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A B S T R A C T

Integration of remote sensing data sets from multiple satellites is tested to simulate water storage variation of
Lake Ziway, Ethiopia for the period 2009-2018. Sixty Landsat ETM+/OLI images served to trace temporal
variation of lake surface area using a water extraction index. Time series of lake levels were acquired from two
altimetry databases that were validated by in-situ lake level measurements. Coinciding pairs of optical satellite
based lake surface area and radar altimetry based lake levels were related through regression and served for
simulating lake storage variation. Indices for extracting lake surface area from images showed 91–99 % overall
accuracy. Lake water levels from the altimetry products well agreed to in-situ lake level measurements with
R2= 0.92 and root mean square error of 11.9 cm. Based on this study we conclude that integrating satellite
imagery and radar altimetry is a viable approach for frequent and accurate monitoring of lake water volume
variation and for long-term change detection. Findings indicate water level reduction (4 cm/annum), surface
area shrinkage (0.08km2/annum) and water storage loss (20.4Mm3/annum) of Lake Ziway (2009–2018).

1. Introduction

Worldwide many lakes are dramatically dwindling or completely
drying up as shown in Pekel et al. (2016); Wurtsbaugh et al. (2017) and
Tan et al. (2018). For instance, Lake Urmia in Iran lost 86 % of its
surface area and reached only 0.83 % of its original storage within 15
years (Jeihouni et al., 2017). In Tanzania, the surface area of Lake
Manyara shrank by 94 % in a period covering only eleven years (Deus
and Gloaguen, 2013). Lake Mead in USA lost nearly 40 % of its surface
area within a decade (Forsythe et al., 2012). Water level of Lake Qin-
ghai in China gradually declined over the past half of a century at a rate
of 8 cm per annum (Chang et al., 2017).

In Ethiopia, Lake Haramaya and Lake Adele entirely vanished a
decade ago (Alemayehu et al., 2007) and Lake Abiyata is currently
under a massive threat (Seyoum et al., 2015). Similarly, Lake Ziway
which is the fourth largest natural water body in Ethiopia has been
severely affected due to increasing water abstraction competition by
various sectors and individuals (Getnet et al., 2014; Shumet and
Mengistu, 2016; Desta and Lemma, 2017). There is urgent need to
evaluate the change of lake water storage and to provide evidence for
better management of the lake.

As shown in Bing et al. (2011); Chang et al. (2015) and Treichler
et al. (2019), monitoring variation of lake water storage is an indis-
pensable indicator to identify the long-term impact of climate and land
use change and human activities on the inland water resources. Tra-
ditionally, water storage of lakes has been monitored using ground-
based bathymetric survey data and lake level recordings (Rientjes et al.,
2011; Rakhmatullaev et al., 2011; Han et al., 2016). In many devel-
oping countries, reliable data sets however are often not recorded or
scarcely available (Coe and Birkett, 2004; Alsdorf et al., 2007;
Munyaneza et al., 2009). The time delay to disseminate collected data is
another major constraint to conduct scientific studies (Zhang et al.,
2006). Moreover, data sets may be incomplete with missing observation
records or of poor quality for long term change assessments
(Biancamaria et al., 2010). Therefore, development of novel lake
monitoring approaches with alternative data sources to overcome the
limitations of in-situ data is essential and motivated this study.

Currently several types of remotely sensed data sets are available for
studying lakes from different perspectives (Politi et al., 2016; Dörnhöfer
and Oppelt, 2016). Since the launch of the first mission in 1970s,
Landsat series are the most widely used optical remote sensing data for
time series mapping of lakes surface area (Work and Gilmer, 1976;
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Sharma et al., 1989; Cui et al., 2017). Various water indices are de-
veloped by algebraically combining and taking a ratio of two or more
bands of the imageries (e.g. McFeeters, 1996; Xu, 2006; Feyisa et al.,
2014). These indices are widely applied to distinctively identify, extract
and monitor the surface area of water bodies (Sun et al., 2017; Ogilvie
et al., 2018; Schwatke et al., 2019). These indices mainly combine the
green, near infrared and shortwave infrared bands to compose a single
band gray-scale image. The bands are selected because water more
strongly absorbs radiation within these bands (Li et al., 2013; Xie et al.,
2016) than land features.

Selection of a specific water index (WI) depends upon the accuracy
of the extracted lake surface area when compared to reference data sets.
The accuracy of WI can be affected by location and time of image ac-
quisition (Jiang et al., 2014), uncertainties from applied atmospheric
correction method (Ayana et al., 2015), turbidity of water and class of
the background land cover (Sharma et al., 2015) and type of sensor
(Zhou et al., 2017). Due to these factors, there is consensus that there is
no single one specific WI that is robust, stable and efficiently applicable
for all water bodies under all circumstances. As a result, indices should
be compared to select the one which most accurately extracts the sur-
face area of any specific lake (Rokni et al., 2014; Taravat et al., 2016;
Moknatian et al., 2017; Buma et al., 2018).

Radar altimetry is a remote sensing data source that is used for more
than quarter-century for monitoring water level of lakes (Alsdorf et al.,
2001; Ričko et al., 2011; Hwang et al., 2016; Wang et al., 2019). The
data is collected from satellites that are equipped with sensors that
continuously emit microwave signal towards the surface of the earth.
The sensors register two-way traveling time of the emitted signal and of
the reflected echo. The registered data helps to obtain satellite-to-water
surface distance and later to estimate the lake water level. However, the
data always requires specific correction for delay of the signal at dif-
ferent layers of the atmosphere and for crustal motions (Fernandes
et al., 2014; Boergens et al., 2016; Quartly et al., 2019).

Currently, radar altimetry satellites are capable of effectively mon-
itoring water levels of lakes larger than 50 km2 in size (Crétaux et al.,
2016). The reported measurement error of lakes water level from radar
altimetry is highly variable (e.g. Jarihani et al., 2013; Okeowo et al.,
2017). The error commonly ranges from less than 10 cm (e.g. Villadsen
et al., 2016; Crétaux et al., 2018) to tens of centimeters (e.g.
Kleinherenbrink et al., 2015; Nielsen et al., 2017) and beyond in rare
cases (e.g. Liu et al., 2016). The major factors governing the accuracy of
altimetry derived lake level data are (i) length of footprint over the lake
that depends on shape and size of the lake and location the footprint
passes over, (ii) complexity of terrain surrounding the lake that alters
the magnitude of the reflected echo, (iii) height of wave on the surface
of the lake that depends on wind speed over the area and (iv) method of
processing the raw altimetry data called waveforms (Mercier et al.,
2002; Birkett and Beckley, 2010; Ričko et al., 2012). According to
Fekete and Vörösmarty (2007), gradually changing land cover, smooth
transition of topography and wide water surface area are ideal condi-
tions to obtain highly accurate altimetry measurements.

Satellite imagery provides information about estimation of water
surface and lake shorelines whereas radar altimetry provides mea-
surements of water levels. Information from each satellite data source is
insufficient to comprehensively describe storage variations of lakes. As
a result, the combined use of both satellite imagery and radar altimetry
to study lake storage variation is advocated as shown in Singh et al.
(2015) and Busker et al. (2019). However, the available studies mostly
targeted large lakes (with surface area larger than 1000 km2) that
geographically are concentrated in the Middle East (e.g. Sima and
Tajrishy, 2013; Muala et al., 2014; Nguy-Robertson et al., 2018) and in
the Tibetan Plateau (e.g. Kropáček et al., 2012; Song et al., 2013; Li
et al., 2019). In most of similar studies (e.g. Arsen et al., 2013; Avisse
et al., 2017; Fang et al., 2019) in-situ based lake data is either not
available or used to limited extent to reveal accuracy of the remotely
sensed data sets for estimating respective lake variables and thus to

track changes in lake water storage over time.
In Africa, studies mostly relied on altimetry data sets only and as-

sessed water storage change of the African Great Lakes (e.g. Swenson
and Wahr, 2009; Hassan and Jin, 2014; Moore and Williams, 2014).
These lakes are Victoria, Tanganyika and Malawi that have a surface
area greater than 150,000 km2. Similarly, other large lakes of the
continent such as Lake Turkana (Velpuri et al., 2012) and Lake Chad
(Buma et al., 2016) were also studied by applying satellite radar alti-
metry only. Duan and Bastiaanssen (2013); Tong et al. (2016) and Zhu
et al. (2017) are among the very few studies that reported storage
variation of largest lakes of Africa by integrating satellite imagery and
altimetry. As such, there is a scope to evaluate integration of freely
available satellite imageries and synergizing them with radar altimetry
data to monitor storage variations of medium and smaller lakes of the
continent. Lakes which are situated in the Eastern Africa Rift (EAR)
system are not well monitored for lake water storage changes. Among
the lakes in EAR basin, Lake Ziway is selected for this study by avail-
ability of in-situ based lake level observations time series. Temporal
change of this medium sized lake is not fully reported due to lack of
lake surface area data.

This study uses in-situ data as a reference for evaluation of accuracy
of combined optical and radar altimetry data sets and for examining
water storage variation of Lake Ziway. First, we systematically com-
pared lake surface area extracted from Landsat image using various
water indices to select the most appropriate index. Next, the accuracy of
water level time series data which is obtained from different altimetry
databases was compared against in-situ measured water levels. Through
integrating both remotely sensed data sets, volumetric variation of the
lake is estimated at time instants at which coinciding data pairs are
available and validated using observed data collected from bathymetric
survey. A temporal variation of the lake was detected from the chron-
ologically assembled surface area, water level and storage variation
time series data. The materials and approaches which were applied in
this study can be adopted for lakes of similar size that suffer from data
scarcity.

2. Study Area

2.1. Geographic settings and location

The endorheic Central Rift Valley (CRV) basin of Ethiopia is part of
the Great East African Rift Valley system. The basin encompasses four
medium sized lakes named Ziway, Langano, Shala and Abyata (Fig. 1).
Unlike other CRV lakes, Lake Ziway is the largest in size and the only
freshwater lake in the CRV basin. The mean and maximum depths of
the lake are about 2.5 m and 9m respectively (Belete et al., 2016).

The lake is geographically the most upstream in the CRV basin at
about 08̊ 00′ N and 39̊ 50′ E. This water body is located at 160 km south
of the capital, Addis Ababa. It is situated on the left side of the major
road heading to Nairobi and in vicinity to Ziway Town. Five islands,
which are known as Tulugudo, Gelila, Funduro, Tedecha and Debre
Sina are present on the lake and mostly serve as inhabitation for the Zay
people.

2.2. Physical and hydro-climatic characteristics

Lake Ziway is fed by two perennial rivers named Katar and Meki
with annual average inflow of about 464 and 276 million cubic meters,
respectively (Gadissa et al., 2018). These two rivers originate from Arsi
and Gurghe highlands, in the western and eastern escarpments of the
lake catchment respectively. Annually around 170 million cubic meters
of water is discharged from the lake (Getnet et al., 2014; Goshime et al.,
2020) into Lake Abiyata via Bulbula River.

According to the Köppen-Geiger climate classification (Peel et al.,
2007), the lake catchment area is categorized under dry-temperate
climate. The lake is receiving mean annual rainfall of 750mm and has
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average daily temperature of 21 ̊C. Radiation and wind blown over the
surface of the lake results in 1660mm of evaporation annually (Melesse
et al., 2009).

3. Materials

3.1. Optical satellite imagery

In this work, multi-temporal Level 1 T (terrain corrected) Landsat
ETM+/OLI images of Lake Ziway were obtained from USGS-GloVis
(http://glovis.usgs.gov) in GeoTIFF file format. Selected images had
minimal cloud cover to capture the surface area of the lake. The area of
the lake is covered by adjoining areas of two Landsat scenes: Path168/
Row054 and Path168/Row055 (Fig. 1). To reduce radiometric error
during mosaicking, images that were acquired at the same date were
downloaded and projected to UTM Zone 37 N using WGS84 datum.

The selected images were mainly captured in January, March, June
and October, which represent the major inflectional points on the
normal annual water level pattern of the lake. Images were identified
by tolerating only minor difference (less than 20 days) between the
image acquisition dates for different years. However, images were
missing occasionally due to either unavailability or were excluded be-
cause of poor visual quality. Cloud cover was the other considered
factor while identifying candidate images for analysis. Due to low re-
flectance, clouds are commonly miss-classified as a water feature (Ji
et al., 2015) and subsequently deteriorate the accuracy of lake surface
extraction from satellite imageries. This selection procedure resulted in,
a time series of sixty cloud-free or nearly cloud free scenes that were
further processed for analysis in this study.

3.2. Radar altimetry

Water level time series data of Lake Ziway was obtained from two
satellite radar altimetry data sources and from a lake level gauging
station. The altimetry sources were Global Reservoir and Lake Monitor
(GRLM) (Birkett et al., 2011, https://ipad.fas.usda.gov/cropexplorer/
global_reservoir/ accessed on 7th June 2019) and Database for Hydro-
logical Time Series over Inland Waters (DAHITI) (Schwatke et al., 2015,
http://dahiti.dgfi.tum.de/en/ accessed on 10th June 2019). The data-
bases are established by the United States Department of Agriculture’s-
Foreign Agricultural Service (USDA-FAS) and Deutsches Geodätisches
Forschungs Institut-Technische Universität München (DGFI-TUM) re-
spectively.

Both organizations avail the products after processing radar signals
which are collected from different altimetry missions. In case of Lake
Ziway, the waterbody is overpassed by Topex/Poseidon (TP) and Jason
family radar altimetry missions that have 10 days repeat cycle and
315 km ground track spacing. Ground footprint with pass number 094
of these missions crosses a stretch of 11 km over the surface of Lake
Ziway from north to northeastern direction (Fig. 1). Daily recorded in-
situ lake level (2009–2015) and bathymetric survey data (2006) for
validation purpose were retrieved from the Ministry of Water, Irrigation
and Electricity (MoWIE), Ethiopia. The in-situ water level data were
recorded at Ziway Station which is located at the southern tip of the
lake (Fig. 1).

Reference data sets

In this study, the surface area of Lake Ziway is extracted from

Fig. 1. Lake Ziway and its river network including neighboring lakes in the Central Rift Valley basin, Ethiopia with lake level gauging station, altimetry and Landsat
footprints and boundary of reference data for evaluating the accuracy of water extraction indices.
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Landsat imagery using three frequently applied water indices. In our
approach, the most accurate index was identified to delineate the lake
extent for lake surface estimation. The reference data set for evaluation
comprised five hundred ground control points (GCP) that were col-
lected from the southwestern portion of the lake (Fig. 1). The GCPs
were collected during a field campaign using GPS device and digitized
from high resolution image (HRI).

Four hundred of the GCPs were gathered from both water body and
land features surrounding shore of the lake. We covered representative
features including water surface from middle lake area and mixed water
surface around edges of the lake, built-up areas, bare land and forest.
The HRI was used to collect the remaining hundred GCPs from un-
reachable features in the lake surrounding because of access restric-
tions. These features include wetlands, floriculture shade nets and
mechanized farms. Therefore, GeoEye-1 image with resolution of about
2m2 was freely obtained from GoogleEarth™ platform. The image was
acquired and made available through ©DigitalGlobe.

4. Methods

4.1. Image pre-processing

Satellite images are always exposed to different type of distortions
(Young et al., 2017). These distortions can be caused by malfunctioning
of sensors, solar and atmospheric interferences, topographic errors and
geometric inaccuracies. Therefore, preprocessing was done prior to
application to correct and improve representation of the targeted fea-
ture.

First, we applied radiometric calibration as the initial stage in the
series of image preprocessing stages. This calibration was done to ex-
tract more meaningful information regarding the magnitude of object
reflectance arrived at the satellite sensor. Based on the input require-
ment of subsequent processes, it involves a conversion of digital
number (DN) into one of either output: at the sensor radiance or top of
atmosphere reflectance. In this study, the DNs were converted into
radiance for feeding into the succeeding image correction stage. The
required input variables for the conversion were obtained from the
metadata (MTL.txt) file which is made available within the

decompressed Landsat imagery folder.
Next, Fast Line-of-sight Atmospheric Analysis of Spectral

Hypercubes, FLAASH (Atmospheric Correction Module, 2009) was ap-
plied on the resulting image to obtain surface reflectance. This cor-
rection helps to reduce the effect of scattered and absorbed light due to
airborne matters in the atmosphere. We selected FLAASH because of its
wide application (e.g. Feyisa et al., 2014; Yang et al., 2015; Xiong et al.,
2018) and its user defined input inquiry that considers multiple para-
meters and a user defined range of wavelengths. The tool offers the
ability to correct from visible (0.4 μm) up to shortwave infrared (3 μm)
range of wavelength which is the common range for water body ex-
traction.

Wedge shaped data gaps occur on Landsat 7 ETM+ images since
May 2003 due to failure of Scan Line Corrector (SLC). As a result, null
data strips covering up to 22 % of the entire scene are formed on the
images of the product. We filled these missing pixels using single file
gap fill extension toolbox in ENVI which applies a triangulation inter-
polation method. Mosaicking of scenes was also done using ENVI
Classic mosaicking tool which is based on geo-referenced images to
compose an image that covers the lake area.

We subsequently resized all images to our area of interest that is
Lake Ziway. A base image was selected and geometrically corrected
using twenty spatially distributed ground control points (GCPs) to co-
register multiple time series images into nearly exact geographic loca-
tion. These GCPs were collected at distinguishable features including
island, bridges, main road junctions, intersection and curves using
hand-held GPS. The accuracy of the correction was assessed using
RMSE by keeping the margin of an error below half a pixel size (15m)
and by removing four outlier points. Lastly, the entire images time
series were co-registered using the geometrically corrected base image
with an error of less than one-fourth of a pixel.

4.2. Water extraction indices and thresholding

We applied three water extraction indices on the pre-processed
Landsat images to the extract surface area of Lake Ziway (Table 1).
Water extraction indices combine selective bands of the satellite image
(Table 2) which are available within the visible to infrared wavelength

Table 1
Remote sensing based water extraction indices which are evaluated in this study.

Water Index Water Extraction Indices Reference Method of Thresholding

Normalized Difference Water Index
(NDWI)

−

+

Green NIR
Green NIR

(McFeeters, 1996) Otsu’s Thresholding Method
(Otsu, 1979)

Modified NDWI (MNDWI) −

+

Green SWIR
Green SWIR

1
1

(Xu, 2006) Otsu’s Thresholding Method
(Otsu, 1979)

Automated Water Extraction Index
(AWEI)

× − − × + ×Green SWIR NIR SWIR4 ( ) 0.25 2.751 2 (Feyisa et al., 2014) Modified Histogram Bimodal Method (Zhang et al.,
2018)

Table 2
Sensors and bands of Landsat 7 and 8 optical satellite imageries and specific bands which are used in this study (marked in bold).

Landsat 7 (1999-Present) Landsat 8 (2013-Present)

Sensor Band Wavelength (μm) Resolution (m) Sensor Band Wavelength (μm) Resolution (m)
Enhanced Thematic Mapper Plus

(ETM+)
– – – Operational Land Imager

(OLI)
1(Deep Blue) 0.43-0.45 30

1(Blue) 0.45–0.52 30 2(Blue) 0.45-0.51
2(Green) 0.52–0.60 3(Green) 0.53-0.59
3(Red) 0.63–0.69 4(Red) 0.64-0.67
4(NIR) 0.77-0.90 5(NIR) 0.85-0.88
5(SWIR1) 1.55-1.75 6(SWIR1) 1.57-1.65
7(SWIR2) 2.09-2.35 7(SWIR2) 2.11-2.29
6(TIRS) 10.40-12.50 60 Thermal Infrared 10(TIRS1) 10.60-11.19 100
– – – 11(TIRS2) 11.50-12.51
8(Pan-
Chromatic)

0.52-0.90 15 OLI 8(Pan-
Chromatic)

0.50-0.68 15

– – – 9(Cirrus) 1.36-1.38 30
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range. The bands were used because of a more pronounced absorption
and less reflectance property of water in the mentioned wavelength
range.

This resulted in a gray scale image having land and water feature
representing bimodal type of pixel value distribution histogram. Here,
an optimal threshold value demarcating the periphery of water surface
from the adjacent land features is crucial to extract the lake surface
area. Conventionally, a null value is taken as a default threshold for
quick and ease separation of the two classes. However, the applicability
of such thresholding approach could not be always effective and con-
sistent. The location of the study area and time of image acquisition are
perpetually causing variation of the threshold value and hence adjust-
ment is required for each local condition.

Currently, various thresholding methods are available to convert the
gray scale images into a binary (black and white) image that represents
the two classes distinctively. In this study, one of the most commonly
used methods called Otsu’s Thresholding Method (Otsu, 1979) was
applied for Normalized Difference Water Index (NDWI) and Modified
NDWI (MNDWI) using MATLAB R2014b (MathWorks, 2014). The
method was selected due to its time effective, automated and non-
subjective nature. In Otsu’s method, the value in the histogram that
reduces variability within a class and maximizes the variance between
classes is selected as an optimal threshold. However, the suitability and
effective applicability of Otsu’s method is restricted to the case of
seeking a single optimal threshold in the valley of a bimodal histogram
having equivalent peaks (Fan and Lei, 2012) which is not a case for
Automated Water Extraction Index (AWEI) histograms.

As a result, studies applied AWEI used the zero threshold value (e.g.
Zhai et al., 2015; Sunder et al., 2017) because of its stability at different
locations (see Feyisa et al., 2014). In contrary, other studies (Satgé
et al., 2017; Acharya et al., 2018) revealed the deviation of AWEI
threshold values from the recommended. Therefore, the Modified His-
togram Bimodal Method (MHBM) was applied in this study for
thresholding AWEI gray scale image following the procedure men-
tioned in Zhang et al. (2018). The method defined an optimal threshold
as a minimum median value in the valley of a bimodal histogram
formed from an area one and half times greater than the water body it
encompasses.

4.3. Lake surface area accuracy evaluation

In this paper, accuracy of the extracted lake surface area from the
three indices was evaluated using GCPs collected from the field and
from a high-resolution image. The evaluation process included the
following tasks: (i) selection of reference image, (ii) sample point

generation from the reference data sets and (iii) preparation of a con-
fusion matrix.

The selection of reference image was conducted by considering a
minimal gap of acquisition date of two days with time reference to the
Landsat image. This helps to ensure temporal consistency between the
different data sources and to reduce the influence of time-born effects.
The selected reference image encompasses an area of 120 km2 and
covered the southwestern portion of Lake Ziway with diversified fea-
tures including water body, built-up areas, irrigated area and wetland
(Fig. 1).

Subsequently, five hundred sample points were generated from both
reference data sets. The samples were collected equally from both water
and land cover features. Stratified random sampling technique was used
to collect the samples from the diversified land covers based on their
extent weightage on the reference image. The type of class for each
sample point was assigned through on-screen digitization process based
on expert knowledge by a site visit. Next, a comparison was conducted
between the sample points and their respective point on the binary
images of the three indices. After comparison, each point was cate-
gorized in one of the four bins based on the two classes (water and land)
in the classified and reference data sets. These bins are Water classified
as Water (WW), Water classified as Land (WL), Land classified as Water
(LW) and Land classified as Land (LL).

Lastly, a confusion matrix, which has elements representing the
number of counts that fall under each of the four bins, was developed
for accuracy assessment. As shown in Table 3, we applied the overall
accuracy (OA), producer accuracy (PA) and user’s accuracy (UA) to
quantitatively evaluate the accuracy of the classified images (Story and
Congalton, 1986). The non-dimensional kappa coefficient (κ) was also
computed (Eq. 1) to measure the extent of agreement between the
classified image and reference data set (Congalton et al., 1983).

=
× + − × + ×

− × + ×
κ T WW LL T W T W T L T L

T T W T W T L T L
( ) ( )

( )
s c r c r

s c r c r
2 (1)

where: Ts stands for total number of samples; Tc and Tr represent total
number of classified and reference data sets respectively; and W and L
stand for water and land pixels respectively.

Among the indices, the best performed index having the least error
was selected and adopted to extract multi-temporal surface area of Lake
Ziway. These surface areas were later chronologically arranged to
quantify the rate of variation from the general slope of the trend. Vector
files of the surface areas were superimposed to visually detect changes
on water shorelines of the lake.

Table 3
Layout of confusion matrix and equation of accuracy assessment indicators.
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4.4. Validation of radar altimetry

The lake level measurements which were obtained from in-situ and
radar altimetry (GRLM and DAHITI) databases were measured with
respect to different references. The in-situ and GRLM lake water level
data sets were available in height variation from a fixed reference
whereas DAHITI database provided an ellipsoidal height that is mea-
sured with respect to the WGS84 datum. The height variation obtained
from GRLM database was measured with respect to Jason-2 mission
reference pass level.

In this study, we selected WGS84 datum as a transformation frame
to conduct a consistent and uniform comparison between the water
level measurements from the three data sources. The datum was se-
lected because of its wide use. Therefore, vertical shifting constants
were added to in-situ and GRLM measurements that resulted in lower
difference with DAHITI time series.

The accuracy of each altimetry water level product was evaluated
using the in-situ lake level measurements as reference data. Mean
Absolute Error (MAE), Root Mean Square Error (RMSE) and Coefficient
of Determination (R2) were used here to quantify the accuracy of these
remotely sensed water levels (Willmott, 1982; Ji and Gallo, 2006; Chai
and Draxler, 2014). The equations read as follows:

∑= −
=

MAE
n

WL WL1 | |
i

n

alt i grd i
1

, ,
(2)

∑= −
=

RMSE
n

WL WL1 ( )
i

n

alt i grd i
1

, ,
2

(3)

=
∑ − × −

∑ − × ∑ −
=

= =

R
WL WL WL WL

WL WL WL WL
( ( ¯ ) ( ¯ ))

( ¯ ) ( ¯ )
i
n

alt i alt grd i grd

i
n

alt i alt i
n

grd i grd

2 1 , ,
2

1 ,
2

1 ,
2 (4)

where WLalt and WLgrd are water level measured by satellite altimetry
and ground gauging station and i is time index for water level ob-
servation and n is total number of observations. Over-bars indicate the
mean of each water level data sets.

Lastly, the rate of lake level variation was quantified from the best
fitting linear line slope of the time series measurements.

4.5. Estimation and validation of water volume variation

Water storage in the lake can be regarded by a reference water level
that separates static water storage (i.e., lower storage) from dynamic or
temporally varying water storage (i.e., upper storage). The identified
reference is defined as the lowest lake level (LLL) that was recorded
during the study period. Thus, the lower and the upper storage corre-
spond to the volume of water that is stored below and above the LLL,
respectively.

Since the data from satellites that are used in this study are re-
stricted to the water surface, the applicability of the data is limited to
estimating the upper storage of the lake only. Estimation of the lower
storage is challenging because of (i) uneven nature and rapid changes of
the lakes bottom shape in response to sedimentation and (ii) incap-
ability of optical and radar altimetry satellite sensors to capture the
lower storage. In this study, we estimated the upper storage variation
by developing a second order polynomial equation (Eq. 5). The equa-
tion correlates the multi-temporal lake surface area (LSA) of the lake
which is extracted from Landsat with the corresponding date radar al-
timetry relative lake level (RLL) that is obtained after subtracting LLL
from the lake water level (LWL) time series.

Here, exact coinciding dates are not always attained for the two
satellite data sets because of differences in revisit time interval between
Landsat (16 days) and radar altimetry missions (10 days). Therefore,
studies commonly allow 5–10 days difference to develop a remote
sensing based water level-surface area relationship (Baup et al., 2014;
Zhu et al., 2014; Tong et al., 2016). In this study, we selected paired
images and altimetry measurements having less than eight days of ac-
quisition differences. We reached at this threshold after setting three
criteria and analyzing the optimal values that satisfied the considered
factors. The considered criteria are (i) a minimal date difference, (ii)
highest number of paired datasets and (iii) maximum possible coeffi-
cient of determination (Fig. 2). The polynomial equation that fitted the
paired data points was used to estimate the lake surface area (LSA) and
subsequently, integrated to estimate lake volume variation (LVV) (Duan
and Bastiaanssen, 2013). The equations read as follows:

= = + +LSA f RLL a RLL b RLL c( ) 2 (5)

= + + +LVV aRLL bRLL cRWL constant
3 2

3 2

(6)

Fig. 2. Acquisition date difference (DD) between paired lake surface area and water level measurements with respective coefficient of determination which resulting
from regression analysis for developing equations relating water level of the lake to surface area and to water volume variation.
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where: a, b and c are regression constants of the second order poly-
nomial that correlates relative lake level (RLL in m) that is measured
above the lowest lake level (LLL in m) and lake surface area (LSA in
km2) of the same date to obtain lake volume variation (LVV in Mm3).
Note: the constant is specified as zero with the condition of LVV=0 at
RLL=0, but LSA≠ 0.

In this study, bathymetric survey data of the lake by MoWIE in 2006
is used as a reference to validate accuracy of the estimated LVV. We
quantified accuracy of our estimation with three statistical indicators
(RMSE, MAE and R2) as previously described in altimetry data valida-
tion section. Subsequently, we generated the volumetric variations
corresponding to different periods using the integrated equation and
chronologically assembled to represent temporal storage variation of
the lake.

5. Results and discussion

5.1. Accuracy of water extraction indices

The accuracy of the three water indices (NDWI, MNDWI and AWEI)
was evaluated by use of five hundred ground control points and by
inter-comparison of the lake extent extracted from the indices (Fig. 3).
The reference dataset was obtained through a field survey and from
high resolution image (HRI). Visual interpretation of lake surface area
using the HRI indicated that MNDWI and AWEI best distinguished the
water surface from the adjacent land features. In contrast, NDWI
showed limitation in uniquely detecting the water body from some of

the land features, since some urban area with higher reflectance (e.g.
concrete surface on top of buildings and new metal roofing materials)
were misclassified as water body.

The classified images of MNDWI and AWEI showed high coin-
cidence and similarity. Hence, visual comparison is not adequate to
compare the performance of the two indices. Therefore, confusion
matrix based accuracy indicators were applied to compare results of the
two indices (Table 4). The comparison shows that both indices per-
formed well with higher than 98 % for all accuracy indicators and 0.98
for kappa coefficient. However, AWEI performed slightly better (by
+0.2 % for overall accuracy and +0.4 % for κ) than MNDWI in dis-
tinguishing water feature. As a result, AWEI was preferred for this study
to extract multi-temporal surface area of Lake Ziway from satellite
images. We note that, MNDWI showed adequate accuracy and thus we
consider it appropriate for Lake Ziway. NDWI showed to have lowest
value that we considered too low to accept related outcomes.

Fig. 3. The reference and classified images covering the southwestern part of Lake Ziway and nearby land feature.

Table 4
Performance of the three indices in extracting surface area of Lake Ziway.

Index Producers Accuracy User's Accuracy Overall
Accuracy

kappa, κ
coefficient

Water Land Water Land

NDWI 98.8 % 83.2 % 85.5 % 98.6 % 91.0 % 0.82
MNDWI 98.8 % 99.2 % 99.2 % 98.8 % 99.0 % 0.98
AWEI 98.8 % 99.6 % 99.6 % 98.8 % 99.2 % 0.98
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5.2. Validation of radar altimetry data

In this study, two radar altimetry products obtained from GRLM and
DAHITI databases were validated using in-situ lake level measurements.
For comparison purposes, vertical shifting constants of 1645.03m and
1646.15m were added to in-situ and GRLM water levels, respectively,
for measuring the lake height from WGS84 datum as DAHITI. These
constants are obtained by defining an added value that results in zero
difference when mean value of DAHITI measurements is subtracted
from mean values of in-situ and GRLM datasets, respectively.

The result showed that DAHITI and GRLM altimetry products well
agreed to the measured water levels of Lake Ziway. In the validation
process, these products strongly agreed with in-situ measurements and
resulted in similar accuracy but with slight superiority of GRLM. The
combined mean of both data sets yielded improved results as compared
to individual data sets (Fig. 4). The use of the combined mean value
resulted in an improved coefficient of determination (by +8.2 % for
R2
DAHITI and +7 % for R2

GRLM) and reduced errors (by -29.2 % for
RMSEDAHITI, -24.5 % for RMSEGRLM; - 30.3 % for MAEDAHITI and -25.2 %
for MAEGRLM).

Villadsen et al. (2016) describe that small errors can result from
three main sources of error that are (i) the geophysical corrections
applied for radar altimetry, (ii) the difference in time of water level
recording and (iii) distance between location of in-situ gauging station
and ground track of radar altimetry missions. For this study, effects of
the third cause can be considered as minor due to relatively flat water
surface of Lake Ziway. In general, lake level measurements of radar
altimetry databases well matched to counterparts by in-situ measure-
ments. As a result, the water level of Lake Ziway can be monitored at
high accuracy by combining the radar altimetry satellite products.

5.3. Estimation and validation of lake volume variation

In this study, regression constants which are required for estimation
of the time dependent LVV, were obtained from twenty five paired data
points. As shown in Fig. 2, these pairs of surface areas (LSA) from
Landsat ETM+/OLI and relative lake levels (RLL) from radar altimetry
have a maximum of eight days difference in acquisition dates. Coeffi-
cient of determination for a second order polynomial equation for re-
motely sensed LSA and RLL data sets resulted in a value of 0.91 (Fig. 5).

This suggests strong relation and hence, the equation is used to
establish lake surface area data from available water level data. The
equation can also be used in case the lake surface area extracted from
satellite images is known but related lake water level is unknown. This
allows to reconstructing water storage changes for past dates when lake
water surface area is extracted by available Landsat ETM+/OLI images.
Finally, we develop the Eq. 10 to estimate LVV of Lake Ziway at dif-
ferent RLL measurements above the lowest lake level, LLL (i.e.
1645.43m) by integrating the equation that relates RLL to LSA.

= − × + × +LSA RLL RLL0.33 2.11 414.772 (9)

= − × + × + ×LVV RLL RLL RLL0.11 1.06 414.773 2 (10)

Validation of estimated LVV was conducted by use of bathymetric
survey data developed by MoWIE in 2006. Validation resulted in very
high coefficient of determination (R2) of 0.9956. In terms of error in-
dicators, MAE of 47.2 Mm3 and RMSE of 56.8 Mm3 account only for 2.9
% and 3.5 % of the lake total storage (as reported on WWDSE and
CECE, 2008), respectively. The error potentially is caused by (i) errors
that must be associated with the applied satellite data sets and regres-
sion technique (Van Den Hoek et al., 2019), (ii) inaccuracy of the
bathymetric data (Ayana et al., 2015), and (ii) the historic time period
of the bathymetry survey (i.e. 2006).

5.4. Lake storage variation

In this study, we established relations between water level (LWL),
surface area (LSA) and volume variation (LVV) to unveil decadal var-
iation of Lake Ziway. Findings show that, the lake water level is fluc-
tuating annually in response to the seasonal rainfall pattern. Based on
the long-term data (1990–2015), oscillation of LWL showed highest
correlation with rainfall for a lag time of three months (Fig. 6).

For the period 2009–2018, fluctuation of the lake can be char-
acterized by three major phases (Fig. 7). The first phase was the period
of highest lake levels in October 2010. In the second phase, from mid of
2011 up to mid of 2015, the lake has consistent water level fluctuations
with gradual changes that reflect on ordinary lake inflow and outflow
conditions. However, in the third time span that extends from June
2015 to the end of 2018, the lake did not attain highest lake water
storage at the end of the wet season. In this period, LWL, LSA and LVV

Fig. 4. (a) Inter-comparison between radar altimetry products, validation of (b) DAHITI and (c) GRLM against in-situ data, (d) comparison of in-situ LWL mea-
surement with mean of DAHITI and GRLM radar altimetry products.
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consistently remained at a relatively lower level than the previous
years.

In terms of anomalies, the lake attains its highest and lowest level in
October 2010 and February 2016 respectively. Highest lake level was
1647.43m with a surface area and volume variation of 417.74 km2 and
791.97 Mm3 respectively. The high annual rainfall was a major factor
that caused the high lake level. In February 2016, Lake Ziway indicated
the LLL of 1645.33 m, the smallest surface area of 414.35 km2 and LVV
reached the null level. This situation potentially results from the
2015−2016 El Niño Southern Oscillation (ENSO) event which affected
water resources and caused devastating drought in East African region
(Siderius et al., 2018; Kolusu et al., 2019) and in Ethiopia particularly.

From the analysis for the period of study (2009–2018), an average
annual lake level decline of 0.04m and surface area decrease of 0.08
km2 was shown. This converts to an average annual lake water storage
reduction of 20.4 Mm3. These findings indicate that over a period of 10
years, Lake Ziway lake level has dropped 0.4m and the lake area re-
duced by 0.8 km2 to cause a water storage loss of 204 Mm3. Based on
the reported 1.6 Bm3 water storage of the lake in 2008 (WWDSE and
CECE, 2008); the lake lost some 12.75 % of its storage volume over the
past decade.

As shown in Fig. 8, the northern shore of the lake has retreated from
north to the south direction. However, the magnitude of change in

terms of surface area was not significant. Therefore, the volume loss can
be attributed to lowered lake water levels. This shows that, the water
volume variation more relates to lake level change rather than the
changes in lake surface area. Similar finding is also shown in Gao et al.
(2012); Ye et al. (2017) and Keys and Scott (2018).

5.5. Impacts of anthropogenic activities and climatic variables

Some water storage loss is noticed in Lake Ziway over the past 10
years. The loss is potentially driven by increased lake water abstrac-
tions, by climatic changes and the El Niño event in 2015–2016 which
caused substantial water stress and drought in the Eastern Africa region
(Anyamba et al., 2018; Qu et al., 2019). Rapid expansion of irrigation
based local and commercial farming is observed on the northern and
western adjacent areas of the Lake Ziway. Water for these command
areas is abstracted from the lake and contributed to reduction of the
lake water storage; but, quantitatively not further assessed in this study.
Effects of climate change and the El Niño event on lake water storage
also are not further evaluated in this study. However, to better under-
stand long term lake water balance implications we recommend as-
sessment on rainfall and temperature following (Haile and Rientjes,
2015), and to perform hydrological impact assessments on runoff fol-
lowing (Haile et al., 2017).

Fig. 5. Remote sensing based relationships between lake surface area, LSA and relative lake level, RLL having a date difference (DD) of maximum eight days.

Fig. 6. Mean monthly LWL oscillations for a lag periods varied from zero to 4months from mean monthly precipitation data collected in between 1990 and 2015.
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In addition, sedimentation has a substantial impact on water storage
capacity of the lake. In case of Lake Ziway, Meki and Katar rivers are
main sources of sedimentation that contribute 57.2 % and 42.8 % of
sediment inflow, respectively (Gadissa et al., 2018). Annually, 2.04
Mton of sediment having a depth of 4mm is deposited in the lake re-
sulting in annual storage loss of 0.11 % (Aga et al., 2019). However,
unlike the aforementioned factors water loss due to sediment accu-
mulation is not easy to identify. Its effect is significant on the lower
storage of the lake rather than on time dependent storage variation of

the lake. Based on sedimentation accumulation rate mentioned in Aga
et al. (2019), water storage reduction of Lake Ziway is higher than
shown by findings in this study.

Reduction of lake water storage may directly affect two salient
components of the ecosystem. First, Lake Ziway drains to Lake Abiyata
through Bulbula River that hydraulically connects both lakes. As a
consequence, lower storage of Lake Ziway affects inflow of Lake
Abiyata that is the CRV terminal lake. Secondly, the lowering of Lake
Ziway water level may reduce fish diversity and bird population of the

Fig. 7. Time series of (a) LWL from radar altimetry, (b) LSA from Landsat images and (c) LVV from coinciding remotely sensed water level and surface areas. Note:
The trend is shown with the broken line plot.

Fig. 8. Surface area loss (shaded in black) of Lake Ziway at its northeastern portion in four different selected months of the year (2009-2018).
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lake because of changes in physical properties and chemical char-
acteristics of the water. Abera et al. (2018) showed that fish production
reduced from to 3180 to 1157 tons in a period between 1997 and 2014
although effects of reduced water storage remain uncertain. In general,
reduction of the lake storage impacts the environment and socio-
economic activity of various stakeholder groups. We would like to note
that the storage loss would have been more than reported in this study
if it was not for the new barrage which is constructed at the outlet of
Lake Ziway in 2016.

6. Summary and conclusions

This study evaluated variation of the lake storage using data sets
from multiple satellites and ground based data. Multi-temporal Landsat
ETM+/OLI optical satellite imageries were processed to extract lake
surface areas using three indices. Accuracy assessments indicated that
the performance of AWEI and MNDWI indices was high whereas that of
NDWI was relatively low. Lake level data from two satellite altimetry
databases was compared to ground measured water level data. The
obtained result of R2= 0.92 and root mean square error of 11.9 cm was
within the globally reported range of high accuracy (Sulistioadi et al.,
2015; Schwatke et al., 2015).

Paired radar altimetry water level and Landsat ETM+/OLI based
lake surface area images were related using regression and resulted in
an equation that can be used to estimate water volume variations.
Availability of a bathymetric survey allowed validation of the estimated
lake storage variation and the result portrays a higher accuracy.
Approaches used in this study can be applied to other similar sized lakes
which have not been monitored due to scarcity of in-situ lake water
level and bathymetric survey data.

Water levels, surface areas and volume variations were chron-
ologically assembled to reproduce time series to indicate water storage
variation of the lake. From the time series data, we showed that the lake
reaches its highest and lowest lake water storage values by wet and dry
climatic anomalies which occurred in 2010 and 2015 respectively. This
study concludes that lake levels, lake surface area and lake volume
gradually decrease at an annual rate of 0.04m, 0.08 km2 and 20.4 Mm3

respectively. As a result, since 2009 the lake has lost 12.75 % of its
water storage volume.

The decrease of lake water storage can be caused by increased lake
water abstractions, climatic change and effects of the El Niño event in
2015–2016 which caused a substantial water stress and drought in the
Eastern Africa region. This study did not investigate impacts by each of
these causes; but findings indicate that further loss of storage or re-
duction in outflow by the operation of the newly constructed barrage
can be anticipated. In consequence, socioeconomic activity in sur-
rounding areas will be interrupted and aquatic life and the downstream
ecosystem will be endangered. Findings of the study serve decision
makers to establish water resource management intervention strategy
to assure sustainability of the lake.
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