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Abstract
Vision tracking is a well-studied framework in vision computing. Developing a robust visual tracking system is challenging 
because of the sudden change in object motion, cluttered background, partial occlusion and camera motion. In this study, 
the state-of-the art visual tracking methods are reviewed and different categories are discussed. The overall visual tracking 
process is divided into four stages—object initialization, appearance modeling, motion estimation, and object localization. 
Each of these stages is briefly elaborated and related researches are discussed. A rapid growth of visual tracking algorithms 
is observed in last few decades. A comprehensive review is reported on different performance metrics to evaluate the effi-
ciency of visual tracking algorithms which might help researchers to identify new avenues in this area. Various application 
areas of the visual tracking are also discussed at the end of the study.

Keywords  Visual tracking · Visual computing · Motion estimation · Object motion · Object localization

Introduction

Visual tracking is one of the significant problems in com-
puter vision having wide range of application domains. A 
remarkable advancement of the visual tracking algorithm is 

observed because of the rapid increase in processing power 
and availability of high resolution cameras over the last few 
decades in the field of automated surveillance [1], motion-
based recognition [2], video indexing [3], vehicle navigation 
[4], and human–computer interaction [5, 6]. Visual tracking 
can be defined as, estimating the trajectory of the moving 
object around a scene in the image plane [7].

Various computer vision tasks to detect, track and classify 
the target from image sequences are grouped in visual surveil-
lance to analyze the object behavior [7]. A better surveillance 
system is developed by integrating the motion detection and 
visual tracking system in [8]. A content-based video indexing 
technique is evolved from object motion in [9]. The proposed 
indexing method is applied to analyze the video surveillance 
data. Visual tracking is effectively applied in vehicle naviga-
tion. A method for object tracking and detection is developed 
in [10] for maritime surface vehicle navigation using stereo 
vision system to locate objects as well as calculating the dis-
tance from the target object in the harsher maritime environ-
ment. A methodology of human computer interaction to com-
pute eye movement by detecting the eye corner and the pupil 
center using visual digital signal processor camera is invented 
in [11]. The mentioned novel approach helps the users to move 
their head freely without wiring any external gadgets.

In visual tracking system, the 3D world is projected on 
a 2D image that results in loss of information [12]. The 
problem becomes more challenging due to the presence of 
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noise in images, unorganized background, random complex 
target motion, object occlusions, non-rigid object, variation 
in the number of objects, change in illumination, etc. [13]. 
These issues need to be handled effectively to prevent the 
degradation of tracking performance and even failure. Dif-
ferent visual representations and statistical models are used 
in literature to deal with these challenges. These models 
use state-of-the-art algorithms and different methodologies 
for visual tracking. Different metrics are used to effectively 
measure the performance of the tracker. Motivated by this, 
different state-of-the-art visual tracking models widely used 
in literature are discussed in this paper. In each and every 
year, a substantial number of algorithms for visual tracking 
are proposed in literature. To efficiently evaluate their per-
formance, different performance metrics for robust evalua-
tion of trackers are elaborated here after vividly describing 
the tracking models. Several popular application domains 
of visual tracking are identified and briefly described here. 
One can have overall overview of visual tracking methods 
and best practices as well as a vivid idea about the differ-
ent application domains related to visual tracking from this 
study.

A visual tracking system consists of four modules, 
i.e., object initialization, appearance modeling, motion 

estimation and object localization. Each of these compo-
nents and associated tracking methods are briefly described 
in Sect. 2. Some popular performance measures for visual 
tracking, for, e.g., center location error, bounding box over-
lap, tracking length, failure rate, area under the lost-track-
ratio curve, etc. are discussed in Sect. 3. Progress in visual 
tracking methodologies introduced a revolution in health 
care, space science, education, robotics, sports, marketing, 
etc. Section 4 highlights some pioneering works related to 
different application domains of visual tracking. Conclusion 
section is presented in Sect. 5.

Visual Tracking Methods

In visual tracking system, a trajectory of the target over the 
time is generated [14] based on the location of the target, 
positioned in consecutive video frames. The detected objects 
from the consecutive frames maintained a correspondence 
[15] using visual tracking mechanism.

The fundamental components of a visual tracking sys-
tem are object initialization, appearance modeling, motion 
estimation and object localization [16]. Figure 1 reports the 
detailed taxonomy of vision tracking.

Visual Representation

Statistical Modeling

Visual Tracking

Object Initialization

Appearance Modeling

Motion Estimation

Object Localization

Global Visual Representation

Local feature based Visual
Representation

Generative Model
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Fig. 1   Visual tracking taxonomy
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Object Initialization

Manual or automatic object initialization is the initial step of 
visual tracking methods. Manual annotation using bounding 
boxes or ellipses is used to locate the object [17]. Manual 
annotation is a time-consuming human-biased process, 
which claims an automated system for easily, efficiently 
and accurately locating and initializing the target object. In 
recent decades, automated initialization has wide domains 
for real-time problem solving (for, e.g, face detection [18], 
human tracking, robotics, etc. [19–22].). A dynamic frame-
work for automated initialization and updating the face fea-
ture tracking process is proposed in [23]. Moreover, a new 
method to handle self-occlusion is presented in this study. 
This approach matched each candidate with a set of prede-
fined standard eye templates, by locating the eyes of the can-
didates. Once the subject’s eyes are located accurately, lip 
control points are located using the standard templates. An 
automated, integrated model comprising of robust face and 
hand detection for initializing a 3D body tracker to recover 
from failure is proposed in [24]. Useful data for initializa-
tion and validation are provided to the intended tracker by 
this system.

Object initialization is the prerequisite for the appearance 
modeling. A detailed description of appearance modeling is 
reported in the following section.

Appearance Modeling

The majority of the object properties (appearance, velocity, 
location, etc.) are described by the appearance or observa-
tion model [25]. Various special features are used to dif-
ferentiate the target and background or different objects in 
a tracking system [26]. Features like color, gradient, tex-
ture, shape, super-pixel, depth, motion, optic flow, etc. or 
fused features are most commonly used for robust tracking 
to describe the object appearance model.

Appearance modeling is done by visual representation 
and statistical modeling. In visual representation, differ-
ent variants of visual features are used to develop effective 
object descriptors [27]. Whereas, statistical learning tech-
niques are used in statistical modeling to develop mathemat-
ical models that are efficient for object identification [28]. 
A vivid description of these two techniques is given in the 
below section.

Visual Representation

Global Visual Representation  Global visual representation 
represents the global statistical properties of object appear-
ance. The same can also be represented by various other 
representation techniques, namely—(a) raw pixel values (b) 
optical flow method (c) histogram-based representation (d) 

covariance-based representation (e) wavelet filtering-based 
representation and (f) active contour representation.

(a) Raw pixel values
Values based on raw pixels are the most frequently used 

features in vision computing [29, 30] for the algorithmic 
simplicity and efficiency [31]. Raw color or intensity infor-
mation of the raw pixels is utilized to epitomize the object 
region [32]. Two basic categories for raw pixel representa-
tion are—vector based [33, 34] and matrix based [35–37].

In vector-based representation, an image region is 
transformed into a higher-dimensional vector. Vector-
based representation performed well in color feature-
based visual tracking. Color features are robust to object 
deformation, insensitive to shape variation [38], but suffer 
from small sample size problem and uneven illumination 
changes [39].

To overcome the above-mentioned limitations of vec-
tor-based representation, matrix-based representation is 
proposed in [40, 41]. In matrix-based representation, the 
fundamental data units for object representation are built 
using the 2D matrices or higher-order tensors because of 
their low-dimensional property.

Various other visual features (e.g., shape, texture, etc.) 
are embedded in the raw pixel information for robust and 
improved visual object tracking. A color histogram-based 
similarity metric is proposed in [42], where the region color 
and the special layout (edge of the colors) are fused. A fused 
texture-based technique is proposed to enrich the color fea-
tures in [43].

(b) Optical flow representation
The relative motion of the environment with respect to 

an observer is known as optical flow [44]. The environment 
is continuously viewed to find the relative movement of 
the visual features, e.g., points, objects, shapes, etc. Inside 
an image region, optical flow is represented by dense field 
displacement vectors of each pixel. The data related to the 
spatial–temporal motion of an object are captured using the 
optical flow. From the differential point of view, optical flow 
could be represented as the change of image pixels with 
respect to the time and is expressed by the following equa-
tion [45].

where Ii
(
xi, yi, t

)
 is the intensity of the pixel at a point 

(
xi, yi

)
 

at a given time t  . The same is moved by Δx,Δy,Δt in the 
subsequent image frame.

The Eq.  1 is further expanded by applying the Tay-
lor Series Expansion [23] and the following equation is 
obtained.

(1)Ii
(
xi + Δx, yi + Δy, t + Δt

)
= Ii

(
xi, yi, t

)
,

(2)

Ii
(
xi + Δx, yi + Δy, t + Δt

)
= Ii

(
xi, yi, t

)
+

�Ii

�x
Δx +

�Ii

�y
Δy +

�Ii

�t
Δt.
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From these Eqs. (1 and 2), Eq. 3 is obtained as follows:

Dividing both RHS and LHS by Δt , the following equa-
tion is obtained

A differential point of view is used here to establish the 
estimation of the optical flow. The variations of the pixels 
with respect to time is the basis of the explanation. The 
solution of the problem can be reduced to the following 
equation:

or

where vx and vy are the x and y components of the velocity 
or optical flow of

Equation 7 is derived from Eq. 6 as follows:

or

This problem is converged into finding the solution of 
v⃗ . Optical flow cannot be directly estimated since there are 
two unknowns in the equation. This problem is known as the 
aperture problem. Several algorithms for estimating the opti-
cal flow have been proposed in literature. In [46], the authors 
reported four categories of optical flow estimation tech-
niques, namely—differential method, region-based match-
ing, energy-based matching and phase-based techniques.

As mentioned in the previous section, the derivatives of 
image intensity with respect to both space and time are used 
in different method. In [45], a method has proposed using 
the global smoothness concept of discovering the optical 
flow pattern which results in the Eq. (8). In [33], an image 
registration technique is proposed, where a good match is 
found using the spatial intensity gradient of the images. This 
is an iterative approach to find the optimum disparity vector 
which is a measure for finding the difference between pixel 
values in a particular location in two images. In [47], an 
algorithm is presented to compute the optical flow which 

(3)
�Ii

�x
Δx +

�Ii

�y
Δy +

�Ii

�t
Δt = 0.

(4)
�Ii

�x

(
Δx

Δt

)
+

�Ii

�y

(
Δy

Δt

)
+

�Ii

�t

(
Δt

Δt

)
= 0.

(5)
�Ii

�x
vx +

�Ii

�y
vy +

�Ii

�t
= 0,

(6)ixvx + iyvy + it = 0,

Ii
(
xi, yi, t

)
and ix =

�Ii

�x
, iy =

�Ii

�y
, it =

�Ii

�t
.

(7)ixvx + iyvy = −it,

(8)Δi ⋅ v⃗ = −it.

avoids the aperture problem. Here, second-order derivatives 
of the brightness of images are computed to generate the 
equations for representing optical flow.

A global method of computing the optical flow was pro-
posed in [45, 48]. Here, an additional constraint, i.e., the 
smoothness of the flow is introduced as a second constraint 
to the basic equation (Eq. 8) for calculating the optical flow. 
Thereafter, the resulting equation was solved using an itera-
tive differential approach. In [49]. an integrated classical dif-
ferential approach is proposed with correlation-based motion 
detectors. A novel method of computing optical flow using 
a coupled set of nonlinear diffusion equations is presented 
here.

In region-based matching, an affinity measure based on 
region features is used and applied to region tokens [50]. 
Thereafter, the spatial displacements among centroids of the 
corresponding regions are used to identify the optical flow. 
Region-based methods act as an alternative to the differen-
tial techniques in those fields where due to the presence of 
a few number of frames and background noise, differential 
or numerical methods are not effective [51]. This method 
reports the velocity, similarity, etc. between the image 
regions. In [52], Laplacian pyramid is used for region match-
ing; whereas in [53], a sum of squared distance is computed 
for the same.

In energy-based matching methods, minimization of a 
global energy function is performed to determine optical 
flow [54]. The main component of the energy function is a 
data term which encourages an agreement between a spatial 
term and frames to enforce the consistency of the flow field. 
The output energy of the velocity tuned filters is the basis of 
the methods based on energy [55].

In phase-based techniques, the optical flow is calculated 
in the frequency domain by applying the local phase cor-
relation to the frames [56]. Unlike energy-based methods, 
velocity is represented by the outputs of the filter exhibiting 
the phase behavior. In [57, 58], spatio-temporal filters are 
used in phase-based techniques.

(c) Histogram representation
In histogram representation, the distribution character-

istics of the embedded visual features of object regions are 
efficiently captured. Intensity histograms are frequently used 
to represent target objects for visual tracking and object rec-
ognition. Mean-shift is a histogram-based methodology for 
visual tracking which is widely used because it is simple, 
fast and exhibits superior performance in real time [59]. It 
adopts a weighted kernel-based color histogram to compute 
the features of object template and regions [60]. A target 
candidate is iteratively moved to locate the target object 
from the present location p∧

old
 to the new position p∧

new
 based 

on the following relation:
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where the influence zone is defined by a radically symmetric 
kernel k(.) and the sample weight is represented by ws(p) . 
Usually, histogram back projection is used to determine 
ws(p).

where Ic(p) represents the pixel color and the density esti-
mates of the pixel colors of the target model and target can-
didate histograms are denoted by dm and dc.

Intensity histograms are widely used in the tracking 
algorithms [61, 62]. In object detection and tracking, effi-
cient algorithms like integral image [63] and integral his-
togram [64] are effectively applied for rectangular shapes. 
Intensity histograms are failed to compute efficiently from 
region bounded by uneven shape [65]. The problem due to 
shape variation with respect to histogram-based tracking 
method is minimized using a circular or elliptical kernel 
[66]. The kernel is used to define a target region and a 
weighted histogram is computed from this. In other words, 
kernel brings simplicity in tracking the irregular object 
by enforcing a regularity constraint on it. In the above-
mentioned approaches, the spatial information in histo-
grams is not considered; however, spatial data are highly 
important to track a target object where significant shape 
variation is observed [67]. The above-mentioned issue is 
addressed in [68] by introducing the concept of spatiogram 
or spatial histogram. A spatiogram is the generalized form 
of a histogram where spatial means and covariance of the 
histogram bins are defined. Robustness in visual tracking 
is increased since spatial information assists in capturing 
richer description about the target.

In histogram models, the selected target histogram at 
the starting frame is compared with the candidate histo-
grams in the subsequent frames [69] for finding the closest 
similar pair. The similarity among the histograms is meas-
ured by applying the Bhattacharyya Coefficient [70–72]. 
The similarity is represented by the following formula

where the target selected in the initial frame is represented 
by a bin Hx from the histogram, whereas Hy represents the 
bin corresponding to the candidate histogram. The target 
histogram bin index is given by x and the candidate model 
histogram bin index is given by y . St represents the generated 

(9)p∧
new

=

∑
i k(pi − p∧

old
)ws

�
pi
�
pi∑

i k(pi − p∧
old
)ws

�
pi
� ,

(10)ws(p) =

√√√√dm
(
Ic(p)

)

dc
(
Ic(p)

) ,

(11)�b

�
St
�
=

n�
x,y=1

�
Hx∑n

x=1
Hx

×
Hy∑n

y=1
Hy

,

target state and the Bhattacharyya coefficient is represented 
by �b.

(d) Covariance representation
Visual tracking is challenging because there might be a 

change in appearance of the target due to the illumination 
changes and variations in view and pose. The above-men-
tioned appearance models are affected by these variations 
[73]. Moreover, in histogram approach, there is an exponen-
tial growth of the joint representation of various features as 
the number of features increases [74]. Covariance matrix 
representation is developed in [74] to record the correlation 
information of the target appearance. Covariance is used 
here as a Region Descriptor using the following formula:

where a three-dimensional color image or a one-dimensional 
intensity is represented by I . If  is the extracted feature image 
from I . The gradients, color, intensity, etc. mappings are 
represented by �.

A m × m covariance matrix is built from the feature points 
which denotes the predefined rectangular region R(R ⊆ If  ) 
by the following equation:

where 
{
gx
}
x
= 1… n are the m-dimensional feature points 

inside the region R and � is the mean of the points.
Using covariance matrices as a region descriptor has 

several advantages [75]. Multiple features are combined 
naturally using covariance matrices without normalizing 
the features. The information inherent within the histogram 
and the information obtained from the appearance model 
are both represented by it. The region could be effectively 
matched with respect to different views and poses by extract-
ing a single covariance matrix from it.

(e) Wavelet filtering-based representation
In wavelet transform, the features can be simultaneously 

located in both time and the frequency domains. The object 
regions are filtered out in various directions by this feature 
[76]. Using Gabor wavelet networks (GWN) [77, 78], a 
new method is proposed for visual face tracking in [79]. 
A wavelet representation is formed initially from the face 
template spanning through a low-dimensional subspace in 
the image space. Thereafter, the orthogonal projection of the 
video sequence frames corresponding to the tracked space is 
done into the image subspace. Thus, a subspace correspond-
ing to the image space is efficiently defined by selectively 
choosing the Gabor wavelets. 2D Gabor wavelet transform 
is used in [80] to track an object in a video sequence. The 
predetermined globally placed selected feature points are 
used to model the target object by local features. The energy 
obtained from GWT coefficients of the feature points is 

(12)If(p, q) = �(I, p, q),

(13)cR =
1

n − 1

n∑
x=1

(gx − �)
(
gx − �

)T
,



	 SN Computer Science (2020) 1:5757  Page 6 of 19

SN Computer Science

considered for stochastically selecting the feature points. 
The higher the energy values of the points, the higher is 
the probability of being selected. Local features are defined 
by the amplitude of the GWT coefficients of the selected 
feature point.

(f) Active contour representation
Active contour representation has been widely used in 

literature for tracking non-rigid objects [81–85]. The object 
boundary is identified by forming the object contour from a 
2D image, having a probability of noisy background [86]. In 
[87], a signed distance map � , which is also known as level 
set representation, is represented as follows:

where the inner and outer regions of the contour are repre-
sented by Zin and Zo , respectively. The shortest Euclidian 
distance from the contour and the point 

(
xi, xj

)
 is calculated 

by the function d
(
xi, xj,C

)
.

The level set representation is widely used to form a sta-
ble numerical solution and its capability to handle the topo-
logical changes. In the same study, the evaluation of active 
contour methods is classified into two categories—edge 
based and region based. Each of these methods is briefly 
described in the following section.

In edge-based methods, local information about the 
contours (e.g., gray-level gradient) is mainly considered. 
In [88], a snake-based model is proposed which is one of 
the most widely used edge-based models. Snake model is 
very effective for a number of visual tracking problems for 
edge and line detection, subjective contour, motion track-
ing, stereo matching, etc. A geodesic model is proposed in 
[89], where more intrinsic geometric image measures are 
presented compared to classical snake model. The relation 
between the computation of the minimum distance curve or 
geodesics and active contours is the basis of this proposed 
model. In [81], an improved geodesic model is proposed. In 
this study, active contours are described by level sets and 
gradient descent method is used for contour optimization.

Edge-based algorithms [90–92] are simple and effective 
to determine the contours having salient gradient, but they 
have their drawbacks. They are susceptible to boundary leak-
age problems where the object has weak boundaries and 
sensitive to inherent image noise.

Region-based methods use statistical quantities (e.g., 
mean, variance and histograms based on pixel values) to seg-
ment an image into objects and background regions [93–96]. 
Target objects with weak boundaries or without boundaries 
can be successfully divided despite of the existence of image 
noise [97]. Region-based model is widely used in Active 

(14)�
�
xi, xj

�
=

⎧
⎪⎨⎪⎩

0
�
xi, xj

�
∈ C

d
�
xi, xj,C

�
∈ Zo

−d
�
xi, xj,C

�
∈ Zin

,

contour models. In [98], an active contour model is proposed 
where no well-defined region boundary is present. Tech-
niques like curve-evolution [99], Mumford–Shah function 
[100] for segmentation and level set [101] are used here. A 
region competition algorithm is proposed in [102], which 
is used as a statistical approach to image segmentation. A 
variation principle-based minimized version of a generalized 
Bayes/MDL (minimum description length) is used to derive 
the competition algorithm. A variation calculus problem for 
the evolution of the object contour was proposed in [103]. 
The problem was solved using level sets-based hybrid model 
combining region-based and boundary-based segmentation 
of the target object. Particle filter [104] is extended to a 
region-based image representation for video object segmen-
tation in [105]. The particle filter is reformulated consider-
ing image partition for particle filter measurement and that 
results into enrichment of the existing information.

Visual Representation Based on Local Feature  Visual repre-
sentation using local features encodes the object appearance 
information using saliency detection and interest points 
[106]. A brief discussion on the local feature-based visual 
representation used in several tracking methods is given 
below.

In local template-based technique, an object template is 
continuously fitted to a sequence of video frames in tem-
plate-based object tracking. Establishing a correspondence 
between the source image and the reference template is the 
objective of the template-based method [107]. Template-
based visual tracking is considered as a kind of nonlinear 
optimization problem [108, 109]. In the presence of signifi-
cant inter-frame object motion, tracking method based on 
nonlinear optimization has its disadvantage of being trapped 
in local minima. An alternative approach is proposed in 
[110] where geometric particle filtering is used in template-
based visual tracking. A tracking method for human identifi-
cation and segmentation was proposed in [111]. A hierarchi-
cal approach of part-template matching is introduced here, 
considering the utility of both local part-based and global 
template human detectors.

In segmentation-based technique, the cues are incorpo-
rated in segmentation-based visual representation of object 
tracking [112]. In a video sequence, segmenting the tar-
get region from the background is a challenging task. In 
computer graphics domain, it is known as video cutout 
and matting [113–116]. Two closely related problems of 
visual tracking are mentioned in [117]—(i) localizing the 
position of a target where the video has low or moder-
ate resolution (ii) segmentation of the image of the target 
object where the video has moderate to high resolution. In 
the same study, a nonparametric k-nearest-neighbor (kNN) 
statistical model is used to model the dynamic changing 
appearance of the image regions. Both localization and 
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segmentation problem are solved as a sequential binary 
classification problem here. One of the most successful 
representations for image segmentation and object track-
ing is superpixels [118–120]. A discriminative appearance 
model based on superpixel to distinguish the target and the 
background, having mid-level cues, is proposed in [121]. 
A confidence map for target background is computed here 
to formulate the tracking task.

In scale-invariant feature transform (SIFT)-based tech-
nique [122–124], the image information is transformed into 
scale-invariant features which may be applied for matching 
different scenes or views related to the target object [125]. A 
set of image features are generated through SIFT by follow-
ing four stages of computations namely—extrema detection, 
keypoint localization, orientation assignment and keypoint 
descriptor.

In extrema detection stage, all image locations are 
searched. A Gaussian difference function is used to detect 
the probable interesting points that remain unperturbed to 
the orientation and scale.

In keypoint localization stage, the location and scale are 
determined by fitting a detailed model at each candidate 
location.

In orientation assignment stage, local image gradient 
directions are used to assign one or more orientations to 
each of the key point locations. Image data are transformed 
based on the assigned orientation, scale and position of the 
each feature. All future operations are performed on the 
transformed image data and invariance is provided to these 
transformations.

In keypoint descriptor stage, the selected scale is used to 
measure the local image gradients in the region surrounding 
each keypoint. A significant amount of local distortion in 
shape and illumination changes is allowed in the transformed 
representation.

SIFT-based techniques have its wide use in literature 
because of its invariance to the scene background change 
during the tracking. A real-time, low-power system based 
on SIFT algorithm was proposed in [126]. A database of 
the features of the known objects is maintained and the 
individual features are matched with it. A modified version 
of the approximation of nearest neighbor search algorithm 
based on the K-d tree and BBF algorithm is used here. 
SIFT- and PowerPC-based infrared (IR) imaging system is 
used in [127] to automatically recognize the target object in 
unknown environments. First, the positional interest points 
and scale are localized for a moving object. Thereafter, the 
description of the interest points is built. SIFT and Kalman 
filter are used in [128] to handle occlusion. In an image 
sequence, the objects are identified using the SIFT algorithm 
with the help of the extracted invariant features. The pres-
ence of occlusion degrades the accuracy of SIFT. Kalman 
filter [129] is used here to minimize the effect of occlusion 

because the estimation of the location of the object in the 
subsequent frame is done based on the location information 
about the object in the previous frame.

Saliency detection-based method is applicable to indi-
vidual images if there is a presence of a well-centered single 
salient object [130]. Two stages of saliency detection are 
mentioned in the literature [131]. The first stage involves 
the detection of the most prominent object and the accu-
rate region of the object is segmented in the second stage. 
These two stages are rarely separated in practice rather they 
are often overlapped [132, 133]. In [134], a novel method 
of real-time extraction of saliency features from the video 
frames is proposed. Conditional random fields (CRF) [135] 
are combined with the saliency features and thereafter, 
a particle filter is applied to track the detected object. In 
[136], the mean-shift tracker in combination with saliency 
detection is used for object tracking in dynamic scenes. To 
minimize the interference of the complex background, first 
a spatial–temporal saliency feature extraction method is pro-
posed. Furthermore, the tracking performance is enhanced 
by fusing the top-down visual mechanism in the saliency 
evaluation method. A novel method of detecting the salient 
object in images is proposed in [137], where the variability 
is computed statistically by two scatter matrices to meas-
ure the variability between the central and the surrounding 
objects. The pixel centric most salient regions are defined as 
a salience support region. The saliency of pixel is estimated 
through its saliency support region to detect variable-sized 
multiple salient objects in a scene.

Statistical Modeling

The visual tracking methods are continuously subjected to 
inevitable appearance changes. In statistical modeling, the 
object detection is performed dynamically [138].Variations 
in shape, texture and the correlations between them are rep-
resented by the statistical model [139]. A statistical model 
is categorized into three classes [140] namely—generative 
model, discriminative model and hybrid model.

In visual tracking, the appearance templates are adap-
tively generated and updated by the generative model [141, 
142]. The appearance model of the target is adaptively 
updated by the online learning strategy embedded in the 
tracking framework [143].

A framework based on an online EM algorithm to model 
the change in appearance during tracking is proposed in 
[144]. In the presence of image outliers, this model pro-
vides robustness when used in a motion-based tracking algo-
rithm. In [145, 146] Adaptive Appearance model is incorpo-
rated in a particle filter to realize robust visual tracking. An 
online learning algorithm is proposed in [147] to generate 
an image-based representation of the video sequences for 
visual tracking. A probabilistic appearance manifold [148] is 
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constructed here from a generic prior and a video sequence 
of the object. An adaptive subspace representation of the 
target object is proposed in [149], where low-dimensional 
subspace is incrementally learned and updated. A compact 
representation of the target is provided here instead of rep-
resenting the same as a set of independent pixels. Appear-
ance changes due to internal or external factors are reflected 
since the subspace model is continuously updated by the 
incremental method. In [35], an incremental tensor subspace 
learning-based algorithm is proposed for visual tracking. 
The appearance changes of the target are represented by 
the algorithm through online learning of a low-dimensional 
eigenspace representation. In [150], Retinex algorithm [151, 
152] is combined with the original image and the result-
ant is defined as weighted tensor subspace (WTS). WTS is 
adapted to the target appearance changes by an incremental 
learning algorithm. In [153], a robust tracking algorithm is 
proposed to combine sparse appearance models and adap-
tive template update strategy, which is less sensitive to 
occlusion. A weighted structural local sparse appearance 
model is adopted in [154], which combines patch-based 
gray value and histogram-oriented gradient features for the 
patch dictionary.

Tracking is defined as a classification problem in dis-
criminative methods [155]. The target is discriminated 
from the background and updated online. Appearance and 
environmental changes are handled by a binary classifier 
which is trained to filter out the target from the background 
[156, 157]. As this method applies a discriminatively trained 
detector for tracking purposes, this is also called tracking 
by detection mechanism [158–162]. Discriminative methods 
pertain machine learning approaches to distinguish between 
the object and non-object [163]. To achieve constructive pro-
phetic performances, online variants are proposed to pro-
gressively learn discriminative classification features for 
distinguishing object and non-object. The main problem is 
a discriminative feature (for, e.g., color, texture, shape, etc.) 
may be identical along with the varying background [164]. 
In [165], a discriminative correlation filter-based (DCF) 
approach is proposed which is used to evaluate the object 
in the next frame. Hand-crafted appearance features such as 
HOG [166], color name feature [167] or a combination of 
both [168] are usually utilized by DCF-based trackers. To 
remove ambiguity, a deep motion feature is used which dif-
ferentiates the target based on discriminative motion pattern 
and leads to successful tracking after occlusion, addressed 
in [169]. A discriminative scale space tracking approach 
(DSST), which learns separate discriminative correlation 
filters for explicit translation and scale evaluation, is pro-
posed in [170]. A support vector machine (SVM) tracking 
framework and dictionary learning based on discriminative 
appearance model are reported in [171]. To track arbitrary 

object in videos, a real-time, online tracking algorithm is 
proposed based on discriminative model [172].

The generative and discriminative models have comple-
mentary strengths and weaknesses, though they have dif-
ferent characteristics. A combination of generative and dis-
criminative model to get the best practices of both domains 
is proposed in [172]. A new hybrid model is proposed here 
to classify weakly labeled training data. A multi-conditional 
learning framework [173] is proposed in [174] for simultane-
ously clustering, classifying and dimensionality reduction. 
Favorable properties of both the models are observed in the 
multi-conditional learning model. In the same study, it is 
demonstrated that a generalized superior performance is 
achieved using the hybrid model of the foreground or back-
ground pixel classification problem [175].

From the appearance model, stable properties of 
appearance are identified and motion estimation is done 
by weighing on them [144]. Next section elaborates briefly 
about the motion estimation methodologies mentioned in 
the literatures.

Motion estimation

In motion estimation, motion vectors [176–180] are deter-
mined to represent the transformation through adjacent 2D 
image frames in a video sequence [181]. Motion vectors 
are computed in two ways [182]—pixel-based methods 
or direct method, and feature-based methods or indirect 
method. In direct methods [183], motion parameters are 
estimated directly by measuring the contribution of each 
pixel that results in optimal usage of the available infor-
mation and image alignment. In indirect methods, features 
like corner detection are used and the corresponding fea-
tures between the frames are matched with a statistical 
function applied over a local or global area [184]. Image 
areas are identified where a good correspondence is 
achievable and computation is concentrated in these areas. 
The initial estimation of the camera geometry is, thus, 
obtained. The correspondence of the image regions having 
less information is guided by this geometry.

In visual tracking, motion can be modeled using a particle 
filter [140] which is considered as a dynamic state estima-
tion problem. Let the parameters for describing the affine 
motion of an object is represented by mt and the subsequent 
observation vectors denoted by ot . The following two rules 
are recursively applied to estimate the posterior probability

(15)p(mt|o1∶t−1) = ∫ p
(
mt|mt−1

)
p
(
mt−1|o1∶t−1

)
dmt−1,
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where m1∶t =
{
m1,m2,… ,mt

}
 represents state vectors at 

time t ando1∶t =
{
o1, o2,… , ot

}
 represents the correspond-

ing observatory states.
The motion model describes the transition of states 

between the subsequent frames and is denoted by 
p
(
mt|mt−1

)
 . The observation model is denoted by p

(
ot|mt

)
 

which calculates the probability of an observed image frame 
to be in a particular object class.

Object Localization

The target location is estimated in subsequent frames by the 
motion estimation process. The target localization or posi-
tioning operation is performed by maximum posterior pre-
diction or greedy search, based on motion estimation [185].

A brief description about visual tracking and the asso-
ciated models is given in the above section. Visual track-
ing is one of the rapidly growing fields in computer vision. 
Numerous algorithms are proposed in literature every year. 
Several measures to evaluate the visual tracking algorithms 
are briefly described in the below section.

Visual Tracking Performance

The performance measures represent the difference or cor-
respondence between the predicted and actual ground truth 
annotations. Several performance measures, widely used in 
visual tracking [186, 187] are—center location error, bound-
ing box overlaps, tracking length, failure rate, area under 
the lost-track-ratio curve, etc. A brief description of each of 
these measures is given below.

Center Location Error

The center location error is one of the widely used measures 
for evaluating the performance of object tracking. The dif-
ference between the center of the manually marked ground 
truth position ( rG

t
 ) and the tracked target’s center ( rT

t
 ) is com-

puted by computing the Euclidean distance between them 
[188]. The same is formulated as follows.

In a sequence of length n , the state description of the 
object (�) is given by:

where the center of the object is denoted by rt ∈ R
2 and rt 

represents the object region at time t.
The central error ( Ec) is formulated as follows:

(16)p
(
mt|o1∶t

)
=

p
(
ot|mt

)
p(mt|o1∶t−1)

P(ot|ot∶t−1) ,

(17)� =
{(

rt, ct
)} n

t = 1
,

Randomness of the output location is frequent when the 
track of a target object is lost by the tracking algorithm. 
In such a scenario, it is difficult to measure the accurate 
tracking performance [188]. The error due to randomness is 
minimized in [163] where a threshold distance is maintained 
from the ground truth object and the percentage of frames 
within this threshold is calculated to estimate the tracking 
accuracy.

Bounding Box Overlap

In central location error, the pixel difference is measured, but 
the scale and size of the target object are not reflected [163]. 
A popular evaluation metric that minimizes the limitation of 
the central location error is the overlapping score [189, 190]. 
The overlap of the ground truth region and the predicted 
target’s region is considered as overlap score 

(
Sr
)
 and the 

same is formulated as below [191].

where ∪ and ∩ represent the union and intersection of two 
boundary region boxes and the region area is represented by 
the function Area().

Both position and size of the bounding boxes of ground 
truth object and predicted target are considered here and as 
a result, the significant errors due to tracking failures are 
minimized.

Tracking Length

Tracking length is a measure which is used in literature [192, 
193]; it denotes the number of frames successfully tracked 
from the initialization of the tracker until its first failure. The 
tracker’s failure cases are explicitly addressed here but it is 
not effective in the presence of a difficult tracking condition 
at the initialization of the video sequence.

Failure Rate

The problem of tracking length is addressed in the failure 
rate measure [194, 195]. This is a supervised system where 
the tracker is reinitialized by a human operator once it suf-
fers failure. The system records the number of manual inter-
ventions and the same is used as a comparative performance 
score. The entire video sequence is considered in the perfor-
mance evaluation and hence, the dependency of the begin-
ning part, unlike the tracking length measure, is diminished.

(18)Ec

(
�G,�T

)
=

√
1

n

n∑
t=1

|||r
G
t
− rT

t

|||
2

.

(19)Sr =
Area

(
rG
t
∩ rT

t

)

Area
(
rGt ∪ rTt

) ,
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Area Under the Lost‑Track‑Ratio Curve

In [196], a hybrid measure is proposed where several meas-
ures are combined into a single measure. Based on the over-
lap measure ( Sr) which is described in the earlier section, 
the lost-track ratio � is computed. In a particular frame, 
the track is considered to be lost when overlap between the 
ground truth and the estimated target is smaller than a cer-
tain threshold value ( � ), i.e., Sr ≤ �, where � ∈ (0, 1)

Lost-track ratio is represented by the following formula:

where Ft is the number of frames having a lost track and F 
is the total number frames belonging to the estimated target 
trajectory.

The area under the lost-track ( AULT ) is formulated as 
below:

In this method a compact measure is presented where 
a tracker has to take into account two separate tracking 
aspects.

Visual tracking has its wide application in the literature. 
Some of the application areas of visual tracking are briefly 
described in the below section.

Applications of Visual Tracking

Different methods of visual tracking are used in a wide 
range of application domains. This section is mainly focused 
around seven application domains of visual tracking—Medi-
cal Science, Space Science, Augmented Reality Applica-
tions, Posture estimation, Robotics, Education, Sports, Cin-
ematography, Business and Marketing, and Deep Learning 
Features.

Medical Science

To improve the robot-assisted laparoscopic surgery sys-
tem, a human machine interface is presented for instrument 
localization and automated endoscope manipulation [197, 
198]. An “Eye Mouse” based on a low-cost tracking sys-
tem is implemented in [199], which is used to manipulate 
computer access for people with drastic disabilities. The 
study of discrimination between bipolar and schizophrenic 
disorders by using visual motion processing impairment is 
found in [200]. Three different applications for analyzing 

(20)� =
Ft

F
,

(21)AULT = Δ�

1∑
�=0

�(�).

the classification rate and accuracy of the tracking system, 
namely the control of the mobile robot in the maze, the text 
writing program “EyeWriter” and the computer game, were 
observed in [201]. A non-invasive, robust visual tracking 
method for pupils identification in video sequences captured 
by low-cost equipment is addressed in [202]. A detailed dis-
cussion of eye tracking application in medical science is 
described in [203].

Space Science

A visual tracking approach based on color is proposed 
in [204, 205] for astronauts, which presents a numeric 
analysis of accuracy on a spectrum of astronaut profiles. 
A sensitivity-based differential Earth mover’s distance 
(DEMD) algorithm of simplex approach is illustrated and 
empirically substantiated in the visual tracking context 
[206]. In [207], an object detection and tracking based 
on background subtraction, optical flow and CAMShift 
algorithm is presented to track unusual events successfully 
in video taken by UAV. A visual tracking algorithm based 
on deep learning and probabilistic model to form Personal 
Satellite for tracking the astronauts of the space stations in 
RGB-D videos, reported in [208].

Augmented Reality (AR) Applications

Augmented reality system on color-based and feature-
based visual tracking is implemented on a series of appli-
cations such as Sixth Sense [209], Markerless vision-based 
tracking [210], Asiatic skin segmentation [211], Parallel 
Tracking and Mapping (PTAM) [212], construction site 
visualization [213], Face augmentation system [214, 215], 
etc., reported in [216]. A fully mobile hybrid AR system 
which combines a vision-based trackers with an inertial 
tracker to develop energy efficient applications for urban 
environments is proposed in [217]. An image-based locali-
zation of mobile devices using an offline data acquisition 
is reported in [218]. A robust visual tracking AR system 
for urban environments by utilizing appearance-based line 
detection and textured 3D models is addressed in [219].

Posture Estimation

This application domain deals with the images involv-
ing humans, which covers facial tracking, hand gesture 
identification, and the whole-body movement tracing. A 
model-based non-invasive visual hand tracking system, 
named ‘DigitEyes’ for high DOF articulated mecha-
nisms, is described in [220]. The three main approaches 
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for analyzing human gesture and whole-body tracking, 
namely 2D perspective without explicit shape models, 2D 
perspective with explicit shape models and 3D outlook, 
were discussed in [221]. A kinematic real-time model for 
hand tracking and pose evaluation is proposed to lead a 
robotic arm in gripping gestures [222]. A 3D LKT algo-
rithm based on model for evaluating 3D head postures 
from discrete 2D visual frames is proposed in [223].

Robotics

A real-time system for ego-motion estimation on autono-
mous ground vehicles with stereo cameras using feature 
detection algorithm is illustrated in [224]. A visual naviga-
tion system is proposed in [225] which can be applied to 
all kinds of robots. In this paper, the authors categorized 
and illustrated the visual navigation techniques majorly into 
map-based navigation [226] and mapless navigation [227]. 
The motionCUT framework is presented in [228] to detect 
motion in visual scenes generated by moving cameras and 
the said technique is applied on the humanoid robot iCub for 
experimental validation. A vision-based tracking methodol-
ogy using a stereoscopic vision system for mobile robots is 
introduced in [229].

Education

Visual tracking technology is widely applicable in the field 
of educational research. To increase the robustness of the 
visual prompting for a remedial reading system that helps 
the end users with identification and pronunciation of terms, 
a reading assistant is presented in [230]. To implement the 
said system, a GWGazer system is proposed which com-
bines two different methods, namely interaction technique 
evaluation [231–233] and observational research [234–236]. 
An ESA (empathic software agent) interface using real-
time visual tracking to ease empathetic pertinent behavior 
is applicable in the virtual education environment within 
a learning community, reported in [237]. An effective 
approach towards students’ visual attention tracking using 
an eye tracking methodology to solve multiple choice type 
problems is addressed in [238]. An information encapsulat-
ing process of teacher’s consciousness towards the student’s 
requirement using visual tracking is presented in [239], 
which is beneficial for classroom management system. To 
facilitate computer educational research using eye track-
ing methods, a gaze estimation methodology is proposed, 
which keeps record of a person’s visual behavior, reported 
in [240]. A realistic solution of mathematics teaching based 
on visual tracking is addressed in [241]. A detailed study 
of visual tracking in computer programming is described 
in [242].

Sports

Visual tracking holds a strong application field towards 
Sports. There are several approaches under this domain 
using different models of visual tracking. The precise track-
ing of the golfer during a conventional golf swing using 
dynamic modeling is presented in [243]. A re-sampling and 
re-weighting particle filter method is proposed to track over-
lapping athletes in a beach volleyball or football sequence 
using a single camera, reported in [244]. Improvement in 
performance of the underwater hockey athletes has been 
addressed in [245] by inspecting their vision behavior during 
breath holding exercise and eye tracking. A detailed discus-
sion in this domain is presented in [246, 247].

Apart from these, visual tracking can be broadly used in 
the field of cinematography [248–251], cranes systems [252, 
253], business and marketing [254–260] and deep learning 
applications [260–265].

Discussion

The traditional visual tracking methods perform competently 
in well-controlled environments. The image representa-
tions used by the trackers may not be sufficient for accurate 
robust tracking in complex environments. Moreover, the 
visual tracking problem becomes more challenging due to 
the presence of occlusion, un-organized background, abrupt 
fast random motion, dramatic changes in illumination, and 
significant changes in pose and viewpoints.

Support vector machine (SVM) classifier was fused with 
optical flow-based tracker in [266] for visual tracking. The 
classifier helps to detect the location of the object in the next 
frame even though a certain part of the object is missing. 
In this method, the next frame is not only matched with the 
previous frame, but also against all possible patterns learned 
by the classifier. More precise bounding boxes are identified 
in [267] using a joint classification–regression random forest 
model. Here, authors demonstrated that the aspect ratio of 
the variable bounding boxes was accurately predicted by this 
model. In [268], a neural network-based tracking system was 
proposed to describe a collection of tracking structures that 
enhance the effectiveness and adaptability of a visual tracker. 
Multinetwork architectures are used here that increase the 
accuracy and stability of visual tracking.

An extensive bibliographic study has been carried out 
based on the previously published works listed in Scopus 
database for the period of last 5 years (2014–2018). Amongst 
2453 listed works, 48.9% articles were published in journals 
and 44.5% in conferences. It is observed that major contri-
butions in this area are from computer science engineers 
(42%). Medical science and related domains (6%) also have 
notable contribution in this arena. The leading contributors 
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are from countries like China (57%), USA (12%), UK (5%), 
etc. Figure 2 clearly depicts the increasing interest in vision 
tracking in the last few years.

The above study clearly shows that, in recent years with 
the advent of deep learning, the challenging problem to 
track a moving object with a complex background has made 
significant progress [269]. Unlike previous trackers, more 
emphasis is put on unsupervised feature learning. A notewor-
thy performance improvement in visual tracking is observed 
with the introduction of deep neural networks (DNN) [269, 
270] and convolutional neural networks (CNN) [271–275]. 
DNN, especially CNN, demonstrate a strong efficiency in 
learning feature representations from huge annotated visual 
data unlike handcrafted features. High-level rich semantic 
information is carried out by the object classes which assist 
in categorizing the objects. These features are also tolerant 
to data corruption. A significant improvement in accuracy 
is observed in object and saliency detection besides image 
classification due to the combination of CNNs with the tra-
ditional trackers.

Conclusion

An overall study on visual tracking and its performance 
measures is presented in this study. Object initialization 
is the first stage of visual tracking. Initialization could be 
manual or automatic. The object properties like appearance, 
velocity, location, etc. are represented by observation model 
or appearance model. Special features like color, gradient, 
texture, shape, super-pixel, depth, motion, optical flow, 
etc. are used for robust visual tracking, that describe the 
appearance model. Appearance modeling consists of visual 
representation and statistical modeling. In visual representa-
tion, various visual features are used to form robust object 

descriptors; whereas in statistical modeling, a mathemati-
cal model for identifying the target object is developed. 
In the last few decades, a huge number of visual tracking 
algorithms are proposed in the literature. A comprehensive 
review of different measures to evaluate the tracking algo-
rithms is presented in this study. Visual tracking is applied 
in a wide range of applications including medical science, 
space science, robotics, education, sports, etc. Some of the 
application areas of visual tracking and related studies in the 
literature are presented here.
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