archives-ouvertes

Towards Sketching Interfaces for Multi-Paradigm
Modeling
Simon Mierlo, Julien Deantoni, Loli Burgueno, Clark Verbrugge, Hans

Vangheluwe

» To cite this version:

Simon Mierlo, Julien Deantoni, Loli Burguenio, Clark Verbrugge, Hans Vangheluwe. Towards Sketch-
ing Interfaces for Multi-Paradigm Modeling. MPM4CPS - First International Workshop on Multi-
Paradigm Modelling for Cyber-Physical Systems, Sep 2019, Munich, Germany. hal-02336809

HAL Id: hal-02336809
https://hal.inria.fr /hal-02336809
Submitted on 29 Oct 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.inria.fr/hal-02336809
https://hal.archives-ouvertes.fr

Towards Sketching Interfaces
for Multi-Paradigm Modeling

Simon Van Mierlo
University of Antwerp
Flanders Make vzw
simon.vanmierlo@uantwerpen.be

Clark Verbrugge
McGill University
clump@cs.mcgill.ca

Abstract—Existing design processes typically begin with in-
formal ideation by sketching out a basic approach that can
be further developed into a more complete design. Although
intuitively simple, and seemingly informal, the sketching process
is actually a structured activity that strongly influences the design
of the system; hence, it has an important role in the design
success. In this work, we develop a well defined specification of the
sketching activity. We consider skefching as a process of achieving
agreement, based on stakeholders communicating ideas about a
design and its properties, with the side-effect of incrementally
developing a (set of) common language(s) specific to the idea
domain. Our perspective on sketching further differs from more
common notions of ideation by noting the roles of requirements
and system properties, and offering a general perspective on
sketching as a modular activity within design. We validate our
approach by analyzing the sketches of a research group at
the CAMPaM 2019 workshop. By recognizing sketching as a
fundamental activity in design, we enhance the formalization of
the design process, and suggest improvements to the tool support
for sketching beyond the basic drawing features.

Index Terms—sketching, multi-paradigm, ideation, interface

I. INTRODUCTION

Imprecise drawings or skefches are commonly used during
the design process in many domains. Core to the early ideation
phase of the project—although also employed throughout the
design process—sketches are produced on a transient medium,
using informal imagery, text, and “back-of-the-envelope” cal-
culations to explore solutions and to develop candidate de-
signs. In collaborative settings, such drawings can be used to
reach a common understanding of a problem and to express
new ideas that are either discarded or refined in detailed
designs.

Informal sketching is recognized as an important part of
the design process [15], but also sits uneasily with more
formal approaches to design and modeling. In Multi-Paradigm
Modeling (MPM) [11], for example, the current assumption is
that a (domain-specific) language is designed first, and then
used by engineers to specify the system. When engineers

This research was partially supported by Flanders Make vzw, the strategic
research center for the manufacturing industry and Spanish research project
TIN2016-75944-R.

Julien Deantoni
Université Cote d’Azur - Sophia Antipolis
julien.deantoni @univ-cotedazur.fr

Loli Burguefio
IN3, Open University of Catalonia
Institut LIST, CEA, Université Paris-Saclay
Iburguenoc @uoc.edu

Hans Vangheluwe
University of Antwerp
Flanders Make vzw
hans.vangheluwe @uantwerpen.be

are sketching, however, they do not necessarily use a well-
defined modeling language: their vocabulary is incomplete and
changes rapidly, with the freeform properties of sketching used
to facilitate understanding and exploration.

Sketching has particular significance when applying MPM
to design Cyber-Physical Systems (CPSs) [14]. In this context,
sketching is an essential activity for cross-discipline brain-
storming to reach a common understanding, and to quickly
evaluate possible design candidates. Despite its importance,
the sketching activity is currently performed in an ad-hoc way.
While significant effort has been devoted to building sketching
tools, little effort has been spent to identify the languages,
elements, and processes used while sketching [2]. In this
work we argue that, even if aimed at freeform expression,
sketching has definable structure, and a more precise definition
of sketching is possible that can expose the processes and
artefacts involved. Better formalization of sketching enables
tighter integration into formal design, allowing sketching arte-
facts to more seamlessly participate in traceability and other
important parts of the complex CPS design process.

We validate our definitions by looking at the sketching
activities performed by a research group of CAMPaM 2019',
the workshop where we developed these ideas. We describe
our envisioned approach, which revolves around model and
language co-design: while a (team of) user(s) is sketching, a
vocabulary and its semantics is gradually built up. Technical
solutions to support these activities are proposed for dealing
with imprecise syntax, uncertainty in the semantics, and sup-
porting implementation platforms.

II. BACKGROUND

This section provides background for the rest of the paper:
we discuss ideation and sketching in different (engineering)
disciplines, traditional system development workflows, and
language engineering techniques, to provide an overview of
the state-of-the-practice in sketching tools and to contrast this
to typical system development workflows and tools.

Thttp://msdl.cs.mcgill.ca/conferences/ CAMPaM/2019/

A. Ideation and Sketching

In (engineering) disciplines, ideation is a process used to
come up with innovative ideas [18]. In design, it is commonly
synonymous with “brainstorming”: generating a large set of
diverging ideas, and then consolidating by evaluating design
candidates. Many techniques exist to improve the effectiveness
of this activity, such as starting from existing solutions and
transferring ideas from different fields. The ideation phase
results in a set of design candidates that, with a certain degree
of certainty, have been found to be suitable. These candidates
can then be used as input for the detailed design process, where
they are refined, tested, and ultimately deployed.

Sketching is an activity often used during ideation to convey
ideas. Such sketches are mostly diagrammatic in nature, and
allow users to write down their ideas for different purposes:
1) to understand the problem better; 2) to reach a common
understanding; and 3) to form agreement on the problem at
hand, and how to tackle it. In [16], the process of collaborative
sketching in engineering is detailed. The authors note that
sketches are misinterpreted frequently by participants due
to their informal nature. However, they note that in certain
domains such as the electrical, fluid and thermal domains,
more rigor is introduced because a symbolic format is used.
In the rest of the paper, we assume that the sketching activity
is performed collaboratively and that the language used for
sketching is important for its effectiveness.

With regards to tooling, Stappers and Hennesey [17] explore
the idea of “electronic napkins” for visual ideation and arrive
at the conclusion that traditional tools are too rigid, hence
engineers prefer not to use them and continue using pen and
paper. In contrast, Jonson [6] concluded from his study that
computer tools unexpectedly had a large role in the ideation
process. Based on these studies, it seems reasonable to assume
that designers would use digital tools if a proper language and
process support are offered.

B. System Development Workflows

The goal of a system development workflow is to come
up with a system design (in a timely manner) that satisfies
the properties that were formalized in the requirements engi-
neering phase. Properties state facts about the structure of the
system (a car needs to have four wheels) or its performance
(the car’s fuel efficiency needs to be high). Many workflows
have been developed [13]: from the rigid waterfall model, to
more recent agile approaches where a running prototype is
always available. In system development, the V-model is a
popular workflow: design and tests are developed in tandem.

Workflows are most often high-level and assume the require-
ments are fixed; only in agile approaches, changing require-
ments are inherently taken into account. However, the early-
stage activities are often not considered in these workflows. In
the ideation phase, often multiple ways of solving the problem
are explored, and the requirements are subject to change.
Moreover, the language used to express the early designs is
most often informal, making the (tool-supported) evaluation
of these early designs more difficult.

C. Language Engineering

Engineers use modelling languages to specify their system
designs; these specifications can be simulated, tested, and used
as a blueprint for the final system implementation. Many mod-
elling languages exist, either tailored to a specific domain or
generic within a certain paradigm. Generally, domain experts
work with a small number of languages that are specialized
to their specific domain.

A modelling language, be it general-purpose or domain-
specific, has syntax and semantics. Most commonly, a lan-
guage engineer builds the syntax and semantics of a language
and the tooling (such as model editors, simulator, code gener-
ators, and debuggers) around it; these tools are then used by
domain experts to design their systems. Typically, a precise
meaning is assumed for the language that allows to obtain a
result (e.g. the fuel efficiency of a car is x) or an execution
trace that can be analyzed for temporal properties such as
“when a command for shifting gears is given by the driver,
the system responds within a time delay of at most y time
units”.

III. DEFINITIONS

As a first step to better support the sketching activity in the
design process, we identify the concepts and relations involved
in a sketching activity in Figure 1. The focus is on the link
between various languages shared among stakeholders and the
link with the design activity and ideation; we leave the study of
the relations between the different languages for future work.
As far as the authors are aware, this is the first attempt to
formalize the sketching process from a language and process
perspective; its relevance is evaluated in the next section.

A sketching activity involves a set of Stakeholders, who
know some Languages. At the start of sketching, a set of
Inputs refer to a potentially empty set of Requirements, a
potentially non-existing PartialDesign and a set of Problem-
Statements that may refer to the partial design. The problem
statement is proposed by at least one of the stakeholders.

The sketching activity usually starts with an explanation of
the problem and relies on the illustration through examples
expressed in a specific language. This language is usually
incomplete—both in its syntax (concepts that the users want
to express in detailed design are missing) and semantics (the
meaning of language elements is not yet known, defined
imprecisely, or includes uncertainty). Furthermore, if the lan-
guage in which the example is explained is not precisely
known by all the stakeholders, it must be explained so that
they understand the problem properly. This explanation about
the syntax and/or semantics of the language must be carried
our either by means of oral explanations, annotations of the
models or expressed in a shared language.

Once the problem is understood, the stakeholders start
proposing potential Decisions on the solution to the problem—
once again, in a language that may require explanations.
These decisions are evaluated, usually intellectually by the
stakeholders according to the requirements and the problem
statement. Once the sketching activity is considered successful,

[0..*] requirements

g Input [0..*] input

[sketchingActivity

[0..*] output [output

1.%

[0..*] requirements [0..1] partialdesign

[PartialDesign

[0..1] refersTo

‘ |5 Requirement |

[0..*] problemstatement

[0..*] basedOn [Problemstatement

| Stakeholder

stakeholders

[0..1] sharedLanguages
[Language

[0.4] rejectedDecisions
[0..%

agreedDecisions

| Decision

[1..1] about

0..*][expressedIn

[0..1] knownLanguages

[0..*] expressedIn

[0..*] explainedWith

[1..*] proposedBy

[Agreement

= Example

[0..*] agreements

Fig. 1: Concepts and relations involved in a sketching activity.

the stakeholders reach an Agreement on a specific (set of) deci-
sion(s), based on the requirements. The Output of a sketching
activity is a set of languages shared by the stakeholders (that
may be reused in future sketching activities) and a potentially
empty set of agreements on decisions, expressed in at least one
of the shared language(s). The nature of the relations between
the different models and languages used for the requirements,
the partial design and the decisions taken during a sketching
activity are topics to be investigated. However, we focus in
this paper on the models and languages used, created and/or
modified during the sketching (sub-)activities.

The workflow in which the artefacts used during the sketch-
ing subactivities is described in Figure 2 by a Formalism
Transformation Graph + Process Model [8] (FTG+PM) model.
The right part shows the different activities described earlier
and the input/output of each activity. The left part shows a
“map” of all the formalisms used during the process: each
artefact created in the workflow is typed by a language in
the formalism transformation graph. Similarly, each (manual)
activity in the workflow is typed by a (manual) transformation
between two languages.

The activity of understanding the problem is iterative and
there may be four (or more) languages involved: 1) the
language to describe the problem (natural language); 2) the
language to explain the problem through examples (Problem
Explanation Language (PEL)); 3) the language to specify
the requirements (Req. Lan.); and 4) the meta formalism to
specify the requirement language and the example language
(MetaFormalism). An instance of these three languages (an
example in case of the PEL, a requirement in case of the
Req. Lan., and a language in case of MetaFormalism) are
both inputs and outputs of the UnderstandProblem activity,
since they are usually modified during the activity. Also, while
not on Figure 2 for readability, several different languages
can be used to describe one or different examples. Once the
problem is understood, the DescribeDecision activity starts:
some decisions are elaborated step by step by the stakeholders,
with the support of one or more Domain Specific Language(s)
(DSLs). These DSLs often also evolve in the process of
decision making. Both the decision and the language used to

specify them are therefore inputs and outputs of the activity.
Finally, a decision is evaluated according to the requirements
and can either be accepted or rejected. In the former case,
the decision is the source of an agreement and the sketching
activity ends. In the latter case, the decisions have to be
evolved until agreement is reached.

IV. CASE STUDY

To verify the relevance of the identified concepts and
relations, we reviewed the sketches produced by a group at the
CAMPAM 2019 workshop. These artefacts were realized on a
blackboard by three stakeholders (researchers in computer sci-
ence) working on the generalization of adaptive abstraction for
multi-agent systems. For traceability reasons, the stakeholders
took pictures of the board at different points in time; these are
shown in Figures 3a, 3b, 3c, ordered chronologically from left
to right. We kindly asked our subjects to explain their sketches.
Figure 3a contains examples used by one of the stakeholders
to explain the problem. We highlighted in red the concrete
syntax used to express the example and in green the concrete
syntax used to explain the semantics of the diagram. In Figure
3b, the stakeholders started proposing a decision to solve the
problem (highlighted in blue). Finally, Figure 3c contains a
refinement of a decision the stakeholders reached to solve the
initial problem. Of course, throughout the sketching process,
they used oral explanations, too.

Clearly, in this case study we find the concepts that we
identified in the previous sections, hence it validates our
proposed definitions. Furthermore, the stakeholders decided
to keep track of their thinking (by taking pictures of the
board). However, there is room for improvement. First, they
left the initial requirements implicit. Second, they did not
identify/classify the various artefacts on the board (it may be
interesting to ask them 6 months later what their understanding
of such artefacts is). Last, they did not keep track of their
rejected decisions, which could prevent other people reusing
the artefacts to go in the same (potentially wrong) direction.

V. TooL SUPPORT ROADMAP

This section describes how we envision the tool support
for sketching should evolve in the future to support the

Nat. Lang.

UnderstandProblem

DescribeDecision |l

MetaFormalism

Req. Lang. DSL l

EvaluateDecision

Boolean

[language

@ transformation (manual)

problem:Nat.Lang.

PEL:MetaFormalism

example:PEL|

Requirements:Req.Lang.

: UnderstandProb\em’h
Req.Lang.:MetaFormalism

:DescribeDecision

DSL:MetaFormalism|
decision:DSL

J

:EvaluateDecision

[False]

[True]

1 model artefact
@D ctivity (manual)

Fig. 2: Formalization of the sketching process.

(a) First iteration: examples and semantics.

(b) Second iteration: first decision proposal.

(c) Third iteration: decision reached.

Fig. 3: The sketches realized by three stakeholders at the CAMPaM 2019 workshop.

ideation phase and, in particular, the sketching activity, for
the collaborative design and development of CPS.

A. Vision

We have argued that the ideation phase of projects should be
supported with (digital) sketching interfaces. While providing
the users with absolute freedom, such interfaces should pro-
vide a way to reuse the users’ sketches later on in the design
process. Furthermore, the interface should allow the (partial)
evaluation of early-stage designs composed of sketches whose
syntax and semantics are uncertain and/or incomplete.

We see three areas of future research that need to be
addressed: 1) languages for the ideation phase are not pre-
defined but co-constructed while the sketches evolve, thus
(flexible) language engineering support is required for this to
be performed in a structured way; 2) workflows in the ideation
phase are inherently flexible and such flexibility needs to be
supported by languages and tools; and 3) an infrastructure is
required to support the sketching activity in a meaningful way.

B. Model-Language Co-Design

While sketching, the languages used to (partially) specify
the system are developed alongside the models that specify
the system’s structure and behavior. This model-language co-
design is at the heart of our envisioned approach. To support
this co-design, a way to incrementally build a language (both
its syntax and semantics) is necessary.

For the syntax, when part of the sketch is identified as
belonging to a certain language, that part should no longer be
considered as “sketched”, but as properly typed by a language
(constructed on-the-fly). A possible technique to allow for
this retyping of artefacts is a-posteriori typing [4], which can
be used to change the type of the sketch (the model) as
the modeling language evolves. All kinds of concrete syntax
(including graphical and textual syntax) should be supported.
Textual syntax is often used to sketch algorithms or to annotate
graphical sketches and often evolves too from a free form to a
more structured form. In any concrete syntax, partial parsers
that evolve as sketches evolve have to be supported.

The semantics of the language will be inherently incomplete
and contain “holes”, which is usually not allowed in traditional
language engineering, where tools such as compilers and
interpreters assume that a full specification of the semantics
is available. To perform this evolution in a structured way,
the first step would be to allow the presence of attribute
values with a certain degree of uncertainty. For instance, one
way to consider this uncertainty could be that, instead of
having precise values, the semantics of the language allow for
ranges of possible values. Additionally, modelers should be
able to specify that they do not yet know the values of certain
attributes, leaving them empty. Such “models with holes”
could be resolved if the system behind it allows for (semi-
Jautomated design-space exploration [9], proposing possible

resolutions for the unspecified values that are consistent with
the rest of the (partial) design.

In parallel to the co-construction of the design language, a
property specification language is needed as well, which can
(and should) evolve together with the design language, offering
abstractions to describe properties related to the structure
of the system and its (temporal) behavior. The ProMoBox
approach [10] is used in traditional language engineering to
construct a property language whose syntax is very close
to the syntax of the design language. When sketching, a
design language is co-designed with the example models; this
means that if we sketch properties, the property language
is similarly co-designed. The relation between the sketched
design language and sketched property language requires fur-
ther research; furthermore, allowing for “models with holes”
should also allow for property specifications over such models.
Conversely, “properties with holes” (where there is uncertainty
in the properties) also need to be allowed.

Ultimately, sketching and modeling are very similar in
nature; engineers want to build abstractions of the system
and evaluate them according to a set of properties. There is
an increasing level of accuracy and fidelity once the design
evolves from a sketch to a full-fledged model, but the activities
we can perform with them should be the same. In that sense,
sketching tools should support full system analysis from very
early on, to already give the engineers an idea about the
viability of their early design candidates.

C. Flexible Workflows

Current modeling tools not only have strict syntax rules;
they also expect the users to follow a certain workflow (often
implicitly defined in documentation). In sketching interfaces,
such workflows cannot be rigid and should give users as much
freedom as possible for exploring alternatives. However, to
support the evaluation of sketches, underlying processes are
required to make assumptions of the produced artefacts. While
the sketches evolve, engineers might identify parts that they
recognize such as use case-like diagrams, partial dataflows, or
mechanical drawings. When these sketches are progressively
typed and their semantics are partially described during the
sketching process, the partial and/or incomplete model that
the sketches represent could be evaluated.

Currently, our workflow model in Figure 2 does not support
languages that evolve over time, where they are types of other
artefacts in the workflow. We need this support to describe
the relation between the example models (sketches) and their
language, that evolve in tandem. To properly enact this flexible
workflow a way of describing this evolution needs to be found.

D. Infrastructure

An intuitive sketching interface is important. To mimic the
behavior of a whiteboard, a smartboard could be used to sketch
using a pen-like object (which is the most widely used in
collaborative settings, such as a brainstorm meeting). Closely
related are tablets, which can be used in small collaborative
settings or when sketching individually. The most general

platform, however, is the web browser, which can be run on
almost all devices.

Regardless of the medium used for sketching, collaboration
also has to be taken into account when developing the neces-
sary infrastructure for sketching. In a physical meeting, where
people are in the same place at the same time, a smartboard
with the proper tooling installed on it can be used to perform
the sketching, and conversations take place in real-time. When
the meeting is done remotely, because the team is located
across different locations, support has to be provided for a
collaborative tool: either this tool provides one “master screen”
that is shared among the participating groups, or it allows for
real-time collaborative editing, a difficult problem to solve in
model-driven engineering [5]. Last, if the collaboration occurs
at different points in time, support for version control has to
be provided to store the history of the sketches in a central
repository. This requires support for merging sketches.

VI. RELATED WORK

A number of visual sketching tools that allow designers
to build example models without restrictions have been de-
veloped. Most of these tools are research prototypes and
implement an example-based approach towards language de-
velopment: instead of building the language first, and then
creating models in that language, the tool allows users to
sketch their models in a free-hand editor, and annotate them
in a way that allows the tool to derive a metamodel.

FlexiSketch [19] supports large-screen touch devices and
smartboards. Users can sketch shapes and annotate them with a
type. The (implicit) metamodel of the language is constructed
incrementally while the user introduces new sketched elements
and types. At some point, the user can choose to lock the
metamodel, after which the interface becomes a modeling tool,
offering the vocabulary that was constructed in the sketching
phase. A metamodel is stored for each sketch; metamodels can
be merged.

MLCBD [3] infers a metamodel algorithmically from a set
of example sketches. It allows for users to register shapes
that need to be recognized; sketched shapes are then classified
when they are recognized. Once the (implicit) metamodel has
been generated, a number of example models are automatically
generated and the user is asked to validate them. Once the
metamodel is validated by the user, it can be used to generate
a domain-specific editing interface.

Scribbler [1] provides a free-hand sketching interface. Users
can register shapes to be recognized, and a training interface is
provided to teach the tools how to recognize a specific shape.
Scribbler requires the user to define the metamodel of the
language manually and map the recognized sketches to it.

metaBup [7] generates an explicit metamodel automatically
from a set of sketches. It relies on an external drawing tool, in
which users can create their sketches; it is technology-agnostic
and provides a neutral sketching metamodel, to which the
imported sketches are transformed. A mapping of sketched
elements to types needs to be manually provided.

Model Workbench [12] is a sketching interface used
(mainly) for textual languages: after every key stroke, the
structure of the entered text is analyzed. Tokens and literals can
be identified, but to make the distinction between the different
types of tokens (keywords, identifiers, references), manual
user input is required. Similarly to metaBup, the generated
metamodel can be accessed and changed by the user.

The discussed tools only focus on syntax: no sketching of
the semantics of the language is supported. Moreover, they
do not allow for multiple concrete syntaxes to be sketched.
Most tools make an explicit distinction between sketches
(example models) and instance models. There is no integrated
sketching/modeling environment where the language gradually
evolves from an imprecise, sketched language with underspeci-
fied constraints and semantics to a fully specified language that
can be used for detailed system design. We aim to bridge that
gap by viewing the modeling activity not as distinct from the
sketching activity, but a natural evolution of it. At any point
in time, a modeling environment might allow for the user to
start sketching parts of the system that are then later refined.

VII. CONCLUSION

This paper presents a vision to support the ideation phase,
and specifically the sketching activity, for designing complex
(cyber-physical) systems using a multi-paradigm modeling
approach. We start from the observation that sketching is
already performed in several domains, such as mechanical
design. These sketches are always informal and are often not
used in later design cycles. However, observing such sketches
proved insightful and shows that the vocabulary used by the
engineers in their sketches resembles a (partial) language
for drawing examples to reach a common understanding and
agreement; semantics of the language are sketched to convey
its meaning. Conversely, traditional modeling and simulation
tools require rigidly defined models before being able to
simulate and analyze them. We propose to evolve current
language engineering techniques to support sketching on three
levels: model-language co-design, flexible workflows, and in-
frastructure. Our approach differs from current state-of-the-art
sketching tools for model-driven engineering, as they typically
take into account only syntax, and/or focus on the graphical
aspect of the sketches to implement sketch recognition.

In future work, we plan to study the sketching process
in more detail, to validate and potentially adapt or extend
our formalization. We plan to additionally study the role
of sketching in the requirements management, analysis, and
design phases of project, especially in relation to existing,
well-defined development processes. Once the languages, pro-
cesses, and relation to other activities are validated, we plan
an initial implementation of a sketching tool based on the
recommendations presented in this paper. Its usefulness can
then be evaluated with a number of user studies in different
domains, with different user groups.

ACKNOWLEDGMENTS

We thank the members of group number 5 (Romain Frances-
chini, Antonio Cicchetti, Moharram Challenger, and Joachim
Denil) of the CAMPaM 2019 workshop, working on adaptive
abstraction, for allowing us to use their sketches and for their
time explaining them to us at the workshop.

REFERENCES

[1] Christian Bartelt, Martin Vogel, and Tim Warnecke. Scribbler: From col-
laborative sketching to formal domain specific models and back again. In
Joint Proceedings of MODELS’13 Invited Talks, Demonstration Session,
Poster Session, and ACM Student Research Competition, volume 1115,
10 2013.

[2] M. Book and A. van der Hoek. Sketching with a purpose: Moving from
supporting modeling to supporting software engineering activities. In
Proc. of the 11th International Workshop on Cooperative and Human
Aspects of Software Engineering (CHASE), pages 93-96, 2018.

[3] Hyun Cho. A Demonstration-based Approach for Domain-specific
Modeling Language Creation. PhD thesis, University of Alabama,
Tuscaloosa, AL, USA, 2013. AAI3562407.

[4] Juan de Lara and Esther Guerra. A posteriori typing for model-driven
engineering: Concepts, analysis, and applications. ACM Trans. Softw.
Eng. Methodol., 25(4):31:1-31:60, May 2017.

[5] Mirco Franzago, Davide Di Ruscio, Ivano Malavolta, and Henry Muc-

cini. Collaborative model-driven software engineering: a classification

framework and a research map. IEEE Transactions on Software

Engineering, 44(12):1146-1175, December 2018.

Ben Jonson. Design ideation: the conceptual sketch in the digital age.

Design Studies, 26:613-624, 2005.

Jesus J. Lopez-Ferndndez, Jests Sdanchez Cuadrado, Esther Guerra, and

Juan Lara. Example-driven meta-model development. Softw. Syst.

Model., 14(4):1323-1347, October 2015.

[8] Levi Licio, Sadaf Mustafiz, Joachim Denil, Hans Vangheluwe, and

Maris Jukss. FTG+PM: An integrated framework for investigating

model transformation chains. In SDL 2013: Model-Driven Dependability

Engineering, pages 182-202. Springer Berlin Heidelberg, 2013.

Bart Meyers, Joachim Denil, Ken Vanherpen, and Hans Vangheluwe.

Enabling design-space exploration for domain-specific modelling. In

Proceedings of the Model-driven Approaches for Simulation Engineering

Symposium, Mod4Sim ’18, pages 5:1-5:13, San Diego, CA, USA, 2018.

Society for Computer Simulation International.

Bart Meyers, Hans Vangheluwe, Joachim Denil, and Rick Salay. A

framework for temporal verification support in domain-specific mod-

elling. IEEE Transactions on Software Engineering, PP:1-1, 07 2018.

P. J. Mosterman and Hans Vangheluwe. Computer automated multi-

paradigm modeling: An introduction. Simulation, 80(9):433-450,

September 2004.

Bastian Roth, Matthias Jahn, and Stefan Jablonski. Rapid design of meta

models. International Journal on Advances in Software, 7, January 2014.

Nayan Ruparelia. Software development lifecycle models. ACM

SIGSOFT Software Engineering Notes, 35:8-13, May 2010.

Bernhard Schitz. The role of models in engineering of cyber-physical

systems challenges and possibilities. In CPS20: CPS 20 years from

now - preproceedings, pages 16-21, April 2014.

Martina Schiitze, Pierre Sachse, and Anne Romer.

sketching in the design process.

14(2):89-97, 2003.

[16] Jami J. Shah, Noe Vargas-Hernandez, Joshua D. Summers, and Santosh

Kulkarni. Collaborative sketching (C-Sketch) — an idea generation

technique for engineering design. The Journal of Creative Behavior,

35(3):168-198, September 2001.

Pieter Jan Stappers and James M. Hennessey. Toward electronic napkins

and beermats: Computer support for visual ideation skills. In Ray Paton

and Irene Neilson, editors, Visual Representations and Interpretations,
pages 220-225, London, 1999. Springer London.

IM Verstijnen, C van Leeuwen, G Goldschmidt, R Hamel, and JM Hen-

nessey. Sketching and creative discovery. Design Studies, 19(4):519 —

546, 1998.

Dustin Wiiest, Norbert Seyff, and Martin Glinz. FlexiSketch: a

lightweight sketching and metamodeling approach for end-users. Soft-

ware & Systems Modeling, 18(2):1513-1541, Apr 2019.

[6

=

[7

—

[9

—

[10]

(11]

[12]
[13]

[14]

[15] Support value of

Research in Engineering Design,

(17]

[18]

[19]

