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Abstract— Acquiring images of the same anatomy with
multiple different contrasts increases the diversity of diag-
nostic information available in an MR exam. Yet, the scan
time limitations may prohibit the acquisition of certain
contrasts, and some contrasts may be corrupted by noise
and artifacts. In such cases, the ability to synthesize
unacquired or corrupted contrasts can improve diagnos-
tic utility. For multi-contrast synthesis, the current meth-
ods learn a nonlinear intensity transformation between
the source and target images, either via nonlinear regres-
sion or deterministic neural networks. These methods
can, in turn, suffer from the loss of structural details in
synthesized images. Here, in this paper, we propose a
new approach for multi-contrast MRI synthesis based on
conditional generative adversarial networks. The proposed
approach preserves intermediate-to-high frequency details
via an adversarial loss, and it offers enhanced synthe-
sis performance via pixel-wise and perceptual losses for
registered multi-contrast images and a cycle-consistency
loss for unregistered images. Information from neighbor-
ing cross-sections are utilized to further improve syn-
thesis quality. Demonstrations on T1 - and T2- weighted
images from healthy subjects and patients clearly indicate
the superior performance of the proposed approach com-
pared to the previous state-of-the-art methods. Our synthe-
sis approach can help improve the quality and versatility
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of the multi-contrast MRI exams without the need for pro-
longed or repeated examinations.

Index Terms— Generative adversarial network, image
synthesis, multi-contrast MRI, pixel-wise loss, cycle-
consistency loss.

I. INTRODUCTION

MAGNETIC resonance imaging (MRI) is pervasively
used in clinical applications due to the diversity of

contrasts it can capture in soft tissues. Tailored MRI pulse
sequences enable the generation of distinct contrasts while
imaging the same anatomy. For instance, T1-weighted brain
images clearly delineate gray and white matter tissues,
whereas T2-weighted images delineate fluid from cortical
tissue. In turn, multi-contrast images acquired in the same
subject increase the diagnostic information available in clinical
and research studies. However, it may not be possible to
collect a full array of contrasts given considerations related
to the cost of prolonged exams and uncooperative patients,
particularly in pediatric and elderly populations [1]. In such
cases, acquisition of contrasts with relatively shorter scan
times might be preferred. Even then a subset of the acquired
contrasts can be corrupted by excessive noise or artifacts that
prohibit subsequent diagnostic use [2]. Moreover, cohort stud-
ies often show significant heterogeneity in terms of imaging
protocol and the specific contrasts that they acquire [3]. Thus,
the ability to synthesize missing or corrupted contrasts from
other successfully acquired contrasts has potential value for
enhancing multi-contrast MRI by increasing availability of
diagnostically-relevant images, and improving analysis tasks
such as registration and segmentation [4].

Cross-domain synthesis of medical images has recently
been gaining popularity in medical imaging. Given a
subject’s image x in X (source domain), the aim is to accu-
rately estimate the respective image of the same subject y
in Y (target domain). Two main synthesis approaches are
registration-based [5]–[7] and intensity-transformation-based
methods [8]–[24]. Registration-based methods start by gen-
erating an atlas based on a co-registered set of images,
x1 and y1, respectively acquired in X and Y [5]. These
methods further make the assumption that within-domain
images from separate subjects are related to each other through
a geometric warp. For synthesizing y2 from x2, the warp that
transforms x1 to x2 is estimated, and this warp is then applied
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on y1. Since they only rely on geometric transformations,
registration-based methods that rely on a single atlas can
suffer from across-subject differences in underlying morphol-
ogy [23]. For example, inconsistent pathology across a test
subject and the atlas can cause failure. Multi-atlas registration
in conjunction with intensity fusion can alleviate this limi-
tation, and has been successfully used in synthesizing CT
from MR images [6], [7]. Nevertheless, within-domain reg-
istration accuracy might still be limited even in normal
subjects [23].

An alternative is to use intensity-based methods that do
not rely on a strict geometric relationship among differ-
ent subjects’ anatomies [8]–[24]. One powerful approach
for multi-contrast MRI is based on the compressed sensing
framework, where each patch in the source image x2 is
expressed as a sparse linear combination of patches in the atlas
image x1 [10], [22]. The learned sparse combinations are
then applied to estimate patches in y2 from patches in y1.
To improve matching of patches across domains, generative
models were also proposed that use multi-scale patches and
tissue segmentation labels [16], [18]. Instead of focusing on
linear models, recent studies aimed to learn more general
non-linear mappings that express individual voxels in y1 in
terms of patches in x1, and then predict y2 from x2 based on
these mappings. Nonlinear mappings are learned on training
data via techniques such as nonlinear regression [8], [9], [23]
or location-sensitive neural networks [19]. An important exam-
ple is Replica that performs random forest regression on
multiresolution image patches [23]. Replica demonstrates great
promise in multi-contrast MR image synthesis. However, dic-
tionary construction at different spatial scales is independent,
and the predictions from separate random forest trees are
averaged during synthesis. These may lead to loss of detailed
structural information and suboptimal synthesis performance.

Recently an end-to-end framework for MRI image synthesis
has been proposed, Multimodal, based on deep neural net-
works [21]. Multimodal trains a neural network that receives
as input images in multiple source contrasts and predicts
the image in the target contrast. This method performs mul-
tiresolution dictionary construction and image synthesis in a
unified framework, and it was demonstrated to yield higher
synthesis quality compared to non-network-based approaches
even when only a subset of the source contrasts is available.
That said, Multimodal assumes the availability of spatially-
registered multi-contrast images. In addition, Multimodal uses
mean absolute error loss functions that can perform poorly in
capturing errors towards higher spatial frequencies [25]–[27].

Here we propose a novel approach for image synthesis
in multi-contrast MRI based on generative adversarial net-
work (GAN) architectures. Adversarial loss functions have
recently been demonstrated for various medical imaging appli-
cations with reliable capture of high-frequency texture infor-
mation [28]–[48]. In the domain of cross-modality image
synthesis, important applications include CT to PET synthe-
sis [29], [40], MR to CT synthesis [28], [33], [38], [42], [48],
CT to MR synthesis [36], and retinal vessel map to image
synthesis [35], [41]. Inspired by this success, here we intro-
duce conditional GAN models for synthesizing images of

Fig. 1. The pGAN method is based on a conditional adversar-
ial network with a generator G, a pre-trained VGG16 network V,
and a discriminator D. Given an input image in a source contrast
(e.g., T1-weighted), G learns to generate the image of the same anatomy
in a target contrast (e.g., T2-weighted). Meanwhile, D learns to discrim-
inate between synthetic (e.g., T1–G(T1) and real (e.g., T1–T2) pairs
of multi-contrast images. Both subnetworks are trained simultaneously,
where G aims to minimize a pixel-wise, a perceptual and an adversarial
loss function, and D tries to maximize the adversarial loss function.

distinct contrasts from a single modality, with demonstrations
on multi-contrast brain MRI in normal subjects and glioma
patients. For improved accuracy, the proposed method also
leverages correlated information across neighboring cross-
sections within a volume. Two implementations are provided
for use when multi-contrast images are spatially registered
(pGAN) and when they are unregistered (cGAN). For the first
scenario, we train pGAN with pixel-wise loss and percep-
tual loss between the synthesized and true images (Fig. 1)
[25], [49]. For the second scenario, we train cGAN after
replacing the pixel-wise loss with a cycle loss that enforces the
ability to reconstruct back the source image from the synthe-
sized target image (Fig. 2) [50]. Extensive evaluations are pre-
sented on multi-contrast MRI images (T1- and T2-weighted)
from healthy normals and glioma patients. The proposed
approach yields visually and quantitatively enhanced accuracy
in multi-contrast MRI synthesis compared to state-of-the-art
methods (Replica and Multimodal) [21], [23].

II. METHODS

A. Image Synthesis via Adversarial Networks

Generative adversarial networks are neural-network archi-
tectures that consist of two sub-networks; G, a generator
and D, a discriminator. G learns a mapping from a latent
variable z (typically random noise) to an image y in a
target domain, and D learns to discriminate the generated
image G(z) from the real image y [51]. During training
of a GAN, both G and D are learned simultaneously, with
G aiming to generate images that are indistinguishable from
the real images, and D aiming to tell apart generated and
real images. To do this, the following adversarial loss function
(LG AN ) can be used:

LG AN (G, D) = Ey[log D(y)] + Ez[log(1−D(G(z)))], (1)

where E denotes expected value. G tries to minimize and
D tries to maximize the adversarial loss that improves
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Fig. 2. The cGAN method is based on a conditional adversar-
ial network with two generators (GT1, GT2) and two discriminators
(DT1, DT2). Given a T1-weighted image, GT2 learns to generate the
respective T2-weighted image of the same anatomy that is indiscrim-
inable from real T2-weighted images of other anatomies, whereas
DT2 learns to discriminate between synthetic and real T2-weighted
images. Similarly, GT1 learns to generate realistic a T1-weighted image of
an anatomy given the respective T2-weighted image, whereas DT1 learns
to discriminate between synthetic and real T1-weighted images. Since
the discriminators do not compare target images of the same anatomy,
a pixel-wise loss cannot be used. Instead, a cycle-consistency loss is
utilized to ensure that the trained generators enable reliable recovery of
the source image from the generated target image.

modeling high-spatial-frequency information [26]. Both G and
D are trained simultaneously. Upon convergence, G is capable
of producing realistic counterfeit images that D cannot recog-
nize [51]. To further stabilize the training process, the negative
log-likelihood cost for adversarial loss in (1) can be replaced
by a squared loss [52]:

LG AN (D, G) = −Ey[(D(y) − 1)2] − Ez[D(G(z))2] (2)

Recent studies in computer vision have demonstrated
that GANs are very effective in image-to-image translation
tasks [49], [50]. Image-to-image translation concerns transfor-
mations between different representations of the same under-
lying visual scene [49]. These transformations can be used to
convert an image between separate domains, e.g., generating
semantic segmentation maps from images, colored images
from sketches, or maps from aerial photos [49], [53], [54].
Traditional GANs learn to generate samples of images from
noise. However, in image-to-image translation, the synthesized
image has statistical dependence on the source image. To better
capture this dependency, conditional GANs can be employed
that receive the source image as an additional input [55]. The
resulting network can then be trained based on the following

adversarial loss function:

LcondG AN (D, G) = −Ex,y[(D(x, y) − 1)2]
−Ex,z[D(x, G(x, z))2], (3)

where x denotes the source image.
An analogous problem to image-to-image translation tasks

in computer vision exists in MR imaging where the same
anatomy is acquired under multiple different tissue contrasts
(e.g., T1- and T2-weighted images). Inspired by the recent
success of adversarial networks, here we employed conditional
GANs to synthesize MR images of a target contrast given
as input an alternate contrast. For a comprehensive solu-
tion, we considered two distinct scenarios for multi-contrast
MR image synthesis. First, we assumed that the images of
the source and target contrasts are perfectly registered. For
this scenario, we propose pGAN that incorporates a pixel-
wise loss into the objective function as inspired by the pix2pix
architecture [49]:

L L1(G) = Ex,y,z[‖y − G(x, z)‖1], (4)

where L L1 is the pixel-wise L1 loss function. Since the gen-
erator G was observed to ignore the latent variable in pGAN,
the latent variable was removed from the model.

Recent studies suggest that incorporation of a perceptual
loss during network training can yield visually more realistic
results in computer vision tasks. Unlike loss functions based
on pixel-wise differences, perceptual loss relies on differences
in higher feature representations that are often extracted from
networks pre-trained for more generic tasks [25]. A commonly
used network is VGG-net trained on the ImageNet [56] dataset
for object classification. Here, following [25], we extracted
feature maps right before the second max-pooling operation of
VGG16 pre-trained on ImageNet. The resulting loss function
can be written as:

L Perc(G) = Ex,y[‖V (y) − V (G(x))‖1], (5)

where V is the set of feature maps extracted from VGG16.
To synthesize each cross-section y from x we also leveraged

correlated information across neighboring cross-sections by
conditioning the networks not only on x but also on the neigh-
boring cross-sections of x . By incorporating the neighboring
cross-sections (3), (4) and (5) become:

LcondG AN−k (D, G) = −Exk ,y[(D(xk, y) − 1)2]
−Exk [D(xk, G(xk))

2], (6)

L L1−k(G) = Exk ,y[‖y − G(xk)‖1], (7)

L Perc−k (G) = Exk ,y[‖V (y) − V (G(xk))‖1], (8)

where xk = [x−
⌊

k
2

⌋, . . . , x−2, x−1, x, x+1, x+2, . . . , x+
⌊

k
2

⌋] is

a vector consisting of k consecutive cross-sections ranging
from − ⌊ k

2

⌋
to

⌊ k
2

⌋
, with the cross section x in the middle, and

LcondG AN−k and L L1−k are the corresponding adversarial and
pixel-wise loss functions. This yields the following aggregate
loss function:

L pG AN = LcondG AN−k (D, G) + λL L1−k(G)

+λperc L perc−k(G), (9)
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where L pG AN is the complete loss function, λ controls the
relative weighing of the pixel-wise loss and λperc controls the
relative weighing of the perceptual loss.

In the second scenario, we did not assume any explicit
registration between the images of the source and target
contrasts. In this case, the pixel-wise and perceptual losses
cannot be leveraged since images of different contrasts are not
necessarily spatially aligned. To limit the number of potential
solutions for the synthesized image, here we proposed cGAN
that incorporates a cycle-consistency loss as inspired by the
cycleGAN architecture [50]. The cGAN method consists of
two generators (Gx , Gy) and two discriminators (Dx , Dy).
Gy tries to generate Gy(x) that looks similar to y and Dy

tries to distinguish Gy(x) from the images y. On the other
hand, Gx tries to generate Gx (y) that looks similar to x and
Dx tries to distinguish Gx(y) from the images x . This archi-
tecture incorporates an additional loss to ensure that the input
and target images are consistent with each other, called the
cycle consistency loss Lcycle:

Lcycle(Gx , Gy) = Ex [‖x − Gx(Gy(x))‖1]
+Ey[‖y − Gy(Gx(y))‖1]. (10)

This loss function enforces that property that after projecting
the source images onto the target domain, the source image
can be re-synthesized with minimal loss from the projec-
tion. Lastly, by incorporating the neighboring cross-sections,
the cycle consistency and adversarial loss functions become:

Lcycle−k(Gx , Gy) = Exk [‖xk − Gx (Gy(xk))‖1]
+Eyk [‖yk − Gy(Gx (yk))‖1]. (11)

LG AN−k (Dy, Gy) = −Eyk [(Dy(yk) − 1)2]
−Exk [Dy(Gy(xk))

2] (12)

This yields the following aggregate loss function for training:

LcG AN (Dx , Dy, Gx , Gy)

= LG AN−k (Dx , Gx ) + LG AN−k (Dy, Gy)

+λcycle Lcycle−k(Gx , Gy). (13)

where LcG AN is the complete loss function, and λcycle controls
the relative weighing of the cycle consistency loss.

While training both pGAN and cGAN, we made a minor
modification in the adversarial loss function. As implemented
in [50], the generator was trained to minimize Exk [(D(xk,
G(xk)) − 1)2] instead of −Exk [(D(xk, G(xk)))

2].

B. MRI Datasets

For registered images, we trained both pGAN and
cGAN models. For unregistered images, we only trained
cGAN models. The experiments were performed on three sep-
arate datasets: the MIDAS dataset [57], the IXI dataset (http://
brain-development.org/ixi-dataset/) and the BRATS dataset
(https://sites.google.com/site/braintumorsegmentation/home/
brats2015). MIDAS and IXI datasets contained data from
healthy subjects, whereas the BRATS dataset contained data
from patients with structural abnormality (i.e., brain tumor).
For each dataset, subjects were sequentially selected in the

order that they were shared on the public databases. Subjects
with images containing severe motion-artifacts across the
volume were excluded from selection. The selected set of
subjects were then sequentially split into training, validation
and testing sets. Protocol information for each dataset is
described below.

1) MIDAS Dataset: T1- and T2-weighted images from
66 subjects were analyzed, where 48 subjects were used
for training, 5 were used for validation and 13 were used
for testing. From each subject, approximately 75 axial cross
sections that contained brain tissue and that were free of
major artifacts were manually selected. T1-weighted images:
3D gradient-echo FLASH sequence, TR=14ms, TE=7.7ms,
flip angle=25◦, matrix size=256x176, 1 mm isotropic reso-
lution, axial orientation. T2-weighted images: 2D spin-echo
sequence, TR=7730ms, TE=80ms, flip angle=90◦, matrix
size=256×192, 1 mm isotropic resolution, axial orientation.

2) IXI Dataset: T1- and T2-weighted images from 40 sub-
jects were analyzed, where 25 subjects were used for training,
5 were used for validation and 10 were used for testing.
When T1-weighted images were registered onto T2-weighted
images, nearly 90 axial cross sections per subject that con-
tained brain tissue and that were free of major artifacts
were selected. When T2-weighted images were registered onto
T1-weighted images, nearly 110 cross sections were selected.
In this case due to poor registration quality we had to
remove a test subject. T1-weighted images: TR=9.813ms,
TE=4.603ms, flip angle=8◦, volume size = 256×256×150,
voxel dimensions = 0.94mm×0.94mm×1.2mm, sagittal ori-
entation. T2-weighted images: TR=8178ms, TE=100ms, flip
angle=90◦, volume size = 256×256×150, voxel dimen-
sions = 0.94×0.94×1.2 mm3, axial orientation.

3) BRATS Dataset: T1- and T2-weighted images from
41 low-grade glioma patients with visible lesions were ana-
lyzed, where 24 subjects were used for training, 2 were used
for validation and 15 were used for testing. From each subject,
approximately 100 axial cross sections that contained brain
tissue and that were free of major artifacts were manually
selected. Different scanning protocols were employed on sep-
arate sites.

Note that each dataset comprises a different number of
cross-sections per subject, and we only retained cross-sections
that contained brain tissue and that were free of major artifacts.
As such, we varied the number of subjects across datasets
to balance the total number of images used, resulting in
approximately 4000–5000 images per dataset.

Control analyses were performed to rule out biases due
to the specific selection or number of subjects. To do this,
we performed model comparisons using an identical number
of subjects (40) within each dataset. This selection included
nonoverlapping training, validation and testing sets, such that
25 subjects were used for training, 5 for validation and
10 for testing. In IXI, we sequentially selected a completely
independent set of subjects from those reported in the main
analyses. This selection was then sequentially split into train-
ing/validation/testing sets via a 4-fold cross-validation pro-
cedure. Since the number of subjects available was smaller
in MIDAS and BRATS, we performed 4-fold cross-validation
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by randomly sampling nonoverlapping training, validation and
testing sets in each fold. No overlap was allowed among
testing sets across separate folds, or among the training, testing
and validation sets within each fold.

4) Data Normalization: To prevent suboptimal model
training and bias in quantitative assessments, datasets were
normalized to ensure comparable ranges of voxel intensi-
ties across subjects. The multi-contrast MRI images in the
IXI and MIDAS datasets were acquired using a single scan
protocol. Therefore, for each contrast, voxel intensity was
normalized within each subject to a scale of [0 1] via division
by the maximum intensity within the brain volume. The
protocol variability in the BRATS dataset was observed to
cause large deviations in image intensity and contrast across
subjects. Thus, for normalization, the mean intensity across the
brain volume was normalized to 1 within individual subjects.
To attain an intensity scale in [0 1], three standard deviations
above the mean intensity of voxels pooled across subjects was
then mapped to 1.

C. Image Registration

For the first scenario, multi-contrast images from a given
subject were assumed to be registered. Note that the images
contained in the MIDAS and IXI datasets are unregistered.
Thus, the T1- and T2-weighted images in these datasets
were registered prior to network training. In the MIDAS
dataset, the voxel dimensions for T1- and T2-weighted images
were identical, so a rigid transformation based on a mutual
information cost function was observed to yield high quality
registration. In the IXI dataset, however, voxel dimensions
for T1- and T2-weighted images were quite distinct. For
improved registration accuracy, we therefore used an affine
transformation with higher degrees of freedom based on a
mutual information cost in this case. No registration was
needed for the BRATS dataset that was already registered.
No registration was performed for the second scenario. All
registrations were implemented in FSL [58], [59].

D. Network Training

Since we consider two different scenarios for multi-contrast
MR image synthesis, network training procedures were dis-
tinct. In the first scenario, we assumed perfect alignment
between the source and target images, and we then used
pGAN to learn the mapping from the source to the target
contrast. In a first variant of pGAN (k=1), the input image
was a single cross-section of the source contrast, and the target
was the respective cross-section of the desired contrast. Note
that neighboring cross sections in MR images are expected to
show significant correlation. Thus, we reasoned that additional
information from adjacent cross-sections in the source contrast
should improve synthesis. To do this, a second variant of
pGAN was implemented where multiple consecutive cross-
sections (k=3, 5, 7) of the source contrast were given as input,
with the target corresponding to desired contrast at the central
cross-section.

For the pGAN network, we adopted the generator architec-
ture from [25], and the discriminator architecture from [50]

(see Supp. Methods for details). Tuning hyperparameters in
deep neural networks, especially in complex models such as
GANs, can be computationally intensive [60], [61]. Thus,
it is quite common in deep learning research to perform
one-fold cross-validation [30], [35] or even directly adopt
hyperparameter selection from published work [24], [28],
[29], [38], [48], [62]. For computational efficiency, here we
selected the optimum weightings of loss functions and number
of epochs by performing one-fold cross-validation. We par-
titioned the datasets into training, validation and test sets,
each set containing images from distinct subjects. Multiple
models were trained for varying number of epochs (in the
range [100 200]) and relative weighting of the loss functions
(λ in the set {10,100,150}, and λperc in the set {10,100,150}).
Parameters were selected based on the validation set, and
performance was then assessed on the test set. Among the
datasets here, IXI contains the highest-quality images with
visibly lower noise and artifact levels compared to MIDAS
and visibly sharper images compared to BRATS. To prevent
overfitting to noise, artifacts or blurry images, we therefore
performed cross-validation of GAN models on IXI, and used
the selected parameters in the remaining datasets. Weightings
of both pixel-wise and perceptual loss were selected as 100 and
the number of epochs was set to 100 (the benefits of perceptual
loss on synthesis performance are demonstrated in MIDAS
and IXI; Supp. Table IV). Remaining hyperparameters were
adopted from [50], where the Adam optimizer was used with
a minibatch size of 1 [63]. In the first 50 epochs, the learning
rates for the generator and discriminator were 0.0002. In the
last 50 epochs, the learning rate was linearly decayed from
0.0002 to 0. During each iteration the discriminator loss
function was halved to slow down the learning process of the
discriminator. Decay rates for the first and second moments
of gradient estimates were set as β1= 0.5 and β2=0.999,
respectively. Instance normalization was applied [64]. All
weights were initialized using normal distribution with 0 mean
and 0.02 std.

In the second scenario, we did not assume any alignment
between the source and target images, and so we used cGAN
to learn the mapping between unregistered source and target
images (cGANunreg). Similar to pGAN, two variants of cGAN
were considered that worked on a single cross-section (k=1)
and on multiple consecutive cross-sections. Because training
of cGAN brings substantial computational burden compared
to pGAN, we only examined k=3 for cGAN. This latter
cGAN variant was implemented with multiple consecutive
cross-sections of the source contrast. Although cGAN does
not assume alignment between the source and target domains,
we wanted to examine the effects of loss functions used in
cGAN and pGAN. For comparison purposes, we also trained
separate cGAN networks on registered multi-contrast data
(cGANreg). The cross-validation procedures, and the archi-
tectures of the generator and discriminator were identical to
those for pGAN. Multiple models were trained for varying
number of epochs (in the range [100 200]), and λcycle in the
set {10,100,150}). Model parameters were selected based on
performance on the validation set, and model performance was
then assessed on the test set. The relative weighting of the
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cycle consistency loss function was selected as λcycle =100,
and the model was trained for 200 epochs. In the first
100 epochs, the learning rate for both networks were set
to 0.0002, and in the remaining 100 epochs, the learning rate
was linearly decayed from 0.0002 to 0. During each iteration
the discriminator loss function was divided by 2 to slow down
the learning process of the discriminator.

E. Competing Methods

To demonstrate the proposed approach, two state-of-the-art
methods for MRI image synthesis were implemented. The first
method was Replica that estimates a nonlinear mapping from
image patches in the source contrast onto individual voxels
in the target contrast [23]. Replica extracts image features at
different spatial scales, and then performs a multi-resolution
analysis via random forests. The learned nonlinear mapping
is then applied on test images. Code posted by the authors of
the Replica method was used to train the models, based on
the procedures/parameters described in [23].

The second method was Multimodal that uses an end-
to-end neural network to estimate the target image given
the source image as input. A neural-network implementation
implicitly performs multi-resolution feature extraction and
synthesis based on these features. Trained networks can then
be applied on test images. Code posted by the authors of the
Multimodal method was used to train the models, based on
procedures/parameters described in [21].

The proposed approach and the competing methods were
compared on the same training and test data. Since the
proposed models were implemented for unimodal mapping
between two separate contrasts, Replica and Multimodal
implementations were also performed with only two contrasts.

F. Experiments

1) Comparison of GAN-Based Models: Here we first ques-
tioned whether the direction of registration between multi-
contrast images affects the quality of synthesis. In particular,
we generated multiple registered datasets from T1- and
T2-weighted images. In the first set, T2-weighted images
were registered onto T1-weighted images (yielding T2#).
In the second set, T1-weighted images were registered onto
T2-weighted images (yielding T1#). In addition to the direction
of registration, we also considered the two possible directions
of synthesis (T2 from T1; T1 from T2).

For MIDAS and IXI, the above-mentioned considerations
led to four distinct cases: a) T1 →T2#, b) T1# →T2,
c) T2 →T1#, d) T2# →T1. Here, T1 and T2 are unregistered
images, T1# and T2# are registered images, and → corresponds
to the direction of synthesis. For each case, pGAN and
cGAN were trained based on two variants, one receiving a
single cross-section, the other receiving multiple (3, 5 and 7)
consecutive cross-sections as input. This resulted in a total
of 32 pGAN and 12 cGAN models. Note that the single-
cross section cGAN contains generators for both contrasts,
and trains a model that can synthesize in both directions. For
the multi cross-section cGAN, however, a separate model was
trained for synthesis direction. For BRATS, no registration

was needed, and this resulted in only two distinct cases for
consideration: a) T1 →T2 and d) T2 →T1. A single variant
of pGAN (k=3) and cGAN (k=1) was considered.

2) Comparison to State-of-the-Art Methods: To investigate
how well the proposed methods perform with respect to state-
of-the-art approaches, we compared the pGAN and cGAN
models with Replica and Multimodal. Models were compared
using the same training, and testing sets, and these sets
comprised images from different groups of subjects. The
synthesized images were compared with the true target images
as reference. Both the synthesized and the reference images
were normalized to a maximum intensity of 1. To assess the
synthesis quality, we measured the peak signal-to-noise ratio
(PSNR) and structural similarity index (SSIM) [65] metrics
between the synthesized image and the reference.

3) Spectral Density Analysis: While PSNR and SSIM serve
as common measures to evaluate overall quality, they primarily
capture characteristics dominated by lower spatial frequencies.
To examine synthesis quality across a broader range of fre-
quencies, we used a spectral density similarity (SDS) metric.
The rationale for SDS is similar to that for the error spectral
plots demonstrated in [66], where error distribution is analyzed
across spatial frequencies. To compute SDS, synthesized and
reference images were transformed into k-space, and separated
into four separate frequency bands: low (0–25%), intermediate
(25–50%), high-intermediate (50–75%), and high (75–100%
of the maximum spatial frequency in k-space). Within each
band, SDS was taken as the Pearson’s correlation between
vectors of magnitude k-space samples of the synthesized
and reference images. To avoid bias from background noise,
we masked out background regions to zero before calculating
the quality measures.

4) Generalizability: To examine the generalizability of the
proposed methods, we trained pGAN, cGAN, Replica and
Multimodal on the IXI dataset and tested the trained models
on the MIDAS dataset. The following cases were examined:
T1 →T2#, T1# →T2,T2 →T1#, and T2# →T1. During
testing, ten sample images were synthesized for a given source
image, and the results were averaged to mitigate nuisance
variability in individual samples. When T1-weighted images
were registered onto T2-weighted images, within-cross-section
voxel dimensions were isotropic for both datasets and no extra
pre-processing step was needed. However, when T2-weighted
images were registered, voxel dimensions were anisotropic
for IXI yet isotropic for MIDAS. To avoid spatial mismatch,
voxel dimensions were matched via trilinear interpolation.
Because a mismatch of voxel thickness in the cross-sectional
dimension can deteriorate synthesis performance, single cross-
section models were considered.

5) Reliability Against Noise: To examine the reliability of
synthesis against image noise, we trained pGAN and Multi-
modal on noisy images. The IXI dataset was selected since
it contains high-quality images with relatively low noise lev-
els. Two separate sets of noisy images were then generated
by adding Rician noise to the source and target contrast
images respectively. The noise level was fixed within subjects
and randomly varied across subjects by changing the Rician
shape parameter in [0 0.2]. For noise-added target images,
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TABLE I
QUALITY OF SYNTHESIS IN THE MIDAS DATASET

SINGLE CROSS-SECTION MODELS

background masking was performed prior to training and no
perceptual loss was used in pGAN to prevent overfitting to
noise. Separate models were trained using noise-added source
and original target images, and using original source and noise-
added target images.

Statistical significance of differences among methods was
assessed with nonparametric Wilcoxon signed-rank tests
across test subjects. Neural network training and evaluation
was performed on NVIDIA Titan X Pascal and Xp GPUs.
Implementation of pGAN and cGAN was carried out in
Python using the Pytorch framework [67]. Code for repli-
cating the pGAN and cGAN models will be available on
http://github.com/icon-lab/mrirecon. Replica was based on a
MATLAB implementation, and a Keras implementation [68]
of Multimodal with the Theano backend [69] was used.

III. RESULTS

A. Comparison of GAN-Based Models

We first evaluated the proposed models on T1- and T2-
weighted images from the MIDAS and IXI datasets. We con-
sidered two cases for T2 synthesis (a. T1 →T2#, b. T1# →T2,
where # denotes the registered image), and two cases for T1
synthesis (c. T2 →T1#, d. T2# →T1). Table I lists PSNR
and SSIM for pGAN, cGANreg trained on registered data, and
cGANunreg trained on unregistered data in the MIDAS dataset.
We find that pGAN outperforms cGANunreg and cGANreg
in all cases (p<0.05). Representative results for T1 →T2#
are displayed in Fig. 3a and T2# →T1 are displayed in
Supp. Fig. Ia, respectively. pGAN yields higher synthesis qual-
ity compared to cGANreg. Although cGANunreg was trained
on unregistered images, it can faithfully capture fine-grained
structure in the synthesized contrast. Overall, both pGAN and
cGAN yield synthetic images of remarkable visual similarity
to the reference. Supp. Tables II and III (k=1) lists PSNR and
SSIM across test images for T2 and T1 synthesis with both
directions of registration in the IXI dataset. Note that there
is substantial mismatch between the voxel dimensions of the
source and target contrasts in the IXI dataset, so cGANunreg
must map between the spatial sampling grids of the source
and the target. Since this yielded suboptimal performance,

TABLE II
QUALITY OF SYNTHESIS IN THE MIDAS DATASET

MULTI CROSS-SECTION MODELS (K = 3)

measurements for cGANunreg are not reported. Overall, similar
to the MIDAS dataset, we observed that pGAN outperforms
the competing methods (p<0.05). On average, across the two
datasets, pGAN achieves 1.42dB higher PSNR and 1.92%
higher SSIM compared to cGAN. These improvements can
be attributed to pixel-wise and perceptual losses compared to
cycle-consistency loss on paired images.

In MR images, neighboring voxels can show structural
correlations, so we reasoned that synthesis quality can
be improved by pooling information across cross sections.
To examine this issue, we trained multi cross-section pGAN
(k = 3, 5, 7), cGANreg and cGANunreg models (k = 3; see
Methods) on the MIDAS and IXI datasets. PSNR and SSIM
measurements for pGAN are listed in Supp. Table II, and those
for cGAN are listed in Supp. Table III. For pGAN, multi cross-
section models yield enhanced synthesis quality in all cases.
Overall, k=3 offers optimal or near-optimal performance while
maintaining relatively low model complexity, so k=3 was
considered thereafter for pGAN. The results are more variable
for cGAN, with the multi-cross section model yielding a
modest improvement only in some cases. To minimize model
complexity, k=1 was considered for cGAN.

Table II compares PSNR and SSIM of multi cross-section
pGAN and cGAN models for T2 and T1 synthesis in the
MIDAS dataset. Representative results for T1 →T2# are
shown in Fig. 3b and T2# →T1 are shown in Supp. Fig. Ib.
Among multi cross-section models, pGAN outperforms alter-
natives in PSNR and SSIM (p<0.05), except for SSIM in
T2# →T1. Moreover, compared to the single cross-section
pGAN, the multi cross-section pGAN improves PSNR and
SSIM values. These measurements are also affirmed by
improvements in visual quality for the multi cross-section
model in Fig. 3 and Supp. Fig. I. In contrast, the benefits are
less clear for cGAN. Note that, unlike pGAN that works on
paired images, the discriminators in cGAN work on unpaired
images from the source and target domains. In turn, this can
render incorporation of correlated information across cross
sections less effective. Supp. Tables II and III compare PSNR
and SSIM of multi cross-section pGAN and cGAN models for
T2 and T1 synthesis in the IXI dataset. The multi cross-section
pGAN outperforms cGANreg in all cases (p<0.05). Moreover,
the multi cross-section pGAN outperforms the single cross-
section pGAN in all cases (p<0.05), except in T1 →T2#.
On average, across the two datasets, multi cross-section
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Fig. 3. The proposed approach was demonstrated for synthesis of
T2-weighted images from T1-weighted images in the MIDAS dataset.
Synthesis was performed with pGAN, cGAN trained on registered images
(cGANreg), and cGAN trained on unregistered images (cGANunreg).
For pGAN and cGANreg, training was performed using T2-weighted
images registered onto T1-weighted images (T1 →T2�). Synthesis
results for (a) the single cross-section, and (b) multi cross-section
models are shown along with the true target image (reference) and
the source image (source). Zoomed-in portions of the images are also
displayed. While both pGAN and cGAN yield synthetic images of striking
visual similarity to the reference, pGAN is the top performer. Synthesis
quality is improved as information across neighboring cross sections is
incorporated, particularly for the pGAN method.

pGAN achieves 0.63dB higher PSNR and 0.89% higher SSIM
compared to single cross-section pGAN.

B. Comparison to State-of-the-Art Methods

Next, we demonstrated the proposed methods against two
state-of-the-art techniques for multi-contrast MRI synthe-
sis, Replica and Multimodal. We trained pGAN, cGANreg,
Replica, and Multimodal on T1- and T2-weighted brain images
in the MIDAS and IXI datasets. Note that Replica performs
ensemble averaging across random forest trees and Multimodal
uses mean-squared error measures that can lead to overem-
phasis of low frequency information. In contrast, conditional
GANs use loss functions that can more effectively capture
details in the intermediate to high spatial frequency range.
Thus, pGAN should synthesize sharper and more realistic
images as compared to the competing methods. Table III
lists PSNR and SSIM for pGAN, Replica and Multimodal
(cGANreg listed in Supp. Table I) in the MIDAS dataset.
Overall, pGAN outperforms the competing methods in all
examined cases (p<0.05), except for SSIM in T2 synthesis,
where pGAN and Multimodal perform similarly. The proposed
method is superior in depiction of detailed tissue structure as
visible in Supp. Fig. II (for comparisons in coronal and sagittal
cross-sections see Supp. Figs. IV, V). Table IV lists PSNR
and SSIM across test images synthesized via pGAN, Replica
and Multimodal (cGANreg listed in Supp. Table I) for the IXI
dataset. Overall, pGAN outperforms the competing methods in
all examined cases (p<0.05). The proposed method is superior
in depiction of detailed tissue structure as visible in Fig. 4 and
Supp. Fig. III (see also Supp. Figs. IV, V).

TABLE III
A- QUALITY OF SYNTHESIS IN THE MIDAS DATASET

Fig. 4. The proposed approach was demonstrated for synthesis of
T1-weighted images from T2-weighted images in the IXI dataset.
T2 →T1� and T2� →T1 synthesis were performed with pGAN, Multi-
modal and Replica. Synthesis results for (a) T2 →T1�, and (b) T2� →T1
along with their corresponding error maps are shown along with the true
target image (reference) and the source image (source). The proposed
method outperforms competing methods in terms of synthesis quality.
Regions that are inaccurately synthesized by the competing methods are
reliably depicted by pGAN (marked with arrows). The use of adversarial
loss enables improved accuracy in synthesis of intermediate-spatial-
frequency texture in T2-weighted images compared to Multimodal and
Replica that show some degree of blurring.

Following assessments on datasets comprising healthy sub-
jects, we demonstrated the performance of the proposed meth-
ods on patients with pathology. To do this, we trained and
tested pGAN, cGANreg, Replica, and Multimodal on T1- and
T2-weighted brain images from the BRATS dataset. Similar to
the previous evaluations, here we expected that the proposed
method would synthesize more realistic images with improved
preservation of fine-grained tissue structure. Table V lists
PSNR and SSIM across test images synthesized via pGAN,
Replica and Multimodal (cGANreg listed in Supp. Table I;
for measurements on background-removed images in MIDAS,
IXI and BRATS see Supp. Table V). Overall, pGAN is the
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Fig. 5. The proposed approach was demonstrated on glioma patients
for synthesis of T2-weighted images from T1-weighted images, and
T2-weighted images from T1-weighted images in the BRATS dataset.
Synthesis results for (a) T1 →T2, and (b) T1→T2 along with their corre-
sponding error maps are shown along with the true target image (refer-
ence) and the source image (source). Regions of inaccurate synthesis
with Replica and Multimodal are observed near pathologies (marked with
arrows). Meanwhile, the pGAN method enables reliable synthesis with
visibly improved depiction of intermediate spatial frequency information.

TABLE IV
QUALITY OF SYNTHESIS IN THE IXI DATASET

top performing method in all cases (p<0.05), except for SSIM
in T1 →T2 where pGAN and Multimodal perform similarly.
Moreover, cGAN performs favorably in PSNR over competing
methods. Representative images for T2 and T1 synthesis are
displayed in Fig. 5 (see also Supp. Figs. IV, V). It is observed
that regions near pathologies are inaccurately synthesized
by Replica and Multimodal. Meanwhile, the pGAN method
enables reliable synthesis with visibly improved depiction of
structural details. Across the datasets, pGAN outperforms the
state-of-the-art methods by 2.85dB PSNR and 1.23% SSIM.

Next, we performed additional control analyses via 4-fold
cross validation to rule out potential biases due to subject
selection. Supp. Tables IX–XI list PSNR and SSIM across test
images synthesized via pGAN and Multimodal separately for

TABLE V
QUALITY OF SYNTHESIS IN THE BRATS DATASET

Fig. 6. The T1-weighted image of a sample cross-section from the
MIDAS dataset was processed with an ideal filter in k-space. The
filter was broadened sequentially to include higher frequencies (0-25%,
0-50%, 0-75%, 0-100% of the maximum spatial frequency). The filtered
images respectively show the contribution of low, intermediate, high-
intermediate and high frequency bands. The bulk shape and contrast
of the imaged object is captured in the low frequency band, whereas the
fine structural details such as edges are captured in the intermediate
and partly high-intermediate frequency bands. There is no apparent
contribution from the high frequency band.

all 4 folds. We find that there is minimal variability in pGAN
performance across folds. Across the datasets, pGAN variabil-
ity is merely 0.70% in PSNR and 0.37% in SSIM, compared
to Multimodal variability of 2.26% in PSNR and 0.46% in
SSIM. The results of these control analyses are also highly
consistent with those in the original set of subjects reported
in Supp. Table I. We find that there is minimal variability in
pGAN performance between the main and control analyses.
Across the datasets, pGAN variability is 1.42% in PSNR and
0.73% in SSIM, compared to Multimodal variability of 2.98%
in PSNR and 0.97% in SSIM.

C. Spectral Density Analysis

To corroborate visual observations regarding improved
depiction of structural details, we measured spectral density
similarity (SDS) between synthesized and reference images
across low, intermediate, high-intermediate and high spa-
tial frequencies (see Methods). Fig. 6 shows filtered ver-
sions of a T1-weighted image in the MIDAS dataset, where
the filter is broadened sequentially to include higher fre-
quencies so as to visualize the contribution of individual
bands. Intermediate and high-intermediate frequencies pri-
marily correspond to edges and other structural details in
MR images, so we expected pGAN to outperform competing
methods in these bands. Fig. 7 shows representative synthesis
results in the image and spatial frequency (k-space) domains.
Supp. Table VI lists SDS across the test images synthesized via
pGAN, cGANreg, Replica and Multimodal in the all datasets.
In the MIDAS dataset, pGAN outperforms the competing
methods at low and intermediate frequencies (p<0.05), except
in T1 synthesis where it performs similarly to Multimodal.
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Fig. 7. Synthesis results are shown for a sample cross section from
the IXI dataset along with the true target (reference) and the source
image (source). Images shown in (a) the spatial domain (b) the spatial-
frequency (k-space) domain. White circular boundaries in the k-space
representation of the source delineate the boundaries of the low, interme-
diate, high-intermediate and high frequency bands. The pGAN method
more accurately synthesizes the target image as evidenced by the better
match in energy distribution across k-space.

In the IXI dataset, pGAN yields superior performance to com-
peting methods in all frequency bands (p<0.05). In the BRATS
dataset, pGAN achieves higher SDS than the competing meth-
ods at low, intermediate and high-intermediate frequencies in
T2 synthesis and at low frequencies in T1 synthesis (p<0.05).
Across the datasets, pGAN outperforms the state-of-the-art
methods by 0.056 at low, 0.061 at intermediate and 0.030 at
high-intermediate frequencies.

D. Generalizability

Next, we examined synthesis methods in terms of their
generalization performance. Supp. Table VII lists SSIM and
PSNR for pGAN, cGANreg, Replica and Multimodal trained
on the IXI dataset and tested on the MIDAS dataset. Overall,
the proposed methods are the top performers. In T1 →T2#,
Multimodal is the leading performer with 1.9% higher SSIM
SSIM (p<0.05) than pGAN. In T1# →T2, pGAN outperforms
competing methods in PSNR (p<0.05). In T2 →T1#, pGAN is
again the leading performer with 1.9% higher SSIM (p<0.05)
than Multimodal. In T2# →T1, cGANreg is the leading per-
former with 1.22dB higher PSNR (p<0.05) SSIM than pGAN.
We also assessed the level of performance degradation between
within-dataset synthesis (trained and tested on MIDAS) and
across-dataset synthesis (trained on IXI, tested on MIDAS).
Overall, pGAN and Multimodal show similar degradation lev-
els. While pGAN is the top performer in terms of SSIM, cGAN
yields a modest advantage in PSNR. On average, percentage
degradation is 20.83% in PSNR and 11.70% in SSIM for
pGAN, 22.22% in PSNR and 10.12% in SSIM for Multimodal,
15.85% in PSNR and 12.85% in SSIM for cGANreg, and
11.40% in PSNR and 14.51% in SSIM for Replica. Note
that percentage degradation in PSNR is inherently limited for
Replica, which yields low PSNR for within-dataset synthesis.

E. Reliability Against Noise

Lastly, we examined reliability of synthesis against noise
(Supp. Fig. VI). Supp. Table VIII list SSIM and PSNR
for pGAN and Multimodal trained on noise-added source
and target images from IXI, respectively. For noisy source

images, pGAN outperforms Multimodal in all examined cases
(p<0.05) except for SSIM in T1 →T2#. On average, pGAN
achieves 1.74dB higher PSNR and 2.20% higher SSIM than
Multimodal. For noisy target images, pGAN is the top per-
former in PSNR in T1# →T2, T2 →T1# (p<0.05) and
performs similarly to Multimodal in the remaining cases.
On average, pGAN improves PSNR by 0.61dB. (Note, how-
ever, that for noisy target images, reference-based quality
measurements are biased by noise particularly towards higher
frequency bands; see Supp. Fig. VII.) Naturally, synthesis
performance is lowered in the presence of noise. We assessed
the performance degradation when the models were trained
on noise-added images as compared to when the models were
trained on original images. Overall, pGAN and Multimodal
show similar performance degradation with noise. For noisy
source images, degradation is 5.27% in PSNR and 2.17% in
SSIM for pGAN, and 3.77% in PSNR, 2.66% in SSIM for
Multimodal. For noisy target images, degradation is 16.70%
in PSNR and 12.91% in SSIM for pGAN, and 15.19% in
PSNR, 10.06% in SSIM for Multimodal.

IV. DISCUSSION

A multi-contrast MRI synthesis approach based on
conditional GANs was demonstrated against state-of-the-art
methods in three publicly available brain MRI datasets.
The proposed pGAN method uses adversarial loss functions
and correlated structure across neighboring cross-sections for
improved synthesis. While many previous methods require
registered multi-contrast images for training, a cGAN method
was presented that uses cycle-consistency loss for learning
to synthesize from unregistered images. Comprehensive eval-
uations were performed for two distinct scenarios where
training images were registered and unregistered. Overall,
both proposed methods yield synthetic images of remarkable
visual similarity to reference images, and pGAN visually and
quantitatively improves synthesis quality compared to state-
of-the-art methods [21], [23]. These promising results warrant
future studies on broad clinical populations to fully examine
diagnostic quality of synthesized images in pathological cases.

Several previous studies proposed the use of neural net-
works for multi-contrast MRI synthesis tasks [13], [19]–[21],
[24]. A recent method, Multimodal, was demonstrated to yield
higher quality compared to conventional methods in brain
MRI datasets [21]. Unlike conventional neural networks,
the GAN architectures proposed here are generative networks
that learn the conditional probability distribution of the target
contrast given the source contrast. The incorporation of adver-
sarial loss as opposed to typical squared or absolute error loss
leads to enhanced capture of detailed texture information about
the target contrast, thereby enabling higher synthesis quality.

While our synthesis approach was primarily demonstrated
for multi-contrast brain MRI here, architectures similar to
pGAN and cGAN have been proposed in other medical
image synthesis applications such as cross-modality synthesis
or data augmentation [28], [29], [33]–[36], [38]–[42], [48].
The discussions below highlight key differences between the
current study and previous work:
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(1) [29], [40], [42], [48] proposed conditional GANs for
cross-modality synthesis applications. One important proposed
application is CT to PET synthesis [29], [40]. For instance,
[29] fused the output of GANs and convolutional networks
to enhance tumor detection performance from synthesized
images; and [40] demonstrated competitive tumor detection
results from synthesized versus real images. Another important
application is MR to CT synthesis [42], [48]. In [42] and [48],
patch-based GANs were used for locally-aware synthesis,
and contextual information was incorporated by training an
ensemble of GAN models recurrently. Our approach differs in
the following aspects: (i) Rather than cross-modality image
synthesis, we focus on within-modality synthesis in multi-
contrast MRI. MRI provides excellent delineation among soft
tissues in the brain and elsewhere, with the diversity of
contrasts that it can capture [70]. Therefore, synthesizing a
specific MRI contrast given another poses a different set
of challenges than performing MR-CT or CT-PET synthesis
where CT/PET shows relatively limited contrast among soft
tissues [71]. (ii) We demonstrate multi-cross section models
to leverage correlated information across neighboring cross-
sections within a volume. (iii) We demonstrate pGAN based
on both pixel-wise and perceptual losses to enhance synthesis
quality.

(2) Architectures similar to cGAN with cycle-consistency
loss were recently proposed to address the scarcity of paired
training data in MR-CT synthesis tasks [28], [33], [36], [38],
[39]. [33] also utilized a gradient-consistency loss to enhance
the segmentation performance on CT images synthesized from
MR data. Reference [36] performed data-augmentation for
enhanced segmentation performance using MR images syn-
thesized from CT data. Reference [39] coupled synthesis and
segmentation networks to perform improved segmentation on
synthesized CT images using MR labels. Our work differs
in the following aspects: (i) As aforementioned, we consider
within-modality synthesis as opposed to cross-modality syn-
thesis. (ii) We consider paired image synthesis with cGAN to
comparatively evaluate its performance against two state-of-
the-art methods (Replica and Multimodal) for paired image
synthesis.

(3) An architecture resembling pGAN was proposed for
synthesizing retinal images acquired with fundus photography
given tabular structural annotations [41]. Similar to pGAN,
this previous study incorporated a perceptual loss to improve
synthesis quality. Our work differs in the following aspects:
(i) Synthesis of vascular fundus images in the retina given
annotations is a distinct task than synthesis of a target MR con-
trast given another source MR contrast in the brain. Unlike the
relatively focused delineation between vascular structures and
background in retinal images, in our case, there are multiple
distinct types of brain tissues that appear at divergent signal
levels in separate MR contrasts [71]. (ii) We demonstrate
multi-cross section models to leverage correlated information
across neighboring cross-sections within an MRI volume.

(4) A recent study suggested the use of multiple cross-
sections during MR-to-CT synthesis [72]. In compari-
son to [72], our approach is different in that: (i) We
incorporate an adversarial loss function to better preserve

intermediate-to-high frequency details in the synthesized
images. (ii) We perform task- and model-specific optimization
of the number of cross-section considering both computational
complexity and performance. (iii) As aforementioned, we con-
sider within-modality synthesis as opposed to cross-modality
synthesis.

Few recent studies have independently proposed GAN mod-
els for multi-contrast MRI synthesis [62], [73], [74]. Perhaps,
the closest to our approach are [62] and [73] where conditional
GANs with pixel-wise loss were used for improved segmen-
tation based on synthesized FLAIR, T1- and T2-weighted
images. Our work differs from these studies in the following
aspects: (i) We demonstrate improved multi-contrast MRI
synthesis via cycle-consistency loss to cope with un-registered
images. (ii) We demonstrate improved multi-contrast synthesis
performance via the inclusion of a perceptual loss to pGAN.
(iii) We demonstrate multiple cross-section models to lever-
age correlated information across neighboring cross-sections
within multi-contrast MRI volumes. (iv) We quantitatively
demonstrate that conditional GANs better preserve detailed
tissue structure in synthesized multi-contrast images compared
to conventional methods [21], [23].

The proposed approach might be further improved by
considering several lines of development. Here we presented
multi-contrast MRI results while considering two potential
directions for image registration (T1 →T2# and T1# →T2 for
T2 synthesis). We observed that the proposed methods yielded
high-quality synthesis regardless of the registration direction.
Comparisons between the two directions based on reference-
based metrics are not informative because the references
are inevitably distinct (e.g., T2# versus T2), so determining
the optimal direction is challenging. Yet, with substantial
mismatch between the voxel sizes in the source and target
contrasts, the cGAN method learns to interpolate between
the spatial sampling grids of the source and the target. To
alleviate performance loss, a simple solution is to resam-
ple each contrast separately to match the voxel dimensions.
Alternatively, the spatial transformation between the source
and target images can first be estimated via multi-modal
registration [75]. The estimated transformation can then be
cascaded to the output of cGAN. A gradient cycle consistency
loss can also be incorporated to prevent the network from
learning the spatial transformation between the source and the
target [33]. Another cause for performance loss arises when
MR images for a given contrast are corrupted by higher levels
of noise than typical. Our analyses on noise-added images
imply a certain degree of reliability against moderate noise in
T1- or T2-weighted images. However, an additional denoising
network could be incorporated to earlier layers in GAN models
when source images have higher noise, and to later layers
when target images have elevated noise [76].

Synthesis accuracy can also be improved by generalizing the
current approach to predict the target based on multiple source
contrasts. In principle, both pGAN and cGAN can receive
as input multiple source contrasts in addition to multiple
cross sections as demonstrated here. In turn, this generaliza-
tion can offer improved performance when a subset of the
source contrast is unavailable. The performance of conditional
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GAN architectures in the face of missing inputs warrants
further investigation. Alternatively, an initial fusion step can
be incorporated that combines multi-contrast source images in
the form of a single fused image fed as input to the GAN [77].

Our analyses on noise-added images indicate that, for
target contrasts that are inherently noisier, a downweighing
of perceptual loss might be necessary. The proposed models
include a hyperparameter for adjusting the relative weighing
of the perceptual loss against other loss terms. Thus, a cross-
validation procedure can be performed for the specific set of
source-target contrasts at hand to optimize model parame-
ters. It remains important future work to assess the optimal
weighing of perceptual loss as a function of noise level for
specific contrasts. Alternatively, denoising can be included as
a preprocessing step to improve reliability against noise. Note
that such denoising has recently been proposed for learning-
based sampling pattern optimization in MRI [78].

An important concern regarding neural-network based meth-
ods is the availability of large datasets for successful training.
The cGAN method facilitates network training by permitting
the use of unregistered and unpaired multi-contrast datasets.
While here we performed training on paired images for unbi-
ased comparison, cGAN permits the use of unpaired images
from distinct sets of subjects. As such, it can facilitate com-
pilation of large datasets that would be required for improved
performance via deeper networks. Yet, further performance
improvements may be viable by training networks based on a
mixture of paired and unpaired training data [15].

Recently, cross-modality synthesis with GANs was lever-
aged as a pre-processing step to enhance various medical
imaging tasks such as segmentation, classification or tumor
detection [29], [33], [36], [39], [40], [79], [80]. For instance,
[29] fused the output of GANs and convolutional networks
to enhance tumor detection from synthesized PET images,
and [40] demonstrated competitive detection performance
with real versus synthesized PET images. [33] trained GANs
based on cycle-consistency loss to enhance segmentation
performance from synthesized CT images. Reference [36]
showed that incorporating synthesized MR images with the
real ones can improve the performance of a segmentation
network [39]. GANs also showed enhanced performance in
liver lesion classification in synthetic CT [79], and chest
pathology classification in synthetic X-ray images [80]. These
previous reports suggest that the multi-contrast MRI synthesis
methods proposed here might also improve similar post-
processing tasks. It remains future work to assess to what
extent improvements in synthesis quality translate to tasks such
as segmentation or detection.

V. CONCLUSION

We proposed a new multi-contrast MRI synthesis method
based on conditional generative adversarial networks. Unlike
most conventional methods, the proposed method performs
end-to-end training of GANs that synthesize the target contrast
given images of the source contrast. The use of adversarial loss
functions improves accuracy in synthesis of detailed structural
information in the target contrast. Synthesis performance is

further improved by incorporating pixel-wise and perceptual
losses in the case of registered images, and a cycle-consistency
loss for unregistered images. Finally, the proposed method
leverages information across neighboring cross-sections within
each volume to increase accuracy of synthesis. The proposed
method outperformed state-of-the-art synthesis methods in
multi-contrast brain MRI datasets from healthy subjects and
glioma patients. Given the prohibitive costs of prolonged
exams due to repeated acquisitions, only a subset contrasts
might be collected with adequate quality, particularly in pedi-
atric and elderly patients and in large cohorts [1], [3]. Multi-
contrast MRI synthesis might be helpful in those worst-case
situations by offering a substitute for highly-corrupted or even
unavailable contrasts. Therefore, our GAN-based approach
holds great promise for improving the diagnostic information
available in clinical multi-contrast MRI.
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