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For the design of large infrastructure projects such as inner-city subway tracks, it proves necessary to
consider differing model scales, ranging from the scale of several kilometers down to a few millimeters.
This challenge can be addressed by using multi-scale product models comprising multiple levels of detail
(LoD). Ensuring consistency across the different LoDs can be achieved by applying procedural and para-
metric modeling techniques while creating the model. This results in a flexible multi-scale model that can
be easily modified on one scale while other scales are automatically updated. However, the correct appli-
cation of parametric constraints and procedural dependencies has shown to be a very complex and time-
consuming process. To address this issue, this papers presents a semi-automated detailing mechanism,
which is based on formal procedures based on graphs and graph transformations. This paper discusses
how procedural parametric models based on two-dimensional sketches can be represented by graphs
and how detailing steps in the form of parametric modeling operations can be formalized by using
rule-based graph rewriting.
� 2017 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

The ongoing digitization of planning processes in the building
sector has become a major improvement for the AEC industry
and is being expanded into the infrastructure domain [10]. In the
planning of large infrastructure facilities ranging over several kilo-
meters, such as tunnels or roads, new requirements on the under-
lying models have become evident. These include the capability to
represent substantially diverging scales as well as the applicability
of the models to different or varying circumstances [9]. To deci-
sively assist designers and engineers, those digital models need
to support the efficient and consistent modeling and management
of geometric objects on diverging scales.

One approach to representing spatially extended facilities with
an adaptive semantic and geometric resolution is the use of multi-
ple levels of detail (LoDs). This approach is well established in the
domain of Geographic Information Systems (GIS) [28]. Previous
research extends the LoD concept used in the GIS domain towards
multi-scale representations of building information models, partic-
ularly used for the modeling of shield tunnels [9]. The main feature
of the proposed concept is the preservation of the consistency
across the different LoDs by applying parametric design techniques
in order to define relationships and dependencies between geo-
metric entities on different LoDs. However, one conclusion of this
research is that the manual definition of the required parametric
dependencies is a very complex, time-consuming and error-
prone task, which could strongly benefit from automation mecha-
nisms [6].

To address this challenge, this paper presents an approach to
realize these automation mechanisms. It describes an automated
detailing approach, which is based on the formal use of graphs
and graph rewriting mechanisms. It further shows how procedural
parametric geometric 3D-models based on two-dimensional
sketches can be represented by graphs and how refinement steps
can be realized through rule-based rewriting of these graphs.

The prospected benefit of this approach for end users is the
reduction of the effort to manually define the consistency preser-
vation dependencies. Doing so, it allows them to focus on the cre-
ative, conceptual and engineering aspects of the design process
instead of time-consuming and repetitive modeling operations.
Single-scale models can benefit likewise from the application of
parametric modeling, since parameterized models can be easily
adapted to different use-case scenarios and boundary conditions.
The formal computer-interpretable description of a parametric
design preserves the knowledge embodied in the respective man-
ual tasks to build-up the model and allows their reuse in similar
design scenarios. Furthermore, the modeling knowledge formal-
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ized in graph rewrite rules may be applied to new scenarios with
only minor alterations or even be generalized in a way that the
rules themselves are intrinsically adaptable to different scenarios.
Accordingly, we see the proposed approach as a contribution to
the fields of knowledge-based engineering [43,31,1] and
knowledge-driven design synthesis [35,26,46]. This proposed
methodology is demonstrated by applying it to the modeling pro-
cess of a shield tunnel. The model is detailed step-wise (as shown
in Fig. 1) from the basic layout of the alignment up to a LoD con-
taining several space objects of the tunnel as described in Bor-
rmann et al. [9]. Based on the general introduction of a graph
rewriting system designed to represent and manipulate elemen-
tary parametric and procedural modeling operations as well as
the corresponding geometric objects, a set of exemplary rules
describing the detailing process of the tunnel model is presented
as proof of concept. In addition, the process of interpreting the
graph for creating the evaluated model in a commercial parametric
modeling system is described. A software prototype was developed
to prove the feasibility of the developed approach.

The paper is structured as follows: In Section 2 related works in
the scope of design support and automation as well as the theoret-
ical background of the research at hand are outlined. Section 3 dis-
cusses the general approach of using graphs to represent a
parametric 3D model. Section 4 focuses on the development of a
specific graph rewriting system as a case study. The Section further
describes a prototypical software tool, which is able to interpret
the graph-based representation and create an actual 3D model.
In Section 5, the general applicability of the approach is discussed
in terms of its prospects and limitations at the current state of
development. The paper ends with a conclusion discussing the
development of our research, the major findings including known
limitations and its possible generalization as well as topics for
future research.
2. Related work

Benefits of the computer-aided generation of designs or models
have been addressed by researchers in various aspects. This section
gives a short overview of existing approaches and puts the pre-
sented approach in their context. It further presents the theoretical
background of the proposed methodology in terms of parametric
and procedural modeling, multi-scale modeling and graph
rewriting.
Fig. 1. Conceptual illustration of several detailing steps in a tunnel planing pr
2.1. Computer-aided model and design synthesis

Computers have been successfully used to support, accelerate
and simplify the process of generating technical drawings and pro-
duct models. CAD software is widely used and enormously valu-
able in the building sector and in mechanical engineering [11].
Its main purpose is to assist an engineer in his creative design work
by resolving the disadvantages of paper based drawing, though.
Design, however, is one of the most complex human tasks, as it
requires the consideration of various constraints and conditions
to obtain a satisfactory solution [3]. Therefore, a further step is
the development of methods and tools, which actively support a
designer by automatically generating whole sets of design variants
or by the automation of repetitive and trivial tasks in the design
process. As the concept presented in this paper contributes to this
field of research, similar approaches, which also utilize graph rep-
resentations, are discussed here.

In the field of Computational Design Synthesis (CDS), Helms
[20] uses a graph grammar for the computational synthesis of pro-
duct architectures. Design knowledge is captured in a port-based
metamodel and the procedural design rules of the grammar. The
dissertation and corresponding publications [21,20] show how
the computational synthesis of a design solution space for automo-
tive hybrid powertrains and for the generation of aircraft cabin lay-
outs can be realized. Hoisl [23] presents an approach for creating a
general spatial grammar system that introduces interactive defini-
tion and application of grammar rules in the scope of CDS. It aims
at actively supporting a designer in the modeling process using
mechanical CAD systems. The approach by Kniemeyer [27] in the
domain of biology makes use of a graph grammar to design and
implement a language to support the functional-structural model-
ing of plants.

Knowledge-Based Engineering targets the formalization of engi-
neering knowledge to assist or automate routine design tasks,
which are repetitive and time-consuming. Main contributions have
been made by Cooper and La Rocca [13] as well as Stokes [42]. A
comprehensive literature and research review that analyses 50
contributions is presented in Verhagen et al. [43]. With regard to
the use of graphs, Chein et al. [12] introduced a knowledge repre-
sentation and reasoning language based on conceptual graphs.

A method for using graphs in order to represent the shape and
dimension of design variants was presented by Borkowski and
Grabska [5]. Here, the conceptual design of bridges is used as an
ocess. Dependent on the chosen rule different designs can be generated.
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example for showing how different design alternatives can be gen-
erated by computationally manipulating the graph based represen-
tations. Grabska et al. [17] use hierarchical hypergraphs to
represent spatial design solutions and formalize design knowledge.
A related approach to support the conceptual building design phase
was developed by Kraft and Nagl [30]. It is implemented in form of a
CAD tool for conceptual design and a knowledge specification that
formalizes various design rules in a graph-based form. In Langen-
han et al. [32] the topology of spatial floor configurations is indexed
by using a graph-based representation. The method supports the
iterative process of searching for plausible solutions in early design
phases by referring to preexisting examples. Also shape grammars
have been used for architectural designs to automatically generate
large varieties of two-dimensional layout schemes [38].

The approach presented in this paper as well as most of the
methods listed above use the advantages of graph based represen-
tations and graph rewriting, but these methods aim at assisting a
designer by generating sets of possible design variants, from which
he can choose. The key difference of the approach presented here is
that it does not focus on this automatic generation of multiple
design variants. Instead, this paper targets an interactive process
of semi-automated detailing of designs and the generation of con-
sistent multi-scale models. More precisely, the designer can choose
from a set of adaptable rules, while refining a model. The applica-
tion of a rule creates a more detailed version of the model at hand
by applying formalized parametric modeling knowledge. For this
reason, graph rewriting techniques and explicitly not a graph
grammar is used.

2.2. Multi-scale modeling of shield tunnels

The idea of modeling and visualizing buildings and infrastruc-
ture facilities in different LoDs has been well established in the
GIS domain for several years [29]. The general concept is to provide
different geometric representations of a spatial object. Which of
these representations is actually used to display the object,
depends on the particular context, for example in regard of the size
of the model extent, the available hardware and the user’s require-
ments. One of the most important examples is CityGML, an XML-
based data model for the representation of mainly static 3D city
models [28] which defines five different LoDs. In most cases, repre-
sentations on coarser LoDs are generated from finer ones by a com-
putational process called abstraction [40]. In contrast, the design
process of construction projects starts with a very rough represen-
tation that gets gradually refined and more detailed as planning
evolves [9]. Additionally, CityGML does not include any automated
consistency preservation mechanisms to ensure that changes in
one LoD are propagated to the other LoDs, as an object’s geometry
stored one LoD is completely independent from that on any other
LoD. Nevertheless, a method to ensure the consistency across the
LoDs was presented by Gröger and Plümer [18].

In order to fulfill the needs of consistency-preservation and
multi-LoD representation in the infrastructure domain, a multi-
scale product model for shield tunnels has been developed by Bor-
rmann and Jubierre [8], which is based on a single scale model
introduced by Yabuki et al. [47]. This multi-scale model uses pro-
cedural geometry description and parametric modeling techniques
to provide mechanisms for automated consistency preservation
across the different LoDs. A 3D representation of the LoDs that
were defined for the tunnel product model is depicted in Fig. 2
without the first LoD that encompasses solely the alignment.

2.3. Parametric and procedural modeling

The concept of parametric modeling was developed in the
1990s Shah and Mäntylä [41] and is by now well established and
used in many commercial and open source CAD applications such
as Autodesk Inventor, Siemens NX and FreeCAD. While applied pri-
marily in mechanical engineering, the concept is also increasingly
used to create easily adaptable models of infrastructure facilities
[25].

Parametric 2D models (sketches) are composed of geometric
objects and parametric constraints. In the course of creating a
sketch in a parametric CAD application, a system of geometry
objects and geometric-topological constraints is defined. It forms
a constraint problem which can be solved by a geometric con-
straint solver (GCS) Fudos and Hoffmann [15]; Owen [36]. Using
this technique, the designer may define particular dimensions
(positions, heights, widths) by using variables instead of fixed
numerical values and is thereby able to quickly alter a design or
to explore different variants by adjusting the valuables. The set
of parametric constraints that is implemented by all major con-
straint solvers is defined as the standard geometric constraint lan-
guage [39]. It comprises the dimensional constraints for distances
and angles as well as the following geometric constraints: coinci-
dent, collinear, tangential, horizontal, vertical, parallel, perpendic-
ular and fixed.

The core concept of procedural modeling is to store not only the
final outcome of a modeling process, but instead the sequence of
single sketching and modeling operations, which is called the con-
struction history of the model. Models created this way are called
procedural models or construction history models. They use the con-
cept of parametric modeling to create flexible 2D sketches. These
sketches form the basis for the procedural operations that generate
3D geometry by extrusions, sweeps, lofts or Boolean operations
[7,34]. To define constraints between elements in different
sketches, so called projected geometry is used. This means that
an source element from one sketch is projected into a second
sketch, where a corresponding dependent element is created. If
the source element is then changed, the dependent element is
altered accordingly.

The presented approach uses parametric constraints as listed
above in combination with the procedural modeling of geometry
to define dependencies between geometric objects belonging to
different LoDs as described in Borrmann et al. [6]. Thus, the consis-
tency of the model across multiple LoDs can be preserved.

2.4. Graph rewriting

The proposed concept for automating the detailing process and
formalizing modeling operations relies on graph theory and graph
rewriting. The underlying theory is extensively discussed in Rozen-
berg [37]. Graphs and graph rewriting mechanisms are employed
to enable the representation and the modification of the procedu-
ral parametric models. An application of graph rewriting to semi-
automatically create and alter solely parametric sketches has been
presented in Vilgertshofer and Borrmann [44].

Generally, graphs are well suited to describe the relationships
between different elements or entities. Graph nodes represent
the elements, while the graph edges represent the relationships
between these elements. In the presented approach the graph
nodes are used to describe the geometric elements and the proce-
dural modeling operations, while the edges represent parametric
constraints and procedural dependencies. A graph consisting of
these nodes and edges then represents a parametric procedural
model.

Formally, the graph used here is a labeled, typed, attributed,
directed multigraph with loops. This allows the definition of differ-
ent types of node and edges, that in turn posses individual sets
of attributes.

Graph rewriting operations are used to create a new graph out
of an existing graph by altering, deleting or replacing parts (sub-



Fig. 2. A 3D representation of the LoDs 2–5 of the multi-scale shield tunnel product model [8].

S. Vilgertshofer, A. Borrmann / Advanced Engineering Informatics 33 (2017) 502–515 505
graphs) of the existing graph. The changes are formalized through

graph rewrite rules written as p : L!r R. A graph rewrite rule is
defined by a pattern graph L and a replacement graph (also called
rewrite graph) R. The left-hand side L defines the pre-conditions,
while the right-hand side R describes the post-conditions of a rule.
When a rule is applied to a graph (called the host graph H), this
graph is searched to find a subgraph that matches the graph pat-
tern L, more formally this match is an isomorphism of L to a sub-
graph found in H. If the matching succeeds L is replaced with R
under the consideration of a preservation morphism r that deter-
mines, how an instance of L in the host graph is replaced or altered
by R Heckel [19]. The outcome of this rule application is called the
result graph H0 as illustrated in Fig. 3.

There are several different approaches to graph rewriting. The
examples given above characterizes the Single-Pushout Approach
(SPO). Further methods are node replacement, hyperedge replace-
ment or the Double-Pushout Approach (DPO). Productions of those
two approaches are basically the same except for representation

differences. A SPO production is a partial graph morphism L!p R
while a DPO production is a span of total injective graph mor-

phisms L l K!r R [37].
The usage of formal graph representation and graph rewriting

techniques allows to capture design knowledge, or more precisely
detailing knowledge, in a persistent and CAD-system independent
manner. This provides the design and engineering companies for
which this approach is being developed the opportunity to safely
maintain their valuable engineering know-how and make it avail-
able for the entire company staff and over long periods of time.

For the proof-of-concept of the proposed research approach the
general-purpose graph rewriting system GrGen.NET was employed
as part of the authors’ software prototype [16]. GrGen.NET uses an
SPO-based approach and understands graph rewriting as a method
for ‘‘declaratively specifying ‘‘changes” to a graph” [4].
3. Formalization of modeling operations in a graph rewriting
system

Parametric modeling systems use geometric elements such as
points or lines as primitive planar entities. The topology of these
L R

H H´

host graph result graph

pattern graph rewrite graph
r

preservation morphism

match  m

rule application

Fig. 3. Graph rewriting via the Single-Pushout approach (inspired by Blomer et al.
[4]).
entities is defined by parametric constraints as described in Sec-
tion 2.3. Sets of geometric elements and corresponding parametric
constraints define sketches that are the basis for further procedural
modeling operations, which create spatial objects. To represent a
procedural parametric model by means of a graph, it is necessary
to define, which types of geometric elements, parametric con-
straints and procedural modeling operations may be used. In the
scope of this research, the following types are generally
considered:

� geometric elements: point, line, spline circle, arc
� parametric constraints
– geometric constraints: coincident, collinear, equal, concentric,

horizontal, vertical, parallel, perpendicular, fixed
– dimensional constraints: dimensions of one geometric ele-

ment, distances between two geometric elements
� procedural modeling operations: workplane, extrusion, sweep

This selection closely reflects the standard geometric constraint
language defined in Schultz et al. [39] comprising the most com-
mon operations provided by any parametric CAD system.

To represent theses items, corresponding attributed types of
graph nodes and edges need to be introduced. They are formally
described in a graph metamodel and can then be instantiated dur-
ing the generation of a graph. The metamodel also forms the basis
for the definition of graph rewrite rules. These rules formally
describe detailing steps that an end user can apply instead of man-
ually executing the underlying procedural or parametric modeling
operations.

Fig. 4 conceptually illustrates how a model is represented by a
graph and how this graph is transformed by applying predefined
rewrite rules. The application of a rewrite rule is indicated by an
arrowmarked rule. At each stage of this process, the graph can then
be interpreted and processed by a parametric CAD system to create
an editable parametric model. This model is further called the eval-
uated model. The generation of the evaluated model out of the graph
is illustrated by an arrow marked evaluation.

Note, that the graphs in Fig. 4 do not actually represent the
respective geometry. They merely illustrate the presented concept.
Concrete examples of graph instances that represent geometry and
corresponding definitions of rewrite rules are given in Section 3.3.

In the following Subsections, the metamodel is formally
described and some exemplary graph-based representations with
the corresponding models are presented. Furthermore, the defini-
tion of the rewrite rules is explained in general and also illustrated
by an example. Additionally, the process of developing the graph
metamodel and the requirements on the graph-based representa-
tion to be unambiguously translatable into an actual geometric
3D model is discussed.

3.1. Definition of the graph and the metamodel

To create and detail a multi-scale geometric model by using
graph rewrite operations, it is necessary to determine the compo-
sition of the graph which is used to represent this model. This is
achieved by the definition of the graph metamodel.



Fig. 4. Transforming the graph by using rewrite rules results in a more detailed model.
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The graph representing a procedural geometry model is a direc-
ted multigraph with loops G ¼ V ; E; Tv ; Te; s; t; lb; tyv ; tye; attð Þ. It is
defined as follows:

� V ¼ VP [ VS is a nonempty finite set of vertices. Elements of VP

are vertices that represent procedural modeling operations,
while elements of VS represent geometric objects in a sketch.
� E ¼ EP [ ES a is a nonempty finite set of edges. Elements of EP are
used to represent general relations or dependencies between
the procedural operations and allocate geometric elements to
a specific sketch. Elements of ES represent parametric con-
straints of a geometric element or between two geometric
elements.
� VP \ VS ¼£.
� EP \ ES ¼£.
� s : E! V is a mapping that indicates the source node of all
edges.
� t : E! V is a mapping that indicates the target node of all edges.
� P

is an alphabet of labels of vertices and edges.
� lb : E [ V !P

is a labeling function.
� Tv ¼ TvP [ TvS is a set of types for the vertices in V. TvP and TvS are
sets of types for nodes in VP and VS respectively.
� Te ¼ Te

P [ Te
S is a set of types for the edges. Te

P and Te
S are sets of

types for nodes in EP and ES respectively.
� tyv : V ! Tv is a typing function for the vertices, such that
tyv ðVPÞ \ tyv ðVSÞ ¼£.
� tye : E! Te is a typing function for the edges, such that
tyeðEPÞ \ tyeðESÞ ¼£.
� At is a set of attributes of vertices and edges.
� att : E [ V ! At is an attributing function.

The metamodel describes the possible set of types Tv and Te of
the graph entities V and E that can be instantiated when a rewrite
rule is executed to create or alter a graph. Besides defining the
available types, the metamodel furthermore defines the attributes
of a certain type as well as conditions that determine which nodes
and edges may be incident or which node types can be adjacent. As
the type of a graph entity clearly determines which attributes that
entity has, an attributing function is not given.

The metamodel of the graph is defined in an object-oriented
manner that allows the inheritance of attributes. Fig. 5 gives an
overview of the node and edge types defined in the metamodel.
3.2. Graph-based representations

By instantiating the metamodel, it is possible to define a graph
that represents a specific model or more precisely the modeling
process from which this model results. As a first basic example, a
sketch depicting a tunnel cross-section in LoD 2 is given. Fig. 6
shows the graph as well as the corresponding model. Furthermore
the necessary manual modeling operations that a user would have
to execute in order to create this model are described: First, aWork-
plane, which is in the xy-plane is constructed. Next, a new empty
2D-Sketch that lies in thisWorkplane is created. In this Sketch a Point
is drawn and fixed to its position by applying a Fixed-constraint.
Additionally, a circle is drawn whose radius is defined by a Dimen-
sional Constraint (dc1). Finally, the center point of the Circle is con-
strained to be Coincident with the previously created Point.

Note, that the nodes that conceptually belong to the sketch are
grouped in the Sketch node for readability. Formally, the nodes
Point and Circle are respectively connected to the Sketch node by
a depend edge with the Sketch node as its source. This is further
explained in SubSection 3.4.

The second example (Fig. 7) shows how a 3D model can be
defined based on the representation of the 2D sketch in the first
example. Therefore, an alignment (defined by a spline) is added,
so that the original cross-section can be sweeped along an align-
ment defined in the second sketch. Furthermore, the workplane
that the sketch is drawn on now depends on the alignment.
Thereby, the model is fully constrained, as it can only be edited
by changing parametric values.

A further extension of this example scenario is the detailing of
the cross-section to part of a LoD 3 model, which is shown in
Fig. 8. Therefore, a new sketch needs to be created on the existing
workplane to define a ring profile, which is then also sweeped
along the alignment. The outer bound of this ring is created by a
projection of the circle in the existing sketch. Thereby the consis-
tency between LoD 2 and 3 is ensured. Note, that the graph now
contains the model in the LoDs 1 and 2 as well as part of the 3rd
LoD. For clarity reasons, the model on the right side of Fig. 8 only
shows this part of LoD 3. LoD 1 and 2 are hidden.

These basic examples were created by executing graph rewrite
rules. The presented graphs were then interpreted to generate the
evaluated models shown here. How those rewrite rules were
defined is shown in the next Subsection.
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Fig. 5. General structure of the graph metamodel.
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$6:dc1
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Fig. 6. Graph-based representation of a parametric tunnel cross-section.
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3.3. Formalizing modeling operations as graph rewrite rules

With the given definition of the graph and the metamodel, it is
now possible to formulate graph rewrite rules that formalize the
process of detailing or changing (parts of) the parametric 3D-
model. The graph rewrite rules are used to create different
instances of the graph that represent the product model based
on the graph entity types specified in the metamodel. However,
the abstract task of a rewrite rule is to formally represent the exe-
cution of modeling operations (procedural or sketch related), so
that the rule can be used instead of carrying out the operations
manually. Thus, to conceptually define a rule, it needs to be deter-
mined, which existing model parts are to be used or altered. For
example, the creation of a sketch requires a work plane that the
sketch is drawn upon and the creation of a projected geometric ele-
ment needs a source element. Thereby, the pattern part of the rule
is formalized by a subgraph containing the nodes and edges that
represent the existing model entities on which the new entities
rely upon. Next, the designated result of the represented modeling
operation needs to be formalized in the rewrite part of the rule by
adding, altering or removing new or existing nodes and edges.
Additionally, we need to ensure that the application of any rule
on the graph-based representation of a model will result in another
valid representation. This means that the graph that is the result of
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Fig. 7. Graph-based representation of a parametric tunnel model in LoD 1.
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a rewrite operation correctly represents the construction history of
a parametric procedural model and can be used to successfully cre-
ate the corresponding evaluated model.

The execution of the rules is to be initiated by the end user. In
the proposed concept, he can choose among a set of predefined
rules that are part of the graph rewrite system. This practice allows
to apply different detailing patterns on a given design and provides
the desired flexibility for real-world model construction. However,
the definition of rewrite rules by the user is not intended at the
moment. This is caused by the fact that the creation of a rule
requires insight in parametric and procedural modeling as well
as in the process of graph rewriting and should remain hidden
from the end user. He should rather be only concerned with the
execution of the rules that lead to the model geometry he requires.
In the proposed concept, the task of creating the graph rewriting
rules is rather supposed to be carried out by experts with the nec-
essary modeling knowledge and understanding of graph rewriting.
We therefore explicitly hide the process of formally defining the
graph rewrite rules from the end user as well as the actual execu-
tion of a rewrite rule when it is triggered. The user only gets visual
feedback in form of an updated evaluated model while the changes
to the underlying graph are executed and stored in the graph
rewrite system.

To show how the graph rewrite rules in the proposed graph
rewrite system are developed, the following examples are given,
which are based on the examples given in the previous subsection.

The first example shows a rule that creates the first example
shown in Fig. 6 in an empty graph. As the modeling operations rep-
resented by this rule do not have any prerequisites the pattern part
of the rule is empty. The rewrite part of the rule on the other hand
contains all the elements that are created when the rule is exe-
cuted. Fig. 9 shows the result of the application as well as the def-
inition of the rule in the corresponding language of GrGen.Net. In
this formal definition nodes of the type WorkPlane, Sketch, Point
and Circle are instantiated. Afterwards the edges connection these
nodes are created: An edge representing a fixed constraint is con-
nected to the Point node. The coincident node connects the Point
and Circle node, to make the center of the circle coincident to the
fixed point. The edge dc1 represents the dimensional constraint
determining the radius of the circle. As the sketch needs to be
drawn on a workplane, the node depend assigns the sketch to this
specific workplane. The contain edges assign the circle and the
point to be part of the sketch.

In a second example is it shown how the graph and the model
shown in Fig. 7 are changed into those of Fig. 8. Fig. 10 shows
the pre-state and post-state of the graph transformed by the
rewrite operation. The graph entities defined in the pattern part
and in the rewrite part are marked green. Fig. 11 shows the defini-
tion of the rule.

3.4. Conceptual development of the graph-based representation

In a preliminary concept introduced in [44], two individual
types of graphs were considered necessary to represent two-
dimensional sketches (sketch graph) and the procedural operations
(procedural graph). While the conceptual separation of these
graphs, which is caused by the different nature of the relations in
parametric sketches and procedural operations, persists, the sketch
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$13:Circle

$12:ProjectedCircle
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$1:Circle
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$14:Sweep

$4:fixed

$5:coincident
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Fig. 8. Graph-based representation of the LiningSpace in LoD 3.
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$0:Point

$1:Circle

$2:WorkPlane

$4:fixed

$5:coincident

$6:dc1

$7:depend

Fig. 9. Graphical illustration of a rule’s rewrite part and the corresponding formal definition.
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$0:ProjectedPoint

$1:Circle

$2:WorkPlane

$A:Alignment
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$4:fixed

$5:coincident

$6:dc1
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$D:depend
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$11:Sketch

$13:Circle

$12:ProjectedCircle

$3:Sketch

$0:ProjectedPoint

$1:Circle

$2:WorkPlane

$A:Alignment

$B:Sweep

$14:Sweep

$4:fixed

$5:coincident

$6:dc1

$7:depend $C:project

$D:depend

$E:depend

$F:depend

$10:depend

$15:depend

$16:project

$17:dc2$18:concentric

$1B:depend
$1C:depend

Fig. 10. Pre-state and post-state of a graph transformed by the rewrite rule depicted in Fig. 11. Note, that the pattern part of the rule in the host graph (left) and the rewrite
part in the result graph (right) are highlighted with green color.

Fig. 11. Formal definition of the rule depicted in Fig. 10. Lines 2–5 describe the
pattern part while the rewrite part is defined after the initiating keyword modify.
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graph needs to be integrated into the procedural graph. This is due
to the fact that sketches are the basis for procedural operations
used to create 3D objects by extrusion or sweeping. For this reason,
the evaluation of a procedural operation will always need a refer-
ence to the sketch that this operation is based on.

To handle this interlinkage of the two graphs, three different
possibilities supported by the used graph rewriting tool GrGen.
NET Jakumeit et al. [24] were considered. In the case of an Integra-
tion by reference, a graph entity representing a sketch would only
store a reference to an independent graph which represents the
actual sketch (described by its geometry and constraints). The sec-
ond possibility is an Integration by using subgraphs, in which a
sketch graph is stored inside a graph entity representing a sketch,
without connecting it to the procedural graph. This would result
in the use of hierarchical graphs, which are technically supported
by GrGen.NET. Last, an Integration by combination of the graphs
was considered. In this case each graph that represents a sketch
is an actual subgraph of the procedural graph and thereby a part
of it.

While each of these solutions is generally possible, the third
option proved to be the most advantageous. This is caused by the
requirements on the necessary relations between the two graphs.
The first two possibilities induce a conceptual separation of the
sketch graphs from the procedural graph. This increases the com-
plexity of rewrite rules that need to transform a sketch graph as
well as the procedural graph, but does not yield any benefits. Addi-
tionally, GrGen.Net does not allow the definition of edges between
nodes belonging to different (sub) graphs in hierarchical graphs.
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When using the third option on the other hand, relationships
between sketch graphs can be modeled much more straight-
forward. The combination of the graphs is realized by connecting
all nodes belonging to a sketch graph with the respective sketch
node of the procedural graph, thereby turning it into a subgraph
of the procedural graph. The application of this concept is shown
in Fig. 12 exemplarily for a graph representing a LoD 2 tunnel
model. Here the edges $9 and $A are used to assign the nodes Pro-
jectedPoint and Circle to the Sketch node and thereby create an
integrated graph, which is depicted on the right side. The edge
$8:project is introduced for defining the location of the Pro-
jectedPoint to be derived from the alignment. This information
would otherwise have to be kept as an attribute of the Pro-
jectedPoint node.

The integration of the graphs is not defined as an actual graph
transformation. In fact, it is the conceptual basis for the definition
of the overall graph and the rewrite rules, as the rules can only cre-
ate and transform an integrated graph.

Although, only the integrated graph is used for the representa-
tion of a complete model, the terms sketch graph and procedural
graph are used in order to indicate which part of the graph is
referred to in a particular context.

3.5. Requirements on the graph to allow successful interpretation

The main requirement on any graph describing a certain model
is its validity insofar, as that the interpretation of the graph must
be possible in an unambiguous way (i.e. without conflicts and
$0:ProjectedPoint

$1:Circle

$2:WorkPlane

$3:Sketch

$A:Alignment

$B:Sweep

$4:fixed

$5:coincident

$6:dc1

$7:depend

$8:contain

$9:contain

$C:project

$D:depend

$E:depend

$F:depend

$10:depend

Fig. 12. Grouping of nodes representing geometric elements (blue) belonging to a sk
interpretation of the references to color in this figure legend, the reader is referred to th
inconsistencies) and result in a usable procedural geometry model.
For this reason, the graph must represent the result of a modeling
process which could also have been performed manually. Procedu-
ral modeling applications support this manual process by prevent-
ing user actions that would destroy the procedural or parametric
structure of the model. For example, they do not to allow the dele-
tion of a sketch while keeping a dependent extrusion. As this is not
a priori assured by automated graph generation, special care has to
be taken regarding the consistency of the graph.

In the context of the procedural graph this means, that every
node representing a procedural operation has to have all neces-
sary preceding operations (or input parameters) present in the
graph in form of the respective nodes connected by proper edges.
For example, a sketch node S always needs a work plane WP node
connected by an incoming depend edge d : d ¼ WP; Sð Þ. Addition-
ally, a subgraph representing the 2D geometry of a sketch must
always describe a fully or well constrained sketch [22]. Otherwise
the interpretation of the graph will not lead to an unambiguous
solution. The aspects of sketch graphs in this regard are discussed
in detail in Vilgertshofer and Borrmann [44]. There, the structure
of sketch graphs is defined and the development of and require-
ments on rewrite rules that produce an interpretable graph are
shown. The main tools for achieving an unambiguous representa-
tion discussed there are the definition of ports (definition of the
part of a geometric element that a constraint applies to) and the
use of temporary coordinates to support the geometric constraint
solver (GCS) of the CAD-system that the evaluated sketch is cre-
ated in.
$3:Sketch

$0:ProjectedPoint

$1:Circle

$2:WorkPlane

$A:Alignment

$B:Sweep

$4:fixed

$5:coincident

$6:dc1

$7:depend

$C:project

$D:depend

$E:depend

$F:depend

$10:depend

etch (right). A graph without the grouping of nodes is depicted on the left. (For
e web version of this article.)
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The latter refers to the particularity of interactive parametric
systems, that the GCS chooses the solution, which is most similar
to the sketched geometry, if there are multiple solutions to a given
constraint problem. This behavior must be emulated by the graph-
based generation method, because otherwise the GCS may produce
a solution that is formally correct, but not what the user intended.
Fig. 13 illustrates this problem. Here, the points A and B are
grounded to their positions. The start- and endpoint of line c are
defined as coincident with these two points. The startpoints of
the lines a and b are defined as coincident with these points
respectively. Additionally, the endpoints of the lines a and b are
defined as coincident with point C. The lengths of the lines a and
b are constrained to be of equal length.

The interpretation of this constraint problem may lead to the
two solutions depicted in red and green color in Fig. 13 and the
interpretation of a graph representing this sketch is not unam-
bigous. If temporary coordinates are used when drawing the point
C and the endpoints of the lines a and b, the solution most similar
to this temporary coordinates is chosen by the GCS and the out-
come in terms of the evaluated model matches the user’s intention.

For this reason, temporary coordinates are assigned to geomet-
ric elements which form an approximation of the relative position-
ing of the geometric elements. With their help, the interpretation
of the graph-based representation by the GCS will always result
in the intended outcome. The temporary coordinates are stored
in attributes of the nodes representing the geometric elements.
The described method of prearranging the geometry does now
result in the intended solution.

4. Case study and prototypical implementation

The developed concept of using graph transformation to auto-
matically create consistent multi-scale product models has been
implemented as a case study.

For the definition of a graph rewrite system consisting of a
metamodel and appropriate graph rewrite rules, the graph rewrite
generator GrGen.NET (see Section 2.4) has been used while the
generation of the evaluated sketch is performed with the commer-
cial parametric CAD application Autodesk Inventor [2]. Inventor
contains a geometrical constraint solver, which interprets the con-
straint problem defined by a graph. A software prototype was
developed in order to combine the functionalities of GrGen.NET
with that of Autodesk Inventor to illustrate the straight-forward
application of rewrite rules and the consecutive creation of the
evaluated model. The case study chosen is a knowledge intensive
case-study, as the design of a multi-scale tunnel model requires
the knowledge of the designing engineers not only in the field of
a

A B

C

b

c

Fig. 13. Two formally correct solutions (green and red) generated by the interpretation o
and endpoint of line c are defined as coincident with these two points. The startpoin
Additionally, the endpoints of the lines a and b are defined as coincident with point C. The
of the references to color in this figure legend, the reader is referred to the web version
tunnel design, but also in terms of applying parametric and proce-
dural modeling. Indeed, the graph formalizes the knowledge of the
engineers regarding detailing procedures, which are currently pre-
formed manually.

The research presented here was undertaken as part of the
research group 3DTracks ‘‘Computer-Aided Collaborative Subway
Track Planning in Multi-Scale 3D City and Building Models”, which
is funded by the German Reserach Foundation (DFG). In scope of
the 3DTracks group, the second main subway track in Munich that
is currently under planning, was chosen as a case study project.
Based on conventional 2D plans from the project, the multi-scale
model for shield tunnels [9] was developed. The data of this sub-
way track project was further used as a conceptional basis for
the definition of the graph rewrite system to semi-automatically
create consistent multi-scale models, as introduced in Section 2.2
to proof the feasibility of the developed methodology.

4.1. A graph rewrite system for the creation of a shield tunnel

GrGen.NET (Graph Rewrite GENerator) is an open source soft-
ware development tool that provides programming languages
optimized for graph structured data [16]. More concretely, it pro-
vides the possibility to create a graph metamodel and respective
graph rewrite rules implementing (as default) an Single-Pushout
Approach [4,14]. Further informations regarding the characteristics
of the graph transformation process can be found in Section 2.4. As
proof-of-concept, a graph rewrite system was implemented on the
basis of GrGen.NET. It allows to create the graph-based representa-
tion of the shield tunnel model in a step-wise manner up to LoD 4
without any manual modeling operations. For the first evaluation
of the approach, rather comprehensive rewrite rules were defined,
as the primary focus was to proof that a graph created by these
rules can indeed be used for the creation of the corresponding eval-
uated model. An overview of the underlying graph metamodel is
given in the previous section. It shows the different types of the
nodes and edges that were used as well as whether they conceptu-
ally belong to a sketch graph or to the procedural graph. A graph
representing a LoD 3 model is shown in Fig. 14, the corresponding
geometric model is illustrated in Fig. 15.

Besides the geometric representation, this model also contains
low-level semantics. The rewrite rules create a graph in which
the names of the tunnel spaces are stored in the nodes represent-
ing the procedural modeling operations that generate the geomet-
ric representations of the semantic objects. This enables the
possibility to export a geometric-semantic model from Autodesk
Inventor, which can then be used to write IfcTunnel files as pre-
sented in Vilgertshofer et al. [45].
a

A B

C

b

c

f a constraint problem: The points A and B are grounded to their positions. The start-
ts of the lines a and b are defined as coincident with these points respectively.
lengths of the lines a and b are constrained to be of equal length. (For interpretation
of this article.)



$18:Sketch

$1A:Circle $1B:Circle
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$15:ProjectedCircle

$10:Sketch
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$11:ProjectedCircle
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$D:dc1
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$27:dc2
$28:concentric
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$36:depend

$37:depend

Fig. 14. Graph representing the LoD 3 model depicted in Fig. 15.
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4.2. Application of rewrite rules and generation of the evaluated model

While a graph is used for the representation and alteration or
detailing of the model, it is not particularly useful for engineering
purposes. Therefore, an actual three-dimensional model, the evalu-
ated model, needs to be generated from the graph-based represen-
tation for display and further use in a parametric modeling system.
A software tool to enable this generation has been prototypically
Fig. 15. Evaluated model of the graph depicted in 14.
developed. It combines the functionalities to create and transform
the graph with the predefined metamodel and rewrite rules as well
as the evaluation of the graph-based representation. Thereby, it
generates the geometry and thus the evaluated model in the com-
mercial parametric modeling system Autodesk Inventor. A short
overview of the functionality follows.

The developed program uses the API of the graph rewrite tool
GrGen.Net to access the metamodel and rewrite rules predefined
in the syntax of this tool. While the user triggers the execution of
a rule the corresponding rewrite operation is performed by
GrGen.Net. After the consecutive execution of any number of
desired rules, the current state of the graph is used to create the
evaluated model. Therefore, the nodes and edges are interpreted
and their equivalent objects are sequentially created by calling
the respective methods of the API of the parametric CAD system
Autodesk Inventor. During this process, the connections and rela-
tionships defined by the graph are used to determine the correct
order of the construction operations and the necessary dependen-
cies of the objects to be created within Inventor.

We make use of the mechanical engineering modeling system
Inventor thanks to its advanced support of parametric design, in
particular with respect to defining dependencies between geomet-
ric entities in a very flexible and powerful manner. So far, we do
not work with currently available BIM modelers as they do not
support this kind of flexibility in defining parametric dependencies
- in most cases parametric functionalities are restricted to rather
simple pre-defined dependencies.
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However, Inventor lacks the possibility to define semantics for
the created geometric objects, which is a standard feature in
state-of-the art BIM modeling tools. As the proposed methodology
does include semantics as part of the graph notation, the devel-
oped system can be interpreted as a BIM system that makes use
of the advantages of parametric modeling.
5. Discussion

The original concept of this research is the presented method of
capturing parametric modeling knowledge by formal graph rewrite
operations. As laid out in Section 2.1 this contributes to the field of
Knowledge-based Engineering or Computational Design Synthesis.
With the presented definition of a graph metamodel, the approach
enables the representation and storage of parametric procedural
models including its construction history by using a vendor-
neutral graph-based data format. Doing so, the proposed method
is generic and can easily support other parametric CAD-systems
besides Autodesk Inventor, which was chosen solely for demon-
stration purposes. One of the key features is that the evaluated
model remains modifiable and can be used as basis for further
modeling in the respective CAD system. As the metamodel itself
is also easily extendable to support additional geometric elements
and procedural modeling operations, the method may also be
applied to generate much more complex parametric models and
to capture the modeling knowledge used for various planning
scenarios.

Additionally, the comparison of the application of a rule with
the manual task of creating a parametric model shows that the
use of rules is faster and prevents modeling errors, if the rules
are defined correctly. The definition of the rules, on the other hand,
is fairly complex and must be done very thoroughly. As the rules
may then be applied many times and in different projects, this pro-
cess of rule definition is worth its effort. In addition, the method
opens the way for capturing and persistently storing a design
office’s best practices of model creation and development in a
software-independent manner, which provides a value on its own.

While the general principle has been successfully applied, as
shown in Section 4, certain limitations apply at the current state
of the research project. Depending on the desired modeling out-
come, a large set of rules may be required and needs to be defined
before the method can be productively used by designers. Further-
more, it is nor clear yet, what size in terms of the represented mod-
eling operations is reasonable for a single rule. Here, further
research is required. Another limitation appears when defining
rules that rely on existing 3D geometry. Here, the so called persis-
tent naming problem [33] may occur, as parts of 3D geometric ele-
ments, such as faces or edges, which are created while the
evaluated model is generated, cannot be referenced in the graph
at the current stage. As this is a major limitation to the rule-
based generation of complex 3D models, this problem is also
focused on in subsequent research.
6. Conclusion

The presented research introduces a concept for the graph-
based representation of product models and their automatic detail-
ing by performing graph rewrite operations based on formal rules
defined in a graph rewriting system. It focuses on product models
of shield-tunnels and the automated creation of consistency-
preserving multi-scale versions of such models. The main contribu-
tion is the development of a graph rewriting system that enables
the generation of graphs representing those product models.

As stated in Sections 1 and 2.2 the motivation for this approach
is based on previous research by Borrmann et al. which came to the
conclusion that the manual creation of consistent multi-scale pro-
duct models is a ‘‘complex, time-consuming and error-prone task
which could strongly benefit from automation mechanisms”. From
this starting point, we chose the application of graph rewriting
techniques as a means for realizing such an automation mecha-
nism. Despite this chronology of problem identification and solu-
tion development, our findings have led us to believe that the
proposed methodology is generic and applicable to a wide field
of modeling tasks which either require consistency preservation
or the application of complex parametric and procedural modeling
operations.

However, in the moment, we are not yet ready to prove that the
developed theory is applicable in a generic manner. We chose to
apply it to the shield-tunnel scenario first in order to prove its
applicability in this specific context. The next step in our research
will be the further development of the theory towards a more gen-
eral level. Nonetheless, we also aim at a further extension and
refinement in scope of the presented scenario. More precisely,
we target on the definition of a larger set of rewrite rules, which
enables end users to create more diversified models. Additionally,
we will extend the graph metamodel and work on overcoming the
limitations described in the previous section.

In Section 2.1 we laid out how designers can benefit from a
range of existing methods, approaches and tools that support them
in their challenging work. We believe that our approach adds to the
variety of instruments that designers can benefit from during the
iterative process of determining good design solutions for engi-
neering problems.
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