
UC Davis
UC Davis Previously Published Works

Title
Fast BFS-Based Triangle Counting on GPUs

Permalink
https://escholarship.org/uc/item/5961r5qs

Authors
Wang, Leyuan
Owens, John D

Publication Date
2019-10-01

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5961r5qs
https://escholarship.org
http://www.cdlib.org/

Fast BFS-Based Triangle Counting on GPUs
Leyuan Wang

Department of Computer Science
University of California, Davis

Davis, California 95616
Email: leywang@ucdavis.edu

John D. Owens
Department of Electrical & Computer Engineering

University of California, Davis
Davis, California 95616

Email: jowens@ece.ucdavis.edu

Abstract—In this paper, we propose a novel method to compute
triangle counting on GPUs. Unlike previous formulations of
graph matching, our approach is BFS-based by traversing the
graph in an all-source-BFS manner and thus can be mapped onto
GPUs in a massively parallel fashion. Our implementation uses
the Gunrock programming model and we evaluate our imple-
mentation in runtime and memory consumption compared with
previous state-of-the-art work. We sustain a peak traversed-edges-
per-second (TEPS) rate of nearly 10 GTEPS. Our algorithm is
the most scalable and parallel among all existing GPU imple-
mentations and also outperforms all existing CPU distributed
implementations. This work specifically focuses on leveraging
our implementation on the triangle counting problem for the
Subgraph Isomorphism Graph Challenge 2019, demonstrating a
geometric mean speedup over the 2018 champion of 3.84×.

I. INTRODUCTION

Previous work in Graph Challenge has explored trian-
gle counting methods, including set-intersection and matrix-
formulation approaches based on sparse matrix-matrix multi-
plications. But none of them has dived deep into the graph
matching approach. In our previous work [1], we did a
comparative study among set intersection, matrix multiplication
and graph matching approaches, and found great potential in a
graph matching approach. In this paper, we address the triangle
counting problem with a BFS-based subgraph matching to a
triangle pattern.

Graph matching maps one graph onto another in such a
way that both the topological structure and the node and edge
labels are matched between the two graphs. The problem can
be formalized as the search for all subgraph isomorphisms
between two graphs. Most previous subgraph isomorphism
algorithms fall into the following three classes: depth-first tree
search, constraint propagation, and graph indexing. However,
none of them is efficient on GPUs (Section II). Prior work
on GPUs only targets specific applications and is generally
memory-bounded.

Many graph libraries make attempts to solve some common
operations on parallel machines, including the Parallel Boost
Graph Library (PBGL), Pregel [2], GraphLab [3], Power-
Graph [4], Ligra [5], Gunrock [6], and nvGraph.1 Modern
graphics processors (GPUs) have been leveraged in those oper-
ations and have found success in several parallel applications.
But few of those libraries have efficiently solved the subgraph
isomorphism problem, either because the framework is not fit

1nvGRAPH is available at https://developer.nvidia.com/nvgraph/.

for the problem or because no method fully exploits the large
amount of parallelism available on a GPU. Existing solutions
are mostly based on either backtracking or filtering-and-joining
mechanisms. Backtracking-based methods do not fit well on
GPU architectures because of their recursive nature. Existing
filtering-and-joining strategies that focus on optimizing match-
ing order either generate a large amount of intermediate results
or handle intermediate results in an inefficient way. Compared
with other triangle counting methods such as set intersection,
which avoids the problem of generating intermediate results,
filtering-and-joining approach has disadvantages.

Our work effectively uses the compute power of an entire
GPU with an approach that leverages an an existing GPU high-
performance graph processing framework as well as existing
high-performing GPU computing primitives. Our approach
scales especially well because we optimize our algorithm to
make it generate as few intermediate results as possible.

The paper is organized as follows: section II formalizes
the problem, compares with previous methods in solving the
problem, and introduces the graph framework we leverage
in the implementation. Section III describes our BFS-based
graph matching method in detail, and illustrates how we
uses it to solve triangle counting. Section IV summarizes our
experimental results. And section V concludes the paper with
takeaways as well as future work.

II. PRELIMINARIES AND RELATED WORK

A. Problem Definition

Triangle counting is the problem of finding all occurrences
of a triangle in a graph. The occurrences should match the
original triangle graph both structurally and semantically. In
other words, both the graph topology and attribute information
for nodes and edges should be considered when determining
the similarity between two graphs. In the Graph Challenge
problem, both graphs are undirected with no node labels or
edge weights. We use the following mathematical definitions:

Definition 1: A graph is a 3-tuple G = (V,E), where V is
a set of vertices, E ⊆ V × V are the edges connecting those
vertices.

We represent the vertex and edge set of the graph G
respectively as V (G) and E(G). If two vertices in G, say
u, v ∈ V , are connected by an edge e ∈ E, which is denoted
by e = (u, v), then u, v are adjacent or neighbors. A graph is
undirected when it only contains edges that have no direction,

meaning (u, v) and (v, u) essentially represent the same edge.
Though this paper only describes the problem on undirected
graphs, it can be extended to directed ones easily. With these
preliminaries, we define subgraph isomorphism as follows:

Definition 2: A graph G = (V,E) is subgraph-isomorphic
to another graph G′ = (V ′, E′), denoted as G ⊆ G′, if there
is an injection function f : V → V ′, such that

∀(u, v) ∈ E : (f(u), f(v)) ∈ E′.
Given a triangle as a query graph Q and a data graph G,

the exact triangle counting problem enumerates all triangles
that are isomorphic to Q in G. So the inputs we take are
one query graph, Q, which is a triangle, and one data graph,
G, in MatrixMarket format. Our outputs are the number of
matches as well as the matched subgraph node ID lists from
the data graph G. Compared with other methods such as
set intersection and matrix multiplication, one advantage of
using subgraph matching to solve triangle counting is that
we can get the triangle listings for free. Another advantage
is that our implementation could potentially be extended to
embeddings other than triangles with/without node and/or edge
label information.

B. The Gunrock graph processing framework

We note several graph frameworks in Section I; in this
work, we choose the Gunrock [6] GPU-based graph analytics
framework. Gunrock uses a high-level, bulk-synchronous,
data-centric abstraction. Gunrock programs are expressed as
manipulations of frontiers of vertices or edges that are actively
participating in the computation. Its traversal-based operators
(shown in Fig. 1) currently include:
Advance which generates a new frontier via visiting the

neighboring vertices/edges in the current frontier (work
distribution/load balancing).

Filter which removes elements from a frontier via validation
tests.

Segmented intersection which computes the intersection of
two neighbor lists for each pair of elements from two
input frontiers.

Compute user-defined vertex/edge-centric computations that
run in parallel; they can be combined with advance or
filter.

Advance Filter

Functor

 Frontier1,neighborlist1

 Frontier2,neighborlist1

 Frontier1,neighborlist n

 Frontier2,neighborlist n

ComputeSegmented Intersection

 …

Fig. 1. Gunrock framework graph traversal operators.

The Gunrock framework is very efficient for BFS-based
algorithms. Since our algorithm is also BFS-based, we use the
Gunrock framework to fully utilize the massive parallelism of
GPUs by using the above four operators. We also leverage
Gunrock’s capability of supporting frontiers of either nodes
or edges. We describe the pros and cons of using Gunrock in
Section III.

III. APPROACH

Most existing approaches follow either a filtering-and-
verification or filtering-and-joining strategy. The filtering step
prunes out candidates that cannot contribute to the final
solutions; we later show why this step determines the efficiency
of the algorithm. The verification step is generally based on
Ullman’s backtracking subroutine [7] which searches in a depth-
first manner for matchings between the query graph and the
updated data graph obtained from the filtering step. The joining
step combines the filtered candidate edges or partial results to
find all matches. Previous graph-index-based methods mostly
follow filtering-and-joining, which was also our approach when
we initially designed our algorithm. But we found that the
intermediate results generated before the joining step is a
challenge to store on a single GPU. Instead, the optimized
method that we propose in this paper follows a filtering-and-
verification approach, but unlike previous work, it is not based
on depth-first search.

The aim of the filtering step is to reduce the search space
on which later verification or joining steps operate. A good
filtering technique can save significant effort by pruning out
non-valid nodes/edges before verification or joining, which
is usually the bottleneck of the whole algorithm. Filtering
mechanisms can be classified into two categories depending
on their exploring scopes: local or global. A local refinement
mechanism prunes the set of mappings that are candidates for
each single vertex. A global pruning reduces the global search
space. In our approach, we use an effective filtering method by
neighborhood footprint encoding which encodes each node’s
neighborhood information. The encoding information is updated
after each local pruning and thus generates a more effective
global pruning of the search space.

We traverse the data graph in an all-source-BFS manner. In
other words, we start BFS traversals starting from every vertex
in the data graph in parallel. The verification step happens
in every iteration when we decide whether to add the newly
visited node to the partial results; the verification test itself is
based on the previously stored constraints. In order to avoid an
explosion in memory requirements, we do a compaction after
each iteration to prune out invalid partial results. In this way,
we are able to keep the memory usage linear to the number of
the number of matched subgraphs in the data graph.

In this section, we illustrate our approach step by step.

A. The proposed algorithm

The algorithm we propose achieves the following goals:
1) Scalable on GPU cores.
2) Memory consumption proportional to the number of

matched triangles.
Unlike most previous methods that are based on either tree

search or graph indexing, our algorithm is BFS-based, which is
a better fit for the GPU. In terms of memory usage, though the
algorithm is not recursive, we are still able to limit the space
needed to space proportional to the number of edges in the
graph by using more efficient pruning techniques and selecting

query order in a novel way. Algorithm III-A is the pseudocode
that shows both the algorithm itself and its implementation
using the Gunrock framework. Our inputs include a triangle as
a query graph Q and a large data graph G for searching. Both
graphs are undirected. Our output includes the exact number
of matched triangles as well as the node sequence listings of
them.

Input: Triangle Graph Q, Data Graph G.
Output: Count of triangles n and listings of all matched triangles.

1: procedure PRECOMPUTE ON CPUS
2: STORE NONE TREE CONNECTION(E)
3: GENERATE UMO(NEC)
4: end procedure
5: procedure FILTERING CANDIDATE SET(Q,G)
6: ADVANCE+COMPUTE(G) . Compute NE for each node
7: FILTER+COMPUTE(G,Q, c set) . Filter nodes based on

(NE); update NE
8: end procedure
9: while (|M [i]| < |Q|) do

10: procedure VERIFYING CONSTRAINTS(G,Q, c set,M)
11: ADVANCE(c set) . BFS traversal from source nodes in

c set to dest nodes that are verified on stored constraints.
12: COMPUTE(c set) . Compact satisfied dest nodes to

c set.
13: WRITE TO PARTIAL(M). Add updated c set to partial

results M .
14: MASK(M) . Set incomplete partial results to invalid

values.
15: end procedure
16: end while
17: return Triangle count: |M|

|Q| , M

For the pre-computing part, need to store the query node
connection information. We make sure that the node sequence
we generate meets the BFS traversal of a spanning tree derived
from Q. So we need to store any non-tree edge connection
(line 2 of Alg. III-A). We maintain a set of constraints on query
node ID values to avoid generating duplicated subgraphs. We
call this a unique mapping order (UMO) (line 3 of Alg. III-A).
The concept is derived from the neighborhood equivalence idea
from TurboISO [8].

Definition 3: Any pair of nodes ui, uj ∈ V (Q) are
neighborhood-equivalent (denoted by '), if for every embed-
ding m that contains node mapping pairs (ui, vi) and (uj , vj)
where vi, vj ∈ V (G), there exits an embedding m′ such that
m′ = m− {(ui, vi), (uj , vj)} ∪ {(ui, vj), (uj , vi)}.

The above definition illustrates that neighborhood equivalent
query nodes share the same matched vertices in data graph. The
equivalence class of a query vertex u is a set of query vertices
that are neighborhood-equivalent to (') u. This class is called
the neighborhood equivalence class (NEC). The TurboISO [9]
paper proves a lemma that, in an NEC, for each node u ∈ V (Q),
either an NEC member un has the same label and same set
of adjacent vertices; or every member of the NEC has the
same label and are adjacent to each other. By leveraging the
NEC idea, we first find NECs in the query graph, and inside
each NEC, we define an ordering based on node IDs and store
the orderings as constraints. For example, a triangle query
graph itself is an NEC. The ordering we define is {u1, u2, u3}

(u1, u2, u3 are node IDs of the query graph) where u1 < u2 <
u3. So when doing triangle matching in the data graph, we
only traverse edges with a destination node ID value larger
than the source node ID value.

The main algorithm can be separated into two big steps:
filtering and verification. The filtering step starts with a com-
putation of neighborhood encoding (NE) (line 6 of Alg. III-A),
which is computed based on the degrees of nodes in the data
graph. Here a node u’s NE is defined as the degree of u. NE is
based on an idea of using an integer to represent neighborhood
information that characterizes each vertex in the data graph.
We compute each triangle node’s NE during pre-processing on
the CPU and filter the candidate nodes in G based on NE (line
7 of Alg. III-A). Note that NE information is updated once we
filter out non-valid candidate nodes. The verification step is
based on multi-source breadth-first search, where the sources
are the candidate set of nodes from the filtering step. After
each traversal, we verify if the destination nodes can be added
to the partial results based on the pre-computed constraints
(line 11 of Alg. III-A). Note that during verification, we avoid
excessive memory usage by doing compaction before writing
to partial results (line 13 of Alg. III-A), and before the next
traversal, we mask out the unfruitful partial results that contain
nodes/edges less than the current stage number (line 14 of
Alg. III-A). The number of parallel traversals depends on the
level of the query graph spanning tree. So in the pseudocode
of Alg. III-A, we use a while loop to ensure partial results are
fully complete before returning the final results.

B. Implementation

Advance

Filter

Functor

Compute

Verification

Compaction

Write to

Partial

Delete incomplete

partial results
Mask

Repeat steps from Advance until partial results are complete

Used to feed next advance

Filtering

Fig. 2. Implementation flow chart.

To better understand Alg. III-A, we draw an implementation
flowchart, which can be found in Figure 2. We use compressed

sparse row (CSR) format as our data structure to store graphs
in a space-efficient fashion. Filter, advance and compute are the
three operators we use from Gunrock library. The filter operator
takes in all nodes from the data graph G and returns nodes with
satisfied NE requirements. Next, we use the advance operator
to traverse all the neighbor nodes of the candidate nodes. So
we need to verify if the newly traversed edges in the data
graph satisfy connection constraints with corresponding query
edges. The connection constraints include both the connection
with existing partial results as well as requirements brought by
corresponding query edges. By using the advance operator, this
step is done in a massively parallel manner where the large
amount of newly added edges are mapped to consecutive GPU
threads and the verification computation is also done in a SIMT
manner. Then we get output neighbor nodes from the threads
that pass the constraint-verification tests of the advance operator.
In the next step, we use a compute operator to compact the
candidate nodes from scattered threads to consecutive positions
in order to serve as the inputs for the next iteration of advance
traversal. Note that in GPU computing, consecutive (coalesced)
reads perform much better than scattered reads. So not only
do we benefit from better memory complexity but also gain a
performance boost from compaction.

C. Optimizations

Our first optimization is k-look-ahead, borrowed from the
VF3 algorithm, in the verification step to filter out more redun-
dant partial results in each iteration according to feasibility rules
besides using connection constraints. k-look-ahead originates
from the idea that it is possible to prove a non-consistent state
will not generate any successive consistent states. However, it
may happen that, even if the state is consistent according to
our constraints verification, after a certain number of steps it
cannot generate any consistent descendants and, thus, cannot
contribute to the final results. The detection of such situations
would help to further reduce the number of explored states by
avoiding the generation of consistent, but unfruitful, states. In
order to achieve this aim, the algorithm verifies if the addition
of the new candidate nodes to the partial results generates
a consistent state; in addition, it is able to detect k steps in
advance if the state will not have any consistent descendants, a
k-look-ahead. Note that this optimization is a necessary but not
sufficient condition. If it is false, it guarantees that the current
candidate node will not pass the next iteration of verification.
In our implementation, we use 1- and 2-look-ahead only, which
in practice prunes out a significant fraction of unfruitful partial
results.

Another optimization is our method of avoiding duplicated
final results that cannot be discovered when they are incomplete.
For instance, if we visit a certain part of the data graph with a
different node sequence, we can get different partial results at
the beginning but the same solution in the end, which increases
the number of intermediate results and requires further effort to
filter out duplicated final results as well. One possible solution
is to use a hash table to keep track of all node sequences.
Though it stops the generation of duplicate results, it cannot

filter out unfruitful intermediate results. Moreover, such a large
hash table storing all partial solutions would be very hard to fit
on a single GPU. Instead we add constraints to the query node
visiting order to ensure that no duplicate final results would
be generated from the beginning. We successfully transfer the
idea of a node equivalence class (NEC), which was previously
used to reduce a depth-first search space to solve this problem
(mentioned in Section III-A). For example, consider a triangle:
all three nodes of a triangle are equivalent. So we need to define
a visiting order of those equivalent nodes to avoid visiting the
same combination multiple times. So in this example, we relate
the visiting order to node id value and only visit in the order of
increasing node id values. In this way, the same combination
of nodes will only be visited once in the data graph.

As a summary, we use the following optimizations:
1) Compaction used after each advance operation to move

the scatterly distributed intermediate results to adjacent
spaces in memory, which improves data access efficiency
as well as memory usage.

2) k-look-ahead before adding a new node to partial results
to prune out unfruitful intermediate results.

3) Encoding neighborhood information for better filtering
and constraint verification.

4) Use node equivalence idea to avoid generating duplicated
solutions and redundant intermediate results.

5) Mask out incomplete partial results at the end of each
iteration to save memory usage.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

a) System: We tested our triangle counting implementa-
tion on an NVIDIA Titan V GPU. The Titan V is a Volta-based
GPU with 80 streaming multiprocessors (SMs) and 12 GB
HBM2 memory. The total memory bandwidth of the Titan V
is 652.8 GB/s. In our experiments, we compare with last year’s
champion [10]. In their paper, they run experiments on an
NVIDIA Tesla P100 GPU from the San Diego Super Computer
Center (SDSC). This P100 GPU is a Pascal-based GPU with 56
SMs and 16 GB CoWoS HBM2 memory at 732 GB/s memory
bandwidth. Our implementation is compiled with CUDA 10.0.

b) Dataset: The experiments are done using both real-
world and synthetic datasets from the HPEC graph challenge.
The graphs are unlabeled graphs. Specifically, we compare
results generated from small graphs recognized by Hu et
al. [10] for the reason that our implementation currently only
supports one GPU and the GPU memory is limited. But
our implementation could be extended to efficient multi-GPU
implementation easily under the Gunrock framework. We also
assume the input graph is undirected in our implementation.

B. Results

In Table I, we show our performance in time and transacted
edges per second (TEPS). We compare with last year’s
champion [10]. From the table we can see that we are
consistently faster than Hu et al. [10] in all real-world datasets,
but slower for one synthetic dataset. Note that the given

synthetic datasets have a larger number of triangles, which
means more intermediate results will be generated during the
computation and thus slow down our implementation.

V. CONCLUSION

This work is an update and deep dive on previous triangle
counting work using subgraph matching approach [11]. We
improved both the filtering and joining phase by pruning more
invalid nodes based on neighorhood encoding information, and
using optimizations like k-step look-ahead to reduce unwanted
intermediate results. We believe our optimizations are not
limited to only triangle counting on the GPU. We expect the
generality of our implementation allows others to extend this
method to match more complicated subgraph patterns.

VI. ACKNOWLEDGEMENT

We appreciate the funding support from the Defense Ad-
vanced Research Projects Agency (Awards # FA8650-18-
2-7835 and HR0011-18-3-0007) and the National Science
Foundation (Awards # OAC-1740333 and CCF-1629657). This
research was, in part, funded by the U.S. Government. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the U.S.
Government. The first author, an NVIDIA Fellowship Finalist,
thanks NVIDIA for research guidance. Also thanks to NVIDIA
for equipment donations and server time.

REFERENCES

[1] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens,
“Gunrock: A high-performance graph processing library on the GPU,”
in Proceedings of the 21st ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, ser. PPoPP 2016, Mar. 2016, pp.
11:1–11:12.

[2] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: A system for large-scale graph
processing,” in Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’10, Jun. 2010, pp.
135–146.

[3] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein, “GraphLab: A new parallel framework for machine learning,”
in Proceedings of the Twenty-Sixth Annual Conference on Uncertainty
in Artificial Intelligence, ser. UAI-10, Jul. 2010, pp. 340–349.

[4] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “PowerGraph:
Distributed graph-parallel computation on natural graphs,” in Proceedings
of the 10th USENIX Conference on Operating Systems Design and
Implementation, ser. OSDI ’12. USENIX Association, Oct. 2012, pp.
17–30.

[5] J. Shun and G. E. Blelloch, “Ligra: a lightweight graph processing frame-
work for shared memory,” in Proceedings of the 18th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, ser.
PPoPP ’13, Feb. 2013, pp. 135–146.

[6] Y. Wang, Y. Pan, A. Davidson, Y. Wu, C. Yang, L. Wang, M. Osama,
C. Yuan, W. Liu, A. T. Riffel, and J. D. Owens, “Gunrock: GPU graph
analytics,” ACM Transactions on Parallel Computing, vol. 4, no. 1, pp.
3:1–3:49, Aug. 2017.

[7] J. R. Ullmann, “An algorithm for subgraph isomorphism,” J. ACM, vol. 23,
no. 1, pp. 31–42, Jan. 1976.

[8] W.-S. Han, J. Lee, and J.-H. Lee, “Turboiso: Towards ultrafast and robust
subgraph isomorphism search in large graph databases,” in Proceedings
of the 2013 ACM SIGMOD International Conference on Management
of Data, ser. SIGMOD ’13. New York, NY, USA: ACM, 2013, pp.
337–348.

[9] ——, “Turboiso: Towards ultrafast and robust subgraph isomorphism
search in large graph databases,” in Proceedings of the 2013 ACM SIG-
MOD International Conference on Management of Data, ser. SIGMOD
’13, 2013, pp. 337–348.

[10] Y. Hu, H. Liu, and H. H. Huang, “High-performance triangle counting on
GPUs,” 2018 IEEE High Performance Extreme Computing Conference
(HPEC), vol. 28, no. 2, pp. 1–5, Sep. 2018.

[11] L. Wang, Y. Wang, C. Yang, and J. D. Owens, “A comparative study on
exact triangle counting algorithms on the GPU,” in Proceedings of the
1st High Performance Graph Processing Workshop, ser. HPGP ’16, May
2016, pp. 1–8.

Graph |V | |E| Triangles Runtime (ms) Rate (TEPS) Speedup

amazon0302 262,112 899,792 717,719 0.445414 2.02E+09 9.53
amazon0312 400,728 2,349,869 3,686,467 2.707648 8.68E+08 4.23
amazon0505 410,237 2,439,437 3,951,063 2.840805 8.59E+08 4.17
amazon0601 403,395 2,443,408 3,986,507 2.836609 8.61E+08 3.73
as20000102 6,475 12,572 6,584 0.298905 4.21E+07 1.01
as-caida20071105 26,476 53,381 36,365 0.599098 8.91E+07 8.17
ca-AstroPh 18,773 198,050 1,351,441 0.427914 4.63E+08 4.94
ca-CondMat 23,134 93,439 173,361 0.125122 7.47E+08 11.65
ca-GrQc 5,243 14,484 48,260 0.063396 2.28E+08 17.31
ca-HepPh 12,009 118,489 3,358,499 0.973678 1.22E+08 1.79
ca-HepTh 9,878 25,973 28,339 0.055146 4.71E+08 14.90
cit-HepPh 34,547 420,877 1,276,868 0.763726 5.51E+08 3.49
cit-HepTh 27,771 352,285 1,478,735 1.486301 2.37E+08 1.87
cit-Patents 3,774,769 16,518,947 7,515,023 32.25143 5.12E+08 2.40
email-Enron 36,693 183,831 727,044 0.718355 2.56E+08 2.44
email-EuAll 265,215 364,481 267,313 1.946259 1.87E+08 1.84
facebook combined 4,040 88,234 1,612,010 1.030469 8.56E+07 1.39
flickrEdges 105,939 2,316,948 107,987,357 27.124476 8.54E+07 1.06
graph500-scale18-ef16 174,148 3,800,348 82,287,285 1.0303421 1.69E+08 2.09
graph500-scale19-ef16 335,319 7,729,675 186,288,972 3.23446107 1.04E+06 1.38
graph500-scale20-ef16 645,821 15,680,861 419,349,784 9.46509552 6.82E+07 1.01
graph500-scale21-ef16 1,243,073 31,731,650 935,100,883 29.26859307 4.25E+07 0.76
loc-brightkite edges 58,229 214,078 494,728 0.550747 3.89E+08 4.12
loc-gowalla edges 196,592 950,327 2,273,138 6.270409 1.52E+08 0.77
oregon1 010331 10,671 22,002 17,144 0.421596 5.22E+07 2.11
oregon1 010407 10,730 21,999 15,834 0.414824 5.30E+07 1.96
oregon1 010414 10,791 22,469 18,237 0.43478 5.17E+07 2.02
oregon1 010421 10,860 22,747 19,108 0.437284 5.20E+07 1.86
oregon1 010428 10,887 22,493 17,645 0.433493 5.19E+07 1.89
oregon1 010505 10,944 22,607 17,597 0.437427 5.17E+07 2.06
oregon1 010512 11,012 22,677 17,598 0.449109 5.05E+07 1.82
oregon1 010519 11,052 22,724 17,677 0.44961 5.05E+07 1.82
oregon1 010526 11,175 23,409 19,894 0.439644 5.32E+07 1.86
oregon2 010331 10,901 31,180 82,856 0.44663 6.98E+07 2.10
oregon2 010407 10,982 30,855 78,138 0.456381 6.76E+07 2.05
oregon2 010414 11,020 31,761 88,905 0.43776 7.26E+07 1.95
oregon2 010421 11,081 31,538 82,129 0.458956 6.87E+07 1.85
oregon2 010428 11,114 31,434 78,000 0.432467 7.27E+07 1.99
oregon2 010505 11,158 30,943 72,182 0.446486 6.93E+07 1.90
oregon2 010512 11,261 31,303 72,866 0.437808 7.15E+07 2.10
oregon2 010519 11,376 32,287 83,709 0.446916 7.22E+07 1.91
oregon2 010526 11,462 32,730 89,541 0.447869 7.31E+07 1.91
p2p-Gnutella04 10,877 39,994 934 0.054383 7.35E+08 21.63
p2p-Gnutella05 8,847 31,839 1,112 0.058627 5.43E+08 14.33
p2p-Gnutella06 8,718 31,525 1,142 0.062394 5.05E+08 13.51
p2p-Gnutella08 6,302 20,777 2,383 0.060773 3.42E+08 18.19
p2p-Gnutella09 8,115 26,013 2,354 0.059509 4.37E+08 20.33
p2p-Gnutella24 26,519 65,369 986 0.093102 7.02E+08 14.01
p2p-Gnutella25 22,688 54,705 806 0.048971 1.12E+09 30.94
p2p-Gnutella30 36,683 88,328 1,590 0.055981 1.58E+09 18.87
p2p-Gnutella31 62,587 147,892 2,024 0.077367 1.91E+09 25.42
roadNet-CA 1,965,207 2,766,607 120,676 0.282073 9.81E+09 49.29
roadNet-PA 1,088,093 1,541,898 67,150 0.180125 8.56E+09 38.56
roadNet-TX 1,379,918 1,921,660 82,869 0.20709 9.28E+09 41.61
soc-Epinions1 75,880 405,740 1,624,481 2.308416 1.76E+08 1.35
soc-Slashdot0811 77,361 469,180 551,724 2.095413 2.24E+08 2.25
soc-Slashdot0902 82,169 504,230 602,592 2.20871 2.28E+08 1.51

TABLE I
RUNTIME (MS) AND THROUGHPUT (TEPS) FOR PROVIDED GRAPHS. SPEEDUP IS OVER HU ET AL.’S [10] GRAPHCHALLENGE SUBMISSION LAST YEAR

(2018).

