
TACAS
Evaluation
Artifact

2020
Accepted

Endicheck: Dynamic Analysis for Detecting

Endianness Bugs

Roman Kápl and Pavel Parı́zek

Department of Distributed and Dependable Systems,
Faculty of Mathematics and Physics, Charles University,

Prague, Czech Republic

Abstract. Computers store numbers in two mutually incompatible ways: little-
endian or big-endian. They differ in the order of bytes within representation of
numbers. This ordering is called endianness. When two computer systems, pro-
grams or devices communicate, they must agree on which endianness to use, in
order to avoid misinterpretation of numeric data values.
We present Endicheck, a dynamic analysis tool for detecting endianness bugs,
which is based on the popular Valgrind framework. It helps developers to find
those code locations in their program where they forgot to swap bytes prop-
erly. Endicheck requires less source code annotations than existing tools, such
as Sparse used by Linux kernel developers, and it can also detect potential bugs
that would only manifest if the given program was run on computer with an oppo-
site endianness. Our approach has been evaluated and validated on the Radeon SI
Linux OpenGL driver, which is known to contain endianness-related bugs, and on
several open-source programs. Results of experiments show that Endicheck can
successfully identify many endianness-related bugs and provide useful diagnostic
messages together with the source code locations of respective bugs.

1 Introduction

Modern computers represent and store numbers in two mutually incompatible ways:
little-endian (with the least-significant byte first) or big endian (the most-significant
byte first). The byte order is also referred to as endianness.

Processor architectures typically define a native endianness, in which the proces-
sor stores all data. When two computer systems or programs exchange data (e.g., via
a network), they must first agree on which endianness to use, in order to avoid mis-
interpretation of numeric data values. Also devices connected to computers may have
control interfaces with endianness different from the host’s native endianness.

Therefore, programs communicating with other computers and devices need to
swap the bytes inside all numerical values to the correct endianness. We use the term
target endianness to identify the endianness a program should use for data exchanged
with a particular external entity. Note that in some cases it is not necessary to know
whether the target endianness is actually little-endian or big-endian. When the knowl-
edge is important within the given context, we use the term concrete endianness.

If the developer forgets to transform data into the correct target endianness, the bug
can often go unnoticed for a long time because software is nowadays usually devel-
oped and tested on the little-endian x86 or ARM processor architecture. For example,

c© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12079, pp. 254–270, 2020.
https://doi.org/10.1007/978-3-030-45237-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45237-7_15&domain=pdf


if two identical programs running on a little-endian architecture communicate over the
network using a big-endian protocol, a missing byte-order transformation in the same
place in code will not be observed. Our work on this project was, in the first place,
motivated by the following concrete manifestation of the general issue described in the
previous sentence. The Linux OpenGL driver for Radeon SI graphics cards (the Mesa
17.4 version) does not work on big-endian computers due to an endianness-related bug1,
as the first author discovered when he was working on an industrial project that involved
PowerPC computers in which Radeon graphic cards should be deployed.

We are aware of few approaches to detection of endianness bugs, which are based on
static analysis and manually written source code annotations. An example is Sparse [11],
a static analysis tool used by Linux kernel developers to identify code locations where
byte-swaps are missing. The analysis performed by Sparse works basically in the same
way as type checking for C programs, and relies on the usage of specialized bitwise data
types, such as le16 and be32, for all variables with non-native endianness. Integers
with different concrete endianness are considered by Sparse as having mutually incom-
patible types, and the specialized types are also not compatible with regular C integer
types. In addition, macros like le32 to cpu are provided to enable safe conversion
between values of the bitwise integer types and integer values of regular types. Such
macros are specially annotated so that the analysis can recognize them, and developers
are expected to use only those macros.

The biggest advantage of bitwise types is that a developer cannot assign a regular
native endianness integer value to a variable of a bitwise type, or vice versa. Their
nature also prevents the developer from using them in arithmetic operations, which do
not work correctly on values with non-native byte order. On the other hand, a significant
limitation of Sparse is that developers have to properly define the bitwise types for all
data where endianness matters, and in particular to enable identification of data with
concrete endianness — Sparse would produce imprecise results otherwise. Substantial
manual effort is therefore required to create all the bitwise types and annotations.

Our goals in this whole project were to explore an approach based on dynamic anal-
ysis, and to reduce the amount of necessary annotations in the source code of a subject
program. We present Endicheck, a dynamic analysis tool for detecting endianness bugs
that is implemented as a plugin for the Valgrind framework [6]. The main purpose of
the dynamic analysis performed by Endicheck is to track endianness of all data val-
ues in the running subject program and report when any data leaving the program has
the wrong endianness. The primary target domain consists of programs written in C or
C++, and in which developers need to explicitly deal with endianness of data values.

While the method for endianness tracking that we present is to a large degree in-
spired by dynamic taint analyses (see, e.g., [8]), our initial experiments showed that
usage of existing taint analysis techniques and tools does not give good results espe-
cially with respect to precision. For example, an important limitation of the basic taint
analysis, when used for endianness checking, is that it would report false positives on
data that needs no byte-swapping, such as single byte-sized values. Therefore, we had to
modify and extend the existing taint analysis algorithms for the purpose of endianness
checking. During our work on Endicheck, we also had to solve many associated tech-

1 https://bugs.freedesktop.org/show_bug.cgi?id=99859

Endicheck: Dynamic Analysis for Detecting Endianness Bugs 255

https://bugs.freedesktop.org/show_bug.cgi?id=99859


nical challenges, especially regarding storage and propagation of metadata that contain
the endianness information — this includes, for example, precise tracking of single-byte
values.

Endicheck is meant to be used only during the development and testing phases of
the software lifecycle, mainly because it incurs a substantial runtime overhead that is
not adequate for production deployment. Before our Endicheck tool can be used, the
subject program needs to be modified, but only to inform the analysis engine where the
byte-order is being swapped and where data values are leaving the program. In C and
C++ programs, byte-order swapping is typically done by macros provided in the system
C library, such as htons/htonl or those defined in the endian.h header file. Thus only
these macros need to be annotated. During the development of Endicheck, we redefined
each of those macros such that the custom variant calls the original macro and defines
necessary annotations — for examples, see Figure 1 in Section 4 and the customized
header file inet.h2. Similarly, data also tend to leave the program only through few
procedures. For some programs, the appropriate place to check for correct endianness
is the send/write family of system calls.

Endicheck is released under the GPL license. Its source code is available at https:
//github.com/rkapl/endicheck.

The rest of the paper is structured as follows. Section 2 begins with a more thorough
overview of the dynamic analysis used by Endicheck, and then it provides details about
the way endianness information for data values are stored and propagated — this rep-
resents our main technical contribution, together with evaluation of Endicheck on the
Radeon SI driver and several other real programs that is described in Section 5. Besides
that, we also provide some details about the implementation of Endicheck (Section 3)
together with a short user guide (Section 4).

2 Dynamic Analysis for Checking Endianness

We have already mentioned that the dynamic analysis used by Endicheck to detect
endianness bugs is a special variant of taint analysis, since it uses and adapts some
related concepts. In the rest of this paper, we use the term endianness analysis.

2.1 Algorithm Overview

Here we present a high-level overview of the key aspects of the endianness analysis.
Like common taint and data-flow analysis techniques (see, e.g., [4] and [8]), our dy-
namic endianness analysis tracks flow of data through program execution, together with
some metadata attached to specific data values. The analysis needs to attach metadata to
all memory locations for which endianness matters, and maintain them properly. Meta-
data associated with a sequence of bytes (memory locations) that makes a numeric data
value then capture its endianness. Similarly to many dynamic analyses, the metadata are
stored using a mechanism called shadow memory [7] [9]. We give more details about
the shadow memory in Section 2.2.

2 https://github.com/rkapl/endicheck/blob/master/endicheck/ec-overlay/arpa/inet.h

256 R. Kápl and P. Paŕızek

https://github.com/rkapl/endicheck
https://github.com/rkapl/endicheck


Although we mostly focus on checking that the program being analyzed does not
transmit data of incorrect endianness to other parties, there is also the opposite problem:
ensuring that the program does not use data of other than native endianness. For this
reason, our endianness analysis could be also used to check whether all operands of an
arithmetic instruction have the correct native endianness — this is important because
arithmetic operations are unlikely to produce correct results otherwise. Note, however,
that checking of native endianness for operands has not yet been implemented in the
Endicheck tool.

The basic principle behind the dynamic endianness analysis is to watch instructions
as they are being executed and check endianness at specific code locations, such as
the calls of I/O functions. We use the term I/O functions to identify all system calls
and other functions that encapsulate data exchange between a program and external
entities (e.g., writing or reading data to/from a hard disk, or network communication) in
a specific endianness. When the program execution reaches the call of an I/O function,
Endicheck checks whether all its arguments have the proper endianness. Note that the
user of Endicheck specifies the set of I/O functions by annotations (listed in Section 4).

In order to properly maintain the endianness information stored in the shadow mem-
ory, our analysis needs to track almost every instruction being executed during the run
of a subject program. The analysis receives notifications about relevant events from the
Valgrind dynamic analysis engine. All the necessary code for tracking individual in-
structions (processing the corresponding events), updating endianness metadata (inside
the shadow memory), and checking endianness at the call sites of I/O functions, is added
to the subject program through dynamic binary instrumentation. Further technical de-
tails about the integration of Endicheck into Valgrind are provided later in Section 3.

Two distinguishing aspects of the endianness analysis — the format of metadata
stored in the shadow memory and the way metadata are propagated during the analysis
of program execution — are described in the following subsections.

2.2 Shadow Memory

A very important requirement on the organization and structure of shadow memory was
full transparency for any C/C++ or machine code program. The original layout of heap
and stack has to be preserved during the analysis run, since Endicheck (and Valgrind
in general) targets C and C++ programs that typically rely on the precise layout of data
structures in memory. Consequently, Endicheck cannot allocate the space for shadow
memory (metadata) within the data structures of the analyzed program.

When designing the endianness analysis, we decided to use the mechanism sup-
ported by Valgrind [7], which allows client analyses to store a tag for each byte in the
virtual address space of the analyzed program without changing its memory layout. This
mechanism keeps a translation table (similar to page tables used by operating systems)
that maps memory pages to shadow pages where the metadata are stored.

The naive approach would be to follow the same principles as taint analyses, i.e.
reuse the idea of taint bits, and mark each byte of memory as being either of native
endianness or target endianness. However, our endianness analysis actually uses a richer
format of metadata and individual tags, which improves the analysis precision.

Endicheck: Dynamic Analysis for Detecting Endianness Bugs 257



Rich Metadata Format. In this format of metadata, each byte of memory and each
processor register is annotated with one of the following tags that represent available
knowledge about the endianness of stored data values.

– native: The default endianness produced, for example, by arithmetic operations.
– target: Used for data produced by annotated byte-swapping function.
– byte-sized: Marks the first byte of a multi-byte value (e.g., an integer or float).
– unknown: Endianness of uninitialized data (e.g., newly allocated memory blocks).

In addition to these four tags, each byte of memory can also be annotated with the
empty flag, indicating that the byte’s value is zero. Now we give more details about the
meaning of these tags, and discuss some of the associated challenges.

Single-byte values. Our approach to precise handling of single-byte values is moti-
vated by the way arithmetic operations are processed. Determining the correct size of
the result of an arithmetic operation (in terms of the number of actually used bytes)
is difficult in practice, because compilers often choose to use instructions that operate
on wider types than actually specified by the developer in program source code. This
means the analysis cannot, in some cases, precisely determine whether the result of an
arithmetic operation has only a single byte. Our solution is to always mark the least-
significant byte of the result with the tag byte-sized. Such an approach guarantees that if
only the least-significant byte of an integer value is actually used, it does not trigger any
endianness errors when checked, because the respective memory location is not tagged
as native. On the other hand, if the whole integer value is really used (or at least more
than just the least-significant byte), there is one byte marked with the tag byte-sized

and the rest of the bytes are marked as native, thus causing an endianness error when
checked.

Empty byte flag. Usage of the empty flag helps to improve performance of the en-
dianness analysis when processing byte-shuffling instructions, because all operations
with empty flags are simpler than operations with the actual values. However, this flag
can be soundly used only when the operands are byte-wise disjoint, i.e. when each byte
is zero (empty) in at least one of the operands. Arithmetic operations are handled in a
simplified way — they never mark bytes as empty in the result. Consequently, while the
empty tag implies that the given byte is zero, the reverse implication does not hold.

Unknown tag. We introduced the tag unknown in order to better handle data values,
for which the analysis cannot say whether they are already byte-swapped. Endicheck
uses this tag especially for uninitialized data. Values marked with the tag unknown are
not reported as erroneous by default, but this behavior is configurable. We discuss other
related problems, concerning especially precision, below in Section 2.4.

2.3 Propagation of Metadata

An important aspect of the endianness analysis is that data values produced by the
subject program are marked as having the native endianness by default. This behav-

258 R. Kápl and P. Paŕızek



ior matches the prevailing case, because data produced by most instructions (e.g., by
arithmetic operations) and constant values can be assumed to have native endianness.

In general, metadata are propagated upon execution of an instruction according to
the following policy:

– Arithmetic operations always produce native-endianness result values.
– Data manipulation operations (e.g., load and store) propagate tags from their operands

to results without any changes.

Endicheck correctly passes metadata also through routines such as memcpy and certain
byte-shuffling operations (e.g., shift <<= and >>=). Complete details for all categories
of instructions and routines are provided in the master thesis of the first author [3].

The only way to create data with the target tag is via explicit annotation from the
user. Specifically, the user needs to add annotations to byte-swapping functions in order
to set the target tag on return values.

2.4 Discussion: Analysis Design and Precision

The basic scenario that is obviously supported by our analysis is the detection of endi-
anness bugs when the target and native endianness are different. However, the design of
our analysis ensures that it can be useful even in cases when the native endianness is the
same as the target endianness. Although byte-swapping functions then become identi-
ties, the endianness analysis can still find data that would not be byte-swapped if the
endianities were different — it can do this by setting the respective tags when data pass
through the byte-swapping functions. In addition, the endianness analysis can be also
used to detect the opposite direction of errors — programs using non-native endianness
data values (e.g., received as input) without byte-swapping them first.

Endicheck does not handle constants and immediate values in instructions very well,
since the analysis cannot automatically recognize their endianness and therefore cannot
determine whether the data need byte-swapping or not. Constants stored in the data
section of a binary executable represent the main practical problem to the analysis,
because the data section does not have any structure — it is just a stream of bytes. Our
solution is to mark data sections initially with the tag unknown. If this is not sufficient,
a user must annotate the constants in the program source code to indicate whether they
already have the correct endianness.

A possible source of false bug reports are unused bytes within a block of memory
that has undefined content, unless the memory was cleared with 0s right after its allo-
cation. This may occur, for example, when some fields inside C structures have specific
alignment requirements. Some space between individual fields inside the structure lay-
out is then unused, and marked either with the tag unknown or with the tag left over
from the previous content of the memory block.

3 Implementation

We distribute the Endicheck tool in the form of an open source software package that
was initially created as a fork of the Valgrind source code repository. Although tools

Endicheck: Dynamic Analysis for Detecting Endianness Bugs 259



and plugins for Valgrind can be maintained as separate projects, forking allowed us
to make changes to the Valgrind core and use its build/test infrastructure. Within the
whole source tree of Endicheck, which includes the forked Valgrind codebase, the code
specific to Endicheck is located in the endicheck directory. It consists of these modules:

– ec main: tool initialization, command-line handling and routines for translation
to/from intermediate representation;

– ec errors: error reporting, formatting and deduplication;
– ec shadow: management of the shadow memory, storing of the endianness meta-

data, protection status and origin tracking information (see below);
– ec util: utility functions for general use and for manipulation with the metadata;
– endicheck.h: public API with annotations to be used in programs by developers.

In the rest of this section, we briefly describe how Endicheck uses the Valgrind
infrastructure and a few other important features. Additional technical details about the
implementation are provided in the master thesis of the first author [3].

Usage of Valgrind infrastructure. Endicheck depends on the Valgrind core (i) for dy-
namic just-in-time instrumentation [6] of a target binary program and (ii) for the actual
dynamic analysis of program execution. The subject binary program is instrumented
with code that carries out all the tasks required by our endianness analysis — especially
recording of important events and tracking information about the endianness of data val-
ues. When implementing the Endicheck plugin, we only had to provide code doing the
instrumentation itself and define what code has to be injected at certain locations in the
subject program. Note also that for the analysis to work correctly and provide accurate
results, Valgrind instruments all components of the subject program that may possibly
handle byte-swapped data, including application code, the system C library and other
libraries. During the analysis run, Valgrind notifies the Endicheck plugin about execu-
tion of relevant instructions and Endicheck updates the information about endianness
of affected data values accordingly. Besides instrumentation and the actual dynamic
analysis, other features and mechanisms of the Valgrind framework used by Endicheck
include: utility functions, origin tracking, and developer-friendly error reporting.

Origin tracking [1] is a mechanism that can help users in debugging the endianness
issues. An error report contains two stack traces: one identifies the source code loca-
tion of the call to the I/O function where the wrong endianness of some data value was
detected, and the second trace, provided by origin tracking, identifies the source code
location where the value has originated. In Endicheck, the origin information (identi-
fier of the stack trace and execution context) is stored alongside the other metadata in
the shadow memory for all values. We decided to use this approach because almost
all values need origin tracking, since they can be sources of errors — in contrast to
Memcheck, where only the uninitialized values can be sources of errors.

During our experiments with the Radeon SI OpenGL driver (described in Sec-
tion 5.1), we have noticed that the driver maps the device memory into the user-space
process. In that case, there is no single obvious point where to check the endianness
of data that leave the program through the mapped memory. To solve this problem and
support memory-mapped I/O, we extended our analysis to automatically check endian-
ness at all writes to regions of the mapped device memory. We implemented this feature

260 R. Kápl and P. Paŕızek



in such a way that each byte of a device memory region is tagged with a special flag
protected — then, Endicheck can find very quickly whether some region of memory
is mapped to a device or not. Note that the flag is associated with a memory location,
while the endianness tags (described in Section 2.2) are associated with data values.
Therefore, the special flag is not copied, e.g. when execution of memcpy is analyzed; it
can be only set explicitly by the user.

4 User Guide

The recommended way to install Endicheck is building from the source code. Instruc-
tions are provided in the README file at the project web site. When Endicheck has
been installed, a user can run it by executing the following command:

valgrind --tool=endicheck [OPTIONS...] PROGRAM ARGS...

Origin tracking is enabled by the option –track-origins=yes.

Annotations In order to analyze a given program, some annotations typically must be
added into the program source code. A user of Endicheck has to mark the byte-swapping
functions and the I/O functions (through which data values are leaving the program),
because these functions cannot be reliably detected in an automated way.

The specific annotations are defined in the C header file endicheck.h. Here follows
the list of supported annotations, together with explanation of their meaning:

– EC MARK ENDIANITY(start, size, endianness)

This annotation marks a region of memory from start to start+size-1 as having the
given endianness. It should be used in byte-swapping functions. Target endianness
is represented by the symbol EC TARGET.

– EC CHECK ENDIANITY(start, size, msg)

This annotation enforces a check that a memory region from start to start+size-1

contains only data with any or target endianness. It should be used in I/O functions.
Unknown endianness is allowed by passing the –allow-unknown option.

– EC PROTECT REGION(start, size)

Marks the given region of memory as protected. This should be used for mapped
regions of device memory.

– EC UNPROTECT REGION(start, size)

Marks the given memory region as unprotected.
– EC DUMP MEM(start, size)

Dumps endianness of a memory region. This is useful for debugging.

Figure 1 shows an example program that demonstrates usage of the most important
annotations (EC MARK and EC CHECK). If the call to htobe32 inside main is removed,
Endicheck will report an endianness bug. This example also demonstrates possible ways
to easily annotate standard functions, like htobe32 and write.

Endicheck: Dynamic Analysis for Detecting Endianness Bugs 261



#include <valgrind/endicheck.h>

uint32_t htobe32(uint32_t x) {
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__

x = bswap_32(x);
#endif

EC_MARK_ENDIANITY(&x, sizeof(x), EC_TARGET);
return x;

}

int ec_write(int file, const void *buf, size_t count) {
EC_CHECK_ENDIANITY(buf, count, NULL);
return write(file, buf, count);

}
#define write ec_write

int main() {
uint32_t x = 0xDEADBEEF;
x = htobe32(x);
write(0, &x, sizeof(x));
return 0;

}

Fig. 1. Small example program with Endicheck annotations.

5 Evaluation

We evaluated the Endicheck tool — namely its ability to find endianness bugs, precision
and overhead — by the means of a case study on the Radeon SI driver, several open-
source programs and a standardized performance benchmark. For the Radeon SI driver
and each of the open-source programs, we provide a link to its source code repository
(and identification of the specific version that we used for our evaluation) within the
artifact that is referenced from the project web site.

5.1 Case Study

Our case study is Radeon SI, the Linux OpenGL driver for Radeon graphics cards, start-
ing with the SI (Southern Islands) line of cards and continuing to the current models.

Since these Radeon cards are little-endian, the driver must byte-swap all data when
running on a big-endian architecture such as PowerPC. However, the Radeon SI driver
(in the Mesa 17.4 version) does not perform the necessary byte-swapping operations,
and therefore simply does not work in the case of PowerPC — it crashes either the GPU
or OpenGL programs using the driver. In particular, endianness bugs in this version of
the Radeon SI driver cause the Glxgears demo on PowerPC to crash. We give more
details about the bugs we have found in Section 5.2.

An important feature of the whole Linux OpenGL stack is that all layers, includ-
ing the user-space program, communicate not only using calls of library functions and

262 R. Kápl and P. Paŕızek



system calls, but they also extensively use mapping of the device memory directly into
the user process. Given such an environment, Endicheck has to correctly handle (1) the
flow of data through the whole OpenGL stack by instrumenting all the libraries used,
and (2) communication through the shared memory that is used by the driver. This is
why the support for mapped memory in Endicheck, through marking of device memory
with a special flag, as described above in Section 3, is essential.

5.2 Search for Bugs

For the purpose of evaluating Endicheck’s ability to find endianness bugs, we picked a
diverse set of open-source programs (in addition to the Radeon SI driver), including the
following: BusyBox, OpenTTD, X.Org and ImageMagick. All programs are listed in
Table 1. The only criterion was to select programs written in C that communicate over
the network or store data in binary files, since only such programs may possibly contain
endianness bugs. We also document our experience with fixing the endianness bugs in
the Radeon SI driver and other programs.

One of the stated goals for Endicheck was to reduce the number of annotations that
a user must add into the program source code in order to enable search for endianness
bugs. Therefore, below we report the relevant measurements and discuss whether (and
to what degree) this goal has been achieved.

In the rest of this section, first we discuss application of Endicheck on the Radeon
SI driver (our case study) and then we present results for other programs.

Radeon SI case study. Within our case study, we have used the Glxgears demo pro-
gram as a test harness for the Radeon SI driver. Initially we have run Glxgears on the
x86 architecture, and after fixing all the issues found and reported by Endicheck, we
moved the same graphics card to a PowerPC host computer and continued testing there.

In the case of the Radeon SI driver, all byte-swapping functions are located in a
single file of one library (Gallium) on the OpenGL stack. Therefore, to enable search
for endianness bugs in Radeon SI, we had to make just two changes: (1) annotate the
function radeon drm cs add buffer as I/O function and (2) annotate the byte-swapping
functions in Gallium. Overall, we had to add or change about 40 lines of source code,
including annotations, in a single place. All our changes are published in the repository
https://rkapl.cz/repos/git/roman/mesa. It contains the source code of
Mesa augmented with our annotations and fixes for the endianness-related bugs in
Radeon SI described below. For fixes of bugs found by Endicheck, we included the
original Endicheck report in the commit message, under the ECNOTE header.

Figure 2 contains an example bug report produced by Endicheck with enabled ori-
gin tracking on Glxgears. The error report itself has three main parts (in this order): the
problem description, origin stack trace (captured when the offending value is created)
and point-of-check stack trace (recorded when some annotated I/O function is encoun-
tered). We show only fragments of stack traces for illustration (and to save space).

The problem description identifies the currently active thread, the nature of the error
and the memory region containing the erroneous value. The memory region is identified
by its address and an optional name provided by the program (“radeon add buffer” in

Endicheck: Dynamic Analysis for Detecting Endianness Bugs 263

https://rkapl.cz/repos/git/roman/mesa


Thread 9 gallium_drv:0:
Memory does not contain data of Target endianness
Problem was found in block 0x41BF000 (named radeon_add_buffer)
at offset 0, size 8:

0x41BF000: N N N N N N N N
The value was probably created at this point:

at 0x8B787F7: si_init_msaa_functions (si_state_msaa.c:94)
by 0x8B4F979: si_create_context (si_pipe.c:279)

...
by 0x4C46661: glXCreateContext (glxcmds.c:427)
by 0x10B67A: make_window.constprop.1 (glxgears.c:559)
by 0x109A86: main (glxgears.c:777)

The endianness check was requested here:
at 0x8B85C45: radeon_drm_cs_add_buffer (radeon_drm_cs.c:375)
by 0x8B4A58B: si_set_constant_buffer (r600_cs.h:74)
by 0x8B708D0: si_set_framebuffer_state (si_state.c:2934)

...
by 0x55357FB: start_thread (pthread_create.c:465)
by 0x5861B0E: clone (clone.S:95)

Fig. 2. Error report from Endicheck run on the Glxgears demo program

this case). Metadata are printed just for the part of the memory region that contains data
with the wrong endianness, using this convention: N = native, U = undefined.

This particular error report (Figure 2) indicates that an array of floating-point values
describing the multisampling pattern is not byte-swapped. Note that IEEE 754 floating
point values also obey the endianness of the host platform, at least on the architectures
x86, x64 and ARM. To repair the corresponding bug, we had to insert calls of byte-
swapping functions at the code location where the floating-point array is produced.

During our experiments with Radeon SI and Glxgears, four endianness bugs in total
were detected by Endicheck on the x86 architecture before testing on PowerPC. After
we fixed the bugs, the Glxgears demo did successfully run. This shows that Endicheck
detected all bugs it was supposed to and provided reports useful enough so that the bugs
could be fixed. Here we also need to emphasize that the Glxgears demo, naturally, does
not exercise all code in the Radeon SI driver, and fixing the whole driver would require
lot of additional work.

Other programs. As we said at the beginning of this section, we evaluated Endicheck’s
ability to find endianness bugs and precision on a set of realistic programs. Our primary
goal in this part of the evaluation was to assess the following aspects:

– the extent of annotations that is required for Endicheck to work properly,
– whether Endicheck is able to detect a bug in a given kind of programs, and
– how many false warnings are reported.

Before trying to answer these questions, we wanted to be sure that the subject pro-
grams contain endianness bugs. However, some of the programs that we considered

264 R. Kápl and P. Paŕızek



(OpenTTD, OpenArena and ImageMagick) are written in such a way that realistic en-
dianness bugs cannot be injected into their codebase. ImageMagick uses a C++ ab-
straction layer for binary streams, which also handles endianness. OpenArena uses bit-
oriented encoding for most parts of the network communication. OpenTTD uses an
abstraction layer too, but the developer can still make an endianness-related mistake in
certain cases, such as storing an array of uint16 t values as an array of uint8 t values. We
manually injected synthetic endianness bugs into the code of all the programs where
this was possible. In this process, we also annotated the byte-swapping functions (like
htonl). The bugs were created by removing one usage of byte-swapping functions.

The results of experiments are summarized in Table 1. For each program, the table
provides the following information: whether it was possible to analyze the program at
all, whether some endianness bugs were found, overhead related to false warnings, and
how many lines of source code were added or changed in relation to Endicheck anno-
tations. Data for the Radeon SI driver are also included in the table for completeness.

Program Analyzable Injected bug False positives Actual bugs Annotations
Radeon SI driver �Yes �Found ∅Manageable (2) �Found cca 40 lines
BusyBox �Yes �Found �No None found 20 lines
OpenTTD �Partially �Found ∅Manageable (2) None found 59 lines
Ntpd �Yes �Found �No None found 1 line
X.Org �Yes �Found �No �Found 30 lines
OpenArena ∅No
ImageMagick ∅No

Table 1. Search for bugs: precision and necessary annotations

Data in Table 1 show that Endicheck could find the introduced bug in all the cases.
Furthermore, Endicheck found two genuine endianness-related bugs in X.Org. The bugs
were confirmed by the developers of X.Org and fixed in upstream3.

Endicheck also reports some false warnings, but their numbers are not overwhelm-
ing. Four cases in total occured for the Radeon SI driver and OpenTTD (two in each).
This is a manageable amount, which can be even suppressed using further annotations.

5.3 Performance

In this section, we report on the performance of Endicheck in terms of execution time
overhead it introduces. We compare the performance data for programs instrumented
with Endicheck, programs instrumented by the Memcheck plugin for Valgrind and pro-
grams without any instrumentation. For the purpose of experiments, we used the stan-
dardized benchmark SPEC CPU2000. Even though SPEC CPU2000 is a general bench-
mark, not tailored for endianness analysis, results of experiments with this benchmark

3 https://gitlab.freedesktop.org/search?group_id=&project_id=
371&repository_ref=master&scope=commits&search=Roman+Kapl

Endicheck: Dynamic Analysis for Detecting Endianness Bugs 265

https://gitlab.freedesktop.org/search?group_id=&project_id=371&repository_ref=master&scope=commits&search=Roman+Kapl
https://gitlab.freedesktop.org/search?group_id=&project_id=371&repository_ref=master&scope=commits&search=Roman+Kapl


indicate the performance of Endicheck when doing a real analysis, because the control-
flow paths exercised within Endicheck and the Valgrind core during an experiment do
not depend on the specific metadata (tag values).

We run all experiments on a T550 ThinkPad notebook with 12 GiB of RAM and
an i5-5200 processor clocked at 2.20 GHz, under Arch Linux from Q2 2018. The
SPEC2000 test harness was used for all the runs, with iteration count set to 3. We
compiled both Memcheck and Endicheck by GCC v7.3.0 with default options. Note
that we had to omit the benchmark program “gap”, because it produced invalid results
when compiled with this version of GCC.

In the description of specific experiments, tables with results and their discussion,
we use the following abbreviations:

– EC: Endicheck (valgrind –tool=endicheck)
– MC: Memcheck (valgrind –tool=memcheck)
– -OT: with precise origin tracking enabled (–track-origins=yes)
– -IT: with origin tracking enabled, but not fully precise (–precise-origins=no)
– -P: with memory protection enabled (–protection=yes)

Execution time. We divided our experiments designed for measuring the execution
time into two groups. Our motivation was to ensure that all experiments, including the
EC-OT configuration that incurs a large overhead, finish within a reasonable time limit.
In the first group, we run the full range of configurations on the “test” data set provided
by SPEC CPU2000, which is small compared to the full “reference” set, and used MC
as the baseline for comparisons. Table 2 shows results for experiments in this group. All
execution time data provided in this table are relative to MC, with the exception of data
for the native configuration. The second group of experiments uses the full “reference”
data set from SPEC CPU2000. Results for this group are provided in Table 3. In this
case, we used the data for native (uninstrumented) programs as the baseline.

Program Native (s) MC (s) MC-OT EC EC-P EC-OT EC-IT
bzip2 1.38 19.40 2.27x 2.07x 2.23x 33.87x 12.58x
crafty 0.70 18.70 2.21x 1.74x 1.78x 30.59x 11.07x
eon 0.09 6.60 1.73x 1.29x 1.34x 12.89x 4.23x
gcc 0.31 12.70 1.96x 1.92x 1.98x 24.17x 9.53x
gzip 0.47 6.29 2.11x 1.86x 1.97x 41.97x 14.96x
mcf 0.05 0.85 2.38x 1.27x 1.32x 11.88x 7.08x
parser 0.66 10.50 2.19x 2.13x 2.28x 41.24x 16.29x
perlbmk 4.31 5.52 1.10x 0.95x 0.95x 1.17x 1.05x
twolf 0.05 1.64 1.88x 1.16x 1.20x 14.09x 5.51x
vortex 1.06 56.90 2.23x 1.95x 2.04x 28.38x 9.86x
vpr 0.49 8.02 2.00x 1.70x 1.75x 22.94x 8.30x
G.mean 0.41 7.86 1.97x 1.59x 1.65x 18.17x 7.56x

Table 2. Execution times for the SPEC CPU2000 test data set, relative to Memcheck.

266 R. Kápl and P. Paŕızek



Program Native (s) MC EC EC-P
bzip2 66.3 11.63x 23.47x 24.45x
crafty 29.5 26.78x 48.10x 48.54x
eon 24.1 52.12x 93.36x 97.34x
gcc 27.8 27.73x 116.62x 122.48x
gzip 79.9 8.92x 15.93x 16.80x
mcf 67.10 2.71x 6.90x 6.94x
parser 89.9 10.78x 23.04x 23.86x
perlbmk 45.9 38.45x 93.62x 96.27x
twolf 93 12.43x 19.77x 19.52x
vortex 43.8 44.36x 91.03x 92.85x
vpr 54.7 10.49x 20.29x 20.68x
G.mean 51.29 16.59x 35.31x 36.25x

Table 3. Execution times for the SPEC CPU2000 reference data set, relative to native runs.

Data in Table 3 indicate that the average slowdown of Memcheck is by the factor
of 16.59. Endicheck, in comparison, slows down the analyzed program by the factor
of 35.31. This means Endicheck has roughly two times higher overhead than Mem-
check with default options. According to data in Table 2, the same relative slowdown
of Endicheck with respect to Memcheck is 1.65x. This difference between the results
for the reference and test data sets is caused by the different ratio of the time spent
instrumenting the code versus time spent running the instrumented code.

However, data in both tables also show that the performance of Endicheck with ori-
gin tracking is lacking compared to Memcheck with the same option. It was still usable
for our Radeon SI OpenGL tests, but measurements indicate that there is a space for op-
timization. Nevertheless, certain relative slowdown between the configurations EC-OT
and MC-OT probably cannot be avoided, because Endicheck must track origin infor-
mation for much more data than Memcheck. Based on our experiments, we observed
that creating the origin information is the most expensive operation involved. When the
origin tags are created for each superblock, instead of every instruction, the execution
times drop roughly by a factor of two (see the columns EC-OT and EC-IT).

5.4 Discussion

Based on the case study and results of experiments presented in the previous sections,
we make the following general conclusions:

– Endicheck can find true endianness bugs in large real programs, assuming that the
user correctly annotates all the byte-swapping functions and I/O functions.

– Using fairly complex metadata is feasible in terms of performance and encoding.
– Performance of Endicheck is practical even on large programs, despite the overhead

and given that its current version is not yet optimized as well as Memcheck.
– Although Endicheck, due to precise dynamic analysis, requires less annotations to

be specified manually than static analysis-based tools (e.g., Sparse), still it puts
certain burden on the user.

Endicheck: Dynamic Analysis for Detecting Endianness Bugs 267



Regarding the annotation burden, we already mentioned that the user has to carefully
mark in particular all the I/O functions and byte-swapping functions, so that Endicheck
can correctly update endianness tags associated with memory locations during the run
of the analysis. While it would be possible to recognize byte-swapping functions au-
tomatically, e.g. by static code analysis, then the endianness analysis would have to be
run on a machine with the native endianness different from the target endianness, so
that actual byte-swaps will be present.

Another limitation of Endicheck from the practical perspective is handling of com-
plex data transformations, a problem shared with taint analysis. The metadata cannot
be correctly preserved through transformations such as encryption/decryption and com-
pression/decompression. However, in many cases, the problem could be avoided by re-
quiring an endianness check to be performed just before the respective transformation.

6 Related Work

As far as we know, the Sparse tool [11] used by Linux kernel developers, which we
already mentioned, is the only one publicly available specialized tool tackling the prob-
lem of finding endianness bugs. The main advantage of Endicheck over Sparse is better
precision in some cases, i.e. fewer false bug reports, since dynamic analysis, which ob-
serves actual program execution and runtime data values, is typically more precise than
static analysis. Endicheck also does not require so many annotations of functions and
variables as Sparse — when using Endicheck, typically just few places in the program
source code need to be annotated manually. More specifically, Sparse expects that an
input program code involves (i) the specialized bitwise data types (e.g., le32) for all
variables where endianness matters and (ii) the macros for conversion between regular
types and bitwise types (e.g., le32 to cpu). With Endicheck, developers only have to
annotate the byte-swapping functions used by the program (e.g., htons and htonl from
the C library). On the other hand, Sparse has better coverage of program code, as it is
based on static analysis.

The Valgrind dynamic analysis framework [6] comes bundled with a set of bug de-
tection tools. Very popular is the Memcheck tool [5] for detecting memory access errors
and leaks, which also served as an inspiration for the design and implementation of En-
dicheck. We mention the tool here, because it actually performs a variant of dynamic
taint analysis — it marks each bit of the program memory as valid or invalid (tainted).

Closely related is also the runtime type checker Hobbes [2] for binary executables,
which can detect some kinds of type mismatch bugs common in C programs. In order
to reduce the number of false bug reports and to delimit integer values, Hobbes uses
the mechanism of continuation markers — the first byte of each value has the marker
unset, and the remaining bytes are set to indicate that they represent a continuation of
an existing value. The analysis technique used by Hobbes could be modified to track
endianness of integer values instead of distinguishing between pointers and integers,
since one can model integers of different endianness as values that have different types
(also like in the case of Sparse).

Another approach with functionality similar to Endicheck has been implemented
within the LLVM/Clang plugin called DataFlowSanitizer [10]. It is a dynamic analysis

268 R. Kápl and P. Paŕızek



framework that (i) enables programs to define tags for data values and check for specific
tags, both through its API functions, and (ii) propagates all tags with the data.

7 Conclusion

We have presented a new dynamic analysis tool, Endicheck, for detecting endianness
bugs in C/C++ programs. The tool is built upon the Valgrind framework. Endicheck pro-
vides a useful, and in many settings also preferable, alternative to static analysis tools
like Sparse, because (1) it reports quite precise results (i.e., a low number of false warn-
ings) due to the nature of dynamic analysis and (2) requires less annotations (and other
changes) in the source code of the subject program in order to be able to detect missing
byte-swap operations. The results of our experimental evaluation show that Endicheck
can (1) handle large complex programs and (2) identify actual endianness bugs, and it
has practical performance overhead. Endicheck could also be used in automated test-
ing scenarios, as a useful alternative to testing programs on both little- and big-endian
processor architecture. A testing environment based on Endicheck might be easier to
set-up than the environment based, for example, on virtual machines.

7.1 Future Work

Possible extensions of Endicheck, which could improve its precision and practical use-
fulness even further, include:

– More complex analysis approach based on explicit tagging of each byte in an inte-
ger data value with its position.

– Reporting arithmetic instructions that use data with target endianness.
– Automatically checking system calls such as write for correct endianness.
– Suppression files for endianness bug reports to eliminate false positives.

Another way to detect endianness bugs more precisely is to use comparative runs
(i.e, a kind of equivalence checking). The key idea is to run a program on two machines,
where one has a big-endian architecture and the other has a little-endian architecture,
and compare the data leaving both variants of the program. This approach has the po-
tential to be the most accurate, because it can even detect problems in cases when data
leaving the program are encrypted or compressed. On the other hand, it cannot always
detect situations when the program forgets to byte-swap input data, unless the error
affects one of the output values with concrete endianness.

Acknowledgments. This work was partially supported by the Czech Science Founda-
tion project 18-17403S and partially supported by the Charles University institutional
funding project SVV 260451.

References

1. Bond, M.D., Nethercote, N., Kent, S.W., Guyer, S.Z., McKinley, K.S.: Tracking Bad Apples:
Reporting the Origin of Null and Undefined Value Errors. In: Proceedings of OOPSLA 2007.
ACM (2007)

Endicheck: Dynamic Analysis for Detecting Endianness Bugs 269



2. Burrows, M., Freund, S.N., Wiener, J.L.: Run-Time Type Checking for Binary Programs. In:
Proceedings of CC 2003. LNCS, vol. 2622. Springer (2003)

3. Kapl, R.: Dynamic Analysis for Finding Endianity Bugs. Master thesis, Charles University,
Prague, June 2018.

4. Liu, Y., Milanova, A.: Static Analysis for Inference of Explicit Information Flow. In: Pro-
ceedings of PASTE 2008. ACM (2008)

5. Seward, J., Nethercote, N.: Using Valgrind to Detect Undefined Value Errors with Bit-
Precision. In: Proceedings of USENIX 2005 Annual Technical Conference. USENIX As-
sociation (2005)

6. Nethercote, N., Seward, J.: Valgrind: A Framework for Heavyweight Dynamic Binary In-
strumentation. In: Proceedings of PLDI 2007. ACM (2007)

7. Nethercote, N., Seward, J.: How to Shadow Every Byte of Memory Used by a Program. In:
Proceedings of VEE 2007. ACM (2007)

8. Newsome, J., Song, D.: Dynamic Taint Analysis for Automatic Detection, Analysis, and
Signature Generation of Exploits on Commodity Software. In: Proceedings of NDSS 2005.
The Internet Society (2005)

9. Serebryany, K., Bruening, D., Potapenko, A., Vyukov, D.: AddressSanitizer: A Fast Address
Sanity Checker. In: Proceedings of USENIX 2012 Annual Technical Conference. USENIX
Association (2012)

10. Clang 8 documentation / DataFlowSanitizer. https://clang.llvm.org/docs/
DataFlowSanitizer.html (accessed in October 2019)

11. Sparse: a semantic parser for C programs. https://lwn.net/Articles/689907/
(accessed in October 2019)

270 R. Kápl and P. Paŕızek

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

https://clang.llvm.org/docs/DataFlowSanitizer.html
https://clang.llvm.org/docs/DataFlowSanitizer.html
https://lwn.net/Articles/689907/
http://creativecommons.org/licenses/by/4.0/

	15 Endicheck: Dynamic Analysis for Detecting Endianness Bugs
	1 Introduction
	2 Dynamic Analysis for Checking Endianness
	2.1 Algorithm Overview
	2.2 Shadow Memory
	2.3 Propagation of Metadata
	2.4 Discussion: Analysis Design and Precision

	3 Implementation
	4 User Guide
	5 Evaluation
	5.1 Case Study
	5.2 Search for Bugs
	5.3 Performance
	5.4 Discussion

	6 RelatedWork
	7 Conclusion
	7.1 Future Work

	References




