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Abstract— A fundamental step in the analysis of a massive
graph is to compute its diameter. In the RAM model, the diameter
of a connected undirected unweighted graph can be efficiently 2-
approximated using a Breadth-First Search (BFS) traversal from
an arbitrary node. However, if the graph is stored on disk, even an
external memory BFS traversal is prohibitive, owing to the large
number of I/Os it incurs. Meyer [1] proposed a parametrized
algorithm to compute an approximation of graph diameter
with fewer I/Os than that required for exact BFS traversal of
the graph. The approach is based on growing clusters around
randomly chosen vertices ‘in parallel’ until their fringes meet.
We present an implementation of this algorithm and compare it
with some simple heuristics and external-memory BFS in order
to determine the trade-off between the approximation ratio and
running-time achievable in practice. Our experiments show that
with carefully chosen parameters, the new approach is indeed
capable to produce surprisingly good diameter approximations
in shorter time. We also confirm experimentally, that there
are graph-classes where the parametrized approach runs into
bad approximation ratios just as the theoretical analysis in [1]
suggests.

I. INTRODUCTION

Massive graphs arise naturally in many applications. Social
network graphs or the WWW graph have implicitly become
part of our daily life. A whole branch of computer science
deals with network analysis [2]. A fundamental step in the
analysis of a massive graph is to compute its diameter: In
this paper, we consider connected undirected unweighted large
sparse graphs G(V,E) where n = |V | and m = |E|. The
distance d(u, v) between two nodes u, v ∈ V is the number of
edges in the shortest path connecting u and v. The eccentricity
of a node v is defined as ecc(v) = maxu d(v, u). Finally,
D = maxu,v d(u, v) = maxv ecc(v) is called the diameter
of G. We are particularly interested in the case when G is
sparse (m = O(n)) but nevertheless too big to fit into the
main memory of a single computing device. In that setting
the typical strategies are: (i) to distribute the data over many
computers and apply parallel algorithms (e. g., see [3], [4])
and/or (ii) store the data on secondary memory like hard
disks or flash memory. In this paper we will concentrate on
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practically feasible diameter approximation algorithms for the
latter (external memory) approach.

External memory model: The huge difference in time
between accessing an element from the main memory and
fetching an element from the disk is nicely captured by the
external memory (EM) model (sometimes also called the I/O
model), which was introduced by Aggarwal and Vitter [5]. It
assumes a two level memory hierarchy. The internal memory
is fast, but has a limited size of M elements (nodes/edges).
In addition, there is an external memory which can only be
accessed using I/Os that move B contiguous elements between
internal and external memory. At any particular time, the
computation can only use the data already present in the
internal memory. The measure of performance of an algorithm
is the number of I/Os it performs – the less I/Os the algorithm
requires, the better it is. The number of I/Os required to scan
n contiguously stored elements in the external memory is
scan(n) = O(n/B) and the number of I/Os required for
sorting n elements is sort(n) = O( n

B logM/B n/B). For
realistic values of B, M and n, scan(n) < sort(n) � n
and the goal of designing external memory algorithms is
often to reduce the I/O complexity from O(n) to O(sort(n)).
Further discussions on realistic models for computing on large
data can be found in a recent survey article by Ajwani and
Meyerhenke [6].

Outline: Section II presents an overview of various algo-
rithms and heuristics designed in recent years to compute
the exact or approximate diameter including the approaches
implemented in this project. Section III provides some im-
plementation details. The experimental results are detailed in
Section IV and we conclude in Section V.

II. RELATED WORK

The problem of computing the diameter of large graphs,
particularly for complex networks, has received considerable
attention lately, both from an algorithmic and empirical point
of view. For the exact computation of diameters in unweighted
undirected graphs, breadth-first search (BFS) can be executed
from all nodes of the graph and the longest height of a BFS
tree is reported as the diameter. Doing so naively requires
O(n2+mn) operations. However, the method can be improved
by logarithmic factors (e. g., [7]) in the standard RAM model



with logarithmic word size. There are also algebraic ap-
proaches for computing all pairs breadth-first search (AP-BFS)
based on matrix-multiplication based algorithm (e. g., [8]). But
the exact diameter computation based on either combinatorial
or algebraic approaches remains computationally expensive
and impractical for massive sparse graphs. Even the recent
result by Peres et al. [9] who gave an O(n2) algorithm
for computing all-pair shortest path with high probability is
infeasible for such graphs.

A. Internal-Memory Small-Factor Approximations

As the exact computation of diameters for massive sparse
graphs seems impractical, approximation algorithms and
heuristics have received attention lately. In the following we
review some strategies that rely on the fact that a rather small
number of BFS computations can easily be afforded as long
as the input graph fits into internal memory.

The trivial bounds: It is folklore that already a single BFS
run rooted at an arbitrary source r yields trivial lower and
upper bounds on the diameter: ecc(r) ≤ D ≤ 2 ·ecc(r). Obvi-
ously, the choice of r determines which of these bounds is tight
(if any). The approximation can be improved by performing k
BFS explorations from k carefully chosen starting points [10]:
in that case the additive error drops to O(n/k) at the cost of
increased running time (for k BFS runs).

The double sweep heuristic: In practice the trivial lower
bound based on a BFS run with some random source r can
frequently be improved significantly by just one additional
BFS run from some source v′ satisfying d(r, v′) = ecc(r) and
reporting the bound d(v′, v′′) = ecc(v′) for some node v′′ with
maximal depth in the BFS tree for source v′. This technique
is also called the double sweep method (e. g., see [11], [12]).
On certain graph classes including trees the double sweep
method even guarantees to yield a tight lower bound on the
diameter [11]. On general graphs, the double sweep lower
bound will at least not be worse than the trivial one. In
addition, the double sweep method can be iterated for different
sources but then previously applied sources for the respective
second BFS runs should not be reused. The double sweep
lower bound can also be used to yield improved upper bounds
on the diameter of these BFS trees since it is able to derive
the exact diameter of a tree (and hence also of a BFS tree)
as mentioned above. Again iterating over several carefully
chosen BFS trees may strengthen the upper bound even further.
Observe, however, that there are graph classes (like rings)
where any BFS tree of those graphs has a larger diameter
than the respective original graph (up to a factor of two).

The fringe heuristic: As long as the input graph fits into
main memory, the name of the game is to find matching upper
and lower bounds for many graph classes while investing as
few BFS traversals as possible. To the best of our knowledge,
the most efficient approach of this kind is the fringe heuristic
by Crescenzi et al. [13]. For some vertex u, the fringe of u,
denoted F (u), is set of all vertices v ∈ V such that d(u, v) =
ecc(u). The fringe heuristic uses the double sweep method to

find a lower bound on the diameter and computes an upper
bound on the diameter as follows:

1) Let r, v′, and v′′ be the vertices identified by double
sweep method.

2) Find the vertex u that is halfway along the path con-
necting v′ and v′′ inside the BFS-tree rooted at v′.

3) Compute the BFS tree for source u and its eccentricity
ecc(u).

4) If |F (u)| > 1, find the BFS trees for all sources z ∈
F (u), and compute B(u) = maxz∈F (u) ecc(z):

a) If B(u) = 2 · ecc(u)− 1, return 2 · ecc(u)− 1.
b) If B(u) < 2 · ecc(u)− 1, return 2 · ecc(u)− 2.

5) Return the diameter of the BFS tree rooted at u.
It is shown in [13] that the fringe algorithm correctly

computes an upper bound on the diameter using at most
|F (u)| + 3 BFS traversals. While |F (u)| = Ω(|V |) in the
worst case, Crescenzi et al. demonstrate that |F (u)| is often
rather small (less than 20) for real world graphs. Additionally,
for nearly all tested cases in [13] the fringe heuristic produced
matching lower and upper bounds.

B. External-Memory Approaches

There has been a significant number of publications on
external-memory graph algorithms; see [14], [15] for recent
overviews. Exact computation of the diameter on unweighted
undirected graphs (via All-Pairs Shortest-Paths, APSP) has
been addressed in [16], [17]: both approaches require Θ(n ·
sort(n)) I/Os for sparse graphs. Taking into account that
current machines easily feature several gigabytes of RAM, in
the external-memory setting where n > M � B, an algorithm
spending Θ(n · n/B) = Ω(n2/B) I/Os is practically useless.

Small-factor approximations: Chowdhury and Ramachan-
dran [17] also gave an algorithm for computing approximate
all-pairs shortest-paths with additive error. However, their
approach only takes less I/O than exact EM APSP when
m ≥ n log n, which is not the sparse graph case we are
interested in, and even then the I/O volume is huge.

Of course, the simple BFS-based RAM approximation ap-
proaches discussed above can be implemented in external-
memory using EM BFS. However, even for the trivial 2-ap-
proximation this takes Ω(n/

√
B) I/Os in the worst-case [18].

What this means in practice will be discussed in Section IV.
Parametrized approximations: In the following, we re-

view a recent parametrized approach by Meyer [1] to trade
approximation quality with sub-BFS I/O time, which we will
also experimentally evaluate in Section IV. The problem of
computing an approximate diameter of the input graph G
(with n nodes and m edges) is reduced to that of computing
exact shortest paths on a weighted graph G′ with O(n/k)
nodes and O(m) edges. Graph G′ is computed using a static
external memory BFS [18] like preprocessing as follows: We
first choose each node to be a master node with a probability
1/k. Additionally, we select every k-th node in the Euler-tour
traversal around an arbitrary spanning tree of G, to also be
a master node. Thereafter, we grow the clusters “in parallel”.



In each round, each master node tries to capture all unvisited
neighbors of the current cluster. This is done by first sorting
the nodes at the fringes of the clusters and then scanning the
adjacency-lists of the nodes in the yet unexplored graph. Ties
are broken arbitrarily.

Let C(u) be the cluster containing u. An edge {u, v} ∈ G
results in an edge {C(u), C(v)} ∈ G′ if C(u) 6= C(v). The
weight of the created edge {C(u), C(v)} is dc(u)+1+dc(v),
where dc(u) is the distance of u from its cluster center.
We remove the parallel edges by keeping only the lightest
edge between C(u) and C(v). We run single source shortest
path (SSSP) from an arbitrary node s in G′ and output the
maximum distance from s to any other node in G′. Note
that this is a constant-factor approximation to the weighted
diameter of G′. Meyer [1] showed that the expected weighted
diameter of G′ satisfies DG′ = O(

√
k ·DG).

Since each k-th node on the Euler tour is a master node,
each node u ∈ G is at most distance k away from a master
node and the clusters are grown for at most k rounds. As each
cluster growing round requires O(scan(m)) I/Os to scan the
adjacency lists of unexplored graph and each node appears
only once as a fringe node of some cluster leading to a total
of O(sort(n)) I/Os, the total complexity of computing G′ is
O(k · scan(n + m) + sort(n + m) + ST (n,m)) I/Os, where
ST (n,m) is the I/O complexity of computing a spanning tree
of an n node and m edge undirected graph: O(sort(n + m))
I/Os randomized [19] and O(sort(n) log log n·B

m ) I/Os with a
deterministic spanning tree algorithm [20].

Computing single source shortest path on a graph with
O(n/k) nodes and O(m) edges with the ratio between
maximum and minimum edge weight being k requires
O(

√
n·m
k·B log2 k+sort(n+m)+ST (n,m)) I/Os [21]. The total

I/O complexity for this algorithm is thus O(
√

n·m
k·B log2 k+k ·

scan(n + m) + sort(n + m) + ST (n,m)) I/Os.
Spanning tree heuristics: While the parametrized approx-

imation discussed above still offers some (expected) approxi-
mation guarantees one might also go to the extreme: omit any
kind of guarantee and just rely on an I/O-efficient heuristic.
While (at least in theory) BFS computations on sparse graphs
tend to spend much more I/O than spanning tree computations
it is natural to ask if one could use a spanning tree rather than
a BFS traversal for approximating the diameter. Unfortunately,
the diameter of a spanning tree can be very far from the
diameter of the graph. For instance, consider a cycle graph
u1 . . . un−1 of n−1 nodes and edges and a special node s with
edges to all nodes of the cycle. The diameter of a spanning tree
{s, u1}, {u1, u2}, . . . , {un−1, un} is n− 1 while the diameter
of the original graph is 2. Unfortunately, even the diameter of a
random spanning tree can be very far away from the diameter
of the graph. For instance, Rényi and Szekeres [22] showed
that the expected diameter of a random spanning tree in the
complete graph Kn is O(

√
n).

A simpler way to use randomization in this context is to
consider the minimum spanning tree in the original graph with
edge weights assigned independently and uniformly from the
range (0, 1]. However, even the diameter of such a spanning

tree can be quite large compared to the diameter of the
graph. Nevertheless, our heuristic based on initial work by
Brudaru [23] takes this spanning tree as the base case and
iteratively refines it to approximate a BFS tree rooted at some
arbitrary node s. Let Ti be the spanning tree after the i-th
iteration (minimum spanning tree with random weights being
T0) and hi(u) be the distance of node u from s in Ti. Each
iteration consists of carefully selecting the edges for Ti+1

such that for each node u, hi+1(u) ≤ hi(u) and for at least
one node v, hi+1(v) < hi(v), thus, eventually the sequence
T0, T1, . . . , Ti converges to a BFS tree with root s.

An iteration consists of scanning the list of edges of the
original graph and for each node u, selecting the edge {v, u}
such that hi(v) is minimum. This is done independently for
all nodes. Note that although some neighbors of u may have
found a shorter path to s in the course of this iteration, this
is completely ignored as using this information naively may
require random I/Os.

III. IMPLEMENTATION DETAILS

For our experimental study we implemented or modi-
fied three approaches: (i) we modified the external mem-
ory BFS [24] to use double sweep lower bound, (ii)
we re-implemented the spanning tree heuristics from Sec-
tion II-B, and (iii) we engineered a simplified version of the
parametrized approximation algorithm from Section II-B.

Our C++ code uses the external memory library
STXXL [25] ver. 1.3.1 for algorithms like sorting and data
structures like priority queues. An additional benefit of using
STXXL is the streaming interface of various algorithms that
allows us to make extensive use of pipelining to save a factor
of 2–3 in the total I/O volume.

Implementation of the parametrized approximation: The
data structures and graph generators used in our code are
similar to those of BFS implementation of Ajwani et al. [24].
This was done to ensure better comparison with the external
memory BFS implementations. Also, we use their pipelined
randomized clustering implementation in our approach to
compute the clustering of the input graph.

Notwithstanding the theoretical description of the
parametrized approximation approach in [1] and Section II-B
we omitted to choose extra masters deterministically and only
rely on the randomly chosen master vertices. We then create
a condensed graph based on this clustering using a constant
number of sorting and scanning rounds. If the condensed
graph fits internally, we use an internal memory SSSP sub-
routine that we implemented using STL. Otherwise, we use
our adaptation of the semi-external memory SSSP sub-routine
by Meyer and Osipov [26], SE SSSP for short, to compute
the diameter of the weighted condensed graph. Note that this
code requires at least one bit per vertex of the condensed
graph in internal memory and also drops strict performance
guarantees for non-random edge weights, which occur in
our application. We refer to our implementation of the
parameterized approximation algorithm as PAR APPROX.



Both SSSP-subroutines (internal or semi-external) apply the
double sweep lower bound ideas [12] to find a source which
guarantees reasonable values for the resulting diameter.

Implementation of the spanning tree heuristics: In her
original work [23], Brudaru implemented these heuristics in
internal memory using the LEDA library and also created an
external memory prototype. We re-implemented the heuristics
to maximally utilize the pipelining and other features offered
by STXXL.

IV. EXPERIMENTAL RESULTS

The goal of our experiments is (i) to determine the trade-off
between approximation quality and running time (dominated
by I/Os) and (ii) to ascertain if the diameter for massive
sparse graphs can be computed in a reasonable time (e. g.
overnight running on a standard desktop PC). Our hope is
that the insights learned during these experiments will assist
a practitioner to determine the right technique for computing
the diameter of a given graph.

Graph classes: We chose three different graph classes: one
real-world graph with logarithmic diameter and two synthetic
graph classes with diameter Θ(

√
n) and Θ(n). The real-world

graph sk-2005 has around 50 million vertices, about 1.8 billion
edges and is based on a web-crawl. It was selected for better
comparison with DSLB UP BOUND of Crescenzi et al. [13]
and because it has a known diameter of 40.

The synthetic x-level graphs are similar to the B-level
random graphs in [24]. The graph consists of x levels, each
having n

x vertices (except for level 0 which contains only
one vertex). The edges are randomly distributed between
consecutive levels, such that these x levels approximate the
BFS levels if BFS were performed from the source vertex in
level 0. We selected x =

√
n and x = Θ(n) to generate√

n and Θ(n)-level graphs with 228 vertices and around
1 billion edges for our experiments. The generated graphs
have 1,127,310,556 edges (

√
n-level graph) and 903,876,452

(Θ(n)-level graph).
To elicit the worst-case approximation ratio from the

PAR APPROX approach, we also generated another graph
from a class with three parameters: k1, k2 and k3 satisfying
n = k3 · (k1 + k2). It consists of a list of length k3. There are
k3 node-disjoint lists of length k1 incident on each vertex of
the original list (of size k3). Each of the k3 lists have a fan-
out of k2 at the other end. The main idea behind this graph
class is as follows: for appropriately chosen kj values, there
are most masters of PAR APPROX in the fans and only few
masters in the lists so that many clusters meet with large edge
weights at the original list of length k3, thus blowing up the
weighted diameter of the condensed graph significantly.

We randomize the layout of the synthetic graphs on the disk
to ensure that the disk layout does not reveal any additional
information that is exploitable. However, we use the ordering
provided with sk-2005 graph for fair comparison with results
reported in the literature.

Configuration: We performed our experiments on two
different architectures.

(i) To determine the behavior of different techniques in
an external memory setting, we used a machine with an
Intel dual core E6750 processor @ 2.66 GHz, 4 GB internal
memory (around 3.5 GB free), 4 hard-disks with 500 GB each
as external memory for STXXL, and a separate disk for the
operating system, application and storing data, logfiles etc. The
operation system was Debian GNU/Linux amd64 ‘wheezy’
(testing) with kernel 3.0. The programs were compiled with
GCC 4.4 in C++0x mode using optimization level 3.

(ii) For running the heuristics of Crescenzi et al. [13] in
internal memory, we used a machine (part of the HPC cluster
at Goethe University) with 4 quad-core AMD OpteronTM pro-
cessor 8384 @ 2.7 GHz (only one core was used) and 64 GB
internal memory. Note that the purpose of these experiments is
to determine the quality of approximation with their approach
and to ascertain if it can be matched in an external memory
setting. The running time of an approach on this machine is no
indication of the running time in an external memory setting.

Selecting the correct number of master vertices for
PAR APPROX: Theoretically, as we increase the number of
master vertices, the maximum distance d between them should
decrease. This should help to reduce the running time of the
clustering phase and improve the approximation quality (as the
condensed graph better captures the structure of the original
graph and the factor 2 · d added to the calculated diameter is
low). The penalty paid for this is the increased I/O time for
external memory SSSP. Varying the number of master vertices
gives a trade-off between approximation ratio and the running
time.

However, most worst-case efficient external memory SSSP
approaches are impractically sophisticated. As such, we
have to rely on internal and semi-external memory SSSP
(SE SSSP). This imposes additional constraints on the max-
imum number of master vertices as for using the internal
memory SSSP, the condensed graph should fit internally, while
for using SE SSSP the number of master vertices should be
less than the main memory size in bits.

When using the internal memory SSSP, we would like
to choose the largest number of master nodes such that
the condensed graph fits internally. However, identifying this
number is a non-trivial task because the graph density of the
condensed graph depends on the structure of the input graph.
The condensed graph of a random graph is significantly more
dense than the one for a list graph. Therefore, we would like to
select the number of master vertices based on the structure of
the graph – fewer master vertices for random graphs than for
Θ(n)-level graphs. However, selecting the number of master
vertices on the basis of graph type requires a priori information
about the graph class, which runs contrary to our objective of
analyzing a given graph by determining its diameter.

Thus, we have two alternatives: We can either start with
a small (e. g., O(

√
M)) number of master vertices such that

the condensed graph is guaranteed to fit internally. Thereafter,
we can adaptively compute the correct number of master
vertices by increasing the number if the running time for the
clustering is too high (and aborting and redoing the run with



EM BFS DSLB SPAN DSLB UP BOUND
sk-2005 39 60 40√

n-level graph 16,385 46,262 16,385
Θ(n)-level graph 67,108,864 86,488,096 67,108,864

worst case for PAR APPROX 2,440,341 3,982,472 2,440,341

TABLE I
DIAMETERS APPROXIMATED BY VARIOUS APPROACHES. EXACT DIAMETERS ARE MARKED IN BOLDFACE.

the new number) or by decreasing the number if the resultant
condensed graph does not fit internally.

The other alternative is to choose a large number of master
vertices and use SE SSSP on the condensed graph. This
is almost always faster than EM BFS DSLB. We can then
reduce the number of master vertices to get a trade-off between
approximation quality and runtime. We have used both of these
alternatives in our experimental study.

Results: First we present the results of three different
approaches: External memory BFS with double sweep lower
bound (EM BFS DSLB), the spanning tree heuristic (SPAN)
and the fringe approach from Crescenzi et al. with dslb
method [13] (DSLB UP BOUND). The external BFS and the
internal DSLB UP BOUND showed similar results. For sk-
2005 we got a lower bound of 39 instead of 40. With a second
experiment with a different carefully chosen source we have
found the lower bound of 40, too.

For DSLB UP BOUND, we used ten iterations in one
experiment. The other applications we executed with only one
iteration.

The results of the SPAN heuristic were not that close to the
real diameter and have a taller spread. The numbers in Table I
are the resulting heights of the trees multiplied with factor of
two as an upper bound.

We do not report the detailed running times of
DSLB UP BOUND, since it was only executed on the big
64 GB internal memory machine and was merely used to get
hold of the exact diameters. As can be seen in Table II, the
SPAN heuristic was often slower than EM BFS DSLB. Only
for the

√
n-level graph we obtained a better running time

behavior. In correspondence with the results in [24], graphs sk-
2005 (with a low diameter) and Θ(n)-level (which is similar
to a single chain) are easier for external BFS than the

√
n-level

graph (which shares some characteristics with grid graphs).

EM BFS DSLB SPAN
sk-2005 5.27 7.65√

n-level graph 10.64 7.74
Θ(n)-level graph 4.75 4.81

worst case for PAR APPROX 1.66 3.34

TABLE II
RUNNING TIMES (IN HOURS) FOR EM BFS DSLB AND SPAN.

Results for the PAR APPROX implementation: To learn
more about the behavior of our new approach we ran a couple
of different test scenarios. In Table III we report on the results
when the condensed graph G′ fits into internal memory. The

running times are dominated by the clustering. The internal-
memory SSSP for G′ usually took only a few seconds.

As for sk-2005, PAR APPROX was up to 10 times faster
than EM BFS DSLB and SPAN. Interestingly, the best ap-
proximation guarantee (42 vs. 40 exact) was obtained for small
numbers of master nodes. Running time and approximation
deteriorate with more masters. We verified this phenomenon
on the machine with 64 GB internal memory and more sam-
ples. When between ten and twenty percent of the original
graph nodes are chosen as master vertices for sk-2005, there
is a point where the approximation bound improves again. We
saw this behavior more or less pronounced for other real world
graphs tested in [13], too.

The results for the Θ(
√
n)-level graph showed just the

opposite trend: best running times (up to 12 times faster than
EM BFS DSLB) and approximation bounds (only 0.14 %
away from the exact diameter but nearly three times better
than SPAN) were obtained for the largest possible number of
masters.

While for graphs with smaller diameter like sk-2005 a small
number of master vertices like 214 produces good running
times, for the Θ(n)-level graph applying too few master nodes
would be dangerous: with a diameter of over 900 millions
and only 214 master nodes, more than 50,000 phases of
the parallel cluster growing would be needed. The estimated
time for this clustering is around a month. Fortunately, the
condensed graph G′ from Θ(n)-level graph is rather small
even for a high number of master vertices: G′ fits into internal
memory on a 4 GB machine until 225 master vertices. While
the approximation guarantee is still within 1 %, the running
time gain for 224 masters is only a factor of four.

Expectedly bad approximations bounds could be identified
for our worst-case graph, especially with parameters k1 =
10 and k2 = 100 for n = 228, resulting in a diameter of
about 2.44 million for n = 228. With 220 master nodes, the
PAR APPROX overestimated the real diameter by more than
a factor of five.

As can be seen in Table III for high diameter graph classes
we need – and can afford – a lot of master vertices, but
for Θ(

√
n)-level inputs or Θ(n)-level inputs the resulting

condensed graphs are too dense to be used in internal memory.
Hence, we tested the behavior of PAR APPROX for three
different numbers of master vertices with SE SSSP.

The results in Table IV show that also with SE SSSP as
a subroutine PAR APPROX is faster than EM BFS DSLB
but not very much. Nevertheless, what is also important, the
resulting diameters are still very close to the real diameters.



masters ∼ 28 ∼ 210 ∼ 212 ∼ 214 ∼ 216 ∼ 218 ∼ 220 ∼ 222 ∼ 224

sk-2005
computed approx. diameter 42 51 68 79 106 113 98 119

approximation ratio 1.05 1.28 1.70 1.98 2.65 2.83 2.45 2.98
time [h] 0.46 0.51 0.62 0.68 0.73 0.76 0.78 0.77

d 12 13 17 17 17 22 18 16√
n-level

computed approx. diameter 16,836 16,519 16,413 16,409 16,408
approximation ratio 1.0275 1.0082 1.0017 1.0015 1.0014

time [h] 4.29 1.30 0.87 0.87 0.85
d 156 35 15 13 12

Θ(n)-level
diameter 67,118,479 67,128,342 67,233,297 67,717,702

approx. ratio 1.00014 1.00029 1.00185 1.00907
time [h] 41.60 12.33 3.68 1.26

d 3444 814 233 60
worst case

computed approx. diameter 3,643,615 6,729,783 13,461,919 11,265,297 4,399,657
approximation ratio 1.49 2.76 5.52 4.62 1.80

time [h] 5.12 1.87 0.92 0.73 0.58
d 449 144 50 28 22

TABLE III
RESULTS OF PAR APPROX FOR DIFFERENT NUMBERS OF MASTER VERTICES, WHEN THE CONDENSED GRAPH FITS INTO INTERNAL MEMORY. d IS THE

MAXIMUM DISTANCE BETWEEN TWO MASTER VERTICES.

masters ∼ 222 ∼ 224 ∼ 226

sk-2005
computed approx. diameter 119 90

approximation ratio 2.98 2.25
time [h] 1.09 (0.32) 2.78 (1.73)

d 16 13
vertices in G′ 4,193,085 16,774,091
edges in G′ 58,008,681 298,868,555√
n-level graph

computed approx. diameter 16,407 16,403 16,401
approximation ratio 1.0013 1.0011 1.0010

time [h] 6.96 (5.51) 8.38 (6.80) 9.41 (7.72)
d 10 8 7

vertices in G′ 4,195,701 16,774,408 67,105,247
edges in G′ 702,067,655 858,741,691 924,712,355

Θ(n)-level graph
computed approx. diameter 67,233,297 67,717,702 67,515,826

approximation ratio 1.00185 1.00907 1.00606
time [h] 3.94 (0.06) 1.6 (0.29) 2.47 (1.68)

d 233 60 16
vertices in G′ 4,195,701 16,774,408 67,105,247
edges in G′ 4,305,371 21,392,325 155,525,706

TABLE IV
RESULTS OF PAR APPROX WITH SEMI-EXTERNAL SSSP. THE RUNNING TIMES FOR SE SSSP (TIMES FOR CLUSTERING WITH BFS PHASE I, SENDING

WEIGHTS TO EDGES, 2 X SSSP) ARE REPORTED IN BRACKETS.

PAR APPROX vs. SPAN vs. EM BFS DSLB: If the
quality of the diameter approximation is most important then
EM BFS DSLB could be the first choice. EM BFS DSLB
produced reasonable results for all three graph classes sk-
2005, Θ(

√
n)-level, and Θ(n) level. It would have done so

for the (k1, k2, k3) worst-case graph too, since that graph is
just a tree. But if the running time is also important then
rather PAR APPROX should be chosen. It is faster than
EM BFS DSLB in each tested case (sometimes more than
a factor of ten) and its diameter approximation for each graph
class was typically rather close – except for the carefully
constructed worst-case graph. The spanning tree heuristic,

however, could not convince in this test.

V. CONCLUSION

Our experiments have shown that the parametrized diameter
approximation method is in fact faster than plain external-
memory BFS and typically produces much better approxima-
tion bounds than the theory predicts. Nevertheless, it turns
out that it is currently not suited as a section guide between
different BFS approaches: as soon as the condensed graph
does not fit into main memory, the overhead to run the
semi-external memory SSSP is not worth the subsequent
savings of a carefully chosen BFS approach. In fact, this is



mostly a problem of the current interface in our SE SSSP
implementation, which causes some extra sorting steps for data
conversion. For the future we plan to improve the SE SSSP
code in order to avoid these losses.
We are also interested in more sophisticated methods to
condense the input graph. Currently, more master vertices
speed-up the reduction time but result in a condensed graph
that typically does not fit into main-memory, thus causing more
I/O for the subsequent SSSP. Hierarchical clustering seems to
be the natural choice but as the condensed graphs become
weighted already after the first round, the parallel cluster
growing of the next rounds needs to appropriately handle these
weights, too. Currently, this step relies on the fact that the
edges are unweighted.
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