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Abstract: We integrate a set of game-theoretic driver decision-making models with the high-
fidelity car driving simulator The Open Racing Car Simulator (TORCS). The game-theoretic
driver models simulate the interactive decision making processes of the drivers and TORCS
simulates vehicle dynamics in multi-vehicle highway traffic scenarios. We use the integrated
simulator to collect human driving data and then use these data to validate and re-calibrate
our driver and traffic models. Such an integrated simulator can be used in the development,
verification and validation of automated driving functions.
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1. INTRODUCTION

Advanced driver assistance systems (ADAS) and au-
tonomous driving functions (ADF) have been rapidly
advancing in recent years, with the promise to provide
safer, cleaner, and more efficient everyday transportation
(Anderson et al. (2014)). Traffic and vehicle simulators,
where real traffic scenarios are modeled, can support the
development of these systems.

One of the most significant challenges faced by ADAS
and ADF developers is the verification and validation
of these systems and functions in terms of safety and
performance. Hundreds of millions of miles of driving tests
are required to demonstrate the same level of reliability
of these systems to that of average human drivers (Kalra
and Paddock (2016)). Simulators may be used for fast
and safe virtual tests of these systems to reduce the
time and effort needed for road tests (Gechter et al.
(2012); Li et al. (2018b, 2019)). Simulators may also
be used as platforms to collect human driving data in
different traffic scenarios and different road and weather
conditions in order to better understand human driving
behavior (Lowden et al. (2009); Bella et al. (2014)).
Furthermore, simulators may be used to train perception
systems and control algorithms for autonomous driving
exploiting machine learning techniques (Chen et al. (2015);
Zhang and Cho (2017)).

In traffic scenarios where multiple vehicles are involved,
modeling of their interactive behavior is important. In our
previous publications (Oyler et al. (2016); Li et al. (2016,
2018b)), a game-theoretic approach is used for modeling
the interactive driver decision making processes in multi-
vehicle highway traffic scenarios.
� This research has been supported by the National Science Foun-
dation award number CNS 1544844.

In this paper, we describe the integration of our game-
theoretic driver decision-making models in Li et al. (2018b)
with the vehicle simulator called TORCS (Wymann et al.
(2000)). Our driver models simulate drivers’ interactive
decision making processes and TORCS simulates vehicle
dynamics, so that their integration provides a platform
for higher-fidelity highway traffic simulations. After the
integrated simulator is developed, we use it to collect
human driving data and then use the data to validate and
re-calibrate the driver decision-making and traffic models.

2. GAME-THEORETIC DRIVER
DECISION-MAKING MODEL

The approach to model drivers’ interactive decision mak-
ing in highway traffic scenarios developed in Li et al.
(2018b) is based on level-K game theory (Costa-Gomes
and Crawford (2006); Costa-Gomes et al. (2009)), and
is inspired by the “semi network-form game” approach
proposed by Lee and Wolpert (2012). In this section, we
briefly review the driver decision-making models. Similar
modeling approaches have also been previously imple-
mented in cyber-security (Backhaus et al. (2013)) and
aerospace (Yildiz et al. (2014); Musavi et al. (2016)) do-
mains, and they have been recently investigated for mod-
eling driver/vehicle interactions in urban traffic scenarios
(Li et al. (2018a)).

2.1 Driver model

We first model the car dynamics using the following point-
mass discrete-time model:

x[k + 1] = x[k] + vx[k] ∆t,

vx[k + 1] = vx[k] + a[k] ∆t, (1)

y[k + 1] = y[k] + vy[k] ∆t,
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where k represents the discrete time, x[k] and y[k] rep-
resent, respectively, the vehicle’s longitudinal position and
lateral position, vx[k] and vy[k] represent, respectively, the
vehicle’s longitudinal velocity and lateral velocity, and a[k]
represents the vehicle’s longitudinal acceleration. The ∆t
is the time step. We note that y[k] = 0 [m] corresponds to
the right road boundary.

The driver decision-making model is a stochastic policy,
π(γ|m), that maps a driver’s observations to probabilities
of selecting different actions, π(γ|m) : m �→ P(γ|m), where
m ∈ M denotes an observation message taking values in
a finite observation space, and γ ∈ Γ denotes an action
taking values in a finite action space.

The definitions of the action and observation spaces are
given below:

2.1.1 Action space

(1) Maintain: To keep the current speed and the current
lane.

(2) Accelerate: To accelerate at a rate a = a1 [m/s2],
provided that the speed does not exceed vmax [m/s].

(3) Decelerate: To decelerate at a rate a = −a1 [m/s2],
provided that the speed is above vmin [m/s].

(4) Hard accelerate: To accelerate at a rate a = a2 [m/s2],
provided that the speed does not exceed vmax [m/s].

(5) Hard decelerate: To decelerate at a rate a =
−a2 [m/s2], provided that the speed is above vmin [m/s].

(6) Move to the left : To change lanes to the left with
velocity vy = wlane

2 [m/s], where wlane represents the
lane width, provided that there is a lane on the left.

(7) Move to the right : To change lanes to the right with
velocity vy = −wlane

2 [m/s], provided that there is a
lane on the right.

At each discrete time instant k, one action is selected from
the action space and is applied to the model (1) to update
the vehicle’s state (x, vx, y). The acceleration rate values
a1 and a2 and the speed bounds vmin and vmax are tunable
parameters. The lateral speed during a lane change is equal
to wlane

2 hence a lane change takes 2 [s] to complete.

2.1.2 Observation space

(1) Front center range, dfc: The longitudinal distance
from the ego car to the car directly in its front.

(2) Front left range, dfl: The longitudinal distance from
the ego car to the car in its front and in its left lane.

(3) Front right range, dfr: The longitudinal distance from
the ego car to the car in its front and in its right lane.

(4) Rear left range, drl: The longitudinal distance from
the ego car to the car in its back and in its left lane.

(5) Rear right range, drr: The longitudinal distance from
the ego car to the car in its back and in its right lane.

(6) Front center range rate, vfc: The rate of change of dfc.
(7) Front left range rate, vfl: The rate of change of dfl.
(8) Front right range rate, vfr: The rate of change of dfr.
(9) Rear left range rate, vrl: The rate of change of drl.

(10) Rear right range rate, vrr: The rate of change of drr.
(11) Lane, I: The current lane of the ego car.

To account for the fact that a human driver may not be
able to accurately measure these quantities, we assume
that these quantities are encoded into discrete values, as

follows:

d̂ζ [k] =





“close” if 0 ≤ dζ [k] ≤ dc,

“nominal” if dc < dζ [k] ≤ df,

“far” if dζ [k] > df or there

is no car in the ζ position,

(2)

v̂ζ [k] =




“approaching” if vζ [k] < −vm,

“stable” if − vm ≤ vζ [k] ≤ vm,

“moving away” if vζ [k] > vm or there

is no car in the ζ position,
(3)

where ζ ∈ {fl, fc, fr, rl, rr} indicates the range or range
rate to a specific surrounding car, and

I[k] =



“right lane” if y[k] < wlane,

“left lane” if y[k] > wroad − wlane,

“middle lane(s)” otherwise.

(4)

The threshold values dc, df, vm are tunable parameters,
and the road width wroad is a multiple of the lane width
wlane.

After the encoding, the vector

m[k] =
[
d̂fl[k], d̂fc[k], d̂fr[k], d̂rl[k], d̂rr[k], (5)

v̂fl[k], v̂fc[k], v̂fr[k], v̂rl[k], v̂rr[k], I[k]
]�

represents the observation message. The set of all message
values constitutes the observation space M . Because each
component of m can take 3 different values based on (2) –
(4), and m has 11 dimensions, M has 311 elements.

The driver policy π(γ|m) is obtained based on average re-
ward reinforcement learning (Mahadevan (1996)) to max-
imize the average reward associated with a Markov de-
cision process. In particular, since the ego car can only
partially observe the traffic state through the message m,
the optimization problem is a partially observable Markov
decision process (POMDP) and we use a specific reinforce-
ment learning algorithm for POMDP problems (Jaakkola
et al. (1995)) to obtain the policy π(γ|m). The single-step
reward function is defined to reflect the basic goals of a
driver, including : 1) to not have an accident, such as a
car crash (safety); 2) to minimize the time needed to reach
the destination (performance); 3) to keep a reasonable
headway from preceding cars (safety and comfort); and
4) to minimize driving effort (comfort). The definition
of the reward function and more details on the applied
reinforcement learning algorithm can be found in Li et al.
(2018b, 2019).

2.2 Interactive traffic model

A traffic scenario usually involves multiple drivers/vehicles.
To represent the drivers’ interactive behavior, we use a
game-theoretic approach.

In particular, the driver interaction model is based on
level-K game theory, where the level K indicates a player’s
(a driver’s, in our setting) reasoning depth in a multi-
player game. A level-K driver policy anchors its beliefs
in a nonstrategic level-0 driver policy, which represents a
driver’s instinctive responses to traffic conditions without
accounting for the interactions between herself and the
other drivers. Then, a level-1 driver assumes that all the
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where k represents the discrete time, x[k] and y[k] rep-
resent, respectively, the vehicle’s longitudinal position and
lateral position, vx[k] and vy[k] represent, respectively, the
vehicle’s longitudinal velocity and lateral velocity, and a[k]
represents the vehicle’s longitudinal acceleration. The ∆t
is the time step. We note that y[k] = 0 [m] corresponds to
the right road boundary.

The driver decision-making model is a stochastic policy,
π(γ|m), that maps a driver’s observations to probabilities
of selecting different actions, π(γ|m) : m �→ P(γ|m), where
m ∈ M denotes an observation message taking values in
a finite observation space, and γ ∈ Γ denotes an action
taking values in a finite action space.

The definitions of the action and observation spaces are
given below:

2.1.1 Action space

(1) Maintain: To keep the current speed and the current
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provided that the speed does not exceed vmax [m/s].

(3) Decelerate: To decelerate at a rate a = −a1 [m/s2],
provided that the speed is above vmin [m/s].

(4) Hard accelerate: To accelerate at a rate a = a2 [m/s2],
provided that the speed does not exceed vmax [m/s].

(5) Hard decelerate: To decelerate at a rate a =
−a2 [m/s2], provided that the speed is above vmin [m/s].

(6) Move to the left : To change lanes to the left with
velocity vy = wlane

2 [m/s], where wlane represents the
lane width, provided that there is a lane on the left.

(7) Move to the right : To change lanes to the right with
velocity vy = −wlane

2 [m/s], provided that there is a
lane on the right.

At each discrete time instant k, one action is selected from
the action space and is applied to the model (1) to update
the vehicle’s state (x, vx, y). The acceleration rate values
a1 and a2 and the speed bounds vmin and vmax are tunable
parameters. The lateral speed during a lane change is equal
to wlane

2 hence a lane change takes 2 [s] to complete.

2.1.2 Observation space

(1) Front center range, dfc: The longitudinal distance
from the ego car to the car directly in its front.

(2) Front left range, dfl: The longitudinal distance from
the ego car to the car in its front and in its left lane.

(3) Front right range, dfr: The longitudinal distance from
the ego car to the car in its front and in its right lane.

(4) Rear left range, drl: The longitudinal distance from
the ego car to the car in its back and in its left lane.

(5) Rear right range, drr: The longitudinal distance from
the ego car to the car in its back and in its right lane.

(6) Front center range rate, vfc: The rate of change of dfc.
(7) Front left range rate, vfl: The rate of change of dfl.
(8) Front right range rate, vfr: The rate of change of dfr.
(9) Rear left range rate, vrl: The rate of change of drl.

(10) Rear right range rate, vrr: The rate of change of drr.
(11) Lane, I: The current lane of the ego car.

To account for the fact that a human driver may not be
able to accurately measure these quantities, we assume
that these quantities are encoded into discrete values, as

follows:

d̂ζ [k] =





“close” if 0 ≤ dζ [k] ≤ dc,

“nominal” if dc < dζ [k] ≤ df,

“far” if dζ [k] > df or there

is no car in the ζ position,

(2)

v̂ζ [k] =




“approaching” if vζ [k] < −vm,

“stable” if − vm ≤ vζ [k] ≤ vm,

“moving away” if vζ [k] > vm or there

is no car in the ζ position,
(3)

where ζ ∈ {fl, fc, fr, rl, rr} indicates the range or range
rate to a specific surrounding car, and

I[k] =



“right lane” if y[k] < wlane,

“left lane” if y[k] > wroad − wlane,

“middle lane(s)” otherwise.

(4)

The threshold values dc, df, vm are tunable parameters,
and the road width wroad is a multiple of the lane width
wlane.

After the encoding, the vector

m[k] =
[
d̂fl[k], d̂fc[k], d̂fr[k], d̂rl[k], d̂rr[k], (5)

v̂fl[k], v̂fc[k], v̂fr[k], v̂rl[k], v̂rr[k], I[k]
]�

represents the observation message. The set of all message
values constitutes the observation space M . Because each
component of m can take 3 different values based on (2) –
(4), and m has 11 dimensions, M has 311 elements.

The driver policy π(γ|m) is obtained based on average re-
ward reinforcement learning (Mahadevan (1996)) to max-
imize the average reward associated with a Markov de-
cision process. In particular, since the ego car can only
partially observe the traffic state through the message m,
the optimization problem is a partially observable Markov
decision process (POMDP) and we use a specific reinforce-
ment learning algorithm for POMDP problems (Jaakkola
et al. (1995)) to obtain the policy π(γ|m). The single-step
reward function is defined to reflect the basic goals of a
driver, including : 1) to not have an accident, such as a
car crash (safety); 2) to minimize the time needed to reach
the destination (performance); 3) to keep a reasonable
headway from preceding cars (safety and comfort); and
4) to minimize driving effort (comfort). The definition
of the reward function and more details on the applied
reinforcement learning algorithm can be found in Li et al.
(2018b, 2019).

2.2 Interactive traffic model

A traffic scenario usually involves multiple drivers/vehicles.
To represent the drivers’ interactive behavior, we use a
game-theoretic approach.

In particular, the driver interaction model is based on
level-K game theory, where the level K indicates a player’s
(a driver’s, in our setting) reasoning depth in a multi-
player game. A level-K driver policy anchors its beliefs
in a nonstrategic level-0 driver policy, which represents a
driver’s instinctive responses to traffic conditions without
accounting for the interactions between herself and the
other drivers. Then, a level-1 driver assumes that all the
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other drivers she is interacting with are level-0, and takes
optimal responses based on this assumption. Similarly, a
level-K driver optimally responds to a traffic model where
all the drivers, except for the level-K driver herself, are
using the level-(K-1) policy. This way, after a level-0 driver
policy, π0, is defined, level-K driver policies, πK, can be
obtained sequentially for K = 1, 2, · · · .
Specifically, a level-(K-1) traffic model is constructed,
consisting of multiple drivers/vehicles using the level-(K-
1) policy. Then it provides a training environment for the
level-K driver policy, where the level-K policy is solved for
using a reinforcement learning algorithm. For more details
on level-K game theory and its role in obtaining the driver
interaction model, see Li et al. (2018b, 2019).

After the level-K driver policies for K = 0, 1 and 2 are
obtained, a heterogeneous and interactive highway traffic
model can be constructed using a mixture of level-0, 1 and
2 driver models.

3. INTEGRATING DRIVER DECISION-MAKING
MODELS WITH TORCS

We integrate the game-theoretic driver decision-making
models described in Section 2 with the vehicle simulator
called TORCS. TORCS models 1) rigid-body dynamics,
including the mass and rotational inertia of the vehicle; 2)
chassis dynamics, including suspensions, links and differ-
entials; 3) tire dynamics for different ground types; and 4)
aerodynamics, including slip-streaming and ground effects
(Wymann et al. (2000)).

Sensor information provided by TORCS API related to our
driver decision-making models includes: the longitudinal
distance from the start line, the relative lateral position
with respect to the center of the track, and the speed
of every car in a simulation. These signals are used to
calculate the quantities in Section 2.1.2. The effectors in
TORCS related to the control of a car are listed in Table 1.

Effectors Description
Accelerator 0=none, 1=full throttle
Brake 0=none, 1=full brake
Steering −1=full right, 1=full left

Table 1: Effectors in TORCS

We design the controls for the effectors in Table 1 to
represent human driving behavior. The actions generated
by the high-level decision-making model, which take val-
ues in the finite action space in Section 2.1.1, represent
the desired states the driver wants to reach, such as de-
sired speeds and desired lanes. We design low-level con-
trollers to realize smooth maneuvers. In particular, we
design a proportional-integral-derivative (PID) controller
to control the vehicle’s longitudinal speed and design a
proportional-derivative (PD) controller to control the ve-
hicle’s lateral motion for lane keeping and lane change.
They are presented in the following subsections.

3.1 Longitudinal speed control

At the discrete time instant k, an action command gener-
ated from the decision-making policy defines a reference

longitudinal speed through the model (1), denoted by
vrefx [k + 1]. The actual longitudinal speed of the vehicle
is denoted by vx(t), where t ∈ [k∆t, (k + 1)∆t) represents
continuous time. We note that TORCS uses the update
frequency of 50 Hz, which is much higher than our decision
update frequency. Thus, we represent the state updates in
TORCS simulations as continuous to simplify the presen-
tation, although the actual updates are discrete-time.

We define the normalized error between the reference
speed and the actual speed as

ev(t) =
vrefx [k + 1]− vx(t)

vrefx [k + 1]
. (6)

We normalize the error so that ev(t) is a dimensionless
quantity. Then, the control input is calculated as

uv(t) = kvp e
v(t) + kvi

∫ t

k∆t

ev(τ) dτ + kvd
dev

dt
(t), (7)

saturated to the range [−1, 1]. If uv(t) ∈ [0, 1], we set
the effector “accelerator” to the value of uv(t) and set
“brake” to 0; if uv(t) ∈ [−1, 0), we set “brake” to the
value of −uv(t) and set “accelerator” to 0. The PID
gains for longitudinal speed control are tuned to provide
satisfactory performance.

3.2 Lateral motion control

At the discrete time instant k, an action command gener-
ated from the decision-making policy defines a target lane,
Itarget ∈ {“right”, “middle”, “left”}. The lateral motion
controller has two objectives including 1) lane keeping, if
the target lane is the same as the current lane, and 2) lane
change, if the target lane is different from the current lane.

The lateral motion control schematics are illustrated in
Fig. 1. We let the center of the target lane be the reference
lateral position, yref[k+1], and define an angle error eφ(t),
which is the angle between the direction of the vehicle’s
current velocity and the line connecting the vehicle’s
current position (x(t), y(t)) to a virtual reference point
(xref(t), yref(t)), i.e.,

eφ(t) = tan−1 yref(t)− y(t)

xref(t)− x(t)
− tan−1 vy(t)

vx(t)
, (8)

where

yref(t) = y(k∆t) +
t− k∆t

T

(
yref[k + 1]− y(k∆t)

)
,

xref(t) =

{
x(t) + lcar + 0.01T vx(t), if lane keeping,

x(t) + 1.2 lcar + 0.1T vx(t), if lane change,

for t ∈ [k∆t, k∆t + T ), where T is a time constant
approximately equal to the time for a lane change to
complete, and lcar represents the length of the vehicle.
Note that t = k∆t is the continuous time when the action
decision is made, which corresponds to the discrete time
k. In the case of lane change, t = k∆t represents the time
to start changing lanes. Note also that yref(t) is designed
in such a way that yref(k∆t + T ) = yref[k + 1]. Then, the
control input is calculated as

uy(t) = kyp e
φ(t) + kyd

deφ

dt
(t), (9)

saturated to the range [−1, 1]. We set the effector “steer-
ing” to the value of uy(t). The PD gains for lateral motion
control are tuned to provide satisfactory performance.

IFAC CPHS 2018
Miami, FL, USA, Dec. 14-15, 2018

442

The controlled response of the vehicle during a lane change
is shown in Fig. 2. The blue solid curve represents the
vehicle’s (x(t), y(t))-trajectory during the lane change.
The two red dashed lines represent the center of the right
lane and the center of the middle lane. We can observe
that the lane change is performed stably and smoothly,
implying that the combination of our designed longitudinal
speed controller and lateral motion controller is effective.
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Fig. 1: Lateral motion control schematics.
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Fig. 2: Lane change response.

4. APPLICATIONS

A heterogeneous and interactive highway traffic simulation
model is constructed using a mixture of level-0, 1 and 2
driver models. Such a model has been used for the verifi-
cation, validation, and calibration of autonomous vehicle
path planning systems in our previous publications (Li
et al. (2018b, 2019)). The performance of an autonomous
vehicle path planning system in terms of user-defined met-
rics can be evaluated based on simulation results. Critical
scenarios can be extracted and recorded for post-analysis.
In Li et al. (2018b, 2019), the simulations are based on
the point-mass discrete-time model (1). Now, with the
higher-fidelity car dynamics, road conditions, and other
environmental factors such as light conditions simulated in
TORCS, an integrated autonomous vehicle control system
for highways that may include a perception subsystem,
a high-level path planning subsystem, and several low-
level dynamics and actuation control subsystems can be
tested using our developed traffic simulation model. Such
a comprehensive testing is left as a topic of our future
research.

In this paper, we use the integrated simulator as a platform
to collect human driving data. These data may be used
to analyze human driving behavior. In particular, in this
paper we compare the level-K driver policies and human

Fig. 3: Simulator interface. In this simulation, the cars are
driving on an oval track. Other track types can also be
simulated.

driving data, and use human driving data to re-calibrate
the highway traffic model constructed based on the level-K
driver policies.

4.1 Data collection

A human operator drives a car of the simulator using a
driver control setup consisting of a steering wheel and
a pair of gas and brake pedals. The human-driven car
interacts with our traffic model where 10% drivers are
modeled using the level-0 policy, 60% drivers are modeled
using the level-1 policy, and 30% drivers are modeled using
the level-2 policy. These percentages of various levels are
set, motivated by the experimental results in Costa-Gomes
and Crawford (2006); Costa-Gomes et al. (2009).

We record traffic data including the states (the longitudi-
nal distance from the start line, the relative lateral position
with respect to the center of the track, and the speed)
of the human-driven car and of all other cars in traffic,
based on which we calculate the observation quantities in
Section 2.1.2 and the encoded observation message (5).
The data acquisition sampling rate is 5 Hz. Furthermore,
we decode the human driver’s behavior into the discrete
actions in Section 2.1.1, to facilitate comparing human
driving behavior and the level-K decision-making policies,
as follows:

1) Maintain: No lane change occurs and the rate of
change of speed is in the range [−am, am] [m/s2].
2) Accelerate: No lane change occurs and the rate of
change of speed is in the range (am, aa] [m/s2].
3) Decelerate: No lane change occurs and the rate of
change of speed is in the range [−aa,−am) [m/s2].
4) Hard accelerate: No lane change occurs and the rate
of change of speed is in the range (aa,+∞) [m/s2].

5) Hard decelerate: No lane change occurs and the rate
of change of speed is in the range (−∞,−aa) [m/s2].

6) Move to the left : A left lane change occurs.
7) Move to the right : A right lane change occurs.

The threshold values am and aa are set in accordance with
the values of a1 and a2. The current lane of the human-
driven car is identified according to the distances from the
car’s current lateral position to the center of each lane and
is set to the lane corresponding to the smallest distance.
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vehicle’s (x(t), y(t))-trajectory during the lane change.
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4. APPLICATIONS

A heterogeneous and interactive highway traffic simulation
model is constructed using a mixture of level-0, 1 and 2
driver models. Such a model has been used for the verifi-
cation, validation, and calibration of autonomous vehicle
path planning systems in our previous publications (Li
et al. (2018b, 2019)). The performance of an autonomous
vehicle path planning system in terms of user-defined met-
rics can be evaluated based on simulation results. Critical
scenarios can be extracted and recorded for post-analysis.
In Li et al. (2018b, 2019), the simulations are based on
the point-mass discrete-time model (1). Now, with the
higher-fidelity car dynamics, road conditions, and other
environmental factors such as light conditions simulated in
TORCS, an integrated autonomous vehicle control system
for highways that may include a perception subsystem,
a high-level path planning subsystem, and several low-
level dynamics and actuation control subsystems can be
tested using our developed traffic simulation model. Such
a comprehensive testing is left as a topic of our future
research.

In this paper, we use the integrated simulator as a platform
to collect human driving data. These data may be used
to analyze human driving behavior. In particular, in this
paper we compare the level-K driver policies and human
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driving data, and use human driving data to re-calibrate
the highway traffic model constructed based on the level-K
driver policies.

4.1 Data collection

A human operator drives a car of the simulator using a
driver control setup consisting of a steering wheel and
a pair of gas and brake pedals. The human-driven car
interacts with our traffic model where 10% drivers are
modeled using the level-0 policy, 60% drivers are modeled
using the level-1 policy, and 30% drivers are modeled using
the level-2 policy. These percentages of various levels are
set, motivated by the experimental results in Costa-Gomes
and Crawford (2006); Costa-Gomes et al. (2009).

We record traffic data including the states (the longitudi-
nal distance from the start line, the relative lateral position
with respect to the center of the track, and the speed)
of the human-driven car and of all other cars in traffic,
based on which we calculate the observation quantities in
Section 2.1.2 and the encoded observation message (5).
The data acquisition sampling rate is 5 Hz. Furthermore,
we decode the human driver’s behavior into the discrete
actions in Section 2.1.1, to facilitate comparing human
driving behavior and the level-K decision-making policies,
as follows:

1) Maintain: No lane change occurs and the rate of
change of speed is in the range [−am, am] [m/s2].

2) Accelerate: No lane change occurs and the rate of
change of speed is in the range (am, aa] [m/s2].
3) Decelerate: No lane change occurs and the rate of
change of speed is in the range [−aa,−am) [m/s2].
4) Hard accelerate: No lane change occurs and the rate
of change of speed is in the range (aa,+∞) [m/s2].

5) Hard decelerate: No lane change occurs and the rate
of change of speed is in the range (−∞,−aa) [m/s2].

6) Move to the left : A left lane change occurs.
7) Move to the right : A right lane change occurs.

The threshold values am and aa are set in accordance with
the values of a1 and a2. The current lane of the human-
driven car is identified according to the distances from the
car’s current lateral position to the center of each lane and
is set to the lane corresponding to the smallest distance.
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Parameter Value Parameter Value
∆t 1 kvp 10
a1 2.5 kvi 0.1
a2 5 kvd 0.01

vmax 98/3.6 kyp 0.7
vmin 62/3.6 kyd 0.01
dc 21 T 1.5
df 42
vm 2/3.6 am 0.1
wlane 4 aa 2.5
wroad 12

Table 2: All parameter values used in the simulations (in
SI units).

4.2 Data analysis

To compare human driving behavior and the level-K
policies, we first define a policy that represents average
human driving behavior in the form of πH(γ|m) : m �→
PH(γ|m), for each m ∈ M that is encountered in the data
collection phase. The probability PH(γ|m) is estimated by

PH(γ|m) ≈ n(γ|m)

n(m)
, (10)

where n(m) is the number of encounters of the observation
message m, and n(γ|m) is the number of encounters of
the message-action pair (m, γ). Then, we use a weighted
Hellinger distance to represent the difference between the
human driver policy, πH, and each level-K policy, πK, as
follows:

DH,K =
∑
m∈M

w(m)H
(
πH(·|m), πK(·|m)

)
. (11)

Here the Hellinger distance H(πH(·|m), πK(·|m)) ∈ [0, 1] is
used to quantify the similarity between the two probability
distributions πH(·|m) and πK(·|m) (the smaller it is, the
more similar the two probability distributions are) and is
defined as (Nikulin (2001)):

H
(
πH(·|m), πK(·|m)

)
= (12)

1√
2

( 7∑
i=1

(√
PH(γi|m)−

√
PK(γi|m)

)2) 1
2

,

where γi, i = 1, · · · , 7, represent the seven actions in
Section 2.1.1.

The weights w(m) are chosen based on the frequency of
message m being encountered, according to

w(m) =
n(m)∑

m′∈M n(m′)
. (13)

In particular, we assume that w(m) is determined mainly
by the overall traffic and is not significantly influenced by
the policy of a single car. Thus, to obtain an estimate of
w(m), we can run a simulation where there are only level-
K cars and no human-driven cars in the traffic. Since no
human operator needs to be involved in such a simulation,
a large period of simulation time can be run in a small
period of real time, to obtain more accurate estimates of
the frequencies.

For comparison, we also compute the weighted Hellinger
distances between the level-K policies,

DK1,K2
=

∑
m∈M

w(m)H
(
πK1

(·|m), πK2
(·|m)

)
. (14)

Furthermore, since the traffic model consists of 10% level-
0 drivers, 60% level-1 drivers, and 30% level-2 drivers, we
define the average policy of the traffic, πT , as

πT (·|m) = 0.1π0(·|m) + 0.6π1(·|m) + 0.3π2(·|m), (15)

for each m ∈ M , and compute the weighted Hellinger
distance between πH and πT ,

DH,T =
∑
m∈M

w(m)H
(
πH(·|m), πT (·|m)

)
. (16)

We have collected approximately 50 [min] of human driv-
ing data. The weighted Hellinger distances between each
pair of policies are summarized in Table 3.

Pair Distance Pair Distance
DH,0 0.79384 D 0,1 0.79665
DH,1 0.54581 D 1,2 0.70617
DH,2 0.70393 D 0,2 0.79601
DH,T 0.50615

Table 3: Weighted Hellinger distances.

From Table 3 we can observe that among the level-K
policies, the human driving behavior is most similar to
level-1. Reasons for this may include: 1) level-1 reasoners
are observed to be most common among the population
in the experiments in Costa-Gomes and Crawford (2006);
Costa-Gomes et al. (2009), and 2) the level-1 policy is
most aggressive among level-0, 1 and 2 policies (Li et al.
(2018b)), and human drivers tend to behave aggressively
in simulated driving (Matthews et al. (1998)).

On the other hand, we can observe that the traffic model
πT , based on a mixture of 10% level-0 drivers, 60% level-
1 drivers, and 30% level-2 drivers, matches the human
driver policy πH best (with the smallest weighted Hellinger
distance). We examine different percentage combinations
of the level-K policies, i.e., define

πT ′(·|m) = p0 π0(·|m) + p1 π1(·|m)

+ (1− p0 − p1)π2(·|m), (17)

and plot the weighted Hellinger distance between the
human driver policy πH and the mixed policy πT ′ as a
function of (p0, p1) in Fig. 4. The optimal traffic model in
terms of matching the human driver policy πH estimated
from our current simulated driving data, is composed of
20% level-0 drivers, 70% level-1 drivers, and 10% level-
2 drivers, with a weighted Hellinger distance DH,T ′ =
0.4870.

5. CONCLUDING REMARKS

In this paper, we described the integration of our pre-
viously developed game-theoretic driver decision-making
models with the car driving simulator TORCS, to con-
struct a heterogeneous and interactive traffic simulation
model with higher-fidelity car dynamics.

We used the traffic model to collect human driving data
and decoded human driving data to create a human driver
policy, which was used for the validation and re-calibration
of the driver and traffic models. It is worth mentioning that
it is in general difficult to validate human driver models
(Brackstone and McDonald (1999)).
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Fig. 4: Weighted Hellinger distance DH,T ′ as a function
of (p0, p1). The red point denotes the highest point on
the surface, corresponding to (p0, p1) = (0.2, 0.7) and
DH,T ′ = 0.4870.

On the other hand, another application of the developed
traffic simulation model could be to the verification, val-
idation, and calibration of integrated autonomous vehicle
control systems. This is left for our future research.
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idation, and calibration of integrated autonomous vehicle
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