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Assessment of Multi-Image
Unmanned Aerial Vehicle Based
High-Throughput Field Phenotyping
of Canopy Temperature
Gregor Perich1*, Andreas Hund1, Jonas Anderegg1, Lukas Roth1, Martin P. Boer2,
Achim Walter1, Frank Liebisch1,3 and Helge Aasen1

1 Group of Crop Science, Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zurich,
Zurich, Switzerland, 2 Biometris, Wageningen University and Research Centre, Wageningen, Netherlands, 3 Water Protection
and Substance Flows, Department Agroecology and Environment, Agroscope, Zürich, Switzerland

Canopy temperature (CT) has been related to water-use and yield formation in crops.
However, constantly (e.g., sun illumination angle, ambient temperature) as well as rapidly
(e.g., clouds) changing environmental conditions make it difficult to compare
measurements taken even at short time intervals. This poses a great challenge for high-
throughput field phenotyping (HTFP). The aim of this study was to i) set up a workflow for
unmanned aerial vehicles (UAV) based HTFP of CT, ii) investigate different data processing
procedures to combine information from multiple images into orthomosaics, iii) investigate
the repeatability of the resulting CT by means of heritability, and iv) investigate the optimal
timing for thermography measurements. Additionally, the approach was v) compared with
other methods for HTFP of CT. The study was carried out in a winter wheat field trial with
354 genotypes planted in two replications in a temperate climate, where a UAV captured
CT in a time series of 24 flights during 6 weeks of the grain-filling phase. Custom-made
thermal ground control points enabled accurate georeferencing of the data. The
generated thermal orthomosaics had a high spatial accuracy (mean ground sampling
distance of 5.03 cm/pixel) and position accuracy [mean root-mean-square deviation
(RMSE) = 4.79 cm] over all time points. An analysis on the impact of the measurement
geometry revealed a gradient of apparent CT in parallel to the principle plane of the sun
and a hotspot around nadir. Averaging information from all available images (and all
measurement geometries) for an area of interest provided the best results by means of
heritability. Correcting for spatial in-field heterogeneity as well as slight environmental
changes during the measurements were performed with the R package SpATS. CT
heritability ranged from 0.36 to 0.74. Highest heritability values were found in the early
afternoon. Since senescence was found to influence the results, it is recommended to
measure CT in wheat after flowering and before the onset of senescence. Overall, low-
altitude and high-resolution remote sensing proved suitable to assess the CT of crop

Frontiers in Plant Science | www.frontiersin.org February 2020 | Volume 11 | Article 1501

Edited by:
Jose Antonio Jimenez-Berni,

Spanish National Research Council
(CSIC), Spain

Reviewed by:
David Matthew Deery,

Commonwealth Scientific and
Industrial Research Organisation

(CSIRO), Australia
Francisco Javier Mesas Carrascosa,

Universidad de Córdoba, Spain

*Correspondence:
Gregor Perich

gregor.perich@usys.ethz.ch

Specialty section:
This article was submitted to Technical

Advances in Plant Science,
a section of the journal

Frontiers in Plant Science

Received: 01 July 2019
Accepted: 30 January 2020

Published: 25 February 2020

Citation:
Perich G, Hund A, Anderegg J, Roth L,

Boer MP, Walter A, Liebisch F and
Aasen H (2020) Assessment of
Multi-Image Unmanned Aerial

Vehicle Based High-Throughput
Field Phenotyping of

Canopy Temperature.
Front. Plant Sci. 11:150.

doi: 10.3389/fpls.2020.00150

ORIGINAL RESEARCH
published: 25 February 2020
doi: 10.3389/fpls.2020.00150

https://www.frontiersin.org/articles/10.3389/fpls.2020.00150/full
https://www.frontiersin.org/articles/10.3389/fpls.2020.00150/full
https://www.frontiersin.org/articles/10.3389/fpls.2020.00150/full
https://www.frontiersin.org/articles/10.3389/fpls.2020.00150/full
https://loop.frontiersin.org/people/763761
https://loop.frontiersin.org/people/71792
https://loop.frontiersin.org/people/556187
https://loop.frontiersin.org/people/909593/overview
https://loop.frontiersin.org/people/795455
https://loop.frontiersin.org/people/25571
https://loop.frontiersin.org/people/299930
https://loop.frontiersin.org/people/475455
https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles
http://creativecommons.org/licenses/by/4.0/
mailto:gregor.perich@usys.ethz.ch
https://doi.org/10.3389/fpls.2020.00150
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2020.00150
https://www.frontiersin.org/journals/plant-science
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2020.00150&domain=pdf&date_stamp=2020-02-25


genotypes in a large number of small field plots as is required in crop breeding and variety
testing experiments.

Keywords: thermography, unmanned aerial vehicle, phenotyping, plant breeding, spatial correction, low-altitude/
high-resolution remote sensing, anisotropy, temperate climate

INTRODUCTION

In view of current scenarios for climate change, canopy
temperature (CT) is considered an important trait to select for
adapted genotypes. CT was robustly associated with water status
and stomatal conductance in wheat (Berliner et al., 1984; Blum
et al., 1989; Amani et al., 1996). Low CTs have been associated
with a 30% increased yield an increased water uptake by deeper
roots (Lopes and Reynolds, 2010), when measured during grain
filling. Even in regions with ample rainfall, such as the Swiss
central plateau, heat and drought avoidance mechanisms
connected to adjusted root system architecture may play an
important role in extreme years (Oberholzer et al., 2017),
projected to increase in frequency and severity in the near
future. The regular assessment of CT during the breeding
process holds great promise for an indirect selection of
varieties with optimized rooting behaviour. A greater
transpiration is a major driver leading to high yield potential
of C3 crops under conditions characterized by low to moderate
stress (Roche, 2015). It is, however, still a challenge to obtain
reliable quantitative CT measurements for larger breeding
experiments with small plots, since plot-by-plot CT
measurements generally have a low repeatability (Pask et al.,
2012; Rebetzke et al., 2013; Sukumaran et al., 2015; Deery et al.,
2016) and are very time consuming.

The principle of elucidating plant evapotranspiration based
on thermal remote sensing of CT has been used in a multitude of
studies (Jones et al., 2009; Maes and Steppe, 2012; Liebisch et al.,
2015; Khanal et al., 2017). It has been successfully applied to
estimate grain yield (Elsayed et al., 2015; Becker and
Schmidhalter, 2017; Elsayed et al., 2017), plant water, and
plant drought stress (Calderón et al., 2013; Zarco-Tejada et al.,
2013; Gómez-Candón et al., 2016), plant water status (Pou et al.,
2014; Shafian and Maas, 2015; Bellvert et al., 2016), and soil
water status (Hassan-Esfahani et al., 2015). unmanned aerial
vehicle (UAV)-based thermography has been conducted in a
multitude of studies as well (Zarco-Tejada et al., 2013; Gómez-
Candón et al., 2016; Hoffmann et al., 2016; Ortega-Farías et al.,
2016; Maes et al., 2017; Ribeiro-Gomes et al., 2017; Santesteban
et al., 2017; Malbéteau et al., 2018; Sankaran et al., 2018; Sagan
et al., 2019). Only a few studies (Liebisch et al., 2015; Deery et al.,
2016; Rutkoski et al., 2016; Sagan et al., 2019), however, used it in
a breeding context, where it would be strongly needed in the
context of high-throughput field phenotyping (HTFP). HTFP
aims for rapid and reliable assessment of phenotypic traits under
field conditions. The lack of suited tools for HTFP has been
identified as one of the main bottlenecks for plant breeding,
slowing future breeding advances (Araus and Cairns, 2014;

Walter et al., 2015). Moreover, a reliable method that allows
repeated screening of a large number of plots in a short time
period would be essential for thermal HTFP in particular, since
the thermographic response of plants depends on the
environmental conditions such as temperature, irradiance, and
humidity that may change during the measurements.

Unmanned aerial vehicles (UAVs) are a low-altitude and high
resolution remote sensing tool that promise to be an efficient
carrier system for sensors used for vegetation monitoring
(Anderson and Gaston, 2013; Colomina and Molina, 2014;
Sanchez-Azofeifa et al., 2017; Aasen et al., 2018) including
HTFP (Zaman-Allah et al., 2015; Deery et al., 2016; Hund
et al., 2019). These carrier systems enable efficient data
acquisition with a high spatial and temporal resolution at a
relatively low cost (Berni et al., 2009b; Bellvert et al., 2016; Yousfi
et al., 2016; Shakoor et al., 2017). Thus, they are also increasingly
applied in field phenotyping applications (e.g., Gómez-Candón
et al., 2016; Shakoor et al., 2017; Joalland et al., 2018; Sagan et al.,
2019) and we hypothesize that they are also useful for HTFP
of CT.

Two main approaches can be used to obtain remotely sensed
plant CT form thermal imagery captured with airborne carrier
systems at low altitude. The first approach is to take a single
image to cover an area of interest (Zarco-Tejada et al., 2012;
Calderón et al., 2013; Sankaran et al., 2018). The second
approach is to mosaic multiple images together into an
orthomosaic (Berni et al., 2009a; Gonzalez-Dugo et al., 2013;
Hoffmann et al., 2016; Santesteban et al., 2017). The latter
increases the area that can potentially be covered in one scene
and thus, allows to capture larger areas and/or increase the
spatial resolution (ground sampling distance, GSD) of the data
by flying lower (Aasen et al., 2018). But when an orthomosaic is
generated from multiple overlapping images, each area of
interest on the ground (e.g., a plot) is captured by multiple
images with different viewing geometries and several options
exist to extract the signature of this area (Aasen and Bolten,
2018). It has been shown that the different data processing and
extraction approaches have an influence on the apparent
reflectance in remote sensing data in the visible and near-
infrared, e.g., (Aasen, 2016; Aasen and Bolten, 2018). This
results from the interaction of surface anisotropy (meaning
that the signal is directionality dependent) and measurement
geometry [expressed by the bi-directional reflectance
distribution function; BRDF, (Nicodemus et al., 1977;
Schaepman-Strub et al., 2006)], which also effects the apparent
temperature (Jones et al., 2009; Cao et al., 2019). While studies
have reported challenges when multiple thermal images are to be
mosaicked together (Hoffmann et al., 2016; Ribeiro-Gomes et al.,
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2017), it has not been investigated how different data processing,
mosaicking and capturing approaches affect the apparent CT.

Besides, the data may further include spatial trends due to
field variability and temporal trends due to changes during the
flight campaign. Correcting the data for these influences is
essential if the genotypic performance is the major interest
(Gilmour et al., 1997; Piepho and Williams, 2010; Araus and
Cairns, 2014). Multiple approaches exist to perform this
correction with the most widespread being first order
autocorrelation models (Gilmour et al., 1997; Piepho and
Williams, 2010) and P-splines (Velazco et al., 2017; Rodríguez-
Álvarez et al., 2018), both implemented in a mixed-
model framework.

This study combines the above mentioned aspects and aims
for an integrated concept how CT can be assessed from high-
resolution UAV remote sensing within a breeding context. In
particular, the study aims to:

i. Establish a workflow for high-resolution UAV remote
sensing HTFP

ii. Investigate and discuss different data processing modes to
generate thermal orthomosaics

iii. Evaluate the method in a temperate environment across the
season

iv. Investigate the optimal timing for thermography
measurements

v. Compare the UAV approach to other established
approaches for HTFP of CT

MATERIALS AND METHODS

Experimental Site and Wheat Cultivation
A field experiment was conducted at the ETH field phenotyping
platform field phenotyping platform (FIP) (Kirchgessner et al.,
2017), a one-hectare field (“FIP field”) located at ETH Zurich's
plant research station [47°27′01″N and 8°40′57″E, the World
Geodetic System (WGS) 84]. The soil type is a skeleton rich
variable Cambisol (stagnic to slightly acidic appearance) with
21% clay, 21% silt, and 3.5% organic matter. The “FIP field”
employs a crop rotation containing major crops of Switzerland's
agricultural system in six lots (Figure 1). The experiment was
sown in two replicates (represented by lots one and three in the
“FIP field,” Figure 1) and consisted of 354 winter wheat
genotypes, mainly from the GABI-wheat panel (Kollers et al.,
2013) with additional Swiss varieties. Three out of the 354
genotypes were used as checks (CH Claro, Suretta, and CH
Nara). The genotypes were distributed to the experiment using
the R package “DiGGer” (Coombes, 2009) in an augmented 2D
design as follows: The check varieties were distributed within
each replication (Figure 1) in nine complete blocks (seven rows

FIGURE 1 | Red green blue (RGB) orthophoto of the “FIP” field at the agricultural research station in Eschikon with the location of the 16 ground control points
(GCPs) (white dots), the two replicates of the winter wheat field trial (lot 1 and lot 3) and the weather station (red cross).
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by six ranges), making sure that at least one check was placed in
each row and each range of the design (27 check plots per
replication in total). Onto this design, the 351 test genotypes
were augmented to incomplete blocks in row (one row per
incomplete block) and range direction (6 ranges per
incomplete block). The 351 test genotypes and the 27 check
plots resulted in a total of 378 plots for each replication or 756
plots for the whole experiment. Each replication of the
experiment consisted of 21 ranges and 18 rows. For the
growing season 2018, winter wheat was sown on both
replicates on the 2017-10-17 with a sowing density of 400
seeds per m2. The size of the winter wheat replications was
approximately 40 m x 36 m. The individual plots had a length of
1.7 m and a width of 1 m with a row spacing of 12.5 cm equating
to nine rows per plot. Harvest of the winter wheat was on the
2018-07-13. Weather data was obtained by the on-site weather
station (Figure 1). 2018 was a very dry summer with no rain
between the 2018-06-14 and 2017-07-02 (for details, see section
Canopy Temperature Heritability Across a Day and Dates).
During the whole season BBCH growth stages (Lancashire
et al., 1991) were rated in the field. Canopy senescence was
scored visually in 2–3 day intervals by estimating the overall
greenness of the plot when inspected at a viewing angle of
approximately 45°. An integer mean value per plot was
estimated on a scale ranging from 0 (completely green canopy)
to 10 (completely senescent canopy). The onset of senescence
was defined when a plot reached a scoring of greater than zero.
The first genotypes started to become senescent on the 2018-06-
16. Based on these measurements we defined a set of 178
genotypes that showed no sign of visual senescence up to the
2018-06-23, the “stay green” genotypes (see sections Canopy
Temperature Heritability Across a Day and Dates and Canopy
Temperature Correlation Across a Day and Dates). After that
date, the set of “stay green” genotypes became very small.

Unmanned Aerial Vehicles Flights
Twenty-four UAV flights between early June 2018 and mid-July
2018 were performed covering the grain filling and ripening
phase (BBCH growth stages 73-92). Most flights were carried out
around solar noon or in the early afternoon and under stable
cloud cover (no clouds or a sparse cloud cover). On the 2018-06-
16 and the 2018-06-20, multiple flights from the morning to the
late afternoon were carried out. On the 2018-06-16 cloud
conditions were fluctuating, with the photosynthetically active
radiation (PAR, measured in photosynthetically active photon
flux density) fluctuating between 750 and 2,200 mmol m−2s−1. On
the 2018-06-20 the conditions were very stable with a typical
diurnal cycle of temperature and PAR. Thus this day is referred
to as “stable day.” The flight dates and corresponding BBCH
stages can be found in Table 1 of the Supplementary Materials.
Geo-referencing the thermal scenes (section Processing of
Thermal Data) was done using thermal ground control points
(GCPs). These custom-made GCPs consisted of a styrofoam
plate of dimensions 0.5 m x 0.5 m x 0.04 m glued onto a wooden
panel. On top of the styrofoam panel, two black aluminum
triangles were glued to obtain a distinctive cross-shaped GCP
(for details see section Processing of Thermal Data). The black

aluminum plates heated up considerably more than the white
Styrofoam, showing as a distinct pattern in the GCP. Sixteen
GCPs were evenly distributed across the experimental site
(Figure 1) and their positions were measured using a Trimble
R10 GNSS (Global Navigation Satellite System) receiver
(Trimble Ltd., USA) with swipos-GIS/GEO RTK (Real Time
Kinematic) correction (Federal Office of Topography Swisstopo,
Wabern, Switzerland) with an overall horizontal and vertical
precision of 0.1 m.

Unmanned Aerial Vehicles Platform
The UAV platform was a DJI Matrice 600 Pro (SZ DJI
Technology Co. Ltd., China). The total weight of the UAV,
including the batteries, is 9.5 kg, leaving a maximum payload of 6
kg. The UAV uses a DJI A3 flight controller, which was upgraded
to A3 Pro standard with an enhanced GNSS system for position
data. The UAV was controlled using the DJI Matrice 600 series
remote controller and an iPad (Apple Inc., USA) with the DJI
Ground Station Pro app (SZ DJI Technology Co. Ltd., China).
The UAV requires six charged 99.9 Wh batteries for operation.
With the payload, flight times are about 15 min.

Thermal Camera System
A radiometrically calibrated FLIR A65 thermal imaging camera
(FLIR integrated Imaging Solutions Inc., Canada) was mounted
in a custom-made sensor package (Figure 2). The thermal
camera has a field of view (FOV) of 25° x 20° and a resolution
of 640 x 512 pixels. The camera's sensor is an uncooled
Vanadium Oxide (VOx) microbolometer detector with a
detector pitch of 17 µm measuring in the spectral range of 7.5–
13 µm. The maximum image frequency of the camera is 30 Hz. It
weighs approximately 0.2 kg and is connected to an Intel® NUC
computer through a standard RJ45 LAN cable. The specified
temperature range of the measurement objects is −40°C to +550°
C. The noise equivalent temperature difference (NETD) of the
camera is 0.05°C at 30°C and the absolute measurement accuracy
is ±5°C or 5% of the readings (FLIR Systems, 2014). The camera
system was controlled by a self-developed MATLAB (MATLAB
R2017b, The MathWorks Inc. USA) script running on a compact
Intel® NUC computer (i7-5557U dual core processor, 16GB
RAM and a 256GB SSD, Windows 10 operating system). The
whole system was mounted on a three-axis stabilized DJI Ronin-
MX Gimbal (SZ DJI Technology Co. Ltd., China), to ensure a
nadir viewing geometry (Figure 2).

Measurement Protocol
Mission planning was conducted in the “PhenoFly Planning
Tool” (Roth et al., 2018). The flight details were: 80 m height
above ground level with an image overlap of >70% across to
flight direction and >90% in the along direction. Images were
acquired at a rate of 2.2 Hz. Average flight duration was 8 min to
cover the two replications (lots one and three, Figure 1). Since
uncooled thermal cameras tend to drift when their temperature
change (Mesas-Carrascosa et al., 2018; Kelly et al., 2019), the
camera was turned on more than 30 min before the
measurements [as recommended by Berni et al. (2009b) and
Kelly et al. (2019)] to allow temperature stabilization of the
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system. After take-off at the instant before the measurement
sequence was started, a non-uniformity correction (NUC) was
manually triggered. No further NUCs were performed during the
flight since during the time of the flight, the temperature of the
sensor did barely change (chip: ~0.2°C, housing: ~0.4°C
according to the sensor metadata).

Processing of Thermal Data
Photogrammetric Processing
The processing of thermal data is summarized in Figure 3. After
the raw data (raw digital numbers, DN) of each image was
converted to °C, photogrammetric data processing of the thermal
images was done in Agisoft PhotoScan Professional 1.4.3
(Agisoft LLC, St. Petersburg, Russia). Agisoft PhotoScan is a

software performing the Structure fromMotion (SfM) algorithm,
which enables capture of the 3D structure of objects by a 2D
transformation of a set of their projected images (Ullman, 1979).
It allows derivation of 3D information through exploitation of
feature points found in overlapping images (Harwin and Lucieer,
2012). SfM performs image matching by calculating the relative
position of a series of images by identification of feature points.
The feature points are used in bundle adjustment, which
estimates viewing parameters (camera positions and/or
calibration) estimates for the individual images (Triggs et al.,
2000). Bundle adjustment results in a set of 3D points,
corresponding to a sparse 3D point cloud. The “image
alignment” in Agisoft PhotoScan was run using quality
parameter set to “high,” a key point limit of 40,000 and a tie

FIGURE 2 | The sensor package (white box) with the four cameras and the Intel NUC computer mounted on the gimbal beneath the unmanned aerial vehicle (UAV).
All cameras still have their protective caps on.

FIGURE 3 | Schematic summary of the workflow for obtaining high-accuracy thermal orthomosaics from single, raw thermal unmanned aerial vehicles (UAV) images.
The thermal ground control points (GCPs) used in this study are depicted in the bottom center: as seen in red green blue (RGB) (left) and through a handheld
infrared (IR) camera. The canopy temperature (CT) extraction through the polygons representing the plots is shown top right.
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point limit of 1,000. Additionally, pre-estimated camera
parameters were loaded and set to fixed to ensure a consistent
generation of the orthomosaics. The quality setting “high”
compressed the image quality by half (Agisoft LLC, 2016) but
greatly reduced processing times. The point clouds were
georeferenced to the coordinate system EPSG:2056 (CH1903+/
LV95) using the thermal GCPs (Figure 3, bottom center). The
GCPs were manually marked in three to four images for each
GCP, until the algorithm picked up their correct locations across
all images. This referencing also optimized the sparse point
cloud, correcting distortion effects. The density of the
optimized sparse point cloud was increased in the “build dense
cloud” step in Agisoft PhotoScan, resulting in a dense point
cloud. The “build dense cloud” was performed using the “high”
quality and “aggressive” depth filtering settings. The
georeferenced dense point cloud was then used to generate a
digital surface model (DSM), effectively representing the
captured surface in three coordinates.

Generation of Orthomosaics
The georeferenced DSM was then used to generate a thermal
orthomosaic of the UAV flights through mosaicking of the
individual images (“Orthomosaic” is hereafter used
interchangeably with “thermal orthomosaic” in this study,
unless stated otherwise). Agisoft PhotoScan offers multiple
processing modes to calculate an orthomosaic, of which the
following two were chosen in this study:

- In the blending mode “average,” the values of all pixels from
all images that covered a point in the orthomosaic were
averaged. Consequently, each pixel in the final orthomosaic
originate only from many images.

- In the blending mode “disabled,” the pixel value from the
image with a view being closest to the normal at that point
(nadir) was used. Consequently, each pixel in the final
orthomosaic originate only from one image.

Consequently, the angular properties of the data within the
two different types of orthomosaics differ. The viewing
geometry of each pixel in the blending mode “disabled”
orthomosaic is the same as in the original image and thus,
very narrow (because of the narrow instantaneous field of view
of every pixel) and can be described as (almost) directional
measurement geometry (Schaepman et al., 2015; Aasen and
Bolten, 2018). In the blending mode “average,” the viewing
geometry is composed by all the viewing geometries of the
pixels that are averaged for one pixel in the orthomosaic. Thus,
the total viewing geometry of each pixel in the orthomosaic is
wider than in the blending mode “disabled” and can be
described as conical measurement geometry (Schaepman
et al., 2015; Aasen and Bolten, 2018). While a detailed
description and discussion on these differences for spectral
data can be found in Aasen and Bolten (2018), this paper will
investigate the effects on the apparent CT within orthomosaics.
This will be done by qualitatively comparing the two blending

modes for the flight on the 2018-06-20 at 14:00 h and
quantitatively investigating the viewing geometry dependency
of the apparent CT on the same date. Additionally, we used a
Bland-Altman analysis (Bland and Altman, 1986) to estimate
systematic differences between the two blending modes in
relationship to the plot mean temperature. Differences in the
heritability (section Spatial Correction and Heritability
Calculation) will also be investigated.

Plot Wise Canopy Temperature Extraction
and Normalization
To extract the per-plot UAV temperature, a polygon describing
the plot shape and location was generated using the experimental
design. QGIS 3.2.3 Geographic Information System Software
(QGIS Development Team, 2018) was used to create an inward
buffer of 50 cm from the shapes to omit edge effects (Figure 3,
top right: blue polygon). Based on a Python 3.6 script, the
median of this area was then used as CT for a plot. The CT
was normalized by the ambient air temperature (TA) to compare
temperatures across different measurement dates (Balota et al.,
2007; Maes and Steppe, 2012; Zarco-Tejada et al., 2013; Bellvert
et al., 2016) as follows:

DT = TC − TA (1)

TA was measured at 2 m above ground level by a temperature
sensor (CS215, Campbell Scientific, Inc., USA) covered by a 10-
Plate Solar Radiation Shield (RAD10, Campbell Scientific, Inc.,
USA) situated in the on-site weather station (Figure 1).

Spatial Correction and Heritability
Calculation
The correction of spatial trends as a result of both, spatial
variability of trait (CT) values in the field and, in case of CT,
additional changes during the flight campaign was done with the
R-packages SpATS (Rodríguez-Álvarez et al., 2018). For each
UAV flight, a model was fitted with a peculiarity of the
experimental site in mind: generally we observe a strong
pattern in the replications (lots one and three, Figure 1) in
working direction (row direction) while there are more smooth
trends perpendicular to this direction (range direction). The
spatial model was:

Y = f (r, c) + Zgcg + Zrcr + e (2)

where f (r,c) is a smoothed bivariate surface defined over row
(r= 1–74) and range (c=1–18) positions of a virtual grid in
which both replication were arranged (see below). The vector
cg = (cg1, …, cg354) is the random coefficient of the genotypes
associated with the design matrix Zg, cr = (cr1, …, cr74) ~ N(0,
sr

2I74) is the random coefficient of the rows associated with
design matrix Zr and e is the random error vector e= (e1,…,en) ~
N(0, s2In). Replication 1 (lot 1) ranged from row 1 to 21 and
range 1 to 18 while replication 2 (lot 3) ranged from row 54 to
74 and range 1 to 18 in the virtual grid. Thus, there were 32
rows separating the two replications in the virtual grid
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representing lot two (the parcel between lots one and three,
Figure 1). The number of spline points was set to 2/3 of the total
number of rows and ranges in the virtual grid, respectively. To
calculate the best linear unbiased estimator (BLUEs), the
genotypes were set as fixed-effects and the design matrix in
equation two became Xg accordingly. The spatially corrected
plot values were derived as the sum of model intercept, plot-
specific genotypic BLUEs and residual error. Heritability of the
spatially corrected traits (model two) was calculated according to
(Rodríguez-Álvarez et al., 2018) based on the genetic effective
dimensions provided by SpATS as:

H2
s =

EDg

ng − 1
(3)

where EDg is the effective dimension for the genotypes and ng is
the total number of genotypes evaluated. The denominator (ng–
1) reflects the upper bound for the effective dimension [see
Rodríguez-Álvarez et al. (2018) for further details].

RESULTS

Analysis of Orthomosaics Resulting From
Different Blending Modes
Processing the thermal data (section Processing of Thermal Data,
Figure 3) resulted in orthomosaics such as shown in Figure 4.
The thermal GCPs (section Unmanned Aerial Vehicles Flights
and Figure 3) were clearly visible in the orthomosaic (Figure 4),
leading to an overall high spatial accuracy. The obtained GSD of
these orthomosaics varied from 4.89 to 5.11 cm due to slight
variations in flying altitudes. The calculated GSD of the thermal
camera used at a flight height of 80 m was 5.5 cm. The root-
mean-square deviation (RMSE) of the GCP positions across all
24 UAV flights ranged from 1.25 to 10.05 cm with a mean RMSE
of 4.79 cm. The exact accuracy metrics for each flight date can be
found in Table 2 of the Supplementary Materials.

A detailed look at thermal orthomosaics revealed that the
viewing geometry influenced the apparent CT. Figure 5
exemplifies the situations for the flight on the 2018-06-20 at

FIGURE 4 | Thermal orthomosaic of the experimental site [the “field phenotyping platform (FIP) field”] mosaicked using the blending mode “average” from the flight
on the 2018-06-23 at 15:09 h local time. The orthomosaic has a dimension of 3,990 x 4,490 px, a ground sampling distance of 4.89 cm/px at a flight height of 87 m
(estimated by Agisoft PhotoScan). The enlarged area (top left) shows a thermal ground control point (GCP) as seen in the orthomosaic. Note the “chessboard”-like
structure of the individual wheat plots in the two replicates (lots one and three).
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14:00 h. Figure 5A, B show the orthomosaics generated with the
blendingmode “disabled” and “average,” respectively. The hot areas
are the paths between the plots. The high spatial resolution reveal
differences within the plots of up to several °C. Approx. 20 cm (four
pixels) within every plot seem to be influenced by border effects in
both orthomosaics. A qualitative comparison of the orthomosaics
showed more apparent heterogeneity in “disabled” mode.

The black lines in Figure 5A, C denote seamlines between
information of the different images used to compose the
orthomosaic in blending mode “disabled.” The white rectangle
highlights a plot that is composed by information from four
different images. Within the plot, the apparent temperature
changes along the seamlines. Figure 5C shows that, at this
point, information with different viewing geometries (about 4°
difference) have been composed next to each other. For a detailed
explanation and schematically drawing on how an orthomosaic
is composed please refer to Aasen and Bolten (2018), and for a
detailed description on how to trace pixel dependent properties
please refer to Aasen et al. (2015). Generally, only very small
ranges of viewing geometries are used in the blending mode
“disabled.” In the blending mode “average” (Figure 5B), sharp

transitions between apparent temperatures are not visible. In this
mode the information of more than 20 images was averaged and
thus, a wide range of viewing geometries were used.

Figure 5D shows the average apparent temperature of all
plots of that fight in dependence of its viewing geometry. The
sun had an azimuth angle of approx. 199° and a zenith angle of
approx. 25° (retrieved from https://www.suncalc.org, for
Lindau, Zurich, CH at 14:01 h UTC+2). The viewing
geometry of the apparent temperature was calculated from
the relative position of the camera seen from the plot. Thus, a
viewing geometry of 0° azimuth and zenith corresponded to
nadir (measurement right above the plot), and a viewing
geometry of 20° zenith and 199° azimuth would have an
acute angle while 20° zenith and 19° azimuth would have an
obtuse angle to the sun. The plot reveals that, on average, the
apparent temperature differs by more than 3.5°C (36.5–40.1°C)
within the different viewing geometries within an image, with
the largest gradient in direction of the principal plane of the sun
were the measurement geometry (sun-object-sensor) changes
from an obtuse angle to an acute angle. A close look at Figure
5D reveals that around nadir—where the proportion of soil

FIGURE 5 | Excerpt of an orthomosaic generated with blending mode “disabled” (A) and “average” (B) on the 2018-06-20 at 14:00 h local time. The color
corresponds to the apparent canopy temperature (CT). (C) shows the viewing geometry of the information used to generate the blending mode “disabled”
orthomosaic (A). In A and C, black seamlines mark the border of the information that is taken from different images. The white box highlights a plot where
information from four images are composed in the blending mode “disabled” mosaic (A). (D) shows the average apparent temperature of all plots of that flight in
dependence of its viewing geometry. The sun had an azimuth angle of approx. 199° and a zenith angle of approx. 25°. The viewing geometry of the apparent
temperature was calculated from the relative position of the camera seen from the plot.
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signal is higher compared to other viewing geometries—the
temperatures are slightly increased when compared to the
general pattern. High-resolution thermal imagery captured by
the ETH field phenotyping station (Kirchgessner et al., 2017)
explains this observation, since in-between the crop rows the
warm soil can be seen (see Figure 1 in the Supplementary
Materials for an example).

For all flights together, the CT values obtained by the two
evaluated blending modes were linearly related across all UAV
flights (intercept = 0.14; slope = 0.96; R2 = 0.98, Figure 2 in the
Supplementary Materials together with linear relationships for
each UAV flight). Figure 6 shows a Bland-Altman plot of the
2018-06-20 containing the relationship of the plots mean CT
across both blending modes (x axis) to the difference in CT
between both blending modes (y axis, “disabled” subtracted from
“average”). It allows comparing systematic differences between
the two blending modes. Overall, the difference became more
negative until noon and increased toward the late afternoon. For
the first and last flight, the difference between the blending
modes was negligible. All other UAV flights exhibited a
slightly negative trend between the mean CT and the CT
difference between the blending modes.

Canopy Temperature Heritability Across a
Day and Dates
For the first day with multiple flights—the 2018-06-16—
fluctuations in PAR due to cloud passes and, to a lesser extent,
vapor pressure deficit (VPD) (Figure 7, bottom) resulted in
variable H2 values (Figure 7, top). For all genotypes, H2 values
ranged from 0.46 to 0.58 for the blending mode “disabled” and
from 0.48 to 0.61 for the blending mode “average.” Overall, H2

increased during the morning, peaking at 12:50 h on the 2018-
06-16, right after a passing of clouds. H2 values of the “stay
green” genotypes were low at the 14:06 h and the 15:27 h

measurements. They ranged from 0.29 to 0.6 for the blending
mode “average” and from 0.3 to 0.59 for the blending
mode “disabled.”

For the second day with multiple flights, the 2018-06-20,
weather conditions were stable and the H2 values were similar for
most flights (Figure 7, top). The H2 values of the 9:24 h
measurement were low with values under 0.3 for both blending
modes and sets of genotypes. The other UAV flights showed
higher H2 values ranging from 0.48 to 0.54 for the blending mode
“average” and from 0.43 to to 0.54 for the blending mode
“disabled.” On that day, highest H2 was reached at 14:00 h
before decreasing again. The “stay green” genotypes exhibited
lower H2 values than all genotypes throughout the 2018-06-20
with the exception of the blending mode “disabled”
measurement at 15:05 h. The pattern of H2 values for these
genotypes was similar to the one found in all genotypes.

Figure 8 shows the H2 values of the measurements carried out
on different days (top) and the weather data for the UAV flights
(bottom). Overall, H2 values generally increased from flowering
at the end of May up to a peak on the 2018-07-04. The increase in
H2 values coincided with the dry period with no rainfall between
the 2018-06-14 and the 2017-07-02. H2 values ranged from 0.30
to 0.67 for the blending mode “disabled” and from 0.36 to 0.74
for the blending mode “average.” The CT elicited with the
blending mode “average” showed higher H2 values on all
measurement dates except on the 2018-06-04 and the 2018-06-
20. The variance components of the heritability split into
genotypic and residual variance showed the blending mode
“average” reducing both variances (Figure 8). The impact was
however, larger for the residual variance than the
genotypic variance.

The “stay-green” genotypes (red data points Figure 8, top)
also showed a similar increase in H2 values after flowering at the
end of May until beginning of senescence, with an outlier on the
2018-06-16 where the PAR was low compared to the other
UAV flights (Figure 8, bottom). H2 values elicited with blending
mode “average”were generally also higher than the blendingmode
“disabled,” except for the 2018-06-20. The blending mode
“average” also reduced the genotypic and residual variance
components for the “stay-green” genotypes. Further results are
reported on the CT measured with the blending mode set to
“average,” due to the generally higher heritability.

Canopy Temperature Correlation Across a
Day and Dates
Correlation coefficients between the measurements performed
around solar noon at the different dates ranged from 0.41 to 0.95
(Figure 9). All correlations shown in Figure 9 were significant
on p ≤ 0.01. Correlations between successive measurement dates
were high and ranged between 0.68 and 0.95 (Figure 9,
diagonal). Especially the three measurements between the
period of the 2018-06-16 and the 2018-06-30 showed high
correlations. For the 2018-06-16, Pearson correlations between
measurements were overall high and ranged from 0.83 to 0.93
(Figure 10A). Correlations between successive flights were also
high, ranging from 0.88 to 0.93. For the same-day measurements

FIGURE 6 | Bland-Altman plot showing the mean canopy temperature (CT,
in DT) of both blending modes (“average” and “disabled”) on the x axis and
the CT difference (in DT) between both blending modes on the y axis
(“average” minus “disabled”) for measurements taken on the 2018-06-20.
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on the 2018-06-20, Pearson correlations ranged from 0.49 to 0.95
(Figure 10B). The two measurements conducted before solar
noon (09:24 and 10:11 h) showed weak correlations with the
measurements conducted around solar noon and the 15:05 and
15:49 h measurement. The solar noon measurements (11:05,
12:27, and 14:00 h) correlated highly.

DISCUSSION

This study presented a comparably cheap method for high
throughput CT phenotyping based on UAV thermography in
combination with photogrammetry and computer vision,
namely the SfM approach. The total hardware cost added up
to 18k € (6k € for the Matrice 600 pro, 8k € for the A65 camera,
3.5k € for Agisoft professional edition, 0.5k € controlling
equipment). Additionally, a high-precision GNSS solution for

measuring the GCP positions and a workstation for
photogrammetric processing are also needed. With the flight
parameters used in this study, an area of one hectare was
captured in a flight time of approximately 8 min. Since the
drone was powered by electricity, no substantial follow-up cost
besides the cost of replacing the batteries occasionally needed to
be considered. With increased flight time and increasing altitude,
the approach potentially allows capturing very large areas since it
allows combining many individual images to an orthomosaic. In
the following, the results of this method are discussed.

Orthomosaic Generation From Thermal
Images
The orthomosaics showed high detail that allowed assessment of
in-plot heterogeneity. Visually it can be seen that plot
temperature is influenced by border effects of the between-plot
space by approximately four pixels (approx. 0.25–0.3 m or two

FIGURE 7 | Diurnal variation of H2 values on the 2018-06-16 and the 2018-06-20 (top) for all genotypes (black) and for “stay green” genotypes (red). Data were
gathered using the blending mode set to “average.” Axis times in hours:minutes, local time. Diurnal variation of the temperature, the photosynthetically active
radiation (PAR in mmol m−2s−1) and the vapor pressure deficit (VPD) on the 2018-06-16 and the 2018-06-20 (bottom). The vertical lines correspond to the start time
of the unmanned aerial vehicles (UAV) flights.
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rows) (Figure 5A, B). Looking at the plots from multiple viewing
geometries showed that CT is anisotropic. It shows an almost
symmetrical pattern in parallel to the principal plane of the sun
with on average several °C difference across the field of view (25°)
of the sensor. Around nadir a hotspot is visible were the
temperatures are slightly increased compared to the general
pattern (Figure 5D). This can be explained by higher soil
temperatures compared to plant temperatures, which are
revealed when looking at very high-resolution images from the
field phenotyping platform captured at the same time (Figure 1,
Supplementary Materials). However, the effect of this differs
depending on the canopy structure within each plot. Visual
inspection of high-resolution images indicated that the angle of
the heads and leafs also influence the apparent temperature.

The systematic differences resulting from the viewing
geometry are also found in the blending modes. The blending
mode “disabled” showed higher in-plot heterogeneity. In this
blending mode, only the center part of each image is used, which

corresponds to viewing geometries close to nadir (Figure 5C).
This viewing geometry potentially captures more information
from inside the canopy and the soil background than oblique
viewing geometries (for a detailed discussion on the effects of the
viewing geometry on the apparent signal—in particular the
proportion of visible soil and plant material—please refer to
Aasen and Bolten, 2018). In the blending mode “average” all
information from all images covering a certain pixel in the
orthomosaic is taken into account, and thus the information is
averaged over a wide range of viewing geometries (including
nadir and oblique). Consequently, compared to an only nadir
viewing geometry, more information of plant material from the
higher canopy levels is captured (Aasen and Bolten, 2018). This
effect is also visible in the Bland-Altman plot (Figure 6).
Negative differences between the blending mode “average” and
“disabled” corresponds to higher apparent temperatures in the
close to nadir viewing geometries (blending mode “disabled”).
The negative slopes of the relationships indicate that with a

FIGURE 8 | Heritabilities for the solar noon measurements shown for spatially corrected data (top) for all genotypes (black) and for “stay green” genotypes (red). The
genotypic and residual variances of the two blending modes are also plotted (middle panels). The genotypic and the residual variance of the SpATS corrected data
was overall lower for the blending mode “average.” Weather data (bottom) is given in mean daily air temperature (°C, red line) and cumulated daily precipitation data
(mm, blue bars) and photosynthetically active radiation (PAR in mmol m−2s−1, black rectangles) for the measurement period. Weather data from the on-site weather
station (Figure 1). Unmanned aerial vehicles (UAV) flight dates marked in vertical dashed lines.
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higher absolute plot temperature the close to nadir values
relatively increase. This can result from higher plot
temperatures in less dense canopies (with lower biomass) were
the nadir viewing geometry captures more of the warm soil
background. Toward the later afternoon, the canopy cooling
decreases and the soil background is shaded such that the nadir
measurements become cooler (15:05 h flight) and later (15:49 h
flight), the differences between the two measurements
procedures become negligible. Similar, in the early morning
(09:24 h flight) both soil and leaf temperature are largely
determined by the air temperature, which result in negligible
difference in apparent temperature between the blending modes.

Overall, the interpretation of the results in this detail is very
complex. More research is needed to disentangle the interaction
of canopy structure, illumination, and viewing geometry with CT
to establish a robust link between CT and actual physiological
status (e.g., stomatal conductance) of the plants.

Many studies that use 2D imager [c.f. (Aasen et al., 2018)]
based thermography have used single images for CT extraction
(Bendig et al., 2012; Zarco-Tejada et al., 2012; Calderón et al.,
2013; Deery et al., 2016; Sankaran et al., 2018; Deery et al., 2019),
eliminating the need for complex image mosaicking. The
drawback of the single image approach is that only a limited
area can be captured—and to increase this area the flight height
needs to be increased, consequently decreasing the GSD.
Considering the limited resolution of current thermal cameras
(most have a resolution of up to 640 x 480 pixels) and the limited
maximum legal flying height of UAV systems in most countries,
the applicability of the single image approach for low-cost UAV
phenotyping is limited. Additionally, in the single image
approach, anisotropy effects have a stronger influence on the
data since a larger variety of viewing geometries are used within
one image.

To achieve high position accuracy, GCPs are used during the
generation of the orthomosaics (Ortega-Farías et al., 2016;
Ribeiro-Gomes et al., 2017; Malbéteau et al., 2018; Sagan et al.,
2019). A dense distribution of GCPs across the experimental site
help to obtain optimal results (Mesas-Carrascosa et al., 2015;
Roth et al., 2018). A key issue with conventional GCPs in thermal
imagery is that they can be hard to detect in thermal images due
to low contrast of such imagery (Malbéteau et al., 2018). This was
confirmed in test flights conducted for this study. To overcome
this limitation, some authors first georeferenced red green blue
(RGB) images with GCPs and then referenced the thermal
imagery to the RGB data (Sagan et al., 2019). With special
thermal GCPs it is possible to georeference thermal
orthomosaics without the need for exact for expensive on-
board RTK solution for the UAV. Most studies did not report
position accuracies of generated thermal orthomosaics (Berni

FIGURE 9 | Correlation coefficients between spatially corrected genotypic
canopy temperature (CT) values of different dates measured around solar
noon. All correlations were significant at p ≤ 0.01.

FIGURE 10 | Correlation coefficients between spatially corrected genotypic canopy temperature (CT) values on the dates with multiple measurements: (A) the 2018-
06-16 and (B) the 2018-06-20. All correlations were significant at p ≤ 0.01.
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et al., 2009b; Berni et al., 2009a; Zarco-Tejada et al., 2013; Maes
et al., 2017; Santesteban et al., 2017; Malbéteau et al., 2018;
Sankaran et al., 2018; Sagan et al., 2019). Ribeiro-Gomes et al.
(2017) used rubber sheets with an aluminum plate as thermal
GCPs and reported a thermal orthomosaic position RMSE of
7.2 m at a flight height of 80 m. After increasing the contrast of
their thermal images, they reduced their position RMSE to 1.2 m.
Malbéteau et al. (2018) used aluminum plates with black crosses
taped onto but did not report spatial accuracies of their
orthomosaics. Using regular GCPs, Gómez-Candón et al.
(2016) report orthomosaic RMSEs ranging from 15 to 19.4 cm
for their thermal flights at 40 m flight height. Compared to these
studies, the obtained position accuracy in our study was very
high, with positional RMSE ranging from 1.25 to 10.05 cm with
an overall mean RMSE of 4.79 cm. Both Gómez-Candón et al.
(2016) and Ribeiro-Gomes et al. (2017) used a thermal camera
with similar resolution as in this study.

Some conclusions can be drawn from these results:

- When using the information of individual images or the
blending mode “disabled” the flight pattern should be
planned such that the plots are captured in similar viewing
geometries since already small differences impact the
apparent temperature. Ideally, the flight pattern should be
along the range or rows of the design and with a high rate of
frames per second.

- The “average” blending mode is able to reduce the impact of
the viewing geometries. Since the anisotropy is symmetrically
to the principal plane of the sun, a flight pattern in parallel to
the principal plane is advised. Ideally, the capturing position
is symmetrically in all directions, but it should at least be
along the principal plane to appropriately average out the
viewing effects. This would also be supported by a high
measurement frequency.

- In case of slightly fluctuating measurement conditions, it is
advised to fly in parallel to the range or row direction since
differences can then be included into the range or row
component of the spatial correction model. In future,
models that integrate the measurement time could further
improve the correction. Under strongly fluctuating
environmental conditions it is not advised to measure, since
the comparability of the measurements might be
compromised due to the changes in plant physiology during
the measurements.

- Independent of the data generation procedure, precise
georeferencing is key if data from multiple flights should be
processed in an automated way.

Optimal Timing for Canopy Temperature
Characterization
Comparing the genotypic CT values from multiple
measurements on the 2018-06-16 and 2018-06-20, showed
constant correlations across all measurement times on the
2018-06-16 (Figure 10A). On the other hand, the correlations
of the morning measurements with subsequent measurements

decreased toward the afternoon on the 2018-06-20 (Figure 10B).
This indicated a changed response of the genotypes to the
environmental conditions during the day with the rapid
increase of temperature throughout the day on the 2018-06-20
compared to the moderate increase on the 2018-06-16 (21°C vs.
25°C span between the measurements).

H2 values were highest in the early afternoon at 14:00 h local
time (Figure 7). This can be explained by the increased potential
photosynthesis due to high irradiation and an increasing vapor
pressure deficit toward the early afternoon (Figure 7), which can
potentially increase conductance and may lead to an increased
variance between the genotypes. These results align with the
results of (Deery et al., 2016; Deery et al., 2019) for wheat. Thus,
generally it can be concluded that flights at that time are best to
estimate genotypic differences in CT. Still, the highest H2 on the
2018-06-16 was found around noon right after a cloud overpass.
This could be an indication of differences between genotypes in
upregulating transpiration after a cloud overpass during dry
periods. Also, it is likely that the best timing depends on the
water availability in the soil. Thus, to resolve such interactions,
continuous measurements would be of benefit.

Looking at the whole period, H2 generally increased toward
the beginning of July (Figure 8). The period between the 2018-
06-14 and the 2017-07-02 corresponded to a dry period without
rainfall (Figure 8, bottom) and it can be assumed that also the
water stress increased in this period. Still, also the senescence
started on the 2018-06-16 for the early senescent genotypes. In
an attempt to disentangle the effect of phenology and water
stress, we selected the “stay green” genotypes. These showed a
similar trend in H2 as the whole-genotype set (Figure 8)
suggesting that not only the senescence but also the ongoing
dry period increased variance between genotypes. The drop in
H2 observed on the 2018-06-16 for the “stay green” genotypes
may have been a result of low PAR on that UAV flight, (Figure
7, left and Figure 8, bottom), possibly resulting in poor
transpiration, which lowered the heritability and thus the
ability to differentiate genotypes. Other flights on that day
showed similar H2 as the flights on the 2018-06-20. This
effect was not seen in the whole genotype set that contained
already visual senescence genotypes. Still, it has to be noted that
the “stay green” genotypes were only identified based on visual
signs of senescence in this study, an pre-visual senescence
processes might still influence the results. Consequently, to
get stable CT estimates that correspond to physiology rather
than phenology, the authors suggest performing CT
measurements at early afternoon and before the onset of
senescence. Further research is needed on this topic, since i)
change in physiology during pre-visual senescence might
already influence CT and ii) drought and phenology (i.e.,
early senescence) might interact and both have an effect on
CT, as also mentioned in Lopes and Reynolds (2010).

Comparison of Different Canopy
Temperature Measurement Approaches
In a typical field phenotyping scenario, a couple of hundred to
thousand plots situated on a few hectares need to be screened.
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For CT, several other measurement approaches exist besides the
one described in this study. Table 1 analyses the advantages and
disadvantages of these approaches. Handheld measurements
have a very attractive setup cost, are easy to setup and are
highly flexible while arguably having the highest GSDs
available. Sampling such a large field experiment by hand is in
most cases unfeasible due to the high running costs, the long time
needed to sample a plot and the changes in environmental
conditions during the sample time, which result in low
heritability (Deery et al., 2016; Sagan et al., 2019).

Phenotyping stations such as the “field phenotyping
platform” (FIP) at ETH Zürich (Kirchgessner et al., 2017), the
“Field Scanalyzer” in Rothamsted (Virlet et al., 2017) and similar
stations described in Hund et al. (2019) are highly automated,
reducing manual labor costs. Phenotyping stations have low
effort for data acquisition, a moderately high area that they can
efficiently cover and are applicable to measure tall crops to a
certain extent (< 3 m). With the sensors situated only a few
meters above ground, they have a very high GSD that allows
differentiating differences between plant organs. However, they
require high setup costs and are spatially very inflexible due to
their stationary nature. In addition, the measurements are
recorded sequentially, which might introduce biases due to
changing environmental effects. Jones et al. (2018) and Deery
et al. (2019) used a sensor network of infrared point sensors to
simultaneously elicit CT for up to 84 out of 400 plots in their
field experiments.

While this minimizes the running costs, acquiring a sufficient
number of sensors to make such measurements viable requires
high setup—and possibly maintenance—costs. However, such a
system has the advantage that all measurements are done
simultaneously, minimizing the impacts from changing
environmental conditions during measurements.

Table 1 contains the two scenarios “UAV orthomosaic” and
“manned aircraft single image” for airborne measurements,
whereas both—manned aircrafts and UAVs—could be used for
both approaches. Still, these two scenarios are the most popular
ones when it comes to airborne thermal field-phenotyping

(Liebisch et al., 2015; Deery et al., 2016; Gómez-Candón et al.,
2016; Malbéteau et al., 2018; Deery et al., 2019; Sagan et al., 2019).

The UAV has an advantage over manned aircrafts when it
comes to setup and running costs of the measurement system.
The effort for setup effort (sensor implementation) are roughly
similar between the two systems. The size of the coverable area in
an orthomosaic is only limited by the flight time of the carrier
system but can be extended by combining imagery from multiple
flights. The orthomosaic scenario can thus effectively cover a
larger area than the single image approach at the cost of potential
impacts of changing environmental conditions during the
measurement of the images. The “single image” scenario, can
sample more plots in a shorter time when the flight altitude is
higher to capture all plots, at the cost of having a lower GSD than
an orthomosaic captured from a lower altitude. Additionally,
single images are limited in their covered area per image. The
lower cost and administration needed to fly UAVs make this
system more flexible than piloted aircraft.

A limitation of the UAV based orthomosaic employed in this
study was the flying time of the multi-rotor UAV, which is
currently at maximum 15 to 20 min. The high spatial resolution
of the obtained orthomosaics meant that flight heights could
potentially be doubled while still having a good GSD. Due to the
high measurement speed of the camera, a higher flying speed
would also be possible, extending the possible coverage per flight.
The greatest benefit in sampling area could however be achieved
by mounting thermal cameras on fixed-wing UAVs. Fixed-wing
UAVs are able to cover large areas [up to tens of ha in one flight
[e.g., (Wingtra, 2019; senseFly, 2019)].

CONCLUSION

This study presented an unmanned aerial vehicle (UAV) based
low cost thermal imaging approach to estimate canopy
temperature (CT) for field phenotyping experiments. The
approach allowed obtaining data with high temporal and spatial
resolution at variable extents, since many thermal images can be

TABLE 1 | Advantages (+, ++) and disadvantages (-, –) of the most common scenarios for eliciting canopy temperature (CT) in a field-phenotyping environment.

Property Handheld sequential Multiple devices
simultaneous

Phenotyping
platform sequential

Orthomosaic Single image

Coverable area -- - + ++ 0
Ground sampling distance ++ Non-imaging ++ + 0

UAV Manned aircraft
Setup cost ++ - -- + --
Running cost/field area -- - - ++ --
Setup effort ++ -- -- 0 -
Effort for measurements -- ++ + + +
Plots sampled/time -- ++ 0 + ++
Flexibility of sensor setup ++ - -- ++ +
Applicable for tall crops (>2 m) - -- 0 ++ ++
Example publications (Pask et al., 2012;

Joalland et al., 2018)
(Jones et al., 2018;
Deery et al., 2019)

(Kirchgessner et al., 2017) (Sagan et al., 2019) (Liebisch et al., 2015;
Deery et al., 2016;
Deery et al., 2019)

Since orthomosaics and single images can be captured by both unmanned aerial vehicles (UAVs) and manned aircrafts, thus in these columns it is separated by data product and platform
aspects.
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mosaicked into one orthomosaic. Viewing geometry effects within
the thermal imagery were analyzed and it was found that they
potentially had large influences on the obtained signal within one
image. It was discussed how these translated into effects in the
thermal orthomosaic, depending on how the orthomosaics were
generated. It was found that averaging the information of all
images to characterize an area of interest (e.g., a plot) had a higher
heritability that only using the center parts of the images during
the mosaicking process. When averaging the information during
the orthomosaic generation, it is suggested to use a regular grid of
measurements in parallel to the principle plane of the sun and a
high framerate. Correction for spatial effects in the data with the
2D splines of SpATS resulted in a heritability of 0.36 to 0.74 for
CT measurements, depending on the day, flight time, and data
processing mode. Analysis of multiple flights per day and across
the season showed that an optimal time point for thermal
measurements in wheat is before the onset of senescence and
ideal flight times to estimate genotypic differences in CT are in the
early afternoon around 14:00 h local time. Overall, the results of
this study demonstrate that the low-altitude thermal remote
sensing is suitable for high-throughput field phenotyping. A
comparison to other approaches demonstrated that it helps to
close the gap of existing applications of thermography in large-
scale phenotyping scenarios for plant breeding. Future research
should aim to establish a robust link between observed CT and
plant physiological traits (e.g., stomatal conductance), since
multiple results indicated a confounding effect of canopy
structural traits such as canopy density, leaf, and head inclination.
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