
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Lu, Yao; Corander, Jukka; Yang, Zhirong
Doubly Stochastic Neighbor Embedding on Spheres

Published in:
Pattern Recognition Letters

DOI:
10.1016/j.patrec.2019.08.026

Published: 01/12/2019

Document Version
Publisher's PDF, also known as Version of record

Please cite the original version:
Lu, Y., Corander, J., & Yang, Z. (2019). Doubly Stochastic Neighbor Embedding on Spheres. Pattern
Recognition Letters, 128, 100-106. https://doi.org/10.1016/j.patrec.2019.08.026

https://doi.org/10.1016/j.patrec.2019.08.026
https://research.aalto.fi/en/persons/yao-lu(f7e46b4c-d06a-49f9-8688-38e34af3d6bd).html
/portal/zhirong.yang.html
https://research.aalto.fi/en/publications/doubly-stochastic-neighbor-embedding-on-spheres(08320917-43d8-440d-addf-7c32d0ff543f).html
https://research.aalto.fi/en/journals/pattern-recognition-letters(be3245d3-4e44-4002-8c19-5af3a1e2704e)/publications.html
https://research.aalto.fi/en/journals/pattern-recognition-letters(be3245d3-4e44-4002-8c19-5af3a1e2704e)/publications.html
https://doi.org/10.1016/j.patrec.2019.08.026


Pattern Recognition Letters 128 (2019) 100–106 

Contents lists available at ScienceDirect 

Pattern Recognition Letters 

journal homepage: www.elsevier.com/locate/patrec 

Doubly Stochastic Neighbor Emb e dding on Spheres 

✩ 

Yao Lu 

a , b , Jukka Corander c , d , Zhirong Yang 

a , e , ∗

a Department of Computer Science, Aalto University, Finland 
b College of Engineering and Computer Science, Australian National University, Australia 
c Department of Department of Biostatistics, University of Oslo, Norway 
d Department of Mathematics and Statistics, University of Helsinki, Finland 
e Department of Computer Science, Norwegian University of Science and Technology, Norway 

a r t i c l e i n f o 

Article history: 

Received 24 August 2018 

Revised 21 August 2019 

Accepted 26 August 2019 

Available online 26 August 2019 

Keywords: 

Data visualization 

Nonlinear dimensionality reduction 

Information divergence 

a b s t r a c t 

Stochastic Neighbor Embedding (SNE) methods minimize the divergence between the similarity ma- 

trix of a high-dimensional data set and its counterpart from a low-dimensional embedding, leading to 

widely applied tools for data visualization. Despite their popularity, the current SNE methods experience 

a crowding problem when the data include highly imbalanced similarities. This implies that the data 

points with higher total similarity tend to get crowded around the display center. To solve this problem, 

we introduce a fast normalization method and normalize the similarity matrix to be doubly stochastic 

such that all the data points have equal total similarities. Furthermore, we show empirically and theoret- 

ically that the doubly stochasticity constraint often leads to embeddings which are approximately spher- 

ical. This suggests replacing a flat space with spheres as the embedding space. The spherical embedding 

eliminates the discrepancy between the center and the periphery in visualization, which efficiently re- 

solves the crowding problem. We compared the proposed method (DOSNES) with the state-of-the-art 

SNE method on three real-world datasets and the results clearly indicate that our method is more favor- 

able in terms of visualization quality. DOSNES is freely available at http://yaolubrain.github.io/dosnes/. 

© 2019 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

Information visualization by dimensionality reduction facilitates

a viewer to quickly digest information in massive data. It is there-

fore increasingly applied as a critical component in scientific re-

search, digital libraries, data mining, financial data analysis, mar-

ket studies, manufacturing production control and drug discovery,

etc. Numerous dimensionality reduction methods have been in-

troduced, ranging from linear methods such as Principal Compo-

nent Analysis to nonlinear methods such as Multidimensional Scal-

ing (MDS), [MDS; 14] , Isomap [13] , Locally Linear Embedding [10] ,

Gaussian Process Latent Variable Models [6] . A survey on nonlin-

ear dimensionality reduction has been given by van der Maaten

et al. [9] . Aspects in Multidimensional Scaling are discussed by

Buja et al. [1] . 

Recently, Stochastic Neighbor Embedding (SNE) and its variants

[4,8,12] have achieved remarkable progress in data visualization,
✩ Handling by Associate Editor: Kar-Ann Toh. 
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sity of Science and Technology, Norway. 
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specially for displaying clusters in data. An SNE method takes as

nput the pairwise similarities between data points in the high-

imensional space and tries to preserve the similarities in a low-

imensional space by minimizing the Kullback–Leibler divergence

etween the input and output similarity matrices. 

The input to SNE is a similarity matrix or the affinity matrix of

 weighted graph. When the node degrees of the graph are highly

mbalanced, SNE tends to place the high-degree nodes in the cen-

er and the low-degree ones in the periphery, regardless of the in-

rinsic similarities between the nodes. Therefore, SNE often experi-

nces the “crowding-in-the-center” problem for highly imbalanced

ffinity graphs. 

We propose two techniques to overcome the above-mentioned

rawback. First, we impose a doubly stochasticity constraint on the

nput similarity matrix. Two-way normalization has been shown

o improve spectral clustering [16] and here we verify that it is

lso beneficial for data visualization. Moreover, if the neighborhood

raph is asymmetric, for example, k -Nearest-Neighbors ( k NN) or

ntropy affinities [8,15] , we provide an efficient method for con-

erting it to a doubly stochastic matrix. 

Second, we observe that the data points are often distributed

pproximately around a sphere if the input similarity matrix is
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. t-SNE visualization of a random uniformly distributed matrix (left) and a random doubly stochastic matrix (right). 
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oubly stochastic, and we provide a theoretical analysis of this

henomenon. Our analysis suggests replacing the two-dimensional

uclidean embedding space with spheres in the three-dimensional

pace. Since there is no global center or periphery on the sphere

eometry, the visualization is then naturally free of “crowding-in-

he-center” problem. Moreover, we present an efficient projection

tep for adapting an SNE method with the spherical constraint. 

We tested the proposed method on several real-world datasets

nd compared it with the state-of-the-art SNE method, t-SNE [8] .

he new method is superior to t-SNE in resolving the crowding

roblem and in preserving intrinsic similarities. 

In the next section we briefly review SNE methods. We then

iscuss doubly stochastic similarity matrix and spherical embed-

ing in Sections 3 and 4 , respectively. We present experimental re-

ults in Section 5 and conclusions in Section 6 . 

. Stochastic Neighbor Embedding 

Stochastic Neighbor Embedding [SNE; 4] is a nonlinear dimen-

ionality reduction method. Given a set of multivariate data points

 x 1 , x 2 , . . . , x n } , where x i ∈ R 

D , their neighborhood is encoded in a

quare nonnegative matrix P , where P ij is the probability that x j is

 neighbor of x i . SNE finds a mapping x i �→ y i ∈ R 

d for i = 1 , . . . , n

uch that the neighborhoods are approximately preserved in the

apped space. Usually the mapping is defined such that d = 2 or

, and d < D . If the neighborhood in the mapped space is encoded

n Q ∈ R 

n ×n such that Q ij is the probability that y j is a neighbor

f y i , the SNE task is to minimize the Kullback–Leibler divergence

 KL (P || Q ) over Y = [ y 1 , y 2 , . . . , y n ] 
T . 

Symmetric Stochastic Neighbor Embedding [s-SNE; 8] is a

ariant of SNE. Given input similarity p ij ≥ 0, s-SNE minimizes

ullback-Leibler divergence between the matrix-wise normalized

imilarities P i j = p i j / 
∑ 

ab p ab and Q i j = q i j / 
∑ 

ab q ab . The output

imilarity q ij is typically chosen to be proportional to a Gaussian

istribution so that q i j = exp 

(
−‖ y i − y j ‖ 2 

)
, or proportional to a

auchy distribution so that q i j = (1 + ‖ y i − y j ‖ 2 ) −1 . The Cauchy s-

NE method is also called t-Distributed Stochastic Neighbor Em-

edding [t-SNE; 8] . The optimization of s-SNE can be implemented

ith the gradients for Gaussian case: ∂ J /∂ y i = 4 
∑ 

j (P i j − Q i j )(y i −
 j ) and for Cauchy case ∂ J /∂ y i = 4 

∑ 

j (P i j − Q i j )(y i − y j ) q i j . Here

 

∑ 

j P i j (y i − y j ) or 4 
∑ 

j P i j (y i − y j ) q i j can be interpreted as the

ttractive force for y i , while −4 
∑ 

j Q i j (y i − y j ) or −4 
∑ 

j Q i j (y i −
 j ) q i j as the repulsive force. 

. Doubly stochastic similarity matrix 

The input to s-SNE, P , is a nonnegative and symmetric matrix

nd can be treated as the affinity matrix of an undirected weighted
raph. If the degree (i.e., row sum or column sum of P ) distribu-

ion of nodes is highly non-uniform, then the high-degree nodes

ill usually receive and emit more attractive force than the aver-

ge nodes during the iterative learning. As a result, these nodes

ften glue together and form the center of display. On the other

and, the low-degree nodes tend to be placed in the periphery due

o less attraction. This behavior is often undesired in visualization

ecause it only reveals the data centrality but hinders the discov-

ry of other useful patterns, and may be directly misleading when

ome high-degree nodes are actually disconnected in the underly-

ng data. 

To overcome the above drawback, we can normalize the graph

ffinity such that the nodes have the same degree. For undirected

raphs, this can be implemented by replacing the unitary matrix-

ise sum constraint 
∑ 

i j P i j = 1 in s-SNE with the doubly stochas-

icity constraint, i.e., 
∑ 

i P i j = 

∑ 

j P i j = 1 . 

Given a non-normalized matrix, we can apply Sinkhorn–Knopp

11] or Zass-Shashua method [16] to project it to the closest dou-

ly stochastic matrix P . In this work we use the former because

t can maintain the sparsity of in the similarity matrix, which is

ften needed for large-scale tasks. Given a non-normalized simi-

arity matrix S , the Sinkhorn–Knopp method initializes P = S and

terates the following update rules until P has converged: for all i,

 i ← �j P ij , and then for all i, j , P i j ← P i j u 
−1 / 2 
i 

u −1 / 2 
j 

. 

Alternatively, the neighborhood information in high-

imensional space can be encoded in an asymmetric matrix

 ≥ 0 with n rows, for example, the k NN graph or the entropy

ffinities [8,15] . B can also be a non-square dyadic data such as

ocument-term or author-paper co-occurrence matrix. In these

ases, we can apply the following steps to construct a doubly

tochastic matrix: suppose �k B ik > 0 for all i , we first calculate

or all i, k, A ik ← B ik / �u B iu , and then for all i, j P i j ← 

∑ 

k 

A ik A jk ∑ 

v A v k 
.

t is easy to verify that by this construction P is symmetric and

oubly stochastic. The calculations of A and P are performed only

nce and are thus computationally much more efficient than

inkhorn–Knopp method which needs iterative steps. Here the

atrix A ik can be treated as the random walk probability from the

 th row index to the k th column index and P ij is interpreted as the

wo-step random walk probability between two row indices i and

 via any column index k (with uniform prior over row indices). 

. Spherical embedding of doubly stochastic similarity matrices

When the input similarity matrix is doubly stochastic, we

nd that s-SNE often embeds the data points around a sphere

n the low-dimensional space. The phenomenon is illustrated in

ig. 1 , where we generated a 20 0 0 × 20 0 0 similarity matrix with
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Fig. 2. Visualizations of the NIPS dataset. 
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uniform distribution and visualize it by t-SNE. We can see from

the left subfigure that the embedding is close to a ball. In con-

trast, if the matrix is doubly stochastically normalized (by using

the Sinkhorn–Knopp method), the resulting embedded points ap-

proximately lie around a circle. The same phenomenon also holds

for 3D visualizations. 

We provide a theoretical analysis of this phenomenon. If P is

doubly stochastic, then Q is often approximately doubly stochas-

tic (up to a constant factor) because it approximates P by the

KL-divergence. That is, �j Q ij is approximately the same for all

i . For example, in Fig. 1 (right), �j Q ij mainly distribute around

a constant (with mean 0.0 0 05 and very small standard devia-

tion 1 . 7 × 10 −6 ). In this case, we show that 
∑ 

j ‖ y i − y j ‖ 2 be-
omes approximately the same for all i , bounded by constants,

n Proposition 4.1 . Furthermore, we show that when 

∑ 

j ‖ y i − y j ‖ 2 
s exactly the same for all i , the embedded points must be on a

phere, in Proposition 4.2 . The proofs of the propositions are pro-

ided in the supplemental document. 

roposition 4.1. If 
∑ 

j q i j = c for i = 1 , . . . , n and c > 0, then

 ≤ ∑ 

j ‖ y i − y j ‖ 2 ≤ U, where (1) for q i j = exp (−‖ y i − y j ‖ 2 ) ,
 = n ln 

n 
c and U = n ln 

n 
c−nb 

, with b = a + (1 − a ) m − m 

a ,

 = min j exp (−‖ y i − y j ‖ 2 ) and a = 

ln [ ln (1 /m ) / (1 − m )] 

ln (1 /m ) 
; (2) for

 i j = (1 + ‖ y i − y j ‖ 2 ) −1 , L = 

n 2 

c − n and U = 

n 2 

c − n + n ( 
√ 

b − 1) 2 ,

ith b = 1 + max j ‖ y i − y j ‖ 2 . 
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Fig. 3. Visualizations of the WorldTrade dataset. 
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roposition 4.2. If 
∑ 

j ‖ y i − y j ‖ 2 = c for i = 1 , . . . , n, c > 0 and
 

i y i = 0 , then ‖ y 1 ‖ 2 = ‖ y 2 ‖ 2 = · · · = ‖ y n ‖ 2 . 

The propositions show that embeddings are often nearly spher-

cal for doubly stochastic similarity matrices. Therefore it is more

uitable to replace the 2D Euclidean embedding space with spheres

n 3D space. The resulting layout can be encoded with n × 2 + 1

umbers (two angles for each data point plus the common radius).

herefore the embedding is still intrinsically two-dimensional. 

The spherical geometry itself brings other benefits for visual-

zation. First, the embedding in the Euclidean space has a global

enter in the middle, while on spheres there is no such global

enter. Therefore a spherical visualization is free of the “crowding-

n-the-center” problem. Every point on the sphere can be a local

enter, which provides fish-eye views for navigation and for exam-

ning patterns beyond centrality. Second, the attractive and repul-
ive forces can be transmitted in a cyclic manner, which helps in

iscovering macro patterns such inter-cluster similarities. 

We thus formulate our learning objective as follows: 

inimize 
Y ∈ S 

J (Y ) = D KL (P || Q ) , (1) 

here J (Y ) is an SNE objective function with P doubly stochastic,

 defined in Section 2 and 

 = 

{ 

Y 

∣∣∣ Y ∈ R 

n ×3 ; ‖ y 1 ‖ = · · · = ‖ y n ‖;
∑ 

i 

y i = 0 

} 

. (2) 

e call the new method Doubly Stochastic Neighbor Embedding

n Spheres (DOSNES). 

It is important to notice that our formulation is more flexi-

le than other works on spherical embeddings (e.g., [2,3,7] ). In

OSNES, the solution space S includes all centered spheres in

he three-dimensional space, not only the sphere with unit or
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Fig. 4. Visualizations of the MIREX dataset. 
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1 http://yaolubrain.github.io/dosnes/ 
pre-fixed radius. Moreover, we do not require normalization of the

input vectors. Detailed comparison with related work is given in

Section 2 of the supplemental document. 

We employ a projection step after each SNE update step to en-

force the sphere constraint. The DOSNES algorithm steps are sum-

marized as follows: 

1. Normalize P to be doubly stochastic. 

2. Repeat until convergence 

(a) ˜ Y ← OneStepUpdateSNE( P, Y ), 

(b) Y ← arg min Z∈ S ‖ Z − ˜ Y ‖ . 

The projection step 2b is performed by implicitly switching ˜ Y =
[ ̃  y 1 , . . . , ̃  y n ] 

T to the spherical coordinate system, taking the mean

radius, and switching back to Cartesian coordinates. This is imple-
ented as: For i = 1 , . . . , n 

 i ← 

˜ y i 
‖ ̃

 y i ‖ 

·
( 

1 

n 

∑ 

j 

‖ ̃

 y j ‖ 

) 

, (3)

here ˜ y i = ˜ y i −
1 

n 

∑ 

j 
˜ y j . The iterations converge to a stationary

oint with suitable learning step sizes [see e.g., 5 , Section 5 ]. 

. Experiments 

We developed a browser-based software for displaying and nav-

gating the DOSNES results. The software and its demos can be

ound in the project website. 1 In the paper we present the 2D pro-

ected views of the spheres. 

http://yaolubrain.github.io/dosnes/
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Table 1 

Quantitative comparison: (top) K-means clustering purity and (bottom) running time 

(in seconds). 

DOSNES t-SNE 

WorldTrade 0.64 0.44 

MIREX 0.40 0.31 

DOSNES t-SNE 

WorldTrade 0.1 s 0.1 s 

MIREX 108.4 s 107.1 s 

NIPS 333.3 s 328.9 s 
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We compare our proposed method DOSNES with two- and

hree-dimensional t-SNE 2 as well as non-metric MDS 3 in Euclidean

mbedding space [8] to verify the effectiveness of using doubly

tochastic similarities and the sphere constraint. 

The compared methods were tested on three real-world

atasets from different domains: 

(1) NIPS : 4 the proceedings of NIPS conferences (1987–2015)

hich contains 5993 papers and their associated 6621 authors.

e used the largest connected component in the co-author graph

ith 5300 papers and 5422 authors. The (non-normalized) simi-

arity matrix is from the co-author graph, i.e., BB T where B is the

uthor-paper co-occurrence matrix. 

(2) WorldTrade : 5 trade network of metal manufactures

mong 80 countries in 1994. Each edge represents the total trade

mount (imports and exports) between two countries. 

(3) MIREX : 6 the dataset is from the Third Music Information

etrieval Evaluation eXchange (MIREX 2007). It is a network of

090 songs in 10 music genre classes. The weighted edges are hu-

an judgment on how similar two songs are. 

MDS requires a distance matrix as input. Given a similarity ma-

rix S , we first normalize ˜ S i j = S i j / max (S) . Treating ˜ S ′ 
i j 

s as cosine

imilarities, we obtain the cosine distances by D i j = 1 − ˜ S i j . Next

e calculate the shortest graph distances between all nodes and

eed them to MDS. 

The NIPS co-author graph is visualized in Fig. 2 . The node de-

rees of the graph are highly uneven, where many authors have

nly one paper while the most productive author has 93 pa-

ers. In Fig. 2 (a) and (b), we can see both 2D and 3D t-SNE

aused the most productive NIPS authors crowded in the cen-

er. This is undesirable because these authors actually do not of-

en co-author NIPS papers. For example, Hinton_G has no co-

uthored paper with Schölkopf_B but they are very close in

he t-SNE layout. A similar crowding problem is observed in the

DS visualizations. In Fig. 2 (e) and (f), DOSNES resolves neatly

he crowding problem, by normalizing the similarity matrix with

ur method in Section 3 and visualizing the authors with spher-

cal layout. The productive NIPS authors are now more evenly

istributed. For example, Hinton_G becomes more distant to

chölkopf_B . Meanwhile, retrieval around the most established

uthors reveals accurate co-authorship. For example, Revow_M ,
air_V and Brown_A are close to Hinton_G because all their

IPS papers are co-authored with Hinton_G . See our online

emo 7 for more details. 

The visualizations of the WorldTrade graph are given in

ig. 3 . In this graph, some countries such as United States
nd Germany have more total trade amount than many others.
2 https://lvdmaaten.github.io/tsne/ 
3 We used the isoMDS() function in the MASS R package. 
4 https://papers.nips.cc/ 
5 http://vlado.fmf.uni-lj.si/pub/networks/data/esna/metalWT.htm 

6 http://www.music-ir.org/mirex/wiki/2007 
7 http://yaolubrain.github.io/dosnes/demo/nips/ 

R

 

 

n Fig. 3 (a)–(d), we can see both 2D and 3D t-SNE, as well as the

DS visualizations, caused these countries crowded in the center.

n contrast, DOSNES places the countries more evenly. In Fig. 3 (e)

nd (f), we can see on the sphere many meaningful clusters (e.g.,

urope and Asia ) which well match the geography even though

e did not use such information in the training. See our demo

lobe 8 for other viewpoints. 

Fig. 4 gives the visualizations of the MIREX dataset. In the pan-

ls (a) and (b), we can see that t-SNE caused over 90% of songs

rowded in the center. A similar crowding problem appears in the

DS visualizations (panels c and d). In contrast, DOSNES performs

uch better in terms of separating the song genres and their sub-

roups, as in Fig. 4 (e) and (f). 

The effectiveness of DOSNES can be quantified by using the

orldTrade and MIREX data sets where ground truth classes are

vailable. We performed K-means clustering on the DOSNES and

-SNE embeddings. The resulting cluster purities are reported in

able 1 (top). We can see that DOSNES achieves significantly higher

urity for both data sets. 

We also recorded the running time of DOSNES and t-SNE for

he data sets. See Table 1 (bottom). DOSNES requires almost the

ame time as t-SNE, which shows that DOSNES improves t-SNE at

egligible additional cost. 

. Conclusions 

We have presented a new visualization method for high-

imensional and graph data. The proposed DOSNES method is

ased on the Stochastic Neighbor Embedding principle but with

wo key improvements: we normalize the input similarity matrix

o be doubly stochastic and replace the 2D Euclidean embedding

pace with spheres in 3D space. Empirical results show that our

ethod significantly outperforms the state-of-the-art approach t-

NE in terms of resolving the crowding problem and preserving

ntrinsic similarities. 
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