

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/121792

Tuzov, I.; Andrés, DD.; Ruiz, JC. (2018). Tuning synthesis flags to optimize implementation
goals: Performance and robustness of the LEON3 processor as a case study. Journal of
Parallel and Distributed Computing. 112:84-96. https://doi.org/10.1016/j.jpdc.2017.10.002

https://doi.org/10.1016/j.jpdc.2017.10.002

Elsevier

Tuning synthesis flags to optimize implementation
goals: performance and robustness of the LEON3

processor as a case study

Ilya Tuzova,∗, David de Andrésa, Juan-Carlos Ruiza

aITACA, Universitat Politècnica de València, Campus de Vera s/n, 46022, Spain

Abstract

The steady growth in complexity of FPGAs have led designers to rely more

and more on manufacturers’ and third parties’ design tools to meet their im-

plementation goals. However, as modern synthesis tools provide a myriad of

different optimization flags, whose contribution towards each implementation

goal is not clearly accounted for, designers just make use of a handful of those

flags. This paper addresses the challenging problem of determining the best

configuration of available synthesis flags to optimize the designers implementa-

tion goals. First, fractional factorial design is used to reduce the whole design

space. Resulting configurations are implemented to estimate the actual im-

pact, and statistical significance, of each considered synthesis flag. After that,

multiple regression analysis techniques predict the expected outcome for each

possible combination of these flags. Finally, multiple-criteria decision making

techniques enable the selection of the best set of synthesis flags according to

explicitly defined implementation goals.

Keywords: synthesis options, implementation goals optimization, design space

exploration, multiple regression analysis, multiple-criteria decision making.

∗Corresponding author
Email addresses: tuil@disca.upv.es (Ilya Tuzov), ddandres@disca.upv.es (David de

Andrés), jcruizg@disca.upv.es (Juan-Carlos Ruiz)

Preprint submitted to Journal of Parallel and Distributed Computing (JPDC)October 2, 2017

1. Introduction

Design optimization is a common problem designers should face when deal-

ing with complex digital designs. In addition to implementing the required

logical function, designers must meet a number of different, and often conflict-

ing, implementation goals, such as that the design should run at a given clock5

frequency (performance), take a given number of internal resources (utilization),

run within a given power or energy budget (consumption), and provide a given

grade of robustness [1].

Once the correctness of the functional specification is verified (usually through

simulation), and due to the high complexity of modern FPGA devices, design-10

ers must rely on existing back-end tools to translate the HDL description of the

design into a logical-level Field-Programmable Gate Array (FPGA) netlist (syn-

thesis), map those logical elements to the actual physical device (placement),

and interconnect those elements through the existing wiring (routing) [2]. Each

of these back-end tools take as input the output from the previous stage, and15

applies a number of different optimizations to try to meet the desired implemen-

tation goals. Accordingly, as operating in a daisy chain fashion, the optimiza-

tions applied at the very first stage (the synthesis process) are critical towards

meeting the required goals, as bad parametrization decisions will irremediably

affect the rest of stages.20

Due to its critical role in meeting the implementation goals, FPGA manufac-

turers and third party companies providing synthesis tools include a wide range

of different optimization options suitable to different kind of devices, architec-

tures, and scenarios. Nevertheless, far from alleviating the task of designers, the

myriad of options available makes it very difficult to know the precise contribu-25

tion of each one to a particular goal. Some options may have a greater impact in

the implementation goals than others, some of them may have opposite effects,

and most of them are never used because it is not clear enough what could

rightly be expect from them [3].

Determining the best configuration of available synthesis flags for a given im-30

2

plementation goals would require exploring the whole design space (all possible

combinations of synthesis flags at different levels). FPGA manufacturers pro-

vide different tools for design space exploration, like Xilinx’s SmartXplorer [4]

or Altera’s Design Space Explorer II [5], which perform several different imple-

mentations (changing the synthesis options) of the same design looking for the35

configuration that best meets the required implementation goals. Nevertheless,

even when many-core machines or computer clusters can be used to perform

the exploration in parallel, the time required to sweep the whole design space

is prohibitive. For instance, considering that the 34 different synthesis options

from Xilinx’s XST synthesizer could be set at just two possible levels, and the40

implementation and simulation of the design takes just 1 minute (very opti-

mistic), exploring the whole design space (234 configurations) will take roughly

32000 years running on a single-core machine.

Several works have dealt with the problem of design space exploration from

different perspectives. For instance, a given architectural configuration for chip45

multiprocessor may required a couple of weeks to be simulated, so statistical

simulation [6] or predictive modelling [7] are some of the proposed approaches

to reduce that design space. Focusing on reconfigurable devices, evolutionary

approaches were proposed in [8] to find a good solution in High-Level Synthesis

with conflicting design objectives, [9] focused on the parametrization of soft-core50

processors through a greedy search method, and a calibration free algorithm for

automatic optimization of design parameters was proposed in [10]. None of

these works specifically focused on the parametrization of the synthesis, place-

ment and routing processes, but on the architectural features of the designs to

be implemented onto the reconfigurable device.55

In this particular context, an approach based on machine-learning autotun-

ing was presented in [11] to sample the parameter space and thus reduce the

time devoted to the configuration search process. Nevertheless, although this

approach, and those provided by FPGA manufacturers, may find a suitable con-

figuration for the requested goals, the particular contribution of each selected60

option and their interactions are not accounted. Accordingly, designers are at

3

a loss when deciding how to configure the synthesis tool for each given design.

A very preliminary first step towards achieving this goal was taken at [12],

which estimated the impact of different Xilinx’s ISE optimization options on

the power consumption of different security algorithms. However, that study65

considered just 4 different options (only one of them was related to the syn-

thesis process), and focused on just one primary goal (power consumption). In

addition, the contribution of each particular parameter to that goal was not

determined, just the difference between configurations.

This paper focuses on the challenging issue of estimating the actual con-70

tribution of each synthesis flag towards a particular implementation goal, and

determining the best possible configuration of the synthesis options to meet a

given set of goals. As the whole design space cannot be explored within rea-

sonable timing limits, we present a methodology based on operational research

methods that can be used to i) greatly reduce the design space (fractional facto-75

rial design), ii) determine whether each synthesis flag statistically significantly

impact the given implementation goals (analysis of variance), iii) predict the

expected result for any combination of the synthesis flag across the whole de-

sign space (linear regression and generalized linear regression), and iv) select

the best possible configuration according to specifically stated implementation80

goals (multiple-criteria decision making)). The feasibility and usefulness of this

methodology is exemplified through a case study that considers how synthesis

flags affect the performance and robustness properties of the LEON3 proces-

sor [13] implemented on a Virtex-6 FPGA, using Xilinx’s ISE Design Suite and

XST synthesis tool.85

The rest of the paper is organized as follows. Section 2 establishes the

theoretical framework for the proposed study. Section 3 defines the method

for tuning the synthesis options to optimize performance and robustness, and

describes its implementation for the Xilinx ISE toolkit. Section 4 describes

the target LEON3 processor model and the workload selected as case study.90

Section 5 analyzes all the obtained results from an statistical perspective, deter-

mining the precise impact of each factor according to a multiple linear regression

4

model, and determining the best possible configuration according to different

optimization goals. Finally, Section 6 presents the main conclusions and future

work.95

2. Background: Design of Experiments and its Statistical Analysis

The problem behind getting the precise contribution of each synthesis op-

tion towards a given implementation goal (screening), and thus being able to

determine the best configuration to meet this goal (response surface), can be

analysed following a statistical design of experiments procedure. This proce-100

dure allows researchers to plan experiments so that the data obtained can be

analysed to yield valid and objective conclusions [14].

2.1. Full and fractional factorial design

In particular, these problems usually require a full factorial design, in which

every setting of every factor appears with every setting of every other factor.105

Factors (Xi) are those process inputs (in this case synthesis flags) that are de-

liberately changed to observe their effect on the response variables (Vj) (process

outputs). Static properties of the design are directly estimated after its im-

plementation, like resources utilization and minimum clock period, whereas dy-

namic properties, like dynamic power consumption, are estimated by simulating110

the design behaviour under a given workload. Likewise, robustness properties,

like percentage of detected failures, are commonly assessed by the deliberately

introduction of faults into design while running a given workload by means of

simulation-based fault injection (SBFI) experiments. Consequently, estimating

the response variables even for a single combination of factors settings is a very115

time-consuming problem, and the exploration of a full factorial design becomes

unfeasible with increasing number of factors.

A selected subset of factors’ settings form a fractional factorial design, which

can considerably reduce the design space and, thus, the time required to esti-

mate the effect of those factors. The fractional factorial design of experiments120

5

exploits two main principles [15] [16] to reduce the design space without af-

fecting the validity of drawn conclusions: i) sparsity of effects, which states

that the number of relatively important effects and interactions in a factorial

design is small, and ii) hierarchical ordering, which states that lower order ef-

fects are more likely to be important than higher order effects, main effects are125

more likely to be important than interactions, and effects of the same order

are equally likely to be important. The combinations of factors settings should

be carefully chosen so the design is both balanced (the combination of factors

settings for any group of factors have the same number of observations) and

orthogonal (the effects of any factor balance out (sum to zero) across the effects130

of the other factors) [14]. Furthermore, it is necessary to take into account the

resolution of the design, which describes the degree to which estimated main

effects are aliased (or confounded) with estimated low-level interactions [17].

The resolution of a design is one more than the smallest order interaction that

some main effect is confounded with. Accordingly, to precisely determine the135

contribution of each factor towards the implementation goals, a fractional fac-

torial design with resolution IV should be considered, so main effects are not

confounded among one another nor with any two-factor interaction.

Fractional factorial designs are commonly denoted as IK−P
R , where I is the

number of possible settings (levels) of each factor, K is the number of factors,140

R is the resolution of the design, and 1/IP is the size the fraction with respect

to a full factorial design. According to [18], ‘two-level designs (I = 2) should be

the cornerstone of industrial experimentation for product and process develop-

ment, troubleshooting, and improvement.’ In fact, most synthesis flags present

a dual nature (‘Yes/No’, ‘True/False’, ‘Enable/Disable’), whereas the rest can145

be modelled as a maximum and minimum threshold (‘0%/100%’), or assume a

compromise subset of settings (‘Speed/Area’). Nevertheless, there exist some

situations in which it could be necessary to consider factors at more than two

levels (‘Normal/High/Fast’, for instance), at the cost of an even larger design

space. If all factors are quantitative, then two-level designs with centre points150

should be employed [18]. Otherwise, existing algorithms, like the one proposed

6

in [19], can be used to generate the required mixed-level fractional factorial

design.

2.2. Analysis of variance (ANOVA)

The analysis of variance (ANOVA) is used to determine whether there are155

significant differences between the means of two or more independent (unrelated)

groups [14]. The null hypothesis to be tested is that there is no difference in the

population means of the different levels of a given factor. This procedure splits

the total variation in the response variable into a part due to random errors (sum

of squares of error) and a part due to changes in the levels of the selected factor160

(sum of squares of treatment). The degrees of freedom are split in the same

way, and are used to compute the mean square for treatments and errors. If

the null hypothesis is true, then both mean squares estimate the same quantity

and its ratio (F-test) should be close to 1. If the probability (p-value) of an

F value being greater than or equal to the observed value is less than or equal165

to the significance level (α, usually 0.05), then the null hypothesis is rejected

(meaning that setting a given factor to one level or another has a statistically

significant impact in the response variable observed).

2.3. Linear and generalised linear regression

Regression analysis is a statistical technique that can be applied in this170

context to estimate the parameters of an equation relating a particular response

variable to a set of factors. In such a way, it is possible to predict the value of the

response variables for the whole design space even when only just a fraction has

been actually explored. A linear regression model assumes that the relationship

between the response variable and the factors is linear (y = β0 + β1X1 + . . . +175

βnXn) [20]. The coefficient of determination (R2) explains the proportion of

the variance in the response variable that can be explained by the factors, i.e.

how well the model fits the data (values for the response variable obtained

through the fractional factorial design). In case the linear regression model does

not adequately fit the data, then a more complex generalized linear regression180

7

model can be used. The generalized linear regression is a generalization of the

general linear model that can be used to predict responses for both variables

with discrete distributions or which are not linearly related to the predictors.

2.4. Multiple-criteria decision making (MCDM)

Multiple-criteria decision making (MCDM) methods provide a way for struc-185

turing complex problems and considering multiple, and usually conflicting, cri-

teria to make more informed and better decisions [21]. As it is the case when

implementing designs on reconfigurable devices, there is usually not a unique

optimal solution for problems involving multiple criteria, so it is necessary to

take into account the preferences of the decision maker (usually by weighting190

the relative importance of each criterion) to differentiate between available solu-

tions. Different methods, each one with its own mathematical foundations, have

been developed along the years, such as the Weight Sum Model (WSM) and the

Weight Power Model (WPM) [22], the Analytic Hierarchy Process (AHP) [23],

the VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) [24], or195

the Technique for Order of Preference by Similarity to Ideal Solution (TOP-

SIS) [25]. Any of these methods could be used to determine the best possible

configuration of synthesis flags according to explicitly defined implementation

goals.

3. Tuning synthesis options: proposed method and its actual imple-200

mentation

All the previously described statistical techniques are the cornerstones of

the proposed method, whose flowchart is depicted in Figure 1. It comprises

two basic phases: implementation (phase 1) and analysis (phase 4). Simulation

(phase 2) and fault injection experiments (phase 3) are executed only in case of205

considering implementation goals related to dynamic properties and robustness,

respectively. Additionally, a preceding preparatory phase is defined to design

the experiments to run.

8

Implementation of defined factorial

designs with the target tool

Static properties

(response variables VST)

Simulation
Fault injection

experiments

Sensitivity Analysis

Multiple Regression Analysis

Regression Model, predicted {V} for

2
K
full factorial designs

Multiple Criteria Decision Analysis

Optimal configurations of synthesis

flags wrt. implementation goals

N implementation-level netlists

Dynamic properties

(response variables VDYN)

Dependability properties

(response variables VDEP)

2R
K-P
Fractional factorial

experimental design
RT-level HDL model

Simulationmodels (netlist

+ testbench +workload)

Phase_1: Implementation

Phase_2: Simulation

Phase_3: Fault Injection Experiments

Phase_4: Analysis

Phase_0: Building Experimental Design

Figure 1: Experimental flow for identification of optimal configuration of synthesis flags

The proposed method has been implemented for the Xilinx ISE Design

Suite [26], providing a detailed experimental procedure and a tool, which per-210

forms fractional factorial experiments in an automated way. Although most im-

plementation tools are vendor-specific, they follow a quite similar design flow,

thus the proposed implementation may be adapted to different toolkits. Im-

plementation and simulation phases are executed in parallel in a multi-core

machine, whereas simulation-based fault-injection experiments are executed in215

a grid-based computing system to achieve the maximum speed-up for the whole

procedure.

9

3.1. Design of experiments

The main purpose of the preparatory phase is to define a fractional factorial

design for the set of synthesis options (factors) selected among those available220

in the given synthesis tool (Xilinx’s XST, in our case).

As previously explained, it is preferable to consider factors at just two levels

due to existence of efficient analysis techniques and a greater reduction of the

space to explore. Since our first goal is to estimate the precise contribution of

each factor towards the implementation goals, the resolution of the experiment225

should be at least IV (the effects of the main factors are not confounded with

any two-factor interactions). Resulting fractional factorial design for K two-

level factors with resolution IV is denoted as 2K−P
IV , and consists of a K ×

2K−P table where each cell (Lc,i) defines the setting of each factor (Xi) at

the given treatment combination (c) (referred to as configuration from now230

on). Predefined designs for up to 11 factors can be found in [27] and [18],

whereas MATLAB’s Statistics and Machine Learning Toolbox [28] can be used

to generate two-level fractional factorial designs with 2K−P experiments and

a given resolution using the Franklin-Bailey algorithm. For instance, a 212−7
III

design can be obtained by running the MATLAB code from Listing 1.235

1 gene ra to r s=f r a c f a c t g e n (’ a b c d e f g h i j k l ’ , 5 , 3) ;

2 [d f f , confounding]= f r a c f a c t (g ene ra to r s) ;

Listing 1: Fractional factorial design generation with MATLAB

The resulting table is formatted and stored in a custom configuration file

(*.xml) along with the set of options required for configuring and executing

the rest of automated steps. This required information comprises the synthesis,240

map, place-and-route, and simulation tools command line options, the default

clock period, the common source and destination directories, the fault models

for the SBFI experiments, and maximum number of processes that could be

executed in parallel, among other parameters.

10

3.2. Model implementation and static properties estimation245

The implementation phase parses the custom configuration file to build an

internal list of all considered configurations (rows of factors combinations in the

table). A particular synthesis file (.xst) is generated for each configuration (c)

according to the specified factor values (Lc,i), so as to properly configure the

synthesis process (XST tool) for each defined experiment. The netgen tool is250

used to create the required post-synthesis netlists.

After that, a constraints file (.ucf) is generated to specify a new goal for

the maximum clock period (initially that defined in the configuration file) for

that particular configuration. Then, in sequential order, the translate, map,

and par tools are run to obtain the final implementation of the system on the255

target FPGA. Their particular reports are checked to detect any problem in the

implementation process.

If no problem is detected, the trce (static timing) tool is executed to obtain

a timing analysis report (.twr). This report is analysed to determine whether

the clock constraints are met. If this is the case, the maximum clock period260

constraint is decreased by a parametrizable delta clk factor. Otherwise, the

maximum clock period constraint is increased by delta clk. This implementation

process is rerun until no gain in clock frequency is found, thus the maximum

possible clock frequency for that particular configuration is reached. Finally,

the post-map and post-par netlists are created using the netgen tool.265

The estimations of those response variables related to static properties of the

implementation of each configuration (VST), like resources utilization and clock

frequency, are retrieved from implementation (.par) and timing (.twr) reports

respectively.

3.3. Model simulation for dynamic properties estimation270

The simulation phase is required to estimate those response variables related

to dynamic properties of the system (VDYN), like power consumption. To do

so, the resulting implementation-level netlist must be included into the test

11

environment and compiled to obtain the simulation model, which should be

simulated under a representative workload.275

First the workload settings are tuned according to the timing report for each

particular configuration, and a simulation executable file is generated by means

of the fuse tool. The commands required to monitor the switching activity of

the system are included into a simulation script (isim.cmd), and the simula-

tion time is scaled with respect to the finally attained clock frequency. The280

testbench isim par.exe executable file runs the simulation.

The resulting switching activity interchange format file (.saif) is fed to the

xpwr tool to obtain an estimation of the dynamic power consumption in the

resulting log file.

3.4. Fault injection for robustness properties estimation285

The estimation of those response variables related to the robustness, or de-

pendability in general, of the system (VDEP) requires the simulation of the sys-

tem both in absence and in presence of faults. Simulation-based fault injection

(SBFI) [29] has been selected as a suitable technique, among the wide range of

techniques existing nowadays, as it provides the best observability and repeata-290

bility of experiments, which is critical when deploying the very same experiments

for different configurations. Accordingly, it is necessary to take into account the

structural differences between implementations to ensure that the same faults

are injected at same points at the same time during the simulation.

Each implementation-level netlist is parsed according to the naming con-295

vention of the selected synthesis tool (Xilinx’s XST) to identify the common

set of primitives (as defined in the vendor library) across all configurations (see

Figure 2). As considering FPGAs as implementation targets, Flip-Flops (FFs)

and Look-Up Tables (LUTs) are generally selected as suitable fault injection

points, although other components like DSP or BlockRAM units could be also300

considered.

Resulting sets of common and complementary fault injection points are used

to build an experiment specification file for each configuration. Each fault in-

12

Conf2

Conf1

X_MUX2

IA

IB

O

SELA0

A5

O

X_LUT6

A0

A4

O

X_LUT5

Q

C

S

D

CE

X_FF

R

r_e_op1_9

Q

C

S

D

CE

X_FF

R

r_e_op2_9

Q

C

S

D

CE

X_FF

R

r_e_res_9

...

A0

A3

O

X_LUT4

Q

C

S

D

CE

X_FF

R

r_e_op1_9_dup

Q

C

S

D

CE

X_FF

R

r_e_res_9_dup

...

X_FF

X_BRAM

r_e_ctr_tt_4

A0

A19

Q

C

S

D

CE

R

...

X_LUT4

A0

A3

D0

D7

Q

C

S

D

CE

X_FF

R

r_e_dci_signed

...

...

O

...

...

Conf3

...

X_LUT4

A0

A3

O

...

Figure 2: Matching primitives between multiple implementation-level netlists: common set

(dark shaded) and complementary set for configuration 3 (light shaded)

jection points is assigned a fault model, forced value, injection instant, duration

and observation time. The values assigned for elements within the common set305

are exactly the same for all configurations, ensuring the introduction of exactly

the same faults. The clock period for the simulation is set up according to the

maximum clock frequency reported for each configuration, thus the timing of

all simulation processes is scaled according that value.

Prepared SBFI experiments are now executed in order to compare the be-310

haviour of the system in presence and absence of faults. The execution of the

experiments is controlled by means of a set of TCL scripts including commands

for the selected simulator (Mentor Graphics’ Model [30] in our case) to inject

faults and monitor the system, like force, change, or examine. Observations

collected for each experiment (state of the system according to internal signals,315

like FFs outputs) at given observation times are stored in observation dump

files.

13

Once all observation dumps are collected they are compared with the refer-

ence one to identify four different failure modes that are generic enough to be

applied to any system under study: i) masked fault, when outputs are correct320

and no errors (incorrect internal state) are observed at the end of observation

interval, ii) latent faults, when outputs are correct but an erroneous internal

state is observed (it may produce a failure later if extending the execution pe-

riod), iii) signalled failure, when outputs are incorrect and the system raises an

error flag (notifies the detection of the failure), and iv) silent data corruption325

(SDC), in case of failure not signalled by the system.

The result of this sensitivity analysis process is an estimation of the rates of

these failure modes, the distribution of errors across the design hierarchy, and

the fault to failure latency.

3.5. Analysis of results330

Once the values Mc,j for all response variables (V = VST∪VDYN∪VDEP) are

available, the last phase that takes place is analysis, which includes the analysis

of variance (ANOVA), building a regression model, and multi criteria decision

making.

The ANOVA procedure is used to determine whether each considered fac-335

tor (synthesis flag) statistically significantly contributes to each implementation

goal. As previously stated, this is the case when the obtained p-value is below

the significance level (usually 0.05). Those p-values can be easily computed by

the MATLAB’s Statistics and Machine Learning Toolbox [28], as depicted in

Listing 2.340

1 Tdata=readtab l e (’ Data . x lsx ’ , ’ Sheet ’ , 1) ;

2 T=Tdata (: , { ’X1 ’ , ’X2 ’ , ’X3 ’ , ’ MyResponseVariable ’ }) ;

3 anovan (T. (3) , {T.X1 ,T.X2 ,T.X3} , ’ model ’ , ’ l i n e a r ’ ,

4 ’ varnames ’ , { ’X1 ’ , ’X2 ’ , ’X3 ’ }) ;

Listing 2: N-way analysis of variance for testing the effects of multiple factors on the mean of

a response variable using MATLAB: (1) Reading data from an Excel file, (2) selecting data

related to 3 factors and one response variable, and (3) computing the ANOVA

14

All obtained data can be also used to compute a regression model to predict345

the value of the response variables for any setting of synthesis options. The

statistical significance of the obtained model should also should be assessed,

checking the p-value to be less than the significance level (usually 0.05). Likewise

the coefficient of determination R2 denotes the proportion of the variance in the

response variable that can be explained by the factors.350

This proposal first makes use of a linear regression model and, in case the

the quality of that model is considered insufficient to predict the responses (an

R2 threshold should be defined), a more complex generalized linear model is

computed instead. This approach has been implemented using the MATLAB’s

Statistics and Machine Learning Toolbox [28], as shown in Listing 3. The pro-355

cedure is iteratively applied, changing the starting model for the setpwise re-

gression from ‘linear’ to ‘interactions’.

1 Fit=f i t lm (T, ’ l i n e a r ’ , ’ ResponseVar ’ , MyResponseVariable ’) ;

2 i f F i t . Rsquared . Ordinary < th r e sho ld

3 Fit=stepwiseg lm (T, ’ l i n e a r ’ , ’ ResponseVar ’ , ’ MyResponseVar ’) ;360

4 i f F i t . Rsquared . Ordinary < th r e sho ld

5 Fit=stepwiseg lm (T, ’ i n t e r a c t i o n s ’ ,

6 ’ ResponseVar ’ , ’ MyResponseVar ’) ;

7 end

8 end365

Listing 3: Building an increasingly complex linear regression model until the coefficient of

determination is above a given threshold using MATLAB

Finally, the expected values of each response variable for the whole set of 2K

possible synthesis configurations are computed, thus enabling to determine the

best synthesis options configuration according to given implementation goals.

In the particular case of implementing designs on FPGAs, those implementa-

tion goals are usually conflicting as increasing the clock frequency is likely to370

increase also the dynamic power consumption. In such cases, when there is

no information about the particular preferences of the designer, it is sufficient

to provide the Pareto optimal set (or Pareto frontier). It consists of all those

15

configurations in which it is impossible to improve a response variable with-

out making worse another one. As no subjective information is provided, all375

of those configurations are considered a good solution towards optimizing the

implementation goals.

However, if the designer provides her preferences about which implementa-

tion goal is more important than other (usually in the form of weights), then

it is possible to estimate the best configuration of synthesis options according380

to different multi-criteria decision making (MCDM) methods. Although sev-

eral different MCDM methods exists, this works focuses on the Weighted Sum

Method (WSM) [22] to combine the different response variables into a single

score accounting for the quality of the implementation according to the de-

signer’s goal. It must be noted that, in case of dealing with response variables385

expressed in different units, it is necessary to normalize (usually between 0 and

1) the predicted values prior to computing the WSM. In this case, Equation 1

can be used to normalize predicted response variables according to whether they

should be interpreted as the-higher-the-better values, like clock frequency, or the-

lower-the-better ones, like dynamic power consumption. Equation 2 shows how390

to compute the final score S according to the weights (ω) defined by the designer

for each predicted response variable after normalization (V ∗′).

V ∗′ =


V ∗/V ∗MAX , if the-higher-the-better response variable

V ∗MIN/V ∗, otherwise

(1)

where:

V ∗
MAX : maximum V ∗ across all configurations

V ∗
MIN : minimum V ∗ across all configurations395

S =

M∑
i=1

ωi × V ∗′
i (2)

where:

M : number of response variables

16

The configuration obtaining the highest score will be that optimizing the

implementation goal according to the designer’s preferences.

3.6. Summary400

The proposed method makes use of commonly used statistical techniques

to determine the actual contribution of each synthesis flag towards the final

implementation goals taking into account static and dynamic properties of the

system, including robustness related ones. The defined procedure can also com-

pute the best possible configuration of these flags according to the designer’s405

preferences. This whole process has been automated, as depicted in Figure 3, to

work under Xilinx’s ISE Design Suite, Mentor Graphics’ ModelSim, and MAT-

LAB, although it can be adapted to use other manufacturers tools.

4. Case Study: implementing a LEON3 processor on a Virtex-6 FPGA

The case study selected to show the feasibility of the proposed approach410

consists in finding the actual contribution of a set of selected synthesis flags

from Xilinx’s XST tool, and which is their best configuration, towards the final

clock frequency, dynamic power consumption, number of FFs and LUTS used,

and robustness when implementing a LEON3 processor on a Virtex-6 FPGA

(6vcx240tff784-2). This section details the different configuration parameters415

required for running the experimentation.

4.1. Factors

The Xilinx’s synthesis tool (XST) [31] provides 72 different options grouped

into three categories: synthesis options, HDL options, and Xilinx specific op-

tions. Due to space limitations and to show the generality of the proposed420

approach, only those options commonly found in most state of the art syn-

thesis tools have been selected as factors for experimentation. For instance,

the effort the tool devotes to the synthesis process is defined by the -opt level,

-name SYNTHESIS EFFORT, -map effort, and -effort parameters in the Xil-

inx’s XST, Intel’s Quartus Prime, Synopsys’ Design Compiler, and Cadence’s425

17

Encounter RTL Compiler, respectively. It must be noted that this does not

limit the applicability of the proposed approach, which can take into account

any available option indistinctly, when considering the implementation of a given

design in a particular technology using specific tools.

The following list describes each of the selected factors, labelled from X1 to430

X9, its considered two levels (low/high), and its default value (in bold) when

running a synthesis process with XST.

X1 Optimization Goal: Speed / Area. This factor specifies the global opti-

mization goal for the design. Speed reduces the levels of logic to achieve

higher clock frequency, whereas Area reduces the total amount of logic435

used for design implementation. Faster circuits require more parallelism

(increased utilization) but, as mentioned in [3], second-order effects of the

FPGA implementation may produce unexpected effects. To prevent ef-

fects caused by FPGA utilization close to 100% a device with appropriate

capacity should be selected for experimentation.440

X2 Optimization Effort: Normal / High. States the synthesis optimization

level effort. Normal implies optimization by means of minimization and

algebraic factoring algorithms, whereas High performs additional opti-

mizations tuned to the selected device architecture. An existing third

level (Fast) has not been considered as it just turns off some optimiza-445

tions with the goal of minimising the synthesis runtime.

X3 Power Reduction: No / Yes. Set to Yes optimizes the design to consume

as little power as possible. As mentioned in [31], using that option may

have a negative impact on the final overall utilization and performance.

X4 Keep Hierarchy: No / Yes. Specifies whether the design units should be450

merged across the hierarchy. It simplifies post-synthesis simulation/ver-

ification, while potential negative effects in utilization and consumption

could be expected. The third possible value (Soft) has not been consid-

ered, as it behaves as Yes but without enforcing this value to the rest of

18

implementation processes (place and route).455

X5 Safe Implementation: No / Yes. Specifies whether the implementation of

Finite State Machines (FSM) will automatically recover from any illegal

states. This option is associated with FSM Encoding Algorithm, which is

set to the default Auto level. As recovery logic is introduced, an increase

in device utilization and robustness could be expected.460

X6 Resource Sharing: False / True. Determines whether to share arithmetic

operator resources. Although it usually involves creating additional mul-

tiplexing logic to select between factorized inputs, a reduction in device

utilization could be expected.

X7 Register Duplication: False / True. Specifies whether to replicate registers465

to control registers fanout, thus improving performance. A minor increase

in device utilization is expected.

X8 Equivalent Register Removal: False / True. Determines whether flip-flops

that are equivalent or have constant inputs are removed. This increases

the fitting success because of the logic simplification implied by the flip-470

flops elimination. Opposite effects than Register Duplication should be

expected.

X9 LUT Combining: No / Area (default is Auto). Merges LUT pairs with

common inputs into single dual-output LUT6 to improve design utiliza-

tion. It may decrease performance. Area performs the maximum possible475

combining, whereas No disables combining. The third possible value for

this particular factor (Auto), which looks for a trade-off between perfor-

mance and utilization, has not been considered in favour of the two more

aggressive alternatives.

It must be noted that, as the goal is to precisely determine the impact of each480

factor on the response variables, the options for the rest of processes involved

in the implementation process (translate, map and place-and-route in Xilinx’s

ISE design flow) have been set to their default value.

19

4.2. Response Variables

Implementation goals that can be directly estimated after the target design485

is placed and routed, and that could be dependent on the synthesis options

selected, include maximizing performance, and minimizing utilization and con-

sumption.

As FPGAs are inherently synchronous systems, the performance of any im-

plemented design is usually estimated by means of the maximum clock frequency490

(MHz) (or minimum clock period (ns)) attainable. The timing analysis tools

provided by the manufacturer (Xilinx’s Timing Analyzer [32]) will be used to

estimate this variable.

Estimating the device utilization through a single variable, after implement-

ing the target design, is not so easily done when considering FPGAs as the495

underlying implementation technology. For instance, Xilinx’s Map Report gives

a precise account of the number of flip-flops (FFs) and look-up tables (LUTs)

used to implement the sequential and combinational logic, respectively, of the

design. The precise contribution of each variable to the final goal should be

defined before running the experimentation.500

There are two different variables that contribute to the total power consumed

by the implemented design, the static and the dynamic power consumption.

Synthesis options are very unlikely to have any impact on the static power con-

sumption, as it mainly depends on the selected target device. So this study will

just consider the effect of synthesis options on the dynamic power consumption,505

which makes reference to the additional power consumed due to the switching

activity in the implemented design. Xilinx’s XPower tool [33] provides a full

report for both types of power consumption.

Implementation goals related to robustness are estimated by means of a sen-

sitivity analysis of the results obtained after the execution of SBFI experiments.510

Resulting response variables include the previously defined rates of four failure

modes (masked fault, latent fault, signalled failure and silent data corruption)

for each type of fault targets and fault model. Accordingly, targeting only FFs

(sequential logic) and LUTs (combinational logic), and selecting only two mod-

20

els of permanent faults (stuck-at-1, stuck-at-0) and a single model of transient515

fault (bit-flip applicable only to sequential logic), will provide a set of 20 re-

sponse variables. Although these variables are estimated separately, they are

all joined together into a single score for each considered failure mode.

4.3. Fractional Factorial Design

Even though the number of considered factors has been reduced to just520

9, it will take 29 = 512 different configurations to run a full factorial design

experiment. Accordingly the 29−4
IV fractional factorial design defined in [27], and

listed in Table 1, has been selected to reduce the total number of configurations

to just 32 while maintaining all the required properties. The low- and high-level

for each factor has been coded as 0 and 1, respectively. In such a way, each525

configuration can be easily identified by a single vector with each bit set to the

corresponding level of the 9 considered factors. For instance, configuration 0 is

represented by {000001111}, stating that factors X1 to X5 should take a low

level, whereas factors X6 to X9 should take a high level.

4.4. LEON3 Processor Model530

LEON is a family of 32-bit processors compliant with the SPARC V8 ar-

chitecture, whose fault-tolerant version is used as the European Space Agency

(ESA) standard microprocessor. The third generation of this widely used soft

core processor, LEON3 [13], is fully customizable from a single-core without

cache and MMU minimal configuration up to 16-core AMP/SMP high-performance535

assembly. Its full source VHDL model is distributed under the GNU GPL li-

cense.

The general-purpose LEON3 configuration selected for this case study is

presented in Figure 4. The single-core assembly includes a 7-stage pipelined

integer unit, data and instruction caches, and a register file consisting of 8540

windows of 16 registers each. The boot image is loaded from main PROM,

whereas a UART is used as debugging interface.

21

Table 1: Proposed 29−4 fractional factorial design, with low and high levels coded as 0 and

1, respectively.

Factors

Config. X1 X2 X3 X4 X5 X6 X7 X8 X9

0 0 0 0 0 0 1 1 1 1

1 1 0 0 0 0 1 0 0 0

2 0 1 0 0 0 0 1 0 0

3 1 1 0 0 0 0 0 1 1

4 0 0 1 0 0 0 0 1 0

5 1 0 1 0 0 0 1 0 1

6 0 1 1 0 0 1 0 0 1

7 1 1 1 0 0 1 1 1 0

8 0 0 0 1 0 0 0 0 1

9 1 0 0 1 0 0 1 1 0

10 0 1 0 1 0 1 0 1 0

11 1 1 0 1 0 1 1 0 1

12 0 0 1 1 0 1 1 0 0

13 1 0 1 1 0 1 0 1 1

14 0 1 1 1 0 0 1 1 1

15 1 1 1 1 0 0 0 0 0

16 0 0 0 0 1 0 0 0 0

17 1 0 0 0 1 0 1 1 1

18 0 1 0 0 1 1 0 1 1

19 1 1 0 0 1 1 1 0 0

20 0 0 1 0 1 1 1 0 1

21 1 0 1 0 1 1 0 1 0

22 0 1 1 0 1 0 1 1 0

23 1 1 1 0 1 0 0 0 1

24 0 0 0 1 1 1 1 1 0

25 1 0 0 1 1 1 0 0 1

26 0 1 0 1 1 0 1 0 1

27 1 1 0 1 1 0 0 1 0

28 0 0 1 1 1 0 0 1 1

29 1 0 1 1 1 0 1 0 0

30 0 1 1 1 1 1 0 0 0

31 1 1 1 1 1 1 1 1 1

Default 0 0 0 0 0 1 1 1 Auto

Just to notice the complexity of this processor, the flattened post place-and-

route model for those configurations with Keep Hierarchy = No consists of 1

.vhd and 1 .sdf file (as expected), but those configurations with Keep Hierarchy545

22

= Yes present a total of 173 .vhd and 88 .sdf files.

4.5. Workload

In order to obtain an accurate estimation of the dynamic power consumption

and robustness properties, a realistic workload has been defined for the target

model. This workload, and adaptation of the basicmath automotive benchmark550

from the MiBench benchmark suite [34], performs several matrix multiplica-

tions. The program, developed in C, fills the matrices with pseudo-randomly

generated 32-bits integers to produce outputs in the full 32-bits range. Results

are stored in SRAM memory and written to the standard output (debugging

UART interface), which is in turn forwarded to the simulator console.555

4.6. Fault Injection and Observation Targets

The IU3 Integer Unit has been selected as the target for fault injection in

this case study. As the HDL model is implemented on an FPGA device, all used

FFs and LUTs have been selected for injecting faults into the sequential and

combinational logic of the design, respectively. Table 2 lists the minimum/max-560

imum number of elements targeted (configuration-dependent), the considered

fault models, the number of experiments for each fault model and target, and

the injection interval with respect to time required to run the workload. It must

be noted that, in the case of bit-flips, 3 experiments are performed, and with a

wider injection interval, as their impact is very dependent on the time they are565

injected.

The list of observation points, which defines the state vector captured during

observation, has been defined to be able to determine whether a failure has oc-

curred and the internal state of the target integer unit. In particular, it includes

all the registers from the integer unit, the register file from the processor, and570

the memory area storing the output of the workload.

23

Table 2: Configuration of fault injection experiments

Number Fault Experiments Injection

Entity of targets models per target interval

FFs 832/840 stuck-at-1 1 [0.1 : 0.5]

stuck-at-0 1 [0.1 : 0.5]

bit-flip 3 [0.1 : 0.7]

LUTs 1692/1820 stuck-at-1 1 [0.1 : 0.5]

stuck-at-0 1 [0.1 : 0.5]

5. Results

The previously described experimental procedure was applied on the se-

lected target processor and workload. The values obtained for response vari-

ables V1−V4 (performance, consumption, utilization of FFs and LUTs) for each575

configuration are listed in Table 3, whereas estimations of response variables

V5 − V24 (robustness properties) are listed in Table 4. These tables also list

the best and worst observed values as a reference for comparison between the

default and selected configurations.

From Table 3, it can be easily seen that considered factors do not have a great580

impact on FFs utilization (V4, with a 3.44% of improvement between best and

worst observations), whereas the rest of considered response variables present a

large room for improvement across selected configuration (ranging from 24.86%

to 48.42%).

In the case of robustness properties (see Table 4), this improvement depends585

on the selected fault model and target. For FFs this improvement is higher

when injecting bit-flips (2.92% − 13.72%, across all four failure modes) than

when injecting stuck-at faults (0.46% − 5.60% for stuck-at-0, 0.69% − 1.94%

for stuck-at-1). For stuck-at faults injected into LUTs this improvement ranges

between 8.61%− 14.63% for stuck-at-0 and 5.8%− 19.8% for stuck-at-1.590

Table 5 joins together information related to the ANOVA and linear regres-

sion processes. On the one hand, each factor has been tested for its statistical

24

Table 3: Observed values for performance, consumption and utilization (response variables

V1 − V4).

Performance Consumption Utilization

clk. freq. (MHz) dyn. power (mW) Flip-Flops LUTs

Config. V1 V2 V3 V4

0 111.570 127.81 3570 6111

1 111.173 145.12 3622 6372

2 117.730 142.92 3634 6970

3 105.396 139.87 3559 5694

4 125.078 148.81 3598 6778

5 100.412 128.09 3622 5743

6 117.716 137.83 3661 6098

7 105.419 137.64 3559 6217

8 125.078 150.55 3661 6118

9 100.341 133.21 3559 6247

10 133.404 152.45 3598 6649

11 105.731 129.74 3622 5607

12 125.063 145.55 3633 6933

13 100.351 128.86 3559 5582

14 117.716 142.85 3571 5917

15 105.352 142.24 3622 6300

16 117.716 142.29 3688 6654

17 100.341 126.08 3658 5848

18 111.235 131.70 3665 5850

19 111.297 138.69 3681 6348

20 117.994 140.67 3694 5856

21 111.433 140.64 3658 6442

22 117.855 133.60 3673 6679

23 105.352 136.70 3681 5564

24 125.125 143.07 3677 6606

25 100.160 128.73 3681 5767

26 111.371 123.65 3701 5789

27 105.519 139.57 3657 6303

28 111.185 125.30 3664 5805

29 105.396 140.18 3681 6405

30 117.772 138.80 3688 6647

31 105.574 136.30 3657 5634

Default 125.282 145.10 3641 6369

Best value 133.404 123.65 3571 5582

Worst value 100.160 152.45 3694 6970

25

Table 4: Observed values (%) for robustness (response variables V5 − V24).
LUTs Flip-Flops

Stuck-at-1 Stuck-at-0 Stuck-at-1 Stuck-at-0 Bit-Flip

M L S SDC M L S SDC M L S SDC M L S SDC M L S SDC

Config. V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 V21 V22 V23 V24

0 21.66 5.79 18.91 53.64 40.19 4.69 7.28 47.85 10.20 27.49 20.77 41.54 37.70 13.09 9.48 39.74 74.63 7.52 4.04 13.81

1 19.05 6.78 20.11 54.06 38.69 4.38 6.72 50.20 10.26 27.80 21.00 40.93 38.07 13.13 9.19 39.62 74.86 7.48 3.90 13.76

2 20.86 6.11 19.32 53.71 39.68 4.29 6.88 49.15 10.25 27.89 20.74 41.12 38.02 13.11 9.30 39.57 75.96 7.39 3.81 12.83

3 19.31 6.30 20.01 54.38 37.96 4.53 6.59 50.91 10.22 27.40 21.03 41.35 37.74 13.10 9.25 39.90 76.52 7.37 3.57 12.54

4 21.67 5.64 19.18 53.51 40.08 4.59 7.46 47.87 10.20 27.49 20.77 41.54 37.70 13.09 9.36 39.86 76.35 7.40 3.52 12.73

5 19.13 6.75 20.07 54.05 38.62 4.46 6.69 50.23 10.26 27.80 20.88 41.05 38.07 13.13 9.07 39.74 76.17 7.32 3.70 12.81

6 20.99 6.32 19.23 53.46 40.00 4.34 6.98 48.68 10.25 27.89 20.86 41.00 38.02 13.11 9.42 39.45 75.96 7.39 3.69 12.95

7 18.90 6.56 20.44 54.11 37.92 4.49 6.85 50.74 10.22 27.40 20.91 41.47 37.74 13.10 9.25 39.90 76.08 7.37 3.61 12.94

8 22.28 6.30 18.68 52.74 41.46 4.64 7.13 46.77 10.25 27.89 20.74 41.12 38.02 13.11 9.30 39.57 76.36 7.31 3.54 12.79

9 19.10 6.72 19.68 54.50 38.26 4.85 6.95 49.94 10.22 27.40 20.79 41.59 37.74 13.10 9.13 40.02 75.96 7.41 3.69 12.94

10 20.84 6.20 19.58 53.39 40.59 4.88 7.00 47.53 10.20 27.49 20.89 41.42 37.70 13.09 9.48 39.74 76.83 7.36 3.60 12.20

11 18.62 6.91 19.73 54.74 38.41 4.57 7.03 50.00 10.26 27.80 21.00 40.93 38.07 13.13 9.19 39.62 76.49 7.36 3.70 12.45

12 22.25 5.96 18.55 53.23 41.25 4.80 7.34 46.60 10.25 27.89 20.86 41.00 38.02 13.11 9.42 39.45 76.60 7.27 3.69 12.44

13 18.92 6.42 19.98 54.68 37.89 4.66 7.07 50.38 10.22 27.40 20.91 41.47 37.74 13.10 9.01 40.14 75.96 7.41 3.53 13.10

14 20.91 6.03 19.82 53.25 40.84 4.60 7.12 47.44 10.20 27.49 20.89 41.42 37.70 13.09 9.48 39.74 75.79 7.56 3.84 12.81

15 19.07 6.36 19.84 54.74 38.20 4.47 6.89 50.44 10.26 27.80 20.88 41.05 38.07 13.13 9.19 39.62 76.73 7.36 3.54 12.37

16 21.49 5.72 19.99 52.80 40.53 4.44 7.00 48.03 10.25 27.89 20.74 41.12 38.02 13.11 9.42 39.45 76.00 7.43 3.81 12.75

17 20.27 5.92 20.22 53.59 38.95 4.56 7.23 49.26 10.22 27.40 20.79 41.59 37.74 13.10 9.13 40.02 76.00 7.37 3.65 12.98

18 21.76 6.10 19.97 52.18 39.99 4.59 6.94 48.49 10.20 27.49 21.01 41.30 37.70 13.09 9.48 39.74 74.59 7.52 4.08 13.81

19 20.08 6.29 20.14 53.49 38.73 4.46 7.72 49.08 10.26 27.80 21.00 40.93 38.07 13.13 8.95 39.86 74.94 7.44 3.90 13.72

20 21.55 5.78 19.75 52.92 40.35 4.49 7.01 48.15 10.25 27.89 20.86 41.00 38.02 13.11 9.42 39.45 76.04 7.43 3.69 12.83

21 20.10 6.18 19.76 53.96 38.88 4.51 6.82 49.80 10.22 27.40 21.15 41.23 37.74 13.10 9.13 40.02 74.79 7.45 3.97 13.79

22 21.89 5.71 19.99 52.41 40.03 4.48 7.05 48.43 10.20 27.49 20.89 41.42 37.70 13.09 9.36 39.86 75.83 7.52 3.88 12.77

23 20.10 6.40 19.99 53.51 39.01 4.45 7.25 49.29 10.26 27.80 21.00 40.93 38.07 13.13 9.19 39.62 76.49 7.32 3.62 12.57

24 21.88 5.54 19.62 52.97 40.59 4.41 7.01 47.99 10.19 27.46 20.86 41.49 37.77 13.07 9.47 39.69 76.18 7.31 3.64 12.87

25 19.90 6.33 19.90 53.88 39.17 4.62 7.24 48.97 10.26 27.80 20.76 41.17 38.07 13.13 9.07 39.74 76.01 7.40 3.70 12.89

26 21.92 6.13 20.35 51.60 40.58 4.38 7.31 47.72 10.24 27.86 20.95 40.95 38.10 13.10 9.29 39.52 74.72 7.46 4.05 13.77

27 19.76 5.92 20.22 54.11 38.66 4.48 7.58 49.28 10.22 27.40 21.15 41.23 37.74 13.10 9.25 39.90 76.16 7.45 3.69 12.70

28 22.04 5.69 19.65 52.62 41.00 4.38 6.95 47.67 10.20 27.49 21.01 41.30 37.70 13.09 9.48 39.74 74.87 7.52 4.04 13.57

29 19.75 6.05 20.03 54.17 38.81 4.51 7.19 49.49 10.26 27.80 21.00 40.93 38.07 13.13 9.19 39.62 76.17 7.36 3.62 12.85

30 22.00 6.22 20.21 51.57 40.09 4.59 7.56 47.76 10.25 27.89 20.74 41.12 38.02 13.11 9.42 39.45 76.08 7.51 3.89 12.51

31 19.81 6.15 20.20 53.84 39.04 4.84 7.17 48.95 10.22 27.40 21.03 41.35 37.74 13.10 9.25 39.90 76.12 7.41 3.65 12.82

Default 21.84 6.03 19.13 53.01 40.19 4.64 7.08 48.09 10.20 27.49 20.77 41.54 37.70 13.09 9.36 39.86 76.31 7.32 3.56 12.81

Best value 22.28 5.54 20.44 51.57 41.46 4.29 7.72 46.60 10.26 27.40 21.15 40.93 38.10 13.07 9.48 39.45 76.83 7.27 4.08 12.20

Worst value 16.62 6.91 18.55 54.74 37.89 4.88 6.59 50.91 10.19 27.89 20.74 41.59 37.70 13.13 8.95 40.14 74.59 7.56 3.52 13.81

Failure modes: M - Masked fault, L - Latent fault, S - Signalled fault, SDC - Silent Data Corruption

significance for each response variable. Those factors that statistically signifi-

cantly impact each response variable (p-value < 0.05) are in bold typeface.

Surprisingly, some factors do not contribute significantly to any response595

variable. It must be noted that this does not mean they do not impact somehow

the response variables, but that this impact is not enough to be considered

statistically significant for this case study.

Two of the more surprising cases is that the Optimization Effort (X2) option

does not significantly contribute to improve performance goals (speed, power600

and utilization), and that Power reduction (X3) does not really reduce the

26

Table 5: Estimators (βi,j) accounting the impact on the response variable Vj of a high level

on factor Xi. Those with a statistically significant impact are in bold typeface.
Factors

Response variables X1 X2 X3 X4 X5 X6 X7 X8 X9 Intercept R2 R2
GL

Clk. freq. (MHz) V1 -14.023 0.376 -0.220 0.464 -2.013 2.449 -1.562 -0.486 -5.531 122.236 0.799 0.910

Dyn. power (mW) V2 -3.512 0.599 0.538 0.162 -4.223 0.481 -3.713 -1.499 -8.128 147.133 0.516 0.840

Flip-Flops V3 -18.625 0.250 -0.750 0.500 72.125 -0.250 -4.375 -43.125 -0.125 3636.375 0.921 -

LUTs V4 -336.688 -62.563 -20.813 -57.188 -71.188 -5.938 17.938 -50.563 -722.938 6827.875 0.944 -

M V5 0.016 0.000 0.001 -0.001 -0.001 0.000 -0.001 -0.045 0.000 10.248 0.983 -

Flip-Flops L V6 -0.086 0.000 0.004 -0.004 -0.004 0.000 -0.004 -0.400 0.000 27.890 0.999 -

Stuck-at-1 S V7 0.106 0.068 0.026 0.004 0.064 0.023 -0.026 0.053 0.008 20.740 0.466 0.994

SDC V8 -0.041 -0.068 -0.031 0.001 -0.059 -0.023 0.031 0.398 -0.008 41.120 0.861 0.961

M V9 0.036 0.001 -0.009 0.009 0.009 -0.001 0.009 -0.326 0.001 38.023 0.992 -

Flip-Flops L V10 0.017 0.001 0.002 -0.002 -0.002 -0.001 -0.002 -0.026 0.001 13.113 0.942 -

Stuck-at-0 S V11 -0.259 0.030 0.016 0.014 -0.001 0.015 -0.016 0.060 0.000 9.353 0.794 0.998

SDC V12 0.201 -0.030 -0.009 -0.021 -0.006 -0.015 0.009 0.285 0.000 39.520 0.869 0.906

M V13 0.166 0.146 0.239 0.364 -0.391 -0.245 -0.055 -0.182 -0.175 75.949 0.318 0.871

Flip-Flops L V14 -0.039 0.025 0.001 -0.016 0.039 0.005 -0.011 0.045 0.010 7.382 0.300 0.997

Bit-Flip S V15 -0.111 0.024 -0.056 -0.064 0.119 0.044 0.029 0.009 0.021 3.737 0.348 0.703

SDC V16 -0.013 -0.197 -0.184 -0.282 0.233 0.194 0.038 0.131 0.146 12.926 0.337 0.906

M V17 -2.133 -0.264 0.019 0.015 0.671 -0.078 -0.044 -0.014 0.030 21.456 0.921 -

LUTs L V18 0.425 0.134 -0.053 0.036 -0.314 0.111 -0.030 -0.221 0.085 6.078 0.781 0.911

Stuck-at-1 S V19 0.470 0.310 0.016 -0.065 0.429 -0.060 0.033 0.084 -0.013 19.183 0.625 0.972

SDC V20 1.238 -0.177 0.016 0.016 -0.786 0.027 0.039 0.154 -0.103 53.282 0.827 0.992

M V21 -1.878 -0.312 -0.027 0.327 0.273 -0.056 0.003 -0.169 0.154 40.356 0.894 0.970

LUTs L V22 0.016 -0.034 -0.007 0.121 -0.066 0.076 0.021 0.103 0.011 4.425 0.438 0.839

Stuck-at-0 S V23 -0.064 0.052 -0.013 0.129 0.191 0.029 0.041 -0.054 -0.064 6.971 0.266 0.942

SDC V24 1.927 0.293 0.047 -0.577 -0.398 -0.047 -0.066 0.123 -0.098 48.244 0.821 0.982

Failure modes: M - Masked fault, L - Latent fault, S - Signalled fault, SDC - Silent Data Corruption

GL - Generalized linear regression

power consumed at all. The Keep Hierarchy (X4) option was supposed to neg-

atively impact the final implementation, but it seems this is not the case, and it

even slightly improves the robustness properties for stuck-at-0 at LUTs (reduces

the rate of silent data corruption V24 and improves fault masking V21). Both605

Resource Sharing (X6) and Register Duplication (X7) have no noticeable impact

either, but this could be more easily attributed to the particular architecture of

the selected target processor.

Likewise, it is interesting to note that only two factors affected the maxi-

mum clock frequency of the implementation: Optimization Goal (X1) (which610

was expected) and LUT combining (X9). The dynamic power consumption is

surprisingly only affected by LUT combining (X9). These two synthesis options

(X1 and X9) also significantly impact the total number of LUTs used to imple-

27

ment the design, which seems quite logical in this case. Safe Implementation

(X5) with Optimization Goal (X1) and Equivalent Register Removal (X8), also615

impact the final number of FFs.

No factor seems to impact significantly the robustness when considering the

occurrence of bit-flips. This could either mean that some other synthesis flags

excluded from this case study may have an influence on this response variable,

or that due to the particular architecture of the selected processor no synthesis620

flag can really affect it.

On the other hand, Table 5 lists the whole set of estimators and intercept

computed for each response variable. Those estimators define a multiple linear

regression model in which the relationship between the response variable and

the factors is linear (y = Intercept+
∑9

i=1 βiXi). For some response variables625

the initially computed linear model provided a poor fit (R2 < 0.5), whereas

for some others it was insufficiently accurate (R2 < 0.9) to precisely predict

the response variable. In these case, the generalized linear model has been

computed, taking into account interactions of factors, which fitted the data

really well for all configurations (R2 ranges between 0.839 and 0.998). Resulting630

regression models (linear or generalized linear) statistically significantly predict

the response variables for considered factors, meeting the required p-value <

0.05. It must be noted that the produced generalized linear models used between

2 and 34 terms, that is why the whole set of estimators and equations have not

been included in this paper. Just as an example, the linear regression model for635

estimating the number of FFs is shown in Equation3 and the generalized linear

regression model for estimating the clock frequency is shown in Equation 4.

FFs = 3636.375− 18.625X1 + 0.25X2 − 0.75X3 + 0.5X4

+ 72.125X5 − 0.25X6 − 4.375X7 − 43.125X8 − 0.125X9 (3)

28

Clock Frequency = 123.82 + 2.4487X6 − 5.5307X9 − 6.5274X1X4

+ 6.7499X1X5 + 6.7684X5X7 (4)

Using the obtained regression models the expected values of the response

variables has been computed for the whole set of 29 possible synthesis configu-

rations. This information is very useful to quickly determine the best synthesis640

options configuration to meet a given implementation goal. When considering

several implementation goals, a multi-objective optimization may be conducted,

identifying a Pareto optimal solutions (improving a certain goal is only possible

at the expense of other goals). Figure 5 represents a Pareto frontier optimiz-

ing two response variables: dynamic power consumption and clock frequency.645

The dots represent the 512 configurations and the connected dots indicate the

best trade off between minimizing the power consumption and maximizing the

clock frequency. However, it does not explain which of those solutions should

be selected, as there is no indication about the designer’s preferences. Likewise,

when optimizing response variables V1 − V4, Pareto optimality provides a total650

of 182 possible solutions, and since all of them are equally good in the absence

of clearly defined preferences, the designer is at a loss when making a decision.

MCDM techniques in general, and the weighted sum method (WSM) used in

this case study in particular, can be used to define how the estimated value for

each response variable should be aggregated according to provided preferences.655

In such a way a single score could be obtained to determine the best possible

synthesis flags configuration to optimize the given implementation goals.

Table 6 lists how weights have been distributed among response variables ac-

cording to different implementation goals. These goals include maximizing one

of the variables, combining all but giving a higher priority to one of them, or660

equally distributing the weights among all of them for a balanced design. This

goals could be understood as sample profiles in absence of actual requirements

provided by a designer. Each designer should adjust those weights according

to her particular preferences. It must be noted that utilization has been con-

29

sidered to consist of both the number of FFs and LUTS, so they share the665

utilization weight. Response variables representing the same failure mode for

different fault models and targets have been considered equally important (with

no priority for any of those variables). Accordingly, in Table 6 each failure

mode is listed as an aggregate value of five corresponding response variables.

For instance, the weight for the rate of masked faults ω5 is divided between670

variables V5, V9, V13, V17 and V21 in equal parts.

Table 6: WSM scores for the best, default, and worst configurations according to different

implementation goals.
Weights Quality of

default

score

CF DP FFs LUTs M L S SDC Best Best Worst Worst Default

Goal ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 configuration score configuration score score

Speed 1 0 0 0 0 0 0 0 {000101000} 1.0 {100100101} 0.7416 0.9637 85%

Consumption 0 1 0 0 0 0 0 0 {000010101} 1.0 {000000000} 0.7982 0.8596 30%

Utilization 0 0 1/2 1/2 0 0 0 0 {111101011} 0.9929 {000010100} 0.8877 0.9219 32%

Performance 1/3 1/3 1/6 1/6 0 0 0 0 {010110111} 0.9467 {100100000} 0.8614 0.9151 62%

Just M 0 0 0 0 1 0 0 0 {001111101} 0.9953 {110001110} 0.9462 0.9854 79%

Just L 0 0 0 0 0 1 0 0 {000011110} 0.9848 {100101001} 0.9360 0.9639 57%

Just S 0 0 0 0 0 0 1 0 {010011000} 0.9755 {101000001} 0.9152 0.9285 22%

Just SDC 0 0 0 0 0 0 0 1 {010101000} 0.9855 {100001111} 0.9368 0.9669 61%

Availability 0 0 0 0 1/2 1/2 0 0 {000111110} 0.9868 {110101011} 0.9448 0.9747 71%

Safety 0 0 0 0 1/2 0 1/2 0 {010110000} 0.9796 {111101001} 0.9354 0.9569 48%

Balanced Safe 1/6 1/6 1/12 1/12 1/4 0 1/4 0 {010110111} 0.9592 {100100000} 0.9008 0.9360 60%

CF - Clock Frequency, DP - Dynamic Power

Failure modes: M - Masked fault, L - Latent fault, S - Signalled fault, SDC - Silent Data Corruption

For each one of the defined goals, the best and worst configurations maxi-

mizing and minimizing, respectively, the score under the WSM are also listed.

For instance, to maximize the clock frequency it is required to set a high level

for Keep Hierarchy (X4) and Resource Sharing (X6), while keeping all other675

options at low level, and to minimize utilization all synthesis options should be

set at high level, except for Safe Implementation (X5) and Register duplication

(X7).

Likewise, the score computed for the default configuration of Xilinx’s XST

tool is also provided, including its quality with respect to the whole range of680

scores for the 512 possible configurations. It is worth commenting that this

default configuration seems to be clearly oriented towards achieving the high-

est possible clock frequency, and it also provides relatively high results in fault

30

masking and availability. Nevertheless, this default configuration behaves very

poorly in terms of utilization and power consumption, as its score is in the low-685

est 32% and 30%, respectively, for all possible configurations. It also provides

poor result in terms of signalling failures (22%), which also negatively affects

the safety (48%). Accordingly, designers focusing on improving the device uti-

lization, power consumption and safety should not rely on the options provided

by default.690

6. Conclusions

In spite of the critical importance of synthesis options towards meeting the

defined implementation goals, designers are usually at a loss when trying to

determine which options, from the myriad available, have any impact on their

target designs. Due to poor documentation, and the enormous amount of time695

required to explore the whole design space, only a small fraction of all these

options are actually used.

This work addresses this problem by defining a method for determining the

best possible configuration of synthesis options to meet a given set of goals.

First of all, the design space is reduced by defining a fractional factorial de-700

sign, making actually feasible the experimentation for a large set of synthesis

flags. The execution of these experiments comprises three consecutive phases:

i) implementation of designs according to defined configurations, providing the

estimation of static properties such as clock frequency and utilization, ii) simu-

lation of implemented designs to estimate the dynamic properties, like dynamic705

power consumption, and iii) simulation-based fault injection followed by sensi-

tivity analysis to estimate the robustness properties. The analysis of variance

processes the responses of those experiments to determine whether each syn-

thesis flag statistically significantly impacts the given implementation goals.

By means of multiple regression analysis the expected results are predicted for710

any combination of the synthesis flags across the whole design space. Finally,

multiple-criteria decision making techniques are exploited to select the best pos-

31

sible configuration according to specifically stated implementation goals. The

implementation of the proposed method targeting Xilinx ISE Design Suite, has

been fully automated, taking advantage of parallel processing on PC and Grid-715

based computing system to speed-up the whole experimental process.

Main results obtained, when taking the LEON3 processor as a case study,

show that only six out of nine considered options statistically significant impact

the defined implementation goals: five options impacting the robustness, four

options impacting utilization, and just a single option has a significant impact720

on clock frequency and power consumption. This could point to the existence

of a large set of synthesis options that are only useful for very particular cases.

Furthermore, the default options for Xilinx’s XST tool are clearly defined to

achieve the highest possible clock frequency, at the expense of getting a poor

device utilization, power consumption and safety. The conducted study also725

supports the hypothesis that the robustness can be improved by just properly

configuring the synthesis tool.

Although the LEON3 processor could be considered representative of embed-

ded microprocessors for critical-systems, our future work focuses on extending

this analysis to target a whole set of benchmark designs considered represen-730

tative of different types of circuits. In such a way, drawn conclusion could be

generalized instead of being dependent on the considered case study. Likewise,

this analysis could be further extended to determine the actual impact of the

whole set of options from both synthesis and the rest of implementation pro-

cesses (map, place, and route). What is more, beyond determining the precise735

contributing of each option towards the implementation goals, this procedure

could also be used to locate hidden or unknown interactions between options

belonging to different processes (like a given synthesis option interacting with a

routing option) and/or tools (particular interactions between tools from differ-

ent vendors which may affect the final implementation).740

32

Acknowledgements

This work has been partially funded by the Ministerio de Economı́a, Indus-

tria y Competitividad de España under grant agreement no TIN2016-81075-R,

and the “Programa de Ayudas de Investigación y Desarrollo” (PAID) de la

Universitat Politècnica de València.745

References

[1] W. Wolf, FPGA-Based System Design, Prentice Hall, 2004.

[2] S. Hauck, A. DeHon, Reconfigurable Computing: The Theory and Practice

of FPGA-Based Computation, Morgan Kaufmann Publishers, 2008.

[3] S. Kilts, Advanced FPGA Design: Architecture, Implementation, and Op-750

timization, Wiley-IEEE Press, 2007.

[4] Xilinx Inc., Command Line Tools User Guide (2013).

URL http://www.xilinx.com/support/documentation/sw_manuals/

xilinx14_7/devref.pdf

[5] Altera Corp., Quartus Prime Pro Edition Handbook Volume 2: Design Im-755

plementation and Optimization (2015).

URL https://www.altera.com/en_US/pdfs/literature/hb/qts/qts-

qpp-5v2.pdf

[6] Q. Guo, T. Chen, Y. Chen, L. Li, W. Hua, Microarchitectural design space

exploration made fast, Microprocessors and Microsystems 37 (2013) 41–51.760

[7] D. Genbrugge, L. Eeckhout, Chip multiprocessor design space exploration

through statistical simulation, IEEE Transactions on Computers 58 (12)

(2009) 1668–1681.

[8] C. Pilato, D. Loiacono, A. T. andFabrizio Ferrandi, P. L. Lanzi, D. Sciuto,

Computational Intelligence in Expensive Optimization Problems, Springer-765

Verlag Berlin Heidelberg, 2010, Ch. Speeding-Up Expensive Evaluations in

33

http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/devref.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/devref.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/devref.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/devref.pdf
https://www.altera.com/en_US/pdfs/literature/hb/qts/qts-qpp-5v2.pdf
https://www.altera.com/en_US/pdfs/literature/hb/qts/qts-qpp-5v2.pdf
https://www.altera.com/en_US/pdfs/literature/hb/qts/qts-qpp-5v2.pdf
https://www.altera.com/en_US/pdfs/literature/hb/qts/qts-qpp-5v2.pdf
https://www.altera.com/en_US/pdfs/literature/hb/qts/qts-qpp-5v2.pdf
https://www.altera.com/en_US/pdfs/literature/hb/qts/qts-qpp-5v2.pdf

High-Level Synthesis Using Solution Modeling and Fitness Inheritance, pp.

701–723.

[9] D. Sheldon, R. Kumar, R. Lysecky, F. Vahid, D. Tullsen, Application-

Specific Customization of Parameterized FPGA Soft-Core Processors, in:770

IEEE/ACM International Conference on Computer Aided Design, 2006,

pp. 261–268.

[10] M. Kurek, T. Becker, T. C. Chau, W. Luk, Automating Optimization of

Reconfigurable Designs, in: IEEE 22nd International Symposium on Field-

Programmable Custom Computing Machines, 2014, pp. 210–213.775

[11] A. Mametjanov, P. Balaprakash, C. Choudary, P. D. Hovland, S. M. Wild,

G. Sabin, Autotuning FPGA Design Parameters for Performance and

Power, in: 23rd IEEE International Symposium on Field-Programmable

Custom Computing Machines, 2015, pp. 84–91.

[12] D. Meidanis, K. Georgopoulos, I. Papaefstathiou, FPGA Power Consump-780

tion Measurements and Estimations Under Different Implementation Pa-

rameters, in: International Conference on Field-Programmable Technology,

2011, pp. 1–6.

[13] Cobham Gaisler AB, Leon3 processor product sheet (2016).

URL http://www.gaisler.com/doc/leon3_product_sheet.pdf785

[14] NIST/SEMATECH, NIST/SEMATECH e-Handbook of Statistical Meth-

ods (2013).

URL http://www.itl.nist.gov/div898/handbook/

[15] C. Wu, M. Hamada, Experiments: Planning, Analysis, and Optimization,

Wiley Series in Probability and Statistics, Wiley, 2011.790

[16] K. Fang, R. Li, A. Sudjianto, Design and Modeling for Computer Exper-

iments, Chapman & Hall/CRC Computer Science & Data Analysis, CRC

Press, 2005.

34

http://www.gaisler.com/doc/leon3_product_sheet.pdf
http://www.gaisler.com/doc/leon3_product_sheet.pdf
http://www.itl.nist.gov/div898/handbook/
http://www.itl.nist.gov/div898/handbook/
http://www.itl.nist.gov/div898/handbook/
http://www.itl.nist.gov/div898/handbook/

[17] J. M. Juran, J. A. D. Feo, Juran’s Quality Handbook, McGraw-Hill Edu-

cation, 2010.795

[18] D. C. Montgomery, Design and Analysis of Experiments, 9th Edition, John

Wiley & Sons, New York, 2017.

[19] R. Fontana, S. Sampò, Minimum-Size Mixed-Level Orthogonal Fractional

Factorial Designs Generation: A SAS-Based Algorithm, Journal of Statis-

tical Software 53 (10) (2013) 1–58.800

[20] D. A. Freedman, Statistical Models: Theory and Practice, Cambridge Uni-

versity Press, 2009.

[21] A. Ishizaka, P. Nemery, Multi-criteria Decision Analysis: Methods and

Software, Wiley, 2013.

[22] E. Triantaphyllou, Multi-Criteria Decision Making Methods, in: Multi-805

criteria Decision Making Methods: A Comparative Study, Vol. 44 of Ap-

plied Optimization, Springer US, 2000, pp. 5–21.

[23] T. Saaty, Decision making with the analytic hierarchy process, Interna-

tional Journal of Services Sciences 1 (1) (2008) 83–98.

[24] S. Opricovic, G.-H. Tzeng, Extended VIKOR method in comparison with810

outranking methods, European Journal of Operational Research 178 (2)

(2007) 514–529.

[25] K. Yoon, A reconciliation among discrete compromise solutions, Journal of

the Operational Research Society (1987) 277–286.

[26] Xilinx Inc., Synthesis and Simulation Design Guide (v 14.4) (2012).815

URL http://www.xilinx.com/support/documentation/sw_manuals/

xilinx14_7/sim.pdf

[27] G. E. P. Box, J. S. Hunter, W. G. Hunter, Statistics for experimenters:

design, innovation, and discovery, Wiley series in probability and statistics,

Wiley-Interscience, Hoboken (N.J.), 2005.820

35

http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/sim.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/sim.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/sim.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/sim.pdf

[28] The MathWorks, Inc., Statistics and Machine Learning Toolbox™User’s

Guide (2016).

URL https://es.mathworks.com/help/pdf_doc/stats/stats.pdf

[29] A. Benso, P. Prinetto, in: Fault Injection Techniques and Tools for VLSI

reliability evaluation, Frontiers In Electronic Testing, Kluwer Academic825

Publishers, 2003, Ch. VHDL Simulation-Based Fault Injection Techniques,

pp. 159–176.

[30] Mentor Graphics, ModelSim (2016).

URL https://www.mentor.com/products/fv/modelsim/

[31] Xilinx Inc., XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices830

(v 14.5) (2013).

URL http://www.xilinx.com/support/documentation/sw_manuals/

xilinx14_7/xst_v6s6.pdf

[32] Xilinx Inc., Timing Closure User Guide (v 14.3) (2013).

URL http://www.xilinx.com/support/documentation/sw_manuals/835

xilinx14_7/ug612.pdf

[33] Xilinx Inc., Power Methodology Guide (v 14.5) (2013).

URL http://www.xilinx.com/support/documentation/sw_manuals/

xilinx14_7/ug786_PowerMethodology.pdf

[34] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, R. B.840

Brown, MiBench: A free, commercially representative embedded bench-

mark suite, in: IEEE 4th Annual Workshop on Workload Characterization,

2001, pp. 3–14.

36

https://es.mathworks.com/help/pdf_doc/stats/stats.pdf
https://es.mathworks.com/help/pdf_doc/stats/stats.pdf
https://es.mathworks.com/help/pdf_doc/stats/stats.pdf
https://es.mathworks.com/help/pdf_doc/stats/stats.pdf
https://www.mentor.com/products/fv/modelsim/
https://www.mentor.com/products/fv/modelsim/
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/xst_v6s6.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/xst_v6s6.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/xst_v6s6.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/xst_v6s6.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/xst_v6s6.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/xst_v6s6.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug612.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug612.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug612.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug612.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug786_PowerMethodology.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug786_PowerMethodology.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug786_PowerMethodology.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug786_PowerMethodology.pdf

Configuration.xml RTL Design

Workload

Implementation of Fractional

Factorial Designs

Synthesis options (*.xst)

Constraints (*.ucf)

Synthesis (xst)

Translate→ map

→ Place&Route

Implementation

report (*.par)
Trace (trce)

Timing report (*.twr) Analyze timing

Constraints not met

Building netlist

(netgen)

Implementation-level

netlist (VHD/V+SDF)

Simulation-Based Fault Injection Experiments

Parsing netlists Matching Targets

Dump initialization scripts Lists of injection targets

Faults distributionExperiment specification

Workload CompilationBoot Image (.bin)

Model Compilation

Simulation Libraries

Golden-Run &
Generate Checkpoints

Checkpoints/…
+ cpoint_Tk.sim ...

Linking experiments to
checkpoints,

Build injection scripts

Scripts/...
+ Fault_[idx]_target.do

injection experiments

Reference Dump (*.lst)

Dumps/...
+ Dump_[idx].lst

Observations

Analysis of Results

Sensitivity Analysis
SBFI report

(Failure Modes, etc.)

Multiple Regression
Analysis

Regression Model

* N configurations

Simulation

Switching activity File

Power Analysis (xpwr)Power Report (*.pwr)

Simulation & Power Analysis

Multi-Criteria Decision
Analysis

Optimal configuration of
synthesis flags

Building Experimental Design

Figure 3: Flowchart of the proposed approach implemented for Xilinx ISE Design Suite

37

IU3: Integer Unit

(7-stage pipeline)

icache: instruction cache

controller

dcache: data cache

controller

MMU: memory

management unit

RF: register file

(132x32)
CMEM: cache memory

Core - proc3 unit

LEON3 processor

AHB controller
Memory controller

AHB/APB Bridge

UART

Interrupt

Controller

A
M
B
A
A
H
B A
M
B
A
A
P
B

TimerPROM

SRAM

SDRAM

M
e
m
o
ry
B
u
s

LEON3 Assembly

Testbench code

Test environment

GPIO

Figure 4: LEON3 target configuration and test environment.

30

Figure 5: Pareto frontier indicating optimal solutions for minimizing dynamic power con-

sumption and maximizing clock frequency

38

