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ABSTRACT
This paper proposes an upgraded Electro Magnetic (EM) side-
channel attack that automatically reconstructs the intercepted data.
A novel system is introduced, running in parallel with leakage signal
interception and catching compromising data on the fly. Leverag-
ing on deep learning and Character Recognition (CR) the proposed
system retrieves more than 57% of characters present in intercepted
signals regardless of signal type: analog or digital. The building of
the learning database is detailed and the resulting data made publicly
available. The solution is based on Software-Defined Radio (SDR)
and Graphics Processing Unit (GPU) architectures. It can be easily
deployed onto existing information systems to detect compromising
data leakage that should be kept secret.

Index Terms— Electro-Magnetic Side-Channel, Denoising,
Automation

1. INTRODUCTION

All electronic devices produce Electro Magnetic (EM) emanations
that not only interfere with radio devices but also compromise the
data handled by the information system. A third party may perform
a side-channel analysis and recover the original information, hence
compromising the system privacy. While pioneering work of the do-
main focused on analog signals [1], recent studies extend the eaves-
dropping exploit using an EM side-channel attack to digital signals
and embedded circuits [2]. The attacker’s profile is also taking on a
new dimension with the increased performance of Software-Defined
Radio (SDR). With recent advances in radio equipment, an attacker
can leverage on advanced signal processing to further stretch the lim-
its of the side-channel attack using EM emanations [3]. With the fast
evolution of deep neural networks, an attacker can extract patterns
or even the full structured content of the intercepted data with a high
degree of confidence and a limited execution time.

In this paper, a learning-based method is proposed with the spe-
cialization of Mask R-CNN [4] as a denoiser and classifier. A com-
plete system is demonstrated, embedding SDR and deep-learning,
that detects and recovers leaked information at a distance of several
tens of meters. It provides an automated solution where the data is
interpreted directly. The solution is compared to other system setups.

The paper is organized as follows. Section 2 presents existing
methods to recover information from EM emanations. Section 3 de-
scribes the proposed method for automatic character retrieval. Ex-
perimental results and detailed performances are exposed in Sec-
tion 4. Section 5 concludes the paper.

This work is supported by the ”Pôle d’Excellence Cyber”, initiative of
the French Ministry of the Armed Forces and the Bretagne council.

2. RELATED WORK

This paper focuses on two areas: EM side channel attacks on in-
formation systems and learning-based techniques that can recover
information from noisy environments.

Van Eck et al. [1] published the first technical reports revealing
how involuntary emissions originating from electronics devices can
be exploited to compromise data. While the original work of the do-
main targeted Cathode Ray Tube (CRT) screens and analog signals,
Kuhn et al. [2] propose to use side-channel attacks to extract con-
fidential data from Liquid Crystal Displays (LCDs), targeting digi-
tal data. Subsequently, other types of systems have been attacked.
Vuagnoux et al. [5] extend the principle of EM side-channel attack
to capture data from keyboards and, in their recent work, Hayashi
et al. present interception methods based on SDR targeting laptops,
tablets[6] and smartphones [7]. Due to their low cost, SDRs increase
the potential of attacks from military organizations to hackers. SDR
also opens up new post-processing opportunities that improve at-
tacks. De Meulemeester et al. [8] leverage on SDR to enhance the
performance of the attack and automatically find the structure of the
captured data. When the intercepted emanation is originally 2D, re-
trieving the synchronization parameters of the targeted information
system enables the captured EM signal to be transformed from a
vector to an image, reconstructing the 2-dimensional sensitive visual
information. This reconstruction process is called the rastering.

When retrieving visual information from an EM signal, an im-
portant part of the original information is lost through the leakage
and interception process. This loss leads to a drop of the Signal to
Noise Ratio (SNR) and a deterioration of spatial coherence into the
reconstructed samples in the case of image data. Hence, denoising
methods are needed. Image denoising by signal processing tech-
niques has been extensively studied since it is an important step in
many computer vision applications. BM3D [9], proposed by Dabov
et al., is a the state-of-the-art methods for Additive White Gaussian
Noise (AWGN) removal using non-learned processing. BM3D uses
thresholding and Wiener filtering into the transform domain. Block-
Matching 3D (BM3D) is used in the experiments of Section 4.

Deep learning algorithms have recently stood out from the
crowd for solving many signal processing problems. These trained
models have an extreme ability to fit complex problems. Recent
Graphics Processing Unit (GPU) architectures have been optimized
to support deep learning workloads and have fostered ever deeper
networks, mining structured information from data and providing
results where expert-based algorithms fail. The spread of deep
learning has occurred in the domain of image denoising and sev-
eral models initially developed for other applications have been
turned into denoisers. Denoising Convolutional Neural Network
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Fig. 1: Experimental setup: the attacked system includes an eavesdropped screen (1) displaying sensitive information. It is connected to an
information system (2). An interception chain including an SDR receiver (3) sends samples to a host computer (4) that implements signal
processing including a deep learning denoiser and Character Recognition (CR).

(DnCNN) [10] is a Convolutional Neural Network (CNN) designed
to blindly remove AWGN, without prior knowledge on noise level.
Others techniques such as denoising autoencoders [11, 12] are able
to denoise images without restriction on the type of noise. Au-
toencoders algorithms learn to map their input to a latent space
(encoding) and project back the latent representation to the input
space (decoding). Autoencoders learn a denoising model by mini-
mizing a loss function which evaluates the difference between the
autoencoder output and the reference. Advanced methods, such as
Noise2Noise [13], infer denoising strategies without any clean input
reference data. Noise2Noise algorithm learns a representation of the
noise by looking only at noisy samples.

Learning-based models perform well in various denoising but
with strong hypothesis regarding the distribution of the noise to be
withdrawn [14]. AWGN assumption is often used. In the consid-
ered problem, certain components of the noise are non-randomly
distributed and have a spatial coherence (between pixels). Addition-
ally, information is damaged (partially lost and spread over several
pixels) by the interception/rastering process. None of the previously
exposed methods is tailored for such noise and distortion natures,
calling for a novel experimental setup.

Conventional approaches exist to protect devices from eaves-
dropping. Such approaches appear under different code names such
as TEMPEST [15] or Emission Security (EMSEC) and consist of
shielding devices [2] to nullify the emanations, or using fonts that
minimize the EM emanations [16]. However, these approaches are
either costly solutions or technically hard to use in practice espe-
cially when it comes to ensure the data privacy throughout the life-
cycle of a complex information system. The next section details the
proposed method to enhance the EM side-channel attack.

3. PROPOSED SIDE-CHANNEL ATTACK

3.1. System Description

Figure 1 shows the proposed end-to-end solution. The method au-
tomatically reconstructs leaked visual information from compromis-
ing emanations. The setup is composed of two main elements. At
first the antenna and SDR processing capture in the Radio Frequency
(RF) domain the leaked information originating from the displayed
video. Then, the demodulated signal is processed by the host com-
puter, recovering a noisy version of the original image [2] leaving
room for advanced image processing techniques. On top of propos-
ing an end-to-end solution from the capture to the data itself, the
method uses a learning-based approach. It exploits the capturing

compromising signals and recognized automatically the leaked data.
A first step based on a Mask R-CNN (Mask R-CNN) architecture
embeds the following: denoising, segmentation, character detec-
tion/localization, and character recognition. A second step post-
processes the Mask R-CNN output. A Hough transform is done for
text line detection and a Bitap algorithm [17] is applied to approx-
imate match information. This setup detects several forms of com-
promising emanations (analog or digital) and automatically triggers
an alarm if critical information is leaking. Next sections detail how
the method is trained and integrated.

3.2. Training Dataset Construction

A substantial effort has been made on building a process that semi-
automatically generates and labels datasets for supervised training.
Each sample image is made up of a uniform background on which
varied characters are printed. Using that process, an open data cor-
pus of 123.610 labeled samples, specific to the problem at hand,
has been created to further be used as training, validation and test
datasets. This dataset is available online 1 to train denoiser architec-
tures in difficult conditions.

The proposed setup, to be trained, denoises the intercepted sam-
ple images and extracts their content, i.e. the detected characters and
their positions. The input space that should be covered by the train-
ing dataset is large and three main types of interception variability
can be observed. Firstly, interception induces an important loss of
the information originally existing in the intercepted data. The noise
level is directly linked to the distance between the antenna and the
target. Several noise levels are generated by adding RF attenuation
after the antenna. That loss itself causes inconsistencies in the ras-
terizing stage. Secondly, EM emanations can come from different
sources, using different technologies, implying in turn different in-
tercepted samples for the same reference image. The dataset covers
Video Graphics Array (VGA), Display Port (DP)-to-Digital Visual
Interface (DVI) and High-Definition Multimedia Interface (HDMI)
cables and connectors. Besides this unwanted variability, a synthetic
third type of variability is introduced to solve the character retrieval.
Many different characters are introduced in the corpus to be dis-
played on the attacked screen. They range from 11 to 70 points
in size and they are both digits and letters, and letters are both up-
per and lower cases. Varied fonts, character colors and background
colors, as well as varied character positions in the sample are used.
Considering these different sources of variability, the dataset is built

1https://github.com/opendenoising/interception_
dataset

https://github.com/opendenoising/interception_dataset
https://github.com/opendenoising/interception_dataset
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Fig. 2: A reference sample is displayed on the target screen (top-
left). The interception module outputs uncalibrated samples. Ver-
tical and horizontal porchs (red) helps alignment and porch with-
drawal (top-right). Samples are rescaled and split into patches to
obtain the same layout than the reference set.

trying to get an equi-representation of the different interception con-
ditions.

The choice has been made to display on the target screen a sam-
ple containing patches of size 256 × 256 pixels (top-left image of
Figure 2). For building the dataset, having multiple patches speeds
the process up because smaller samples can be derived from a sin-
gle screen interception and more variability can be introduced in the
dataset. The main challenge when creating the dataset lies in the
samples acquisition itself. Indeed, once intercepted, the samples are
not directly usable. The interception process outputs samples such as
the one of Figure 2 (middle-top) where intercepted characters are not
aligned (temporally and spatially) with respective reference samples.
An automated method is introduced that uses the porches, artificially
colored in red in Figure 2 (middle-top), to align spatially samples.
Porches are detected using brute-force search of large horizontal and
vertical gradients (to find vertical and horizontal porches, respec-
tively). A validation step ensures the temporal alignment, based on
the insertion of a QRCode in the upper-left patch. If the QRCode is
similar between the reference and the intercepted image, the image
patches are introduced in the dataset.

Data augmentation [18] is used to enhance the dataset coverage
area. It is done onto patches to add variability into the dataset and
reinforce its learning capacity. Conventional methods are applied to
raw samples to linearly transform them (Gaussian and median blur,
salt and pepper noise, color inversion and contrast normalization).

3.3. Implemented Solution to Catch Compromising Data

In order to automate the interception of compromising data, the
Mask R-CNN has been turned into a denoiser and classifier. The
implementation is based on the one proposed by W. Abdulla 2.
Other learning-based and expert-based signal processing methods,
discussed in Section 4.2, are also implemented to assess the quality
of the proposed framework. Mask R-CNN is a framework adapted
from the previous Faster R-CNN [19]. The network consists of
two stages. The first stage, also known as backbone network, is a
ResNet101 convolutional network [20] extracting features out of the
input samples. Based on the extracted features, a Region Proposal
Network (RPN) proposes Region of Interests (RoIs). RoIs are re-
gions in the sample where information deserves greater attention.
The second stage, called head network, classifies the content and

2 https://github.com/matterport/Mask_RCNN
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Fig. 3: The output of Mask R-CNN may be used in two ways. The
segmentation can be drawn (left) and further processed by an Optical
Character Recognition (OCR), or the Mask R-CNN classifier can
directly infer the sample content (right) and propose some display
and confidence information.

Fig. 4: Three samples (left, middle, right) displayed at different
stages of the interception/denoising pipeline. From top to bottom:
the reference patch displayed on the screen; the patch after rasteriza-
tion (raw patch); the patches denoised with BM3D, autoencoder and
Mask R-CNN.

returns bounding box coordinates for each of the RoIs. The main
difference between Faster R-CNN and Mask R-CNN lies in an ad-
ditional Fully Convolutional Network (FCN) branch [21] running in
parallel with the classification and extracting a binary mask for each
RoI to provide a more accurate localization of the object of interest.

Mask R-CNN is not originally designed to be used for denois-
ing but rather for instance segmentation. However, it fits well the
targeted problem. Indeed, the problem is similar to a segmentation
where signal has to be separated from noise. As a consequence,
when properly feeding a trained Mask R-CNN network with noisy
samples containing characters, one obtains lists of labels (i.e. char-
acters recognition), as well as their bounding boxes (characters lo-
calization) and binary masks representing the content of the original
clean sample. The setup of the classification branch allows to be
language-independent and to add classes other than characters.

Two strategies can be employed to exploit Mask R-CNN com-
ponents for the problem. The first idea is to draw the output masks
of Mask R-CNN segmentation (Figure 3 left-hand side) and request
an OCR to retrieve characters from the masks. A second possibility
is to make use of the classification faculty of Mask R-CNN (Figure 3
right-hand side) and obtain a list of labels without using an OCR en-
gine. The second method using the classifier of Mask R-CNN proves
to be better in practice, as shown in Section 4.2.

The training strategy is to initialize the training process using
pre-trained weights [22] for the MS COCO [23] dataset. First, the
weights of the backbone are frozen and the head is trained to adapt
to the application. Then, the weights of the backbone are relaxed and
both backbone and head are trained together until convergence. This
process is done to ensure the convergence and speed up training.

https://github.com/matterport/Mask_RCNN


4. EXPERIMENTAL RESULTS

4.1. Experimental Setup

The experimental setup is defined as follows: the eavesdropped dis-
play is 10 meters away from the interception antenna. A RF atten-
uator is inserted after the antenna. It ranges from 0 dB to 24 dB
to simulate higher interception radius and generate a wide range of
noise values. Compromising emanations are issued either by a VGA
display, a DP-to-DVI cable or an HDMI connector. The intercep-
tion system is depicted in Figure 1: the antenna is bilog, the SDR
device automatically recovering parameters [8] is an Ettus X310 re-
ceiving with a 100 MHz bandwidth to recover the compromised in-
formation with a fine granularity [2]. The host computer running
post-processing has a linux operating system, an Intel R©Xeon R©W-
2125 Central Processing Unit (CPU) and an Nvidia GTX 1080 Ti
GPU. The host computer rasters the compromising data using the
CPU while the proposed learning-based denoiser/classifier runs also
on the GPU.

4.2. Performance Comparison Between Data Catchers

The purpose of the exposed method is to analyze compromising em-
anations. Once a signal is detected and rasterized, intercepted em-
anations should be classified into compromising or not. Figure 4
illustrates the outputs of different implemented denoisers. More ex-
amples are available at 3. It is proposed to assess the data leak ac-
cording to the ability of a model to retrieve original information. A
ratio between the number of characters that a method correctly clas-
sifies from an intercepted sample, and the true number of characters
in the corresponding clean reference is used as a metric.

The quality assessment method is the following. First, a sample
containing a large number of characters is pseudo-randomly gener-
ated (similar to dataset construction). The sample is displayed on
the eavesdropped screen and EM emanations are intercepted. The
proposed denoising/retrieval is applied and the obtained results are
compared to the reference sample. The method using Mask R-CNN
produces directly a list of retrieved characters. Other methods, im-
plemented to compare the efficiency of the proposal, use denoising
in combination with the Tesseract [24] OCR. Tesseract is a well per-
forming OCR engine, retrieving characters from images. It produces
a list of characters retrieved from a denoised sample. As the output
of Tesseract is of the same type as the output of Mask R-CNN clas-
sification, metrics can be extracted to fairly compare methods.

An end-to-end evaluation is used measuring the quality of char-
acters classification. A F-score classically used to evaluate classifi-
cation model is computed using precision and recall. precision
is the number of true positives divided by the number of all posi-
tives. recall is the number of true positives divided by the number
of relevant samples, the set of relevant samples being the union of
true positives and false negatives. For simplification and not use an
alignment process, a true positive is chosen here to be the recogni-
tion of a character truly existing in the reference sample.

Table 1 presents the results of different data catchers on a test set
of 12563 patches. All denoising methods are tested using Tesseract,
and compared to Mask R-CNN classification used as OCR. Tesser-
act is first applied to raw (non-denoised) samples as a point of ref-
erence. BM3D is the only expert-based denoising solution tested.
Noise2Noise, AutoEncoder, RaGAN and UNet are different deep
learning networks configured as denoisers. As shown in Table 1,
Mask R-CNN classification outperforms all other methods. The

3https://github.com/opendenoising/extension

Denoiser OCR F-Score precision recall
Raw

Tesseract

0.04 0.20 0.02
BM3D 0.13 0.22 0.09

Noise2Noise 0.17 0.25 0.12
AutoEncoder 0.24 0.55 0.15

RaGAN 0.24 0.42 0.18
UNet 0.35 0.62 0.25

Mask R-CNN 0.55 0.82 0.42
Mask R-CNN Mask R-CNN 0.68 0.81 0.57

Table 1: Character recognition performance for several data catch-
ers using either denoising and Tesseract, or Mask R-CNN (Mask
R-CNN) classification. Mask R-CNN classifier outperforms others
methods with a 0.68 F-score on the test set.

Denoiser OCR Inference Timing (s)
Raw

Tesseract

0.19
BM3D 21.8

Autoencoder 1.15
Mask R-CNN 4.22
Mask R-CNN Mask R-CNN 4.04

Table 2: Inference time for several data catchers using Tesseract
or Mask R-CNN classification as OCR. Input resolution is 1200 ×
1900 and it is processed using a split in 28 patches. Mask R-CNN
classifier is slower than the autoencoder but still faster than BM3D.

version of Mask R-CNN using its own classifier is better than the
Tesseract OCR engine applied on Mask R-CNN segmentation mask
output. It is also interesting to look at precision and recall scores that
compose the F-score. Both Mask R-CNN methods perform better
than other methods for the two indices. Precision is almost the same
for both methods, meaning that they both present the same ratio of
good decision. The difference lies in the recall score. The 0.42 recall
score of the version using Tesseract is lower than the 0.57 score of
the method using its own classifier, indicating that the latter version
miss less characters. The main advantage of the Mask R-CNN is
that the processing tasks to solve the final aim of textual information
recovery are jointly optimized.

Another key performance indicator of learning-based algo-
rithms is inference time (Table 2). The proposed implementation
using Mask R-CNN infers results from an input sample of resolu-
tion 1200× 1900 in 4.04s in average. This inference time, although
lower than BM3D latency, is admittedly higher than other neural
networks and hardly real-time. Nevertheless, the inference time of
Mask R-CNN includes all the denoising/OCR process and provides
a largely better retrieval score. In the context of a continuous listen-
ing of EM emanations, it provides an acceptable trade-off between
processing time and interception performance. The optimization of
the inference time could be considered as a future work with the
recent advances in accelerating neural network inference [25, 26].

5. CONCLUSIONS

Handling data while ensuring trust and privacy is challenging for
information system designers. This paper presents how the attack
surface can be enlarged with the introduction of deep learning in an
EM side-channel attack. The proposed method uses Mask R-CNN
as denoiser and it automatically recovers more than 57% of a leaked
information for a wide range of interception distances. The proposal
is software-based, and runs on the host computer of an off-the-shelf
SDR platform.

https://github.com/opendenoising/extension
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