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AVERAGES FOR POLYGONS FORMED BY RANDOM LINES*

By PAUL I. RICHARDS

TECHNICAL OPERATIONS, INC., BURLINGTON, MASSACHUSETTS

Communicated by S. A. Goudsmit, August 28, 1964

When a plane is uniformly covered with random straight lines, it is divided into an
infinite set of interlocking convex polygons (cf. Fig. 1). This aggregate of random
polygons was first studied by S. A. Goudsmit,l who obtained the mean number of
sides, the mean perimeter, the mean area, and the mean area-squared. Recently,
R. E. Miles2 has summarized current knowledge of this problem, presenting a num-
ber of original results and generalizations. In this paper, I shall derive some re-
lations that yield additional new averages by a method that generalizes Goudsmit's
original approach.

Simple Results.-Among many particular results that can be obtained by this
method, the following simple ones seem worth recording specifically. Let E[.. ..
denote the mean of a quantity, with each polygon weighted equally. Then,

E[A2R] = 16/k5, E[AI] = 24/k6, E[0] = 8/k3. (1)

Here, A is the area of a typical polygon, R is the mean separation of two random
points within it, I is its moment of inertia about its center of gravity, and 0 is its
"Newtonian self-energy": 0 = if Jr - r'i- do do-'. The parameter k de-
termines the density of the random lines; it is the mean number of lines crossing
any straight segment of unit length. (Thus, 1/k is the "mean free length" of a
line; in Miles' notation,2 r = 7rk/2.)
The relations in equation (1) give some approximate information on the shapes

of the polygons. Another relation of this type is the following. If a circle of
radius b is centered over a random point inside a typical polygon, let Ab be the
mean of the overlapping area (cf. Fig. 2). Then

E[A.Ab] = (8/k4) [1 - (1 + kb) ekbl. (2)
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FIG. 2.-The center of the circle is
a random point within the random

FIG. 1.-Examples of random lines polygon. The mean area of the
forming random polygons. shaded region is Ab; the mean of the

sum of the marked angles is Ob.

If we let the radius b approach zero, we find E[A] = 4/(7rk2), while b -O oo yields
E[A2 = 8/k4, in agreement with Goudsmit's original results.' A relation con-
cerning the mean angular arc 0, cut from such a circle by the polygon, follows by
differentiating equation (2) and dividing by b.

E[A~b] = (8/k2) e k. (3)

Additional simple results are

E [A3R ] = 21w7r/(21 k7) (4)

and

E[LIL] = (8 + 6 r2)/k4, (5)

where L is the perimeter of a typical polygon and IL is the moment of inertia of the
perimeter about its own center of gravity.

Basic Method.-Following Goudsmit, we consider points placed at random in the
plane. To avoid dealing with infinite sets, we may employ Goudsmit's elegant
device of mapping the problem onto a very large sphere of area D, where the
random lines become great circles, uniformly distributed over the surface. Keeping
the density k of these "lines" constant, we can later let the sphere increase in size
and asymptotically approach the plane. Alternatively, we may confine the points
to a large but finite domain of area D in the plane and verify that the edge effects
will vanish in the limit, as D -- cx.
On the sphere or in the domain of area D, we place many independent pairs of

random points. Let f(r) be an arbitrary function, and consider the mean of
f(dr-r'j) taken over those pairs of points that happen to fall inside a single poly-
gon. Since e-kx is the probability that no line crosses a straight segment of length
x, the mean will be (asymptotically for large D):

fo f(x) e-k* 2irx dx/D.

On the other hand, this average can be evaluated in another way. The probabil-
ity that two random points will both fall inside a polygon of area A is (A/D)2, and
the contribution of such a polygon to the foregoing mean will be
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where do, represents a differential area within the polygon. MIultiply this ex-
pression by the mean number of polygons in D with a given area and shape, namely,
ND P(,.A . .) dA. . ., where ND is the total number of polygons in D, and P(A,.. .)
denotes the probability distribution for polygons with specified properties. Inte-
grate this product over all sizes and shapes to obtain another expression for the
foregoing mean. When we observe that D/ND = E[A] = 4/(rk2), we find the
relation,

E[fff(Ir-r'I) dadu'] = (8/k2) o x f(x) e-kxdx, (6)

where the double integral on the left extends over the interior of a typical polygon
The mean values displayed in equation (1) are obtained by choosing f(r) equal to

1/r, r, and r2 in turn. The results given in equations (2) and (3) emerge when
f(r) is chosen equal to unity for r < b and zero otherwise.

Cubic Averages.-Similarly, we may consider placing three random points in a
large domain D and averaging some function of their locations. Now, the probabil-
ity that no line separates one of the three points from the others is equal to e-kP/2
where p is the perimeter of the triangle they form (compare M\liles,2 Theorem 3).

P = |rl -r2| + |r2 -r3| + jr3 - ri . (7)
This suggests that we average an arbitrary function of this perimeter over those
triples of points that happen to fall within a common polygon. This requires that
we first evaluate the probability of obtaining a specified perimeter p when three
points are dropped at random in a large domain D.
For a given value of p and specified locations of ri and r2 (with Ir - r2j <p),

the locus of points r3 yielding the given p will lie on an ellipse with foci at rl and r2.
In this way, a tedious but straightforward calculation will show that three random
points in a large area D have perimeter p dp/2 with probability

P(p) dp = (27r2/21) p3 dp/D2

(asymptotically for large D, where edge effects may be neglected).
The remaining arguments are analogous to those for two random points, and the

final result is

E[ffff(p) daudo2du3] = (87r/21 k2) fo x3f(x) e-kx/2dx, (8)

where p is defined by equation (7) and the triple integral extends over the interior
of a typical polygon. The choice f(p) = 1 yields E[A3], in agreement with un-
published results of D. G. Kendall and S. A. Goudsmit as reported by Miles.2 The
choice f(p) = p yields the value of E [A3R] displayed in equation (4).

Line-Integral Averages.-The following relation requires a rather detailed proof.

E[jf, f (Ir -r'I) ds ds'] = (2/k) fo [4 + 7r2kx] f(x) e-kX dx. (9)

Here, r and r' are two points on the boundary of a typical polygon while ds and ds'
denote differential lengths along the boundary. Choosing f(r) = 1 verifies E [L2]
as first reported by Miles,2 and choosing f(r) = r2 yields the value of E[L IL] given
in equation (5).
The remainder of this section is devoted to sketching a proof of equation (9).

The basic method is again to consider pairs of points (r,r') in a large region D. This
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time, we require not only that the points fall inside a common polygon but also that
each point lie within a small distance w of its boundary. We then average f(Ir
-r'l) over such pairs and subsequently let w approach zero.
The new feature of this proof, then, is to determine the probability that two

random points are not separated by a random line while each one lies within a dis-
tance w of such a line.
Given two points, let x be their separation, and divide the random lines of in-

terest into four disjoint sets:

S: "separating lines" that pass between the points;
C: "common lines" that pass within w of both points at once but not between
them;

E1 and E2: "end lines" that pass within w of one point but do not pass within w
of the other and do not separate them.

Since the random lines form a Poisson process, the probability that n lines actually
occur in any set is (Mn/n!)e-M where M is the mean number of lines in the set.
For disjoint line-sets, these probabilities may be multiplied, because the corre-
sponding lines are independent. Our goal, then, is to evaluate the mean number of
random lines falling in sets C and En; we already know that the mean number in
Sis

MS = kx. (10)
The mean number of lines that cross any convex region in the plane is the product,

k/2 times the perimeter of the region.3 4 Now, the union of all four of our line-
sets is precisely the set of lines that pass within a distance w of the line-segment x,
between the two given points. The region of points within distance w of this seg-
ment has perimeter 2x + 27rw, and thus

Ms+ Mc + 2ME = k(x + rw), (11)

because the means for E1 and E2 are equal by symmetry.
The union of the line-sets S, C, and E1 consists of lines that pass within w of one

chosen point and/or cross the line-segment x. Such lines must cross the convex
figure bounded by a disk (radius w) about the chosen point and a wedge with its
vertex at the other point and its sides tangent to the disk. The perimeter of this
figure is readily calculated, and we obtain

MS+ MC + ME = k[(7r/2)tw + t sin' (w/x) + (X2 - w2)l/2I, (12)
provided w < x. (Otherwise the figure degenerates to a disk, and the right-hand
side should be replaced by 'rkw.)

Equations (10), (11), and (12) can now be solved for Mc and ME. Since we shall
later let w approach zero, we need only retain terms to order W2.

M = kw2/x +..., ME = (r/2)kw - kw2/2x +...

These results now enable us to calculate the probability that two points with separa-
tion x lie inside a common polygon, each point being at a distance w or less from the
boundary.

This probability is a sum of probabilities for two mutually exclusive events.

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

M
ay

 8
, 2

02
0 



1164 MATHEMATICS: P. I. RICHARDS PROC. N. A. S.

If we let n1 denote the actual number of lines in the line-set E1, and similarly for
n2, ns, and nc, then these two events are:

(a) ns = O, nc = O, n, > O, n2 > 0

(b) ns = 0, nc > 0 (and any ni, n2).

From the Poisson formulas, we then find that the sum of the probabilities for these
events is

(kw)2[(kx)-l + (ir/2)2]e-kx + 0(w3).

Since the probability that two points, chosen at random in a large domain of area
D, have separation x i dx/2 is just 27rx dx/D neglecting edge effects, the average of
f(x) for points satisfying our criterion is

(kw)2(27r/D)fo [k 1 + (r/2)2x]f(x)e-kxdx + O(W3).
The remaining arguments are then analogous to those used in proving equations

(6) and (8), and the final result is equation (9).
Other Relations.-The results displayed in equations (10), (11), and (12) enable

us to derive several other general formulas. None of these seem to lead to par-
ticularly simple averages, but the following ones seem worth recording. With one
point in the interior of a typical polygon and one point on its boundary,

E [fds1fdo2f(Iri - r2) ] = (47r/k)fo'xf(x)e-kxdx.
With f = 1, this verifies E [AL] as first reported by Miles.2 For one point on a
corner of a polygon and one point in its interior,

E[Li csc (4t)ff(|r - c1)do-] = x2foXxf(x)ekxdx,
where he is the interior angle at the corner cl. For one point on a corner and the
other on the boundary,

E[2s csc (01).ff(Ir - ci)ds] = (7r/2)fo [8 + 7r2kx]f(x)e-kxdx.
If C denotes the sum Zi csc(qi), these relations (with f = 1) yield E[AC] =

7r2/k2 and E[LC] = (7r/2k)(7r2 + 8), and it is easy to show directly that E[C] =
27r. These results might seem to suggest that C is a fundamental quantity for
random polygons, but it is not difficult to show that E [C2] diverges.

I am indebted to Dr. S. A. Goudsmit for calling my attention to this problem and making
available to me his unpublished results. My search for further results might well have ground
to a halt unfruitfully without his encouragement and counsel. I am also indebted to Dr. R. E.
Miles for preprints of his summary papers on this problem.

* Work performed in part while the author was a guest of Brookhaven National Laboratory.
1 Goudsmit, S. A., Rev. Mod. Phys., 17, 321 (1945).
2 Miles, R. E., these PROCEEDINGS, 52, 901, 1157 (1964).
3 Blaschke, W., Vorlesungen Ober Integralgeometrie (New York: Chelsea Pub. Co., 1949).
4Santal6, L. A., Introduction to Integral Geometry (Paris: Hermann et Cie., 1953).
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