l‘)

Check for
updates

Session-Based Path Prediction
by Combining Local and Global
Content Preferences

Kushal Chawla'®) and Niyati Chhaya?

! University of Southern California, Los Angeles, USA
kchawlaQusc.edu
2 Big Data Experience Lab, Adobe Research, Bengaluru, India
nchhaya@adobe.com

Abstract. Session-based future page prediction is important for online
web experiences to understand user behavior, pre-fetching future content,
and for creating future experiences for users. While webpages visited by
the user in the current session capture the users’ local preferences, in this
work, we show how the global content preferences at the given instant can
assist in this task. We present DRS-LaG, a Deep Reinforcement Learn-
ing System, based on Local and Global preferences. We capture these
global content preferences by tracking a key analytics KPI, the number
of views. The problem is formulated using an agent which predicts the
next page to be visited by the user, based on the historic webpage con-
tent and analytics. In an offline setting, we show how the model can be
used for predicting the next webpage that the user visits. The online
evaluation shows how this framework can be deployed on a website for
dynamic adaptation of web experiences, based on both local and global
preferences.

1 Introduction

Users expect varied outcomes from their web experiences. Enterprises aim to
create digital experience that not only cater to user intent but also help to
improve their own business metrics. Given the variety of content, manual creation
of customized and adaptive experiences is infeasible. Session-based future path
prediction is necessary to understand user needs, pre-fetch future content, or
even for adapting future experiences. Users’ content creation and consumption
patterns define their intent and needs. Their web tracks; i.e. the path that the
user takes during their web journey is an essential ingredient for defining their
interests and goals. In this work, we aim to create user intent models leveraging
their consumption patterns combined with their website footprint to predict the
potential user path and content needs.

Extensive studies have been conducted in the related space of recommender
systems using traditional [2], deep-learning [6,7], and reinforcement learning [§]

K. Chawla—Work done when author was a full-time researcher at Adobe Research.

© Springer Nature Switzerland AG 2020
J. M. Jose et al. (Eds.): ECIR 2020, LNCS 12036, pp. 126-132, 2020.
https://doi.org/10.1007/978-3-030-45442-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45442-5_16&domain=pdf
https://doi.org/10.1007/978-3-030-45442-5_16

Session-Based Path Prediction 127

based techniques on both historic user-item interactions and session behavior.
While the historic webpages visited in a session capture the users’ local pref-
erences, this work shows that the instantaneous global content preferences can
further assist in understanding the future behavior of the users. We describe one
such scenario in Fig. la. Specifically, we present a Deep Reinforcement Learning
(RL) System, based on Local and Global preferences (DRS-LaG). Given the
historic webpage content and analytics in a user session, our agent predicts the
future preferences of the user. The model is trained on offline logs of a sports
news website. Through offline evaluations, we show how the proposed model can
be used to predict the next page user will go to. Our online evaluation shows how
the predictions can be used to adapt future experiences of the users. RL allows
our system to tackle the dynamic user preferences in news domain, while also
incorporating expected future rewards when deployed in an online environment.

b Fully Connected Layer
Concatenate T
00—« 100 5125

< > o
<1010 [7S Contt | s, Anayies | [acomtent | a mnaycs |

CLICK HERE CLICK HERE

L: Local Preference G Global Preference

(a) Illustrative example, benefit of ot Emved

incorporating global content pref- LSTH Layer

erences into modelling user behav- aore [
ior.

LSTM Layer

(Predicing the next
Viitad webpage) Historic
Webpages

(C) Architecture Diagram

(b) Model setup

Fig. 1. Internal workings of the proposed DRS-LaG framework.

2 DRS-LaG: Proposed Framework

Problem Formulation: We define an agent which models a user’s session-
level behavior to predict the next webpage user visits, based on the content
and instantaneous analytics of the webpages visited in the current session. Since
the predictions capture user preferences, they can then be recommended to the
user or used to adapt future webpage experiences. At each timestep, the user
(environment) provides feedback on the actions taken by the agent in the form
of rewards. The agent is trained on offline session-level logs extracted from a
sports news website. We illustrate this setup in Fig. 1b.

The task is modeled as a Markov Decision Process (MDP) with the tuple (S,
A, P, R, 7): (1) State space S: captures the current local and global content

128 K. Chawla and N. Chhaya

Algorithm 1. Offline Training algorithm for our agent

1: Initialize replay memory M, Q-value model Qps(s,a) with random weights, target model
Qr(s,a) with same wts as Qn (s, a).
2: Initialize webpage (action) pool P, webpage analytics A(action, kpi, time interval)
3: for e = 1,E do > episodes or user web sessions in chronological order
4: Reset environment state vector to a zero vector.
5: for t= 1,T do > timesteps in the current session
6: Observe the current state sy
7 for n = 1,N do > negative actions
8: Sample a negative action a from pool P
9: Observe the next state s¢41, reward r
10: Store transition (s¢, a, r, s¢41, done=1) in M
11: > session ends after a negative sample
12: end for
13: Get the correct action a from the offline logs
14: Observe the next state s¢41, reward r
15: Set done=1 if t==T, else 0
16: Store transition (s, a, r, s¢+1, done=done) in M
17: Update sy < s¢q1
18: if M .length > batch-size then
19: Sample a minibatch of transitions from M
20: Set y =
T, done=1
r +ymax, Qr(s’,a’;0), done=0
21: Minimize (y — Qs (s, a; 0))>
22: end if
23: end for
24: Update webpage pool P and webpage analytics A.
25: Update target model after fixed number of iterations.
26: end for

preference, (2) Action space A: set of all webpages, (3) Transition probabilities
P: probability p(s’|s,a) to move to state s’ by taking an action a in the state
s, (4) Rewards R: capturing the feedback received by the agent after taking a
particular action and, (5) ~: the discount factor for future rewards in the current
user session. The goal is to learn a policy 7 : § — A to maximize the cumulative
reward of the system.

To deal with the dynamic action spaces, we use a Deep Q-Learning model-free
approach. Figure 1c shows our architecture. Given a state-action pair, the net-
work outputs the corresponding Q-value (s, a). The optimal Q-value Q*(s,a)
should follow the Bellman equation [1]: @Q*(s,a) = E [r+ vmax, Q*(s',a')|s, a],
where r is the corresponding reward for the given state-action pair.

Actions: Representing Webpages. The agent actions correspond to various
webpages or URLs on the given website. Given the current state of a user,
the agent returns a set of plausible webpages, using both the local and global
content preferences. We hence represent webpages using both the content and
the corresponding instantaneous analytics.

Webpage Content: The webpage text content is represented using Universal
Sentence Encoder [3]. We leverage the pre-trained model using Tensorflow Hub'
which returns a dc = 512 dimensional representation for a given input.

Instantaneous Webpage Analytics: The incorporation of analytics allows
the agent to better predict the future content preferences of the users, while

! https://tfhub.dev/google/universal-sentence-encoder /2.

https://tfhub.dev/google/universal-sentence-encoder/2

Session-Based Path Prediction 129

also catering to business objectives. We divide the time scale into fixed-sized
intervals. Let’s consider a set of k analytics KPIs such as number of views and
number of exits. While training and subsequent testing, we track the KPIs for
all webpages seen until now. Analytics representation is obtained by combining
the value for most recent d4 time intervals for each of the & KPIs hence resulting
in a dk-dimensional vector. The final representation for an action is computed
by concatenating both the content and analytics representations of the webpage,
ending up with a (dc + dak) dimensional vector.

States: Historic Action Sequence. The current state must capture the
session-level preference of the users. Hence, we aggregate the representations
of all the historically visited webpages in the current session to define the state
of the user. DRS-LaG uses two LSTM networks to combine the historic content
and action analytics.

Defining Rewards. At each timestep, the agent receives a reward from the
user, based on the action chosen in the given state. The complete reward for a
given state-action pair r(s, a) is a combination of prediction and instantaneous
analytics: 7(s,a) = rp(s,a) + (rY(a) +r%4(a) + % (a)...7%5 (a)).

Where 7p(s,a) refers to prediction reward, whether the corresponding web-
page was visited by the user in the offline data logs, and 7% refers to the instan-

taneous analytics of the action a with respect to KPI i.

Learning Stage. The training algorithm is discussed here (see Algorithm 1).
First, experience replay [4] and target network [5] are used to stabilize the train-
ing process. Second, at each timestep, apart from considering the actual action
from the data, we also sample N negative actions from the webpage pool P. This
is necessary as the offline logs only contain the positive samples for next-page
prediction. Moreover, this allows the agent to explore the instantaneous analytics
values of webpages, beyond those seen in the current session. Third, the model is
trained using the Bellman Equation. Fourth, we skip the replay memory update
for the first few webpages in every session, owing to the inadequacy of the initial
webpages to capture the context. This detail is removed from Algorithm 1 for
simplicity. Finally, since the model is trained on instantaneous analytics values,
we update both the webpage pool and analytics values after each episode.

Test Stage - OfHine: Given the state, the model is asked to predict the next
webpage user will go to. Keeping v = 0, the model is trained using Algorithm 1 to
incorporate only the immediate reward, as appropriate for next-page prediction.
The test data is parsed similar to the training procedure. At every timestep, the
recall is observed based on the predictions from a trained model @ (s,a) and
the actual action from offline logs.

Online: We also evaluate our framework in an online simulated environment.
Given the complexity of setting up an online evaluation, following prior work [8],
we resort to a framework which effectively simulates the real-time environment
with the capability to provide immediate feedback given state and action. We
split our data into two and train this simulator on the first half, keeping the

130 K. Chawla and N. Chhaya

second for training. The simulator architecture is same as in Fig. 1c and is trained
to only predict the immediate feedback. The performance of our model in the
offline setting attests to the performance of the simulated environment.

3 Experiments

Dataset: The experiments are based on a snapshot of a sports website?. The
clickstream is gathered using an enterprise analytics tool deployed on the website.
The data consists of 37,667 user sessions. We maintain a temporal order in the
paths based on timestamps associated with each session. Minimum path length
is kept at 3 and maximum as 50. The data contains 1,599 unique urls. The
first 33,900 paths are kept for training, next 1,883 paths for validation, and last
1,884 paths for testing.

Training progress Recall@k with #Negative Samples at each timestep

—— Recall@20
Recall@40

8

8

— PQ-values
2] | N Q-values

Recall@k

8

°
B8

Cumulative Average Log Q-value

=2

0 2000 4000 6000 8000 10000 12000 14000 16000 0 2 4 6 8 10
Sessions #Negative Samples

(a) Training progress of DRS-LaG. P (b) Effect of varying the number of nega-
Q-values: Q-values of the actual action tive samples for DRS-LaG on Recall@20
from the data. N Q-values: Average Q- and Recall@40 in the offline evaluation
values for the negative actions, sampled task. For this analysis, the models were
uniformly from the action pool. trained on a 20% data.

Fig. 2. Training progress and the impact of the number of negative samples for DRS-
LaG.

Hyperparameters: Content representations are 512 dimensions while the
instantaneous analytics are 50-d. The batch size is 16, with learning rate for
Adam optimizer as 0.01, number of negative samples as 2, interval size as 5 s
and size of replay buffer as 5000 transitions. The weights are transferred to the
target network after every 1000 replay iterations. The prediction reward is set
to 3 for correct prediction and 0 otherwise, while the analytics reward is fixed
to the total change in KPI value over the past 50 intervals. Number of views is
considered as the KPI for all experiments. These parameters are tuned on the
validation dataset. Once tuned, the models are trained on ‘training+validation’
data for evaluation on the test data.

Training Progress: Fig. 2a visualizes the training progress of DRS-LaG. We
track two metrics: (1) P Q-values: Q-values of the actual action taken from the
data and (2) N Q-values: Average Q-values for the negative webpages, sampled

2 We cannot reveal the name of the website because of privacy constraints.

Session-Based Path Prediction 131

Table 1. Performance based on the offline logs for
next-page prediction task.

Model Offtine
Recall@20 | Recall@40
Random 2.00 3.18)
Majority 27.40 38.75
W-Avg-c 27.16 41.19 Fig.3. Performance comparison
LSTM-c 29.52 47.99 on our online test based on aver-
DRS-LaG: ra =0 | 35.55 50.46 age reward in a session.
DRS-LaG 36.34 51.36

uniformly from the action pool at each timestep. As expected, the two graphs
for Cumulative Log values deviate as the training proceeds.

Offline Results: We use two metrics, Recall@20 and Recall@40: what percent of
times the correct webpage visited by the user appears in top 20 and 40 webpages
returned by the model respectively.

DRS-LaG is trained to predict only the immediate reward at every timestep
by keeping 7 = 0. Comparison against baseline models is provided. Random
ignores the current state and returns a random set of webpages at every timestep.
Majority returns a list of most-viewed webpages at every timestep. Majority
can be a really strong baseline in hierarchical website environments. W-Avg-c
combines only the content representations of the past webpages in the current
session using a exponentially-decaying weighted average, to predict the future
path. Given the dynamic nature of the websites, instead of predicting a softmax
over all the webpages, given the historic webpages and a plausible next webpage,
W-Avg is trained to predict a score that the plausible webpage will next be vis-
ited. At the time of testing, the model returns the webpages with the maximum
scores. Similarly, LSTM-c uses a Long Short Term Memory recurrent network
to capture the historic webpage content. DRS-LaG: r4 = 0 is trained with both
local and global representations similar to DRS-LaG but without the analytics
reward. Table 1 shows the results. W-Avg-c performs similar to the Majority,
failing to capture the local context or preferences of the users. LSTM-c shows
improvements, by using a recurrent network to combine historic content visited
by the user. With the capability to incorporate both local and global content
preferences, DRS-LaG: r4 = 0 outperforms the baseline methods. Using the
analytics reward r 4, DRS-LaG shows further enhancement in the performance,
attesting to the utility of our approach. We analyze the sensitivity of DRS-LaG
in the offline evaluation task towards the number of negative examples sampled
at each timestep in Fig. 2b. If the number is too low, the model may end up learn-
ing nothing, by learning to predict a high score for every webpage. If the num-
ber is too high, the model may consider some in-context webpages as negative,

132 K. Chawla and N. Chhaya

again countering its own learning mechanism. We empirically identify the value
2 for our experiments (see Fig. 2b).

Online Results: These experiments evaluate the model, if deployed to recom-
mend webpages or adapt future experiences of the users, in a simulated envi-
ronment. We observe the average rewards in a session to evaluate the models.
Session length considered are 5, 10, 15 and 20. To incorporate cumulative future
rewards, DRS-LaG is trained is v = 0.95. Random, Majority and LSTM are
implemented in the same manner as before. DRS-LaG-c and DRS-LaG RAO
are trained similar to DRS-LaG. However, the former only considers the content
(local preference) and the latter keeps 4 = 0. The results for our online exper-
iments are plotted in Fig.3. DRS-LaG-c outperforms LSTM which is only
trained to predict the immediate feedback, attesting to the utility of reinforce-
ment learning. This observation is more evident in longer sessions. DRS-LaG
R4 =0 and DRS-LaG further improve the performance.

4 Conclusion

We presented DRS-LaG framework, with the objective of improving user web
experiences while simultaneously catering to analytics KPIs. Using Deep RL, our
model incorporates both local and global content preferences. We show the pro-
posed method effectively predicts user behavior in a dynamic web environment
using both offline and online setups.

References

1. Bellman, R.: Dynamic programming. Science 153(3731), 34-37 (1966)

2. Burke, R.: Hybrid recommender systems: survey and experiments. User Model. User-
Adap. Inter. 12(4), 331-370 (2002)

3. Cer, D., et al.: Universal sentence encoder. arXiv preprint arXiv:1803.11175 (2018)

4. Lin, L.J.: Reinforcement learning for robots using neural networks. Technical report,
Carnegie-Mellon Univ Pittsburgh PA School of Computer Science (1993)

5. Mnih, V., et al.: Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 (2013)

6. Wu, S., Ren, W., Yu, C., Chen, G., Zhang, D., Zhu, J.: Personal recommendation
using deep recurrent neural networks in netease. In: 2016 IEEE 32nd International
Conference on Data Engineering (ICDE), pp. 1218-1229. IEEE (2016)

7. Zhang, S., Yao, L., Sun, A., Tay, Y.: Deep learning based recommender system: a
survey and new perspectives. ACM Comput. Surv. (CSUR) 52(1), 5 (2019)

8. Zhao, X., Zhang, L., Ding, Z., Xia, L., Tang, J., Yin, D.: Recommendations with
negative feedback via pairwise deep reinforcement learning. In: Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 1040-1048. ACM (2018)

http://arxiv.org/abs/1803.11175
http://arxiv.org/abs/1312.5602

	Session-Based Path Prediction by Combining Local and Global Content Preferences
	1 Introduction
	2 DRS-LaG: Proposed Framework
	3 Experiments
	4 Conclusion
	References

