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Abstract: On-line partial discharge (PD) monitoring is being increasingly adopted to improve the asset management and
maintenance of medium-voltage (MV) motors. This study presents a novel method for autonomous analysis and classification of
motor PD patterns in situations where a phase-reference voltage waveform is not available. The main contributions include a
polar PD (PPD) pattern and a fractal theory-based autonomous PD recognition method. PPD pattern that is applied to convert
the traditional phase-resolved PD pattern into a circular form addresses the lack of phase information in on-line PD monitoring
system. The fractal theory is then presented in detail to address the task of discrimination of 6 kinds of single source and 15
kinds of multi-source PD patterns related to motors, as outlined in IEC 60034. The classification of known and unknown defects
is calculated by a method known as centre score. Validation of the proposed method is demonstrated using data from laboratory
experiments on three typical PD geometries. This study also discusses the application of the proposed techniques with 24 sets
of on-site PD measurement data from 4 motors in 2 nuclear power stations. The results show that the proposed method
performs effectively in recognising not only the single-source PD but also multi-source PDs.

1 Introduction
Partial discharge (PD) activity within a rotating machine is not only
an indication of an insulation defect but also a causative
mechanism of further insulation deterioration. Standard patterns of
PD activity have been developed to allow identification of a fault.
Automatic PD detection and source classification is becoming
increasingly important in on-line insulation condition assessment
of motors [1, 2]. Monitoring a motor in service and diagnosing the
insulation condition by using recognition approaches from acquired
PD is desirable [3, 4]. However, different sources of PD could be
detected under on-line measurement. Different sources of PD are of
different risks and complex conditions, such as slot type PD would
be high risk with low-to-medium PD magnitude, but surface type
PD would be a medium risk with high PD magnitude. There is high
demand in the industry to distinguish multiple PD sources.
However, there are several challenges to achieve the recognition of
motor PD patterns automatically.

It has been identified that different PD types generate different
PD patterns [5]. The PD pattern is represented by a set of
characteristic attributes, which are extracted from measured PD
raw data. According to different attributes, PD pattern is commonly
classified into two types for analysis and classification: phase-
resolved data and time-domain data [6]. Currently, the most widely
used method is based on the analysis of phase-resolved PD (PRPD)
data, which has three parameters φ, q, n. Here φ is the voltage
phase angle at which the PD occur (normally assigned as 5° or 10°
windows), q is the measured PD magnitude and n is the number of
PDs which occur in the phase window over a defined number of
measurements. PRPD patterns are considered to be a reliable
indication of the root cause of an insulation fault. Recognition of
multiple PD sources was introduced in [7, 8], it was found that
high recognition rate only occurs with multi-source PDs with
highly different PRPD patterns, in terms of shapes and polarities,
whereas, multiple PDs with similar PRPD patterns were found to
be more difficult to distinguish [9–12]. However, the reference
voltage waveform is hard to obtain in on-line monitoring condition.
The loss of φ makes it impossible to use PRPD pattern in PD
recognition in motors.

Pattern recognition technology has been studied and applied in
PD pattern recognition in the last few decades [13, 14]. Various
artificial intelligence (AI) techniques such as artificial neural
network, knowledge-based system, and support vector machines
have been applied to PRPD pattern classification [15, 16]. AI
approaches require a large number of data for training and learning,
and training data should be ‘healthy’ to ensure a good result. Other
techniques, such as distance classification technique and fuzzy
logic, are also used for PD source classification [17, 18]. Most of
the techniques introduced above provide promising fault
recognition results when only one PD type exists but perform less
well when multiple sources are considered. Moreover, most of
these approaches, which required a massive amount of data for
training and testing, were tested and validated on one specific
motor under laboratory conditions. Their general application to
practical on-line situations has not yet been investigated.

In a practical on-line situation, the three challenges in this paper
when attempting autonomous PD pattern classification in motor
condition assessment could be summarised as follows: (i)
processing PD pattern without voltage phase information [19]; (ii)
establishing a general pattern classification reference suitable for
practical applications; (iii) recognising multiple PD sources, which
may occur in a medium-voltage (MV) motor simultaneously.

This paper investigates autonomous pattern recognition
techniques for motor PD classification. To address the key
challenges mentioned above, a novel pattern recognition
framework is presented in the paper. Polar PD (PPD)
representation, which converts a PRPD to a circular format, is
applied to address the loss of voltage phase information. Moreover,
the phase shift often causes a cluster of PD pulses, of which the
integrity is essential for many established PRPD pattern
recognition techniques, into two halves, one at the beginning of the
PRPD pattern, and the other at the end [19]. For this reason, the
PRPD patterns will be converted to PPD pattern which connects
the beginning of a 50 Hz, alternating current (AC) cycle of PD data
with the end of the dataset. PPD pattern images form the standard
defects reference converted from PRPD images of the six PD types
from IEC 60034-27 [20]. Fractal theory is applied to extract proper
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fractal features of both single-source and multi-source PD types.
Centre score (CS) algorithm [3], a conventional PD source
classification method which performs high recognition rate without
data training, is implemented for PD source classification.
Extensive laboratory experiments and on-site tests are conducted
using artificial PD geometries to verify the feasibility of the
developed system.

In the next section of this paper, it reviews the fractal theory-
based PPD pattern recognition framework for PD source
classification. In Section 3, PRPD-to-PPD conversion is
introduced. Then the box-counting method (BCM)-based fractal
analysis is introduced to extract the fractal features from three-
dimensional (3D) PPD pattern images in Section 4. Section 5
presents the fractal map based on IEC standard PRPD patterns. The
CS algorithm for PD source classification is introduced for
evaluating the possibility of PD sources in Section 6. Section 7
describes the experimental setup for validating the proposed
method. Finally, Section 8 presents the application of the proposed
method to practical on-site test data before the conclusions are
provided in Section 9.

2 Pattern recognition framework for PD source
classification
This paper focuses on the establishment of a pattern recognition
method which can recognise the standard motor PD patterns as
given in IEC 60034. As shown in Fig. 1, the proposed PD pattern
recognition consists of four main stages. 

Stage 1 is the establishment of PD pattern recognition
reference. At this stage, firstly, six standard types of motor PDs
from IEC 60034-27 are converted from 3D PRPD patterns to 3D
PPD patterns. Then, a fractal map (lacunarity versus fractal
dimension) based on the 3D PPD patterns is generated using the
BCM-based fractal theory.

In Stage 2, raw data is detected either in laboratory or field
through high-frequency current transformers (HFCTs) and high-
pass filters. These raw data are then pre-processed before the
extraction of fractal features. In the pre-processing procedure, de-
noising is carried out before a 3D PRPD image is generated for a
PD dataset. The de-noising technique applied in the present work
can be referred to in [21, 22].

In Stage 3, the pre-processed PD data in 3D PRPD patterns is
converted to 3D PPD patterns, which consists of PD pulse
magnitude and pulse number distribution with respect to time
within the sampling period. Then two fractal features (fractal
dimension D and lacunarity Λ) are determined from the 3D PPD
pattern using the BCM-based fractal theory.

In Stage 4, CSs of the set of fractal features (D, Λ) from Stage 3
are calculated based on the fractal map to recognise motor PD
sources to estimate the probability of motor PD sources.

3 PRPD-to-PPD pattern conversion
Before extracting the fractal features of a PD pattern, the pre-
processed PD data is firstly converted to a 3D PRPD pattern. In
IEC 60034, the given PRPD pattern is 3D where phase information
φis in abscissa and PD amplitude is in ordinate. The information of
n, the number of PDs, is indicated by different colours.

To avoid the influence of the loss of reference voltage phase,
3D PPD pattern is considered in the on-site test data. In the
previous study as introduced in [19], it is hard to acquire a
reference voltage signal in on-line monitoring. The only applicable
voltage is the low-voltage (LV) power supply as a reference, with
data acquisition being triggered at the 0° (positive zero-crossing)
point of the LV power supply. The present authors have carried out
PD measurements in six power stations. The experience is that the
phase shift between the motor working voltage and the LV power
supply varies in different power stations. Although this LV zero-
crossing provides a synchronised reference for data capture, an
unknown phase shift exists relative to the waveform of the motor
working voltage.

The relative phase information is kept in a circular format. The
number of PDs occurring in each pixel position is added over the
number of records taken during a test and a φ–q–n pattern becomes
an x–y–n pattern.

The conversion from 3D PRPD patterns to 3D PPD patterns is
as follows. The data point in a 3D PPD pattern image is calculated
from

x = f ix(r ⋅ cos θ) + c
y = f ix(r ⋅ sin θ) + c
z = n

(1)

Fig. 1  Schematic of proposed fractal-based PD pattern recognition method
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where θ represents the phase information of a PD pulse, which is
extracted from the time instant of each pulse in the 20 ms data
record gathered; r represents the normalised PD pulse in the polar
coordinate system; n represents the count or number of PDs which
occurs in the phase window over a defined number of
measurements; x, y represent the pixelated positions of each PD; c
is a constant value which makes all the values of x and y equal or
greater than zero. In a PPD image of a resolution of 128 × 128, c
equals to 128 for the convenience of observation that the polar
origin is in the centre of the image; the z-axis represents the PD
count n.

4 BCM-based fractal analysis
4.1 Brief overview of fractal theory

Fractal theory is an image processing technique. Mandelbrot in
[23] first developed the concept of fractal geometry which was
applied to the model and describe natural shapes and phenomena
with a brand new dimension known as ‘self-similarity’ [24, 25].
Fractal dimension (FD) measures the geometrical complexity of
images. However, it has been observed that FD alone is insufficient
for purposes of discrimination since the two surfaces of different
appearance could have the same value of FD. So, Lacunarity, Λ,
was introduced as a measure of spatial heterogeneity. Beyond
being an intuitive measure of gaps, lacunarity can quantify
additional features of patterns such as ‘rotational invariance’ and
more generally, heterogeneity [26, 27].

PD activity is also considered as a natural phenomenon
occurring in electrical insulation system due to inhomogeneity in
the insulation material and gives rise to a variety of complex
shapes in its PRPD patterns [28]. According to IEC 60034-27,
motor PD sources have different PRPD pattern shapes and this
provides a way to distinguish PD sources by comparing their
PRPD pattern shapes. The complexity of the shape of a 3D PRPD
or a 3D PPD pattern image can be represented by fractal geometry
[29]. It shows the possibility to apply the proposed fractal analysis
with fractal dimension and lacunarity to recognise the PD patterns
in motors automatically [30–32].

The BCM is adopted for computing the fractal features of 3D
images [33]. BCM is a method of gathering data for analysing
complex patterns by breaking a dataset or image into smaller and
smaller pieces, typically ‘box’-shaped, and analysing the pieces at
each smaller scale. The advantage of BCM is that it considers both
the number of empty boxes and filled boxes. Besides, the size of
the filled box is taken into consideration as well and the
inhomogeneous character of the fractal image is well represented.
In this paper, the BCM-based fractal analysis is applied to extract
FD and lacunarity from 3D PPD pattern images.

4.2 Calculation of fractal features using the BCM

The basic procedure of BCM is to systematically lay a series of
grids of decreasing the box sizes over an image and record data
(the counting) for each successive size. In order to extract fractal
features from 3D PPD pattern images, the steps are listed below:

• Step 1: To scale the box size, L. L is the side size of a 3D box in
BCM to cover a fractal object [25]. With the decreasing of L, the
measurements obtained become increasingly sensitive and lend
to infinity if the L approaches 0. Here the determination of the
value of L is based on the consideration of accuracy and the
required computational effort, both of which increase with the
maximum value of L. Theoretically, it is beneficial to examine
as large a range of L (L = 0, ..., Lmax) as possible until Lmax
reaches the image dimension. In this work, Lmax has been
chosen as 128, the size of the pixel map of the PPD patterns.

• Step 2: To count the number of boxes N(L). P(m, L) is defined as
the probability that there are m points within a box of size L.
Accumulating the occurrences of neighbouring points over the
image gives the frequency of occurrence, m. To calculate m, the
boxes with different L are centred at each pixel of the image and
m is the number of the points inside the box. The m is

accumulated over the entire image to and normalised to obtain
P(m, L). For all L,P(m, L) is normalised according to

∑
m = 1

N
P(m, L) = 1 (2)

where N is the number of possible points within the box.
N (L) is defined as the expected total number of boxes

needed to cover the whole image, as shown in

N(L) = ∑
m = 1

N S
mP(m, L) (3)

where S is the number of image points of PPD pattern.
• Step 3: To calculate FD. The actual size of the contents N(L) is

proportional to L−D [26], as shown in

N(L) = 1
L/Lmax

D = L
Lmax

−D
∝ L−D (4)

where Lmax is the max value of L.
Consequently, the value of D can be estimated by least

square fitting on {log (L),  − log (N (L))}, for different values of
L. The slope of the curve is the estimation of D.

• Step 4: To calculate lacunarity: Lacunarity is also a function of
the box size L. The lacunarity Λ could be calculated based on
the second-order statistics of P(m, L) as shown in

M(L) = ∑
m = 1

N
m ⋅ P(m, L) (5)

M2(L) = ∑
m = 1

N
m2 ⋅ P(m, L) (6)

Λ(L) = M2(L) − M(L) 2

M(L) 2 (7)

5 Fractal map of standard patterns
The proposed PRPD-to-PPD conversion and BCM-based fractal
analysis have been applied to the six types of motor PD sources
described in IEC 60034-27-2 [20], namely:

• internal void (denoted as PD 1 for future discussion);
• internal delamination (PD 2);
• delamination between conductor and insulation (PD 3);
• slot discharge (PD 4);
• surface discharge (PD 5);
• gap type discharge (PD 6).

Their 3D PRPD patterns, shown in the left-hand column of
Fig. 2, form the pattern recognition standard in this work.
Moreover, the 3D PRPD format is converted to 3D PPD patterns,
as shown in the right-hand column of Fig. 2. 

The individual 3D PPD pattern images, with a resolution of
128 × 128. x and y axes denote the polarised phase and normalised
amplitude, respectively. z-axis denotes the pulse count data. The
number of PD events at each x/y location is uniquely mapped to
one of the 16 colours available.

In the proposed method in Section 4, 3D PPD pattern images
are divided by box size, L = 2n (n = 0, 1, …, 7). A total of eight
groups of boxes are calculated. Then the fractal-based feature
extraction is made to extract fractal dimension and lacunarity
features from converted 3D PPD patterns.
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5.1 Fractal map of single-source PD

Fractal features (D and Λ) of the converted 3D PPD images from
the standard 3D PRPD patterns are calculated and shown in
Table 1. 

To consider the fact that PD activities and associated PD
patterns rarely repeat themselves, even for the same defect site and
for the same type of PD by a certain degree, 20 sets of data
originated from each of the IEC standard PRPD pattern images by
compressing and extending the pattern up to 30% were
implemented in order to test the robustness of the proposed
method.

Fig. 3 plots the clusters of fractal features of the converted PPD
images after extension and compression. In Fig. 3, the darker
points are the fractal parameters converted from unchanged
standard PRPD image, as presented in Table 1; the lighter points
are the clusters of fractal parameters after compression and
extension. 

In Fig. 4, the proposed method can separate the groups using
fractal features. As shown, clusters belonging to a particular fault
type are found to lie close to each other, and more significantly,
most are reasonably well separated from other fault types. It is to
be noticed that the fractal features of PD 2 and PD 4 overlap to a
degree. That's because the PRPD images of these two PD types
have a very similar shape: both polarities of PD 2 and PD 4 are a
triangle, as presented in Fig. 4. The difference between PD 2 and

PD 4 is in their symmetry. The triangles of PD 2 at each polarity
are symmetric. This is because it is generated between insulation
layers where the conductivity and permeability are same. The
triangles of PD 4 at each polarity are asymmetric. This is because it
is generated between the insulation layer and stator core where the
conductivity and permeability are different. Since the risk
associated with PD 2 and PD 4 is at a high level [34], it is highly
recommended that a more detailed inspection of the motor is
carried out once a PD fault with these fractal features is detected. 

5.2 Fractal map of multiple-source PD

The double-source PDs are formed by various combinations of the
six single-source PDs. The number of double-source PD sources
formed is 15. The procedure of setting up the criteria for
distinguishing double-source PD is similar to that described in the
previous sections. Fig. 5 shows the 15 clusters of fractal features of
the converted double-source PPD images after extension and
compression. 

In practical PD measurements, the multi-source PD problem is
very common [15]. To investigate the ability of the proposed PD
recognition techniques to recognise multi-source PDs, these 21 PD
types form a fractal map shown in Fig. 5 to distinguish multi-
source PD detected from the on-site test.

In Figs. 3 and 5, the clusters of fractal features of different PPD
images are well separated but the boundary is very close to one

Fig. 2  PRPD pattern image and PPD pattern image of six selected typical motor PD based on IEC standard
(a) PD 1 (internal void discharge) PRPD pattern image and PPD pattern image, (b) PD 2 (internal delamination) PRPD pattern image and PPD pattern image, (c) PD 3 (delamination
between conductor and insulation) PRPD pattern image and PPD pattern image, (d) PD 4 (slot discharge) PRPD pattern image and PPD pattern image, (e) PD 5 (surface discharge)
PRPD pattern image and PPD pattern image, (f) PD 6 (gap type discharge) PRPD pattern image and PPD pattern image

 
Table 1 Fractal features of PPD images converted from standard
PD type Fractal dimension (D) Lacunarity (Λ)
1 2.5953 0.2484
2 2.4288 0.4491
3 2.3951 0.6523
4 2.4428 0.3996
5 2.3226 0.8008
6 2.3622 0.5552
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another, making it difficult to discriminate among double-source
PDs. It is impossible to provide a reliable PD type classification
method to specify the PD type(s) to one unidentified PD fault. In
this paper, CS-based PD source classification is introduced to list
the possibilities of each potential PD type to provide probability
estimation.

6 CS algorithms for PD source classification
In order to determine whether a data set fits well with predefined
fault information, the CS is developed. The CS is defined as the
percentile rank of the distance between the fractal point of
unknown defects and the centre of the defined fractal clusters. The
fractal features of the defined PD patterns are displayed in a 2D
space (D and Λ), as shown in Figs. 3–5. Taking Fig. 4 as an
example, six clusters of defined single-source PD patterns are
displayed in one map. The mathematical centre of each cluster is
determined and the position of an unknown defect can be
compared with this centre. The CS can vary from 0 to 100%. It
reflects the probability of an unknown defect recognised as a
defined PD pattern in the fractal map. The value of CS higher than

0 indicates a possible defined PD pattern in the fractal map; the
value of CS equals to 0 indicates an unknown PD pattern.

The first step is to measure the distance between the fractal
features of unknown defects and the average values of the fractal
features of defined fractal clusters in the fractal map. The distance
is calculated as

dk
2 = u − μ 2

σk
2 (8)

where u is the fractal feature (D and Λ) of the unknown defect; μ is
the average value of all defined fractal clusters; σk is the standard
deviation of a defined fractal cluster; k is the number of the PD
types, k = 1, …, 21.

The standard deviation of a defined fractal cluster is given as

σk
2 = 1

N ∑
i = 1

N
μi − μ 2 (9)

where N is the total number of fractal clusters, in this case, N = 21;
μi is the average value of a defined fractal cluster.

Fig. 3  Cluster representation of the fractal map showing pattern discrimination capabilities for double-source PD
 

Fig. 4  Cluster representation of the global D–Λ map showing pattern discrimination capabilities for single-source PD
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The covariance matrix can be considered to be a multi-
dimensional generalisation of the 1D standard deviation. Finally,
the CS is defined as

CSk = 100 − PRdk
2 /100 (10)

where PR is the percentile rank of dk
2 as given as

PR = cl + 0.5 f i
N × 100% (11)

where cl is the count of all scores less than the score of interest, fi is
the frequency of the score of interest, and N is the number of
examinees in the samples.

The recognition rate is calculated based on the ratio between the
recognised test sample and the sum of all test samples.

7 Experimental work for validation
7.1 Experimental setup

The experimental work completed aims to test the performance of
the proposed algorithms including PD data pre-processing
procedures, PRPD-to-PPD pattern conversion, fractal theory-based
PPD pattern feature extraction, and CS-based classification.
Because it is hard to generate and control the same PD types in a
real motor, the experiment is carried on the simplified geometry to

present the similar fault type inside a motor. The experiment setup
for validation is depicted in Fig. 6. Function generator was used to
generate 50 Hz sine wave, which was used as the input signal to a
power amplifier to be amplified as power supply. A HFCT, with
frequency response 50 kHz–20 MHz, is clamped around the
ground wire to measure PD signal (as in on-site tests). Artificial
faults are designed to simulate three types of PD sources, namely
internal void discharge (denoted as PD 1), delamination between
conductor and insulation discharge (denoted as PD 3), surface
discharge (denoted as PD 5). 

During the data acquisition, Channel 1 recorded the outputs
from the HFCT while Channel 2 recorded the applied voltage as
the phase reference. For each of the modelled faults, measurements
were conducted for 20 times with each four times under one level
of voltage supply. The lowest voltage supply is the PD inception
voltage, and the higher-level voltage is 0.2 kV higher than lower
level. At one acquisition, PD pulses are recorded over 500 power
cycles. For each of three faults, 20 acquisitions are recorded and
thus total 60 sets of discharge signal samples are used as test data
for evaluating the algorithms presented in this paper.

7.2 Result and analysis

7.2.1 Single-source PD pattern recognition: Fig. 7 shows the
single-source PD recognition results when applying the introduced
experiment setup and data pre-processing procedures to the
experimental data. 

Fig. 5  Cluster representation of the fractal map showing pattern discrimination capabilities for double-source and single-source PD
 

Fig. 6  PD measurement experimental setup and PD geometries
(a) Experiment setup, (b) PD 1 (internal void discharge)geometry setup for experiment, (c) PD 3 (delamination between conductor and insulation) geometry setup for experiment, (d)
PD 5 (surface discharge) geometry setup for experiment
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The fractal map as shown in Fig. 4 in Section 5.1 is applied to
the CS-based pattern classification algorithm for the probability
estimation of PD source type. The fractal features are extracted
from the 3D PPD patterns shown in Fig. 7 and are displayed in the
fractal map in Fig. 8. 

The fractal analysis results for the single-source PDs are shown
in Fig. 8. It is clearly that the PD type in experiment 1 was
correctly recognised as PD 1 (internal void discharge); the PD type
in experiment 2 was correctly recognised as PD 3 (delamination
between conductor and insulation); the PD type in experiment 3
was correctly recognised as PD 5 (surface discharge).

The recognition results based on the CS method are in Table 2.
It shows 3 sets of experiments, each with 20 sets of data. In
experiment 1, due to the fractal clusters PD 1 and PDs 1 & 4 are
close in fractal map shown in Fig. 5, the CS results of PDs 1 and 4
are also demonstrated in Table 2. In considering the fact that 19
sets of CS results of PD 1 are above 0, the recognition rate of PD 1
in experiment 1 is 95%. This is applicable in other PD type
recognition. The recognition rates of single-source PD in these

three experiments are not <90%. However, due to the overlap
between clusters in multi-source fractal map in Fig. 5, the CS
results are able to provide the probabilities for all possible defined
PD types. The higher CS is, the more likely this PD pattern is. 

7.2.2 Double-source PD pattern recognition: To validate the
application of the proposed method to double-source PD
recognition, three artificial data sets are generated by combining
the PD data from two of the experimental arrangements, as
follows:

i. Superposing the PRPD patterns of experiments 1 and 2 (PDs 1
and 3).

ii. Superposing the PRPD patterns of experiments 1 and 3 (PDs 1
and 5).

iii. Superposing the PRPD patterns of experiments 2 and 3 (PDs 3
and 5).

Fig. 7  PRPD patterns and PPD patterns of three PD geometries
(a) PRPD pattern and PPD pattern of the experimental result of PD1, (b) PRPD pattern and PPD pattern of the experimental result of PD3, (c) PRPD pattern and PPD pattern of the
experimental result of PD 5

 

Fig. 8  Cluster representation on the global D–Λ map showing single PD source experimental results
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Due to the reference voltage signal was applicable in lab
condition, it was possible to combine different PRPD patterns to
generate a double-source PD pattern to test the feasibility of the
proposed methods. Fig. 9 shows the 3D PPD patterns of the three
double-source PDs. 

The fractal analysis results for the double-source PDs are shown
in Fig. 10. It is clearly that the PD type from the combined PRPD
patterns of experiments 1 and 2 was correctly recognised as the
PDs 1 and 3 (blue circle in Fig. 10); the PD type from the
combined PRPD patterns of experiments 1 and 3 was correctly
recognised as the PDs 1 and 5 (red circle in Fig. 10); the PD type
from the combined PRPD patterns of experiments 2 and 3 was
correctly recognised as the PDs 3 and 5 (yellow circle in Fig. 10). 

The recognition results based on the CS method are in Table 3.
It shows 3 sets of results from the combined PRPD pattern, each
with 20 sets of data. In the results of combined experiments 1 and
2, due to the fractal clusters PDs 1 and 3 and PDs 1 and 2 are close
in fractal map shown in Fig. 5, the CS results of the PDs 1 and 2
are also demonstrated in Table 3. In considering the fact that 16
sets of CS results of PD 1 are above 0, the recognition rate of PDs
1 and 3 is 95% in this combined experimental result. This is

applicable in other PD type recognition. The recognition rates of
single-source PD in these three experiments are not <80%. 

8 Applications to practical on-site test data
The proposed method is applied to the practical situation of on-site
test of three-phase industrial motors. The test data was collected at
a number of nuclear power stations, using HFCTs clamped around
the earth strips of the motor supply cables. The installation of the
current sensor in field is illustrated in Fig. 11, where, the applied
current sensors are installed at the earth strip below the
switchboard. The benefit of the use of HFCT is that it, due to its
good frequency bandwidth, is capable of detecting PD emanating
from local switchgear, from cable and from cooling water pump
motor which is usually 300–500 m away. PD was detected from
four MV motors (A, B, C and D) and recorded for later analysis. 

Fig. 12 shows the PRPD pattern of tested motors. By visual
inspection of the PRPD patterns in comparison with standard PD
patterns as given in IEC60034-27, the fault in motor A might be PD
1 (internal void discharge); the PD pattern of motor B might be
double-source PD 4 and 5 (slot discharge and surface discharge);

Table 2 Classification results of the proposed method in single PD recognition when applied to experimental result
Test group Experiment 1 (PD 1) Experiment 2 (PD 3) Experiment 3 (PD 5)

Fractal features Potential PD (CS) Fractal features Potential PD (CS) Fractal features Potential PD (CS)
D Λ PD 1, % PDs 1 and 4,

%
D Λ PD 3, % PDs 2 and 3,

%
D Λ PD 5, % PDs 2 and 5,

%
1 2.5576 0.2586 0 15 2.3560 0.6428 0 0 2.3029 0.7946 5 0
2 2.5634 0.2592 5 15 2.3651 0.6430 15 0 2.3105 0.8119 10 0
3 2.5724 0.2846 10 45 2.3655 0.6438 15 0 2.3152 0.8073 55 0
4 2.5756 0.2452 10 20 2.3662 0.6428 15 5 2.3153 0.8068 75 0
5 2.5789 0.2675 20 15 2.3680 0.6421 10 5 2.3168 0.8081 65 0
6 2.5806 0.2614 25 10 2.3680 0.6403 10 0 2.3172 0.8070 60 0
7 2.5851 0.2681 30 5 2.3703 0.6411 10 0 2.3199 0.8124 80 0
8 2.5907 0.2458 40 10 2.3773 0.6461 30 20 2.3202 0.7931 90 0
9 2.5916 0.2843 65 15 2.3788 0.6453 45 30 2.3227 0.8024 75 0
10 2.5920 0.2840 65 15 2.3854 0.6249 85 80 2.3227 0.8083 85 0
11 2.6010 0.2953 80 5 2.3859 0.6237 90 75 2.3257 0.7963 70 0
12 2.5983 0.2927 80 5 2.3983 0.6477 65 80 2.3268 0.8117 45 0
13 2.6005 0.2514 75 5 2.4027 0.6283 80 40 2.3308 0.8207 65 0
14 2.6009 0.2509 75 5 2.4033 0.6308 80 40 2.3416 0.8003 40 0
15 2.6124 0.2627 20 0 2.4136 0.6381 65 15 2.3421 0.7883 10 5
16 2.6135 0.2622 20 0 2.4094 0.6289 60 15 2.3430 0.7905 25 0
17 2.6133 0.2718 10 0 2.4086 0.6308 35 0 2.3442 0.7972 20 0
18 2.6145 0.2720 10 0 2.4113 0.6319 20 5 2.3450 0.8215 20 15
19 2.6271 0.2722 5 0 2.4208 0.6193 5 0 2.3453 0.8207 10 15
20 2.6280 0.2914 5 0 2.4320 0.6342 0 0 2.3507 0.7821 0 0
average 32.5 8.75 36.75 20.5 45.25 1.75

recognition rate
PD 1 (95%) might also be PDs 1–4 (75%) PD 3 (90%) might also be PDs 2 and 3

(60%)
PD 5 (95%) might also be PDs 2–5 (15%)

 

Fig. 9  PPD pattern image of double-source PD samples
(a) PDs 1 and 3 PPD pattern based on the results of experiments 1 and 2, (b) PDs 1 and 5 PPD pattern based on the results of experiments 1 and 3, (c) PDs 3 and 5 PPD pattern based
on the results of experiments 2 and 3
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the PD pattern of motor C might be PD 1 (internal void discharge);
and the PD pattern of motor D might be PD 4 (slot discharge). It is
to be noted that the authors do not have photographs to show the
evidential damage of the defect site (Fig. 13). 

The proposed pattern recognition algorithm was applied to
these four motors. The recognition results were shown in Table 4.
The recognition results agree well with the visual inspection. The
recognition rate for multi-source PD is not <86.7% in practical
situations. The CS-based pattern classification shows all potential
PD patterns with a ranked score. Take Motor D, for example the
PD pattern recognition result is PD 4 with the recognition rate

100%, PDs 2 and 6 with recognition rate 83%, PD 2 with
recognition rate 83%, which all have high possibilities. When
considering the average CS, the average value of CS of PD 4 is
much higher than the other two patterns. It indicates the tested PD
pattern is more likely to be PD 4. 

9 Conclusion
This paper described a combination of theoretical and practical
study into the feasibility of using fractal theory to discriminate
multiple motor PD sources. PRPD patterns were modified to create

Fig. 10  Cluster representation on the global D–Λ map showing double-source PD experimental results
 

Table 3 Classification results of the proposed method in double-source PD recognition when applied to experimental result
Test
group

Combined experiment result in PDs
1 and 3

Combined experiment result in PDs
1 and 5

Combined experiment result in PDs 3 and 5

Fractal features Potential PD (CS) Fractal features Potential PD (CS) Fractal features Potential PD (CS)
D Λ PDs 1

and 3, %
PDs 1

and 2, %
D Λ PDs 1

and 5, %
PDs 4

and 6, %
D Λ PDs 3

and 5, %
PDs 3

and 6, %
PD 6, %

1 2.4667 0.3054 0 10 2.3754 0.5281 0 0 2.2780 0.5537 0 0 0
2 2.4688 0.3130 5 25 2.3781 0.5233 20 0 2.2831 0.5861 0 0 0
3 2.4865 0.2752 15 5 2.3796 0.4882 25 20 2.2957 0.5456 10 0 0
4 2.4883 0.3217 20 20 2.3821 0.5067 10 0 2.3049 0.5513 15 0 0
5 2.4907 0.2865 25 0 2.3901 0.5116 25 0 2.3057 0.5716 20 0 0
6 2.4921 0.3108 20 0 2.3926 0.5097 35 0 2.3092 0.5483 15 0 0
7 2.5013 0.3032 85 0 2.4017 0.5113 65 0 2.3144 0.5817 30 0 0
8 2.5039 0.2957 85 0 2.4021 0.5081 65 0 2.3147 0.5394 25 0 0
9 2.5077 0.3198 75 0 2.4097 0.5207 80 0 2.3193 0.5645 90 0 0
10 2.5100 0.2883 70 0 2.4100 0.5031 70 0 2.3202 0.5837 45 0 0
11 2.5108 0.3084 75 0 2.4106 0.4833 25 15 2.3217 0.5693 50 0 0
12 2.5166 0.3167 70 0 2.4119 0.4901 25 15 2.3223 0.5509 55 0 0
13 2.5168 0.2937 60 0 2.4203 0.5117 35 0 2.3225 0.5229 20 0 0
14 2.5197 0.3056 35 0 2.4231 0.5129 10 0 2.3247 0.5694 45 0 0
15 2.5208 0.3288 15 0 2.4236 0.5089 10 0 2.3279 0.5701 15 0 0
16 2.5213 0.3279 15 0 2.4259 0.5109 5 0 2.3281 0.5327 15 0 0
17 2.5245 0.2991 10 0 2.4280 0.5277 5 0 2.3327 0.5617 5 0 0
18 2.5273 0.3057 0 0 2.4288 0.4937 10 0 2.3329 0.5509 5 0 0
19 2.5288 0.2871 0 0 2.4296 0.5110 0 0 2.3371 0.5392 0 5 0
20 2.5292 0.3104 0 0 2.4327 0.5226 0 0 2.3392 0.5726 0 10 5
average 34 3 26 2.5 23 0.75 0.25

recognition rate
PDs 1–3 (80%) might also be PDs 1

and 2 (20%)
PDs 1–5 (85%) might also be PDs 4–6

(15%)
PDs 3–5 (80%) might also be PDs 3–6 (10%), PD

6 (5%)
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polar PD patterns to address the problem of lack of voltage phase
information. Two fractal features, fractal dimension D and
lacunarity Λ, were employed to measure the shapes of PPD. The
reference PPD patterns were created from the PRPD patterns in
IEC 60034-27-2. The fractal maps of single-source PDs and
double-source PDs showed good stability when the shapes of PPD
patterns were compressed and extended. Three types of PD
geometries were built and tested under laboratory conditions to
validate the proposed method's pattern recognition performance for
both single-source PDs and double-source PDs. Four sets of motor
PD from on-site data were visually assessed and analysed in the
fractal map of single-source PDs and double-source PDs. The
recognition results agree well with the visual inspection.

The limitation is that several clusters of PPD patterns are very
close in the fractal map, which may cause incorrect identification.
However, the ones close to each other have similar risk level in

terms of further degradation. A risk-based diagnosis will be
investigated as future work.
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Fig. 11  Installation of HFCTs in field test
 

Fig. 12  Continued
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Fig. 12  PRPD pattern and the PPD pattern images of motors A, B, C and D
(a) PRPD pattern and the PPD pattern image of motor A, (b) PRPD pattern and the PPD pattern image of motor B, (c) PRPD pattern and the PPD pattern image of motor C, (d)
PRPD pattern and the PPD pattern image of motor D

 

Fig. 13  Cluster representation on the global D–Λ map showing double-source PD experimental results
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Table 4 Classification results of the proposed method in multi-source PD recognition when applied to on-site tests
Test group Motor A Motor B

Fractal features Potential PD (CS) Fractal features Potential PD (CS)
D Λ PD 1, % PDs 1 and 4, % D Λ PD 4 and 5, % PD 2 and 5, %

1 2.5726 0.2156 30 25 2.3357 0.9042 5 20
2 2.5742 0.2623 25 15 2.3436 0.9127 25 5
3 2.5832 0.2128 40 0 2.3479 0.9824 0 0
4 2.5957 0.2473 85 0 2.3527 0.9211 40 0
5 2.6283 0.2506 70 0 2.3583 0.9046 35 0
6 2.6363 0.2633 10 0 2.3771 0.8997 15 5
average 43.3 6.7 20 5

recognition rate
PD 1 (100%), might also have PD 4 (33%) PDs 4 and 5 (86.6%), might also have PD 2 (33%)

 

 
Test group Motor C Motor D

Fractal features PD code (CS) Fractal features PD (CS)
D Λ PD 1, % PDs 1 and 4, % D Λ PD 4, % PDs 2 and 6, % PD 2, %

1 2.5831 0.2693 80 10 2.4275 0.4246 40 10 5
2 2.5997 0.2532 75 0 2.4291 0.3882 20 40 0
3 2.6001 0.2551 75 0 2.4295 0.3956 75 80 0
4 2.6083 0.2752 30 0 2.4347 0.3819 60 10 0
5 2.6127 0.2382 30 0 2.4426 0.4176 20 0 15
6 2.6142 0.2401 30 0 2.4485 0.4058 30 25 0
average 53.3 1.7 41 27.5 3.3

recognition rate
PD 1 (100%) might also have PD 4 (16.7%) PD 4 (100%) might also have PDs 2 and 6 (83%), PD 2 (33.3%)
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