
  

 
 

1 

 
Abstract—Anomaly detection has become an important 

topic in Hyperspectral Imagery (HSI) analysis in the last 
two decades with the advantage of detecting the targets 
surrounding in diverse backgrounds without prior 
knowledge. HSIs usually have complex and redundant 
spectral signals due to the complicated land-cover distri-
bution. Generally, it is difficult to estimate the background 
accurately, and distinguish the anomaly targets. The per-
formances of traditional algorithms are difficult to meet the 
requirements. In this paper, we propose a novel anomalous 
component extraction framework for hyperspectral anom-
aly detection based on Independent Component Analysis 
(ICA) and Orthogonal Subspace Projection (OSP). In the 
proposed method, the brightest anomalous component is 
extracted to initialize the projection vector, by which the 
performance of ICA can be improved greatly. Moreover, 
the Independent Component (IC) containing the most ab-
normal information can be obtained according to the vec-
tor. Besides, The OSP algorithm is applied to suppress the 
background components in the remaining data. Then the 
data are iteratively processed by ICA to extract the anom-
alous component subtly. Therefore, in the initialization 
process, the possible situation of detecting the pixels in the 
same position can be effectively avoided, and the interfer-
ence of the last iteration procedure can be cut down greatly, 
helping to optimize the detection. Finally, the experimental 
results show that the proposed framework achieves a su-
perior performance compared to some of the 
state-of-the-art methods in the field of anomaly detection. 

 
Keywords—Anomaly detection, Hyperspectral image, Locally 
linear embedding, Independent component analysis, Orthogonal 
subspace projection. 

I. INTRODUCTION 
YPERSPECTRAL Imagery (HSI) technology provides 
3-D images in spatial and spectral dimensions, which 
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contain much more valuable information than that of 2-D im-
ages. With the increasing spectral and spatial resolution of 
hyperspectral sensors, it becomes popular to detect target using 
HSIs [1][2]. Hyperspectral target detection plays an important 
role in military and civilian applications. Due to the rich spec-
tral information contained in the hyperspectral image, it is 
easier to perform target detection than that utilizing the visible 
light band. However, practically, the samples obtained is dis-
tinct from true data collected since known spectra usually 
comes from laboratory calibration. Moreover, it is not simple to 
obtain a complete target spectral information database. All 
these factors make it difficult for us to obtain the prior infor-
mation of the target for detection, which leads to poor detection 
performance. Therefore, hyperspectral anomaly detection (AD), 
a target detection technique without priori information, is 
widely applied in practical situations [3]-[5]. 

Researches of anomaly detection in HSI have been devel-
oped for over two decades. Among them, the Reed-Xiaoli (RX) 
algorithm [6] is known as a benchmark in hyperspectral 
anomaly detection, which utilizes the multivariate Gaussian 
model to characterize the background pixels. The Mahalanobis 
distance between the test pixel and background mean vector is 
computed. An anomaly is obtained by comparing the distance 
and a threshold. However, the multivariate Gaussian distribu-
tion is not suitable to describe the complicated background in a 
real HSI [7]. As a result, a number of improved RX-based 
anomaly detection methods were proposed, such as the clus-
ter-based anomaly detector (CBAD) [8], which utilizes a clus-
tering technique to model the HSI as a multivariate normal 
distribution in each cluster and then executes the detection 
process. The weighted-RX method [9] calculates the mean 
vector and covariance matrix with the Gaussian probability 
estimation as the reweighted vector. The subspace RX (SSRX) 
[10] applies principal component analysis (PCA) on the HSI 
and performed the RX detector on a limited number of PCA 
bands. The above mentioned methods belong to linear detection 
methods, the performance of which are not outstanding due to 
the limitation of linear model. Therefore, nonlinear algorithms 
have been successfully applied into detection and other fields, 
such as the Kernel-RX (KRX) [11], the robust nonlinear 
anomaly detector [12], and the Kernel-PCA (KPCA) [13]. 
These kernel-based methods map the original data into a higher 
dimensional feature space, enhancing the separability between 
background and targets. In addition, there are other nonlinear 
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methods like support vector data description (SVDD) detector 

[14], and PE-AD detector [15]. Nonlinear anomaly detector can 
effectively handle the situation that the background region 
cannot meet the normal distribution assumption. Applying the 
kernel function to anomaly detection is able to adapt to the 
complex features in the data and achieve better results. 

Despite the high spectral resolution delivering rich infor-
mation, its high spectral dimension and complicated spectral 
correlation commonly have great effects on the anomaly de-
tection performance when a detector is directly implemented on 
the original whole spectra. Consequently, dimensionality re-
duction algorithms, such as PCA [16], maximum noise fraction 
(MNF) [17], and independent component analysis (ICA) [18] 
[19] are effective preprocessing methods before anomaly de-
tection. Among them, ICA is a multivariate signal analysis 
method, which extracts potential independent components from 
multivariate data according to statistical independence. It has 
been applied in information coding, neurobiology and other 
fields [20], [21]. But the classic ICA algorithm initialized the 
projection vector at random, which limited the performance 
seriously. Compared with linear methods above, manifold 
learning assumes that high dimensional data can be mapped to a 
low-dimensional manifold, which can represent the intrinsic 
structure of data, and maintain some of the important rela-
tionship while eliminating the redundancy, such as Isometric 
Feature Mapping (Isomap) [22]. Locally Linear Embedding 
(LLE) [23] [24], Laplacian Eigenmaps (LE) [25], and Local 
Tangent Space(LTSA) [26]. However, the disadvantage of 
dimensionality reduction before AD is that some potential but 
significant information hidden in the whole HSI may be lost. 
Besides, most AD algorithms cannot extract all the abnormal 
information hidden in the dataset sufficiently, which results in 
low detection rate while avoiding high false alarm rate. 
Therefore, it is a problem that how to further improve the de-
tection efficiency. 

In this paper, the key step to improve the AD performance is 
to construct a framework of refinement for abnormal compo-
nents extraction, instead of simple stack. A widely used algo-
rithm, orthogonal subspace projection (OSP) [27] plays a cru-
cial role to achieve this goal. It solves the problem of quantita-
tive analysis of hyperspectral mixed pixels, and has been suc-
cessfully applied to classification, target detection and other 
occasions. From this perspective, an effective hyperspectral 
anomaly detection framework with anomalous component 
extraction based on ICA and orthogonal subspace projection 
(IOACED) is proposed. For an original HSI dataset, the 
IOACED technique is first applied with four main processes. 
Firstly, an initialized projection vector is obtained based on  the 
LLE algorithm. Secondly, the final projection vector and In-
dependent Component (IC)s are extracted by the 
Orthogonalized-ICA (OICA) algorithm. Thirdly, the value of 
the potential anomaly signal ratio (PASNR) [28] on each IC 
will be calculated and compared with a threshold. The com-
ponents containing the most abnormal information are picked 
out and the remaining components that consist of a great deal of 
background will be suppressed through the OSP method. 
Meanwhile, by iteration, the useless information can be re-

moved to the greatest extent. Finally, the AD output is gener-
ated after background suppression. The main advantages of our 
proposed method include: (1) The AD performance of ICA is 
improved by extracting the brightest anomalous component as 
the initialized projection vector, which is different from ini-
tializing it randomly in original ICA method. (2) The process of 
abnormal components extraction is refined by OSP iteratively, 
which makes the detection result more accurate. 

The rest of this paper is organized as follows. Section II 
briefly reviews the basic theories of the related methodologies. 
Section III describes the proposed anomaly detection method in 
detail. The experiment results of the proposed on several HSI 
datasets are presented in Section IV. Finally, the conclusion is 
drawn in Section V. 

II. BRIEF REVIEW OF THE RELATED METHODOLOGIES 
 
In this section, we introduce the ICA and OSP theory briefly. 

Both of them play important roles in our proposed theory. 
  

A. Independent Component Analysis 
ICA assumes that there are several internal factors in obser-

vation data, which are independent from each other. Observa-
tion data can be denoted as the linear combination of these 
factors, which can be represented as: 

  Y A X   (1) 

where 1 2=[ , ,..., ]T N D
N

X x x x R  has N independent compo-
nents, D denotes the number of bands in the data. 

1 2=[ , ,..., ]T M D
N

Y y y y R  has M variables collected by the 

sensor, and M NA R is coefficient matrix. ICA is utilized to 
solve X when only Y is known, A projection matrix 

1 2[ , ,..., ] M N
N

 W w w w R   is attempted to maximize its 
proximity to A. Then X*, the estimated value of X, can be rep-
resented as follows: 

 * 1 1  X W Y W AX   (2) 

where W and A are approximately equal. Therefore, W-1A is 
closely equal to I. The ICs need to be solved by using statistics 
theory to describe the non-Gaussian characteristics of the data 
according to the central limit theorems [29]. Negentropy [2930] 
is utilized to describe the non-Gaussian characteristics. The 
increase in negentropy indicates the enhancement of 
non-Gaussianity. Furthermore, for ICA, the whitening opera-
tion can improve the extraction efficiency of the ICs and 
decorrelate the variables [30]. After whitening, the observation 
data Y is denoted as Z. A single IC xi can be expressed as wi

TZ, 
1≤i≤N by (2). In the process of solving W, Aapo Hyvarinen 
proposed the Fast ICA algorithm [31] which has the advantages 
of simple computation, fast speed, and strong robustness. It can 
be written as: 
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where wi
*, 1≤i≤N is the column vector of W after normaliza-

tion. g (·) is the derivative of a non-quadratic function G (·). 
Equation (5) is exploited to iterate wi when the convergence 
condition is reached. Then an approximate estimate of an IC x* 
can be obtained by wi

TZ. 
During the process of solving ICs, orthogonalization is a 

serviceable method to remove the correlation. The specific 
steps for orthogonalized ICA(OICA) are 
(i) Remove redundant bands, whiten the data, and determine 

the number of ICs N; 
(ii) Initialize W, the norm of which should be equal to 1 

meanwhile; 
(iii) Update each column of W through (3); 
(iv) Use the following formula to ensure that wn is orthogonal 

to the previous n-1 wi, 1≤i≤n-1, i＜n≤N; 
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(v) Utilize (5) to determine whether the result of (3) 
con-verges. κ denotes a small positive number. If it does 
not converge, return to (iii) to repeat the iterative process. 

 *T
n n w w   (5) 

(vi) After estimating wn, continue to solve wn+1, until wN is 
solved. 

 

B. Orthogonal Subspace Projection  
It is comprehensible that a pixel of HSI always consists of 

several endmember spectrums, and different endmembers 
corresponding to each material, including background and 
outliers. Hence endmember vectors can be divided into two 
matrices: background characteristic matrix U and anomaly 
characteristic matrix MT. The data vector y in HSI can be rep-
resented as  

 T T B  y M α Uα n  (6) 

where U=[u1,u2,...,ub], MT=[m1,m2,...,mt]. ui is an eigenvector 
orthogonal to each other. U represents the orthogonal space of 
ui. αT and αB are abundance coefficients corresponding to two 
matrices respectively. 

The background components in HSI can be suppressed by 
OSP. After U is determined with a kind of suitable statistical 
quantity, such as the spectrum of detected pixels [32], the pro-
jection matrix can be obtained as follows: 

 
T

U
  P I UU   (7) 

where I denotes the unit matrix. Since ui denotes an eigenvector 
orthogonal to each other, it is simple to get PU=U-UTU=0. The 
pixel vector after being projected by OSP can be represented as 
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  (8) 

From the above equation, OSP can effectively remove the 
interference of some uninteresting eigenvectors (background) 
in HSI.  

III. PROPOSED METHOD 
This section gives the details of the proposed IOACED 

method. In the first part, an initialized vector selection strategy 
is introduced. In the second part, the evaluation for the content 
of anomaly information is described. In the third part, a refined 
anomaly component extraction method is given. Finally, an 
overview of the process is discussed. 

A. Initialization Vector Selection 
When ICA is exploited to extract features, we need to get an 

initial W, each column of which is substituted into (3) for iter-
ation. It is obviously known that different initialized projection 
vector w0 will result in different iteration performance, though 
they may converge by (5). In general, w0 is usually selected at 
random, which will restrict the performance of ICA. From this 
perspective, a specified projection vector initialization strategy 
is introduced in the first part of our proposed method. The LLE 
algorithm is applied to reduce the dimension of HSI and keep 
the components that contain only useful information. LLE 
assumes that the data is distributed on a manifold of a 
high-dimensional space, but linear in a small local area [23]. 
The data of HSI is represented as 1 2=[ , ,..., ] D M

M
X x x x R , M 

denotes the number of pixels in a spectral band and D denotes 
the number of bands. LLE achieves the mapping of high di-
mensional space manifolds in low dimensional space [33]. Both 
the high and low dimensional spaces share the same topology 
structure. The algorithm flow can be conducted as follows 

(i). Compute the Euclidean distance dx(i,j) between any two 
samples xi and xj in X. Each point of the distance matrix D is 
expressed as Dij=dx(i,j). 

(ii). Find the K nearest samples to xi in X according to Dij, 
expressed as 1{ }K

ij jx   
(iii). Take (9) as the objective function, where pij is a linear 

reconstruction coefficient corresponding to xij.   
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(iv). Calculate yi and yij, which denote the low dimensional 
mapping of xi and xij respectively. 
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Define a matrix N NQ R . If xi and xj are neighbor pixels, Qij is 
equal to qij, otherwise Qij=0. This problem is equivalent to 
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solving the eigenvectors from the second to the (d+1)th mini-
mum eigenvalues of matrix M, from M=(I-Q)T(I-Q). The ei-
genvector will be the output, expressed as 

1 2[ , ,..., ] d M
M

 Y y y y R . Following this, the data is whitened 

to derive d MZ R by zi=D-1/2ETyi 1≤i≤M [19] [24]. D and E 
are the eigenvalue matrix and the eigenvector matrix corre-
sponding to the covariance matrix of yi respectively.  

Then, Z is substituted into the a locally adaptive kernel den-
sity estimation (LAKDE) algorithm [34]. LAKDE is remarked 
as a local AD strategy. It is employed within the likelihood ratio 
test (LRT) rule to model the local background, and information 
extracted from the image is injected into the bandwidth selec-
tion process. According to [30], the proposed strategy is ob-
tained by 
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  (11) 

where y is the test pixel. YB(i) represents the ith background 
sample. N, d, and k denote the number of background samples, 
the matrix dimension, and the kernel function respectively (the 
Gaussian Radial Basis (GRB) is selected). h is bandwidth. If h 
is too large or too small, the result will all be affected [36]. So in 
[33], an adaptive method is proposed to specify h. The Eu-
clidean distance between y and YB(i) was calculated. After all N 
distances were calculated, the kth distance was sorted in as-
cending order, where k was usually taken the first 20 percent of 
N. Equation (13) was exploited to obtain the detection result. 
The pixel with the greatest brightness was picked out as the 
initialization projection vector w0 in ICA. w0 contains compar-
atively abundant anomaly information that may be a pure out-
lier in large probability. Due to the characteristic of ICA that 
the local maximum is calculated iteratively, the maximum 
projection of the anomaly will be derived by selecting w0 to 
initialize the projection vector in ICA, which can distinguish 
the IC with most anomaly information. 
 

B. Assessment of anomaly information content 
In this subsection, we substitute aforementioned w0 into 

OICA and derive the final w by (3), 4) and (5). Then the esti-
mate of IC, demoted as x*, can be obtained by wTZ. Following 
this, Potential Anomaly Signal to Noise Ratio (PASNR) [28] is 
exploited to estimate the anomaly information content in each 
IC. PASNR is a feature selection method based on histogram 
statistic and threshold segmentation. The key is to find a 
threshold in the abundance image of ICs for segmentation. 
Pixels with grayscale values larger than the threshold are con-
sidered as potential anomalies, otherwise background pixels. 
Then utilize (14) to compute PASNR 

 10
var( )10 log
var( )

P

B

PASNR
 

   
 

y
y

  (12) 

where var (·) denotes the variance of the data. yP and yB are the 
grayscale value of potential anomaly and background pixel 
respectively. As seen in section B, the threshold between po-
tential anomaly signals and the background plays the vital role 
in calculating the PASNR for each IC. According to Chiang et 
al [37], it can be specified that the potential anomaly pixels are 
those pixels that come after the first-empty zero-point bin from 
the histogram constructed from the signal, as shown in Fig. 
1(a), where the horizontal axis is the gray value, and the vertical 
axis is the number of pixels. We can find this first-empty zero 
point as the threshold. The lighter pixels are usually represented 
as anomaly, however, sometimes the gray value of background 
pixels can be higher than anomaly pixels in gray scale distri-
bution of ICs, as shown in Fig. 1(b). Because in some ICs there 
are very few anomaly pixels and the energy of background is 
much stronger than outliers, which are not light enough. 
Therefore, in the proposed method, we find the nearest zero 
point from the peak in both directions meanwhile, and segment 
the image according to the gray value corresponding to the two 
zero points respectively. Then the PASNR is calculated in both 
images, and select the greater one as the final result, expressed 
as VP. In contrast, the selection from both sides is more con-
siderate than from one side, and the image can be segmented 
more clearly. 
 

C. Refinement of abnormal components extraction 
As described in section A, w0 is obtained as the initialized 

projection vector for OICA and is utilized to solve the final 
projection vector wi. Then calculate the first IC x1

* by w1
TZ. 

PASNR is utilized to estimate the abnormal information con-
tent in x1

*. It is necessary to set a threshold γ to compare with 
the VP1. Once VP1 is larger than γ, it means x1

* contains 
abundant abnormal information. According to the characteris-
tics that ICA is able to calculate the local maximum iteratively, 
the projection direction of the maximum anomaly can be finally 
derived as w. 

However, there will be another problem. After obtaining the 
first IC, the IC obtained later may still contain much abnormal 
information, which possibly dispersed to a series of subsequent 
ICs. This is not what we expect. In this article, the OSP algo-
rithm and an iteration process are introduced to effectively 
remove the interference of uninteresting information. The spe-
cific implementation steps are as follows:  

Firstly, the whitened matrix Z is processed by OSP according 
to (10), after the first w0 processed by a simple 
eight-neighborhood average. it can effectively avoid the re-
peated detection of pixels with the same position in initializing 
the vector w0. Then a new initial vector w0, which distinguishes 
from the first one above, is obtained by LAKDE. Through 
OICA, w and the second IC are obtained as well. and mean-
while w will also be not similar with the previous one. The 
remaining abnormal information are concentrated on the front 
ICs as far as possible with the effects of suppressing the back-
ground by OSP. 

After getting the second IC, its value of PASNR VP2 is also 
compared with γ. If VP2 is larger, there will be still considerable 
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abnormal information in the rest data. Then the iterative pro-
cess is repeated until VPn is less than γ, which indicates that the 
abnormal information in the image are all extracted, and the 
iteration is terminated. 

When OSP is applied to anomaly detection in HSI, it is dif-
ficult to construct the background subspace without any prior 
information of the image. Some researchers [32] construct the 
background subspace U by modeling the local data and com-
paring the spectral differences between the center pixel and its 
neighborhoods. Then P can be obtained by using the eigen-
vector matrix B of U, which is complicated and may suppress 
both background and anomalies. In the article, we transform the 
whitened matrix Z obtained by dimensionality reduction for X 
with LLE in section A, containing d bands. Then the abnormal 
information content of each band is estimated by PASNR, one 
with the smallest VP is selected as the background matrix U. 
The orthogonal complement space P can be obtained according 
to (7). In this way, an approximate projection direction is found. 
The data is projected onto P by (8), which can eliminate quite a 
few background feature components in the image.  

After iteration, we can obtain n ICs whose VP are all larger 
than γ, and construct them to a new dataset Z*, which contains 
almost all of abnormal information. Finally, the kernel local RX 
algorithm is exploited to scan each pixel by double windows, in 
order to suppress the remaining background pixels and only 
leave outliers as the final result. 
 

D. Overview of Proposed IOACED Framework 
The specified projection vector initialization method, the 

assessment of anomaly information content, and the refinement 
of abnormal components extraction based on OSP are three 
main implementations in the proposed IOACED framework. 
The detailed process of the proposed IOACED framework is 
summarized in the following. 

 
1) Set the parameters: the threshold γ. 
2) For an HSI dataset X, a corresponding Y is obtained through 

the dimensionality reduction by the LLE algorithm. Use the 
whitening operation zi=D-1/2ETyi to obtain Z. 

3) Z is detected by the LAKDE algorithm in order to extract 
the pixel with the greatest brightness as the initialization 
vector w0 

4) Solve the final projection matrix w by OICA with w0, and 
calculate the corresponding IC. 

5) Utilize the PASNR method to estimate the abnormal in-
formation content of the IC, expressed as VPi. Set the 
threshold γ to compare with VPi. If VPi is larger than γ, 
smooth w0 by an eight-neighborhood average, and then the 
OSP algorithm is applied, as shown in (8), to process Z to 
further suppress the background and concentrate the ab-
normal information. Then return to step 3) for iteration. 
When VPi is larger than γ, go to step 6). 

6) Reconstitute all the remaining ICs to a new 3-D dataset Z*. 
The KLRX algorithm is applied to suppress the remaining 
background pixels and only leave outliers as the final result 
δIOACED. 

 
 

Algorithm 1 Hyperspectral Anomaly Detection via the 
IOACED Framework 
Input: HSI data X, number of the nearest samples K in 

LLE, dimension of dataset d after dimensionality 
reduction, threshold γ 

Obtain: the whitened matrix Z and the initialization 
vector w0 extracted by LLE and LAKDE 

Compute: 1) the final projection matrix w by OICA via 
(3), (4), and (5); 

2) the corresponding IC; 
3) the abnormal information content of the IC, VPi via 

(12); 
While VPi >γ do 

Smooth last w0 by an 8-neighborhood average; 
Compute the projection matrix 

UP via (7); 

Update ZOSP= 
UP Z; 

Update w (3), (4), and (5); 
Compute the corresponding IC and VPi 

End While 
Compute: δIOACED with Z*. 
Output: δIOACED 

 
The main steps for implementing the proposed IOACED 

framework are listed in Algorithm 1. And the flowchart of the 
IOACED method is shown as Fig. 2. 

 

IV. EXPERIMENTS AND ANALYSES 
This section refers to a series of verified experiments un-

der-taken to evaluate the performance of the proposed 
IOACED framework. The constituent parts are as follows. 
1) Descriptions of the hyperspectral datasets used to investi-

gate the effectiveness of the proposed method. 
2) Detection performance evaluation of the proposed 

IOACED spectral anomaly detection methods on the ex-
perimental hyperspectral datasets, including detection 
maps, receiver operating characteristic (ROC) curves, and 
background-anomaly separation analyses 

3) Discussion of the experimental results with the area under 
ROC curve (AUC) values. 

4) Sensitivity analysis of the relevant parameters. 

The first zero point 
(postive)

The first zero point 
(reverse)

 
(a)            (b) 

 
Fig. 1.  Statistical histogram of independent components 
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Fig. 2.  Flowchart of the proposed IOACED method 
 

A. Hyperspectral Dataset Description  
In this subsection, three real-world hyperspectral datasets are 

utilized in the experiments to investigate the performance of the 
proposed IOACED method in the task of detecting anomaly 
targets. These three datasets possess different properties, in-
cluding the data collection sensor, the clutter of the background 
land cover, the field of image coverage, and the size and spatial 
distribution of the targets. All of the detection algorithms and 
experiments are implemented in MATLAB v2017 on a per-
sonal computer with an Intel Core i3 3.40-GHz central pro-
cessing unit, 8.0 GB of RAM, and 64-bit Windows 7. 

The first hyperspectral dataset was collected by the Airborne 
Visible Infrared Imaging Spectrometer (AVIRIS) hyperspectral 
remote sensor, covering a scene of Moffett Field, California, at 
the southern end of the San Francisco Bay, with spatial resolu-
tion of 3.5m per pixel. The raw HSI consists of 224 spectral 
channels spanning the wavelength range of 0.4 to 2.5um. In our 
experiment, 178 bands of the raw HSI were retained after re-
moving the bands corresponding to low signal-to-noise ratios 
and water absorption regions (1–98, 113–114, 129-153, and 
172–224). In the original image, a scene about the Moffett Field 
airport is picked out for anomaly detection, which covers the 
area of 192×48 pixels. The main background land-cover types 
in this image are ground, road, and grass, as shown in Fig. 3(a). 
There are seven aircrafts and three maintenance vehicles in the 
image, whose spectra are different from the spectra of the 
background materials, as illustrated in Fig. 3(c), which consist 
of 80 pixels and account for 0.87% of the whole image, as 
shown in Fig. 3(b). Hence, these seven aircrafts and three 
maintenance vehicles are considered as the anomaly targets to 
be detected in this dataset.  
The second dataset is the San Diego data, also collected by the 
AVIRIS, over San Diego, CA, USA [38] [39]. The initial im-
ages have 3.5 m spatial resolution and 224 spectral channels 
ranging from 370 nm to 2510 nm. In the experiment, a subset 
image with the image size of 100 × 100 pixels was selected, and 
the digital numbers were used as the input data. After removing 
the bad bands [1–6, 33–35, 97, 107–113, 153–166, 221–224] 
due to water absorption and low signal-to-noise ratio, the 189 
bands were used in the experiment. In the image scene shown in 
Fig. 4(a), main ground objects of the background are roof, road, 
shadow and grass. Three planes occupying 58 pixels were 
commonly regarded as anomalies because they cover a very 
small number of pixels and are spectrally different from main 

ground objects. Fig. 4(b) shows the ground objects of the 
anomalies and Fig. 4(c) plots spectral curves of anomalies and 
main ground objects. 

 

                            
(a)                                                      (b) 

 

 
(c) 

Fig. 3.  AVIRIS-Moffett Field hyperspectral dataset. (a) Pseudo-color image. 
(b) Reference. (c) Spectra of the background and the anomalies. 
 

The third hyperspectral dataset was collected by the 
Hyperspectral Digital Imagery Collection Experiment 
(HYDICE) hyperspectral remote sensor. This HSI, which con-
sists of a suburban residential area with an approximately 3m 
spatial resolution, is publicly available [40]. It consists of 210 
spectral channels from 0.4 to 2.5 um. After removing the bands 
of the water absorption regions, low signal-to-noise ratio, and 
poor quality (1–4, 76, 87, 101–111, 136–153, and 198–210), 
162 bands remained. This image scene is cluttered with dif-
ferent background land-cover types of parking lot, soil, water, 
road I, and road II, as depicted in Fig. 5(a). There are 8 
man-made vehicles, which consist of 17 pixels and account for 
0.21% of the whole image, as shown in Fig. 5(b). The spectra of 
these pixels are different from the spectra of the background 
land-cover types, as illustrated in Fig. 5(c), and these pixels are 
considered as the anomaly targets to be detected. 
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(a)                                                               (b) 

 

 
(c) 

Fig. 4.  AVIRIS-San Diego hyperspectral dataset. (a) Pseudo-color image. (b) 
Reference. (c) Spectra of the background and the anomalies. 
 

      
(a)                                                      (b) 

 
(c) 

Fig. 5.  HYDICE hyperspectral dataset. (a) Pseudo-color image. (b) Reference. 
(c) Spectra of the background and the anomalies. 

 

B. Experimental Details  
In this subsection, the proposed IOACED method is com-

pared with a set of state-of-art anomaly detectors: RXD [6], 
LRX [42], KLRX [11], LRR [46], SRD [43], CRD [44] and 
ICA-KLRX [28]. The parameter analysis for IOACED will be 
in Section C. and the setup of these detectors are described as 
follows. 

 
1) Parameter setup for Compared algorithms 

Table I lists the parameters of five detectors on the three 
datasets. For the LRX and KLRX methods, the outer window 
(OW) and inner window (IW) of the AVIRIS-Moffett Field 

dataset are set to be 13×13 and 5×5, respectively; those of San 

Diego dataset are set to be 21×21 and 5×5, respectively; and 

those of HYDICE dataset are set to be 19×19 and 7×7, respec-
tively. For the CRD and SRD methods, the OW and IW of the 
AVIRIS-Moffett Field dataset are set to be 15×15 and 7×7, 

respectively; those of San Diego dataset are set to be 17×17 and 

7×7, respectively; and those of HYDICE dataset are set to be 13

×13 and 7×7, respectively. For the ICA-KLRX method, HFC is 
utilized to estimate the virtual dimensionality(VD) [45]. The 
VD of two AVIRIS datasets are 11, and of the HYDICE dataset 
is 6. The size of IW and OW are the same as the KLRX. 

 
2) Detection Performance 

The detection performance is evaluated quantitatively by 
receiver operating characteristic (ROC) curves [41] and the 
normalized background-anomaly separation maps. Based on 
the ground truth, the ROC curve plots the relationship between 
the detection rate(DR) and false alarm rate(FAR); DR and FAR 
are defined as follows: 

anomaly

detection

R
RDR    

image

false

R
R

FAR        (15) 

where Rdetection is the number of correctly-detected anomaly 
pixels and Ranomaly is the total number of anomaly pixels in the 
image. Rfalse is the number of falsely-detected anomaly pixels 
and Rimage is the total number of pixels in the image. The ROC 
curve of an outstanding detector is located near the top left of 
the coordinate plane, since it can achieve a high detection rate 
with a low false alarm rate. Moreover, the AUC value is also 
used to measure the detection performance, which denotes the 
area under the ROC curve. A detector with better detection 
performance has a larger AUC value. 

For the AVIRIS-Moffett Field dataset, the color detection 
maps of algorithms in comparison are shown in Fig. 6. 
ICA-KLRX obtains a superior performance in background 
suppression and anomaly extraction overall. However, for 
ICA-KLRX, the brightness of anomaly targets in the image is 
not very high, because it is affected by the background sup-
pression. Furthermore, none of three small anomaly targets is 
detected. The detection probability is limited. In addition, RX 
and LRX have a poor background suppression, and only 
anomaly targets with high anomaly abundance fractions can be 
well detected. For KLRX, the background suppression is not 
very effective, but the detection performance is better than RX 
and LRX, and some anomaly targets with low anomaly abun-
dance fractions are still distinguishable. For LRR, the perfor-
mance of suppressing background is better than KLRX, and the 
false alarm in the middle right of the scene is suppressed as well, 
though there is still some background can be obviously seen, 
especially in the bottom left of the scene. For SRD, three small 
anomalies can be seen, but not obviously, and the background 
in the bottom left of the scene is suppressed badly. CRD can 
detect all anomalies, including seven small targets, and the 
background in the bottom left of the scene is suppressed well. 
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However, the suppression for the runway in the middle of the 
scene is relatively weak, which can increase the false alarm rate. 

In the proposed IOACED algorithm, it can be seen that the 
background suppres- 
 

TABLE I 
THE LISTS OF PARAMETERS OF ALL DETECTORS ON THE THREE DATASETS 

 

Datasets 
Configuration Parameters 

RXD LRR LRX KLRX CRD SRD ICA-KLRX 
 

AVIRIS-Moffett 
Field 

 
- 

 
- 

OW=13×13 OW=13×13 OW=15×15 OW=15×15 OW=13×13  
VD=11 

IW=5×5 IW=5×5 IW=7×7 IW=7×7 IW=5×5 
 

AVIRIS- San 
Diego 

 
- 

 
- 

OW=21×21 OW=21×21 OW=17×17 OW=17×17 OW=21×21  
VD=11 

IW=5×5 IW=5×5 IW=7×7 IW=7×7 IW=5×5 

 
HYDICE 

 
- 

 
- 

OW=19×19 OW=19×19 OW=13×13 OW=13×13 OW=19×19  
VD=6 

IW=7×7 IW=7×7 IW=7×7 IW=7×7 IW=7×7 

 
 
 

                   
(a)                          (b)                         (c)                          (d) 

                   
(e)                         (f)                           (g)                         (h) 

 
Fig. 6  Color detection maps of different algorithms for the AVIRIS-Moffett 
Field dataset. (a) RX. (b) LRX. (c) KLRX. (d) LRR. (e) ICA-KLRX. (f) SRD. 
(g) CRD. (h) IOACED. 
 
sion performance is outstanding, and all anomaly targets are 
successfully extracted. A quantitative analysis of these different 
anomaly detection algorithms is illustrated in Fig. 7. Fig. 7(a) 

presents the ROC curves of each algorithm. It can be observed 
that the IOACED algorithm achieves the best detection per-
formance among all of the algorithms in the figure, since a high 
detection rate can be obtained when the false alarm rate is very 
low. ICA-KLRX also has good probabilities of detection with 
low false alarm rates. The probability of detection of 
ICA-KLRX reaches more than 0.9 when the false alarm rate is 
0.005. Except for ICA-KLRX, LRR and KLRX achieve better 
ROC curves than the other compared methods. 

 

 
(a)                                            (b) 

 
Fig 7.  Quantitative analysis of compared algorithms for the AVIRIS-Moffett 
Field dataset. (a) ROC curves. (b) background-anomaly separation map. 

 
Fig. 7(b) demonstrates the separability of background and 

anomaly targets in all investigated algorithms through the 
background-anomaly separation map. For the convenience of 
comparison, values of all detection results are normalized to 
0-1. Each detector has two boxes: the green one represents the 
distributions of background pixels’ values, and the red one is 
the distributions of anomaly pixels’ values. The central mark in 
each box indicates the median, while the bottom and top edges 
indicate the lower quartile and the upper quartile, with the 
whiskers indicate the extreme values within 1.5-times the in-
terquartile range from the end of the box. From Fig. 7(b), it is 
proven that the IOACED algorithm and ICA-KLRX can sup-
press the background information to a small range, and the gap 
between the anomaly box and the background box is large 
when compared with other detectors. But the normalized de-
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tection output range of the anomaly box of IOACED is 0.85, 
which is higher than ICA-KLRX, 0.82. Therefore, the 
IOACED algorithm has the best background-anomaly separa-
tion performance in all compared algorithms. 

For the AVIRIS-San Diego dataset, the color detection maps 
of all compared algorithms are illustrated in Fig. 8. It can be 
seen that KLRX, LRR, and the IOACED algorithm have rela-
tively better performance in background suppression, and 
IOACED is the best one among them. Besides, the anomaly 
targets extraction of KLRX, ICA-KLRX and IOACED are all 
effective, but ICA-KLRX has more false-alarm rate. In addition, 
RX suppresses most of the background, but anomaly targets are 
affected as well. In LRX, the performance is very weak, the 
image is scattered, and the targets are unseen. For CRD, the 
performance of anomaly target extraction is poor, and a part of 
the anomalies is indistinguishable from the background. For 
SRD, it has better detection performance than LRX and CRD. 
Fig. 9 shows the quantitative comparisons of these algorithms 
for the AVIRIS- San Diego dataset via ROC curves and back-
ground-anomaly separation map. From Fig. 9(a), it can be seen 
that IOACED and KLRX obtain superior ROC curves, and are 
always higher than other algorithms on the probability of de-
tection. When the false alarm rate is less than 0.01, the per-
formance of IOACED is much better than KLRX. When the 
false alarm rate is more than 0.005, all anomaly pixels can be 
detected by IOACED. In addition, the background-anomaly 
separation map is demonstrated in Fig. 9(b). It shows that 
IOACED has a more advanced performance when compared 
with other algorithms.  

 

          
(a)                                                               (b) 

          
(c)                                                               (d) 

          
(e)                                                                (f) 

          
                  (g)                                                                (h) 
 
Fig. 8.  Color detection maps of different algorithms for the AVIRIS- San 
Diego dataset. (a) RX. (b) LRX. (c) KLRX. (d) LRR. (e) ICA-KLRX. (f) SRD. 
(g) CRD. (h) IOACED. 
 

 
(a)                                                          (b) 
 

Fig 9.  Quantitative analysis of compared algorithms for the AVIRIS- San 
Diego dataset. (a) ROC curves. (b) background-anomaly separation map. 
 

For the HYDICE dataset, Fig. 10 shows the color detection 
maps of all compared algorithms. It can be observed that the 
proposed IOACED algorithm extrudes the anomalies by sup-
pressing most of the background land-cover types to a low 
detection output, though there are still two false alarm pixels in 
the up right of the scene. Comparing the details in the detection 
maps, IOACED achieves a superior performance in suppress-
ing the background than other algorithms. RX and SRD obtain 
high false alarm rates. For LRX, it has good performance for 
background suppression, but some anomaly targets are sup-
pressed as well, only three targets in the bottom can be seen 
clearly. For LRR, all anomalies can be found, and the perfor-
mance of background suppression is better than KLRX, but 
worse than IOACED. Fig. 11 gives a quantitative comparison 
between the different anomaly detectors with ROC curves and 
background-anomaly separation map. From Fig. 11(a), it can be 
observed that LRR, CRD, and IOACED all obtain high proba-
bilities of detection with low false alarm rates. The probability 
of detection of IOACED is best when the false alarm rate is less 
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than 0.001, and more than 0.9 when the false alarm rate is 0.02. 
Compared to LRR, and CRD, IOACED exhibits a slightly 
lower probability of detection when the false alarm rate is 
[0.003, 0.01]. However, the overall detection performance of 
IOACED is still better. From Fig. 11(b), it can be seen that the 
proposed IOACED algorithm achieves a better back-
ground-anomaly separation than the other methods. 
 

          
(a)                                                                   (b) 

          
(c)                                                                (d) 

          
(e)                                                                (f) 

          
(g)                                                                  (h) 
 

Fig 10.  Color detection maps of different algorithms for the HYDICE dataset. 
(a) RX. (b) LRX. (c) KLRX. (d) LRR. (e) ICA-KLRX. (f) SRD. (g) CRD. (h) 
IOACED. 
 

 
(a)                                                               (b) 

 
Fig. 11.  Quantitative analysis of compared algorithms for the HYDICE dataset. 
(a) ROC curves. (b) background-anomaly separation map. 
 

C. Discussion and Analysis  
A discussion of the proposed IOACED framework and the 

parameter analysis of its detection performance are provided in 
the following. 
 

 
 

 
First, a quantitative index, AUC, is utilized for the investi-

gation of the experimental results of the three datasets. A de-
tector with a larger area under its ROC curve will obtain a 
larger AUC value, which means that the detector obtains a 
better detection performance, and the best AUC performances 
are highlighted for each experimental dataset in Table II. The 
statistics in Table II further indicate that the IOACED algo-
rithm yields the best detection performance in all the compared 
algorithms. In fact, three datasets in our experiments have 
different characteristics. For the experimental results of the 
datasets, it can be found as follows. 
1) For the AVIRIS- Moffett Field dataset, it contains three 

different types of backgrounds, which can make the detec-
tion more difficult. However, the IOACED algorithm 
achieves very high AUC values (more than 0.99), which 
proves the advantage of the proposed algorithm. 

TABLE III 
RUNNING TIMES OF THE ALGORITHMS OBTAINED WITH THE 

HYPERSPECTRAL DATASETS 
 

 

/second AVIRIS-Moffett 
Field 

AVIRIS-San 
Diego 

 

HYDICE 

RXD 0.13 0.20 0.11 
LRX 32.61 40.47 24.76 

KLRX 33.88 39.00 33.29 
LRR 43.80 52.73 47.53 

ICA-KLRX 16.71 12.51 12.94 
SRD 55.96 137.86 60.18 
CRD 28.41 43.50 36.04 

IOACED 28.42 33.79 25.35 

 

TABLE II 
AUC VALUES OF DIFFERENT ALGORITHMS FOR THE AVIRIS-MOFFETT FIELD, 

AVIRIS-SAN DIEGO AND HYDICE DATASETS 
 

Dataset Algorithm/AUC value 

 
AVIRIS- 

Moffett Field 

RXD LRX KLRX LRR 

0.9540 0.9720 0.9791 0.9675 
ICA-KLRX SRD CRD IOACED 

0.9957 0.9609 0.9706 0.9986 
 

AVIRIS- 
San Diego 

RXD LRX KLRX LRR 

0.9202 0.6788 0.9944 0.9924 
ICA-KLRX SRD CRD IOACED 

0.9271 0.9817 0.9037 0.9994 
 
 

HYDICE 

RXD LRX KLRX LRR 

     0.9692      0.8932      0.8760      0.9257 
ICA-KLRX SRD CRD IOACED 

     0.7194      0.9789      0.9870      0.9887 
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2) For the AVIRIS-San Diego hyperspectral dataset, the pro-
posed IOACED framework perfectly suppresses the back-
ground land-cover types of roof and shadow, whose spectra 
are somewhat correlated with the spectra of the anomaly 
targets, and obtains a relatively high level of anomaly ex-
trusion. 

3) For the hyperspectral dataset acquired by the HYDICE 
sensor, great differences between the spectra of the back-
ground land-cover types lead to difficulty in implementing 
effective background suppression. This also makes the 
anomaly targets difficult to detect. However, the proposed 
IOACED framework suppresses the background land-cover 
types in this dataset to a satisfactory level and extrudes the 
anomaly targets. 

Moreover, the computational costs of the proposed IOACED 
method and the compared algorithms are shown in Table III. It 
can be seen that the SRD algorithm performs the highest 
computational cost, and the proposed IOACED algorithm has 
the similar cost with CRD, which is lower than SRD. When the 
size of HSI dataset is large, the computational cost of algo-
rithms increases as well. The time cost is an important factor for 
the practical application of an anomaly detector, so our pro-
posed IOACED algorithm has an advanced performance in 
efficiency. 

Second, we evaluate the influences of the different parame-
ters settings of the IOACED algorithm. There are three im-
portant parameters in our proposed method. The first parameter 
analysis was undertaken with the AVIRIS-Moffett Field dataset, 
and the other two were with the three datasets. We implemented 
this analysis by the use of AUC values calculated for the whole 
area under the curve. 

Here the three parameters are: (1) the number of the nearest 
samples K in the LLE algorithm; (2) the dimension of dataset d 
after dimensionality reduction; and (3) the threshold γ in 
IOACED. Fig. 12 shows the ROC curves of IOACED on three 
datasets with the changing number of the nearest samples K 
from 20 to 45. For the Moffett Field dataset of Fig. 12(a), when 
the K increases from 20 to 45, the ROC curves of IOACED 
have similar trend with small fluctuations. Particularly, when 
the false alarm rates are between 0.0004 and 0.01, the proba-
bility of detection with K=20 is higher than others. The ROC 
curves of the HYDICE dataset in Fig. 12(c) have similar ob-
servations with that of Fig. 12(a), but the probability of detec-
tion with K=40 is the best. In Fig. 12(b), we can obtain the same 
conclusion more observably. 
 

               
(a)                                                                   (b) 

 
(c) 

Fig. 12.  The ROC curves of IOACED with different choice of the number of 
the nearest samples K for LLE on the three datasets. (a) AVIRIS- Moffett Field. 
(b) AVIRIS- San Diego. (c) HYDICE. 
 

Furthermore, Fig. 13(a) shows the result of AUC curves with 
the dimension of dataset d after dimensionality reduction on the 
three datasets. In the figure, the AUCs of IOACED on the 
Moffett Field and the San Diego datasets have similar trend and 
almost keep stable and smooth with d from 6 to 11, and the 
values of AUC are all higher than 0.99. When d is 12, the AUC 
curves of the San Diego has an obvious fall. Particularly, 
compared to two AVIRIS datasets, the AUC curve on the 
HYDICE dataset has the highly distinguishing performance. It 
has the greatest fall decreasing from 0.9123 to 0.8814 as the d 
increases from 9 to 11. The reason is that LLE achieves the 
mapping of high dimensional space manifolds in low dimen-
sional space. Both the high and low dimensional spaces share 
the same topology structure. The sizes of anomaly targets in the 
first and second datasets are large, and the background is rela-
tively simple. The topological structure of the reconstructed 
matrix after dimensionality reduction is quite similar to that of 
the original data matrix, and has strong robustness to different 
band numbers after LLE. While the scene of the third dataset is 
more complex and the sizes of the anomaly are quite small. The 
background disturbs the abnormal object greatly. This leads to 
the difference of the topological structure between dimen-
sion-reduced matrix and the original matrix. to this end, when 
dimension D changes, the w0 may change as well, resulting in 
different detection performance. When d is 12, the value of 
AUC reaches 0.9186, which shows the best performance. Fig. 
13(b) plots the curves of computational time with respect to the 
increasing dimension number d. The results show that compu-
tational time of IOACED increases with the rising d. Never-
theless, a larger value of d does not necessarily correspond to a 
better detection performance, shown as Fig. 13(a), and signif-
icantly increase computing time. Therefore, a smaller value of d, 
e.g., 9, is preferred. 
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(a)                                                           (b) 
Fig. 13.  The curves of (a) AUC and (b) computation time with different choices 
of dimension d on the three HSI datasets. 
 

Fig. 14 illustrates histogram of AUC and the line chart of 
iteration number of IOACED on the three datasets with the 
changing threshold γ. The histogram corresponds to the AUC 
value on the left, and the line chart corresponds to the number 
of iterations on the right side. It can be seen that the same al-
gorithm has different threshold ranges for different datasets due 
to discrepant geological types and imaging characteristics of 
spectrometer. The range of the threshold we select in (a) is [0.2, 
2]. When γ =0.2, the threshold is too small. As the result, the 
number of iteration reaches to 15, the time consuming is high, 
and the performance is not obviously improved. When γ is 
between [0.3, 0.4], the value of AUC is 0.9986, the algorithm 
iterates 3 times, of which both the performance and efficiency 
are the highest. In (b), the selection of the threshold range is 
[4.5, 9]. When γ is between [4.5, 5.5], the algorithm iterates 4 
times and the value of AUC is 0.9997. As γ increases, both the 
iteration number and the detection performance decreases. The 
threshold range selection in (c) is [0.04, 8], but only when γ is 
0.04 does the proposed method have the maximal iteration 
times 5, and the best detection performance 0.9887. the value of 
AUC with γ between 0.1 and 3 is 0.9864, which is a little lower 
than γ=5. Moreover, the iteration number is only 2 when γ is [4, 
8], and the performance is greatly reduced as well. 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 14.  The histogram of AUC and the line chart of iteration number on three 
HSI datasets with different choices of the threshold γ (a) AVIRIS- Moffett Field. 
(b) AVIRIS- San Diego. (c) HYDICE. 
 

From the aforementioned analyses, the number of the nearest 
samples K, the dimension of dataset d after dimensionality 
reduction and the threshold γ are three parameters in the 
IOACED algorithm that have a relatively obvious influence on 
the detection performance. On the whole, the IOACED algo-
rithm is quite robust to the settings of parameters if they are in 
reasonable ranges. The change of parameters will greatly affect 
the computational costs of the algorithm. Moreover, currently 
the parameters are set empirically and artificially. In the future, 
we will focus on how to determine all parameters automatically 
and adaptively, and we believe this will further improve the 
practicality of this method. 
 

V. CONCLUSIONS 
In this paper, a novel hyperspectral anomalous component 

extraction framework based on ICA and OSP is proposed. The 
LLE and the LAKDE algorithm are utilized to extract the 
brightest anomalous component as the initial projection vector, 
which improve the anomaly detection performance of the ICA 
algorithm. Furthermore, the OSP method is exploited to sup-
press the background components in the surplus data. In this 
way, the anomalous components in the iteration operation are 
refined, and the discrimination between anomalies and back-
ground is enhanced. Extensive experiments on real datasets 
confirm that the proposed anomaly detection algorithm has 
superior detection performance compared to the other detection 
methods. Moreover, the parameter sensitivity analysis proves 
the robustness of the proposed method with reasonable pa-
rameters settings. 
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HIGHLIGHTS 
 

1. A hyperspectral anomaly detection framework with 

anomalous component extraction based on ICA and 

OSP is proposed, which discriminate the anomaly 

from backgrounds efficiently. 

2. The anomaly detection performance of ICA is im-

proved by extracting the brightest anomalous com-

ponent as the initialized projection vector w0, which 

is different from initializing w0 randomly in original 

ICA method. 

3. The process of abnormal components extraction is 

refined by OSP iteratively, which makes the detec-

tion result more accurate. 

4. This algorithm yields an outstanding performance 

over other methods. 

 
 


