repeated 

letters effects.  
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  Lexicon Project 

Distance CV ELP BLP DLP2 FLP 

0 C 14.5 14.6 12.3 18.9 

0 V 3.7 5.1 17.9 0.1 

1 C 5.4 3.9 4.4 5.4 

1 V 10.2 5.0 14.0 11.3 

2 C 8.5 6.9 9.3 8.4 

2 V 10.6 8.0 12.3 15.2 

3 C 8.0 6.4 6.9 6.6 

3 V 7.5 4.8 7.0 8.9 

4 C 6.7 5.3 6.9 6.3 

4 V 6.6 2.4 6.2 7.1 

5 C 4.8 2.9 5.1 4.5 

5 V 4.0 0.8 4.5 5.0 

6 C 3.0 1.7 3.4 3.1 

6 V 2.5 0.2 2.4 2.8 

7 C 1.6 0.7 2.2 1.9 

7 V 1.3 0.0 1.3 1.4 

8 C 0.9 0.3 1.2 1.1 

8 V 0.7 0.0 0.5 0.7 

9 C 0.5 0.1 0.4 0.5 

9 V 0.4 NA 0.1 0.3 

10 C 0.2 0.0 0.2 0.2 

10 V 0.1 NA 0.1 0.1 

11 C 0.1 NA 0.1 0.1 

11 V 0 NA 0 0 

12 C 0 NA 0 0 

12 V 0 NA 0 0 

13 C 0 NA 0 0 

13 V 0 NA NA 0 

Any Any 65.7 54.2 74.1 68.4 

Table 1.  

Proportions of items containing any letter repetition (at least one repeated letter) and at least one of each 

of the repetition types in the English Lexicon Project (ELP), British Lexicon Project (BLP), Dutch 

Lexicon Project 2 (DLP2) and French Lexicon Project (FLP) datasets. The repetition types are presented 

in terms of the repetition distance (number of intervening letters between the repeated) and consonant-

vowel (CV) class of the repeated letter. Words in which the same letter appears more than twice are 

excluded.  



 

Figure 1. Repeated letter effects in English Lexicon Project (ELP), British Lexicon Project (BLP), Dutch Lexicon Project 2 (DLP2) and French Lexicon Project 

(FLP; with diacritics). Positive values indicate inhibition, negative values indicate facilitation. The distance is measured with the number of intervening letters 

between the repeated ones. Error bars represent 95% confidence intervals.



 

 

Figure 2. Repeated letter effects in subsets of the lexicon projects with words no longer than ten letters. 

Positive values indicate inhibition, negative values indicate facilitation. *** p < .001; ** p < .01; * p < 

.05 
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Figure 3. Spatial Coding Model’s predictions of repeated letter effects. Positive values indicate inhibition, 

negative values indicate facilitation. *** p < .001; ** p < .01; * p < .05 
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Figure 4. Relative Position Open Bigram Model’s predictions of repeated letter effects. Positive values 

indicate inhibition, negative values indicate facilitation. *** p < .001; ** p < .01; * p < .05 

  



38 
 

 

Figure 5. Bayesian Reader Model’s predictions of repeated letter effects. Positive values indicate 

inhibition, negative values indicate facilitation. *** p <.001; ** p <.01; * p <.05 

  



 

Figure 6. Repeated letter effects in word naming in English Lexicon Project. Positive values indicate inhibition, negative values indicate facilitation. The distance 

is measured with the number of intervening letters between the repeated ones. Error bars represent 95% confidence interval



 


