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To improve the optimization quality, stability, and speed of convergence of wolf pack algorithm, an adaptive shrinking grid search
chaotic wolf optimization algorithm using standard deviation updating amount (ASGS-CWOA) was proposed. First of all, a
strategy of adaptive shrinking grid search (ASGS) was designed for wolf pack algorithm to enhance its searching capability
through which all wolves in the pack are allowed to compete as the leader wolf in order to improve the probability of finding the
global optimization. Furthermore, opposite-middle raid method (OMR) is used in the wolf pack algorithm to accelerate its
convergence rate. Finally, “Standard Deviation Updating Amount” (SDUA) is adopted for the process of population regeneration,
aimed at enhancing biodiversity of the population. /e experimental results indicate that compared with traditional genetic
algorithm (GA), particle swarm optimization (PSO), leading wolf pack algorithm (LWPS), and chaos wolf optimization algorithm
(CWOA), ASGS-CWOA has a faster convergence speed, better global search accuracy, and high robustness under the
same conditions.

1. Introduction

1.1. Literature Review. /e metaheuristic search technology
based on swarm intelligence has been increasing in popu-
larity due to its ability to solve a variety of complex scientific
and engineering problems [1]. /e technology models the
social behavior of certain living creatures, in which each
individual is simple and has limited cognitive capability, but
the swarm can act in a coordinated way without a coordi-
nator or an external commander and yield intelligent be-
havior to obtain global optima as a whole [2]. In [3], Yang
Cuicui et al. adopted bacterial foraging optimization to
optimize the structural learning of Bayesian networks. In [4]
and [5], swarm intelligent algorithm is used for functional
module detection in protein-protein interaction networks to
help biologists to find some novel biological insights. In [6],

Ji et al. performed a systematic comparison of three typical
methods based on ant colony optimization, artificial bee
colony algorithm, and bacterial foraging optimization re-
garding how to accurately and robustly learn a network
structure for a complex system. In [7], the authors utilize the
artificial immune algorithm to infer the effective connec-
tivity between different brain regions. In [8], researchers
used an ant colony optimization algorithm for learning brain
effective connectivity network from fMRI data. Particle
swarm optimization (PSO) [9] algorithm was proposed
through the observation and study of the bird group’s
flapping behavior. Ant colony optimization (ACO) [10]
algorithm was proposed under the principle of simulating
ant social division of labor and cooperative foraging. Fish
swarm algorithm (FSA) [11] was proposed to simulate the
behavior of foraging and clustering in the fish group. In [12],
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bacterial foraging optimization (BFO) algorithm was pro-
posed by mimicking the foraging behavior of Escherichia
coli in the human esophagus. Artificial shuffled frog leaping
algorithm (SFLA) [13] was put forward through the simu-
lation of the frog groups to share information foraging
process and exchange mechanism. In [14], Karaboga and
Basturk proposed artificial bee colony (ABC) algorithm
based on the concept of postpeak, colony breeding, and the
way of foraging. But no algorithm is universal; these swarm
intelligence optimization algorithms have their own short-
comings such as slow convergence, easy to fall into local
optimum, or low accuracy. In [15], the authors proposed an
improved ant colony optimization (ICMPACO) algorithm
based on the multipopulation strategy, coevolution mech-
anism, pheromone updating strategy, and pheromone dif-
fusionmechanism in order to balance the convergence speed
and solution diversity and improve optimization perfor-
mance in solving large-scale optimization problem. To
overcome the deficiencies of weak local search ability in
genetic algorithms (GA) [16] and slow global convergence
speed in ant colony optimization (ACO) algorithm in
solving complex optimization problems, in [17], the authors
introduced the chaotic optimization method, multi-
population collaborative strategy, and adaptive control pa-
rameters into the GA and ACO algorithm to propose a
genetic and ant colony adaptive collaborative optimization
(MGACACO) algorithm for solving complex optimization
problems. On the one hand, the ant colony optimization
(ACO) algorithm has the characteristics of positive feedback,
essential parallelism, and global convergence, but it has the
shortcomings of premature convergence and slow conver-
gence speed; on the other hand, the coevolutionary algo-
rithm (CEA) emphasizes the existing interaction among
different subpopulations, but it is overly formal and does not
form a very strict and unified definition. /erefore, in [18],
Huimin et al. proposed a new adaptive coevolutionary ant
colony optimization (SCEACO) algorithm based on the
complementary advantages and hybrid mechanism.

In 2007, Yang and his coauthors proposed the wolf
swarm algorithm [19], which is a new swarm intelligence
algorithm. /e algorithm simulates the wolf predation
process, mainly through the walk, raid, and siege of three
kinds of behavior and survival of the fittest population
update mechanism to achieve the purpose of solving
complex nonlinear optimization problems. Since the wolf
pack algorithm is proposed, it is widely used in various fields
and has been developed and improved continually, such as
follows. In [20], the authors proposed a novel and efficient
oppositional wolf pack algorithm to estimate the parameters
of Lorenz chaotic system. In [21], the modified wolf pack
search algorithm is applied to compute the quasioptimal
trajectories for the rotor wing UAVs in the complex three-
dimensional (3D) spaces. In [22], wolf algorithm was used to
make out polynomial equation roots of the problem accu-
rately and quickly. In [23], a new wolf pack algorithm was
designed aiming to get better performance, including new
update rule of scout wolf, new concept of siege radius, and
new attack step kind. In [24], Qiang and Zhou presented a
wolf colony search algorithm based on the leader’s strategy.

In [25], to explore the problem of parameter optimization
for complex nonlinear function, a chaos wolf optimization
algorithm (CWOA) with self-adaptive variable step size was
proposed. In [26], Mirjalili et al. proposed “grey wolf op-
timizer” based on the cooperative hunting behaviour of
wolves, which can be regarded as a variant of paper [19]; in
[27–29], grey wolf optimizer is adopted to solve nonsmooth
optimal power flow problems, optimal planning of renew-
able distributed generation in distribution systems, and
optimal reactive power dispatch considering SSSC (static
synchronous series compensator).

1.2. Motivation and Incitement. From the review of the
above literature, the current optimization algorithm of
wolf pack follows the principle of “a certain number of
scouting wolves lead wolves through greedy search with a
specially limited number of times (each wolf has only four
opportunities in some literatures),” the principle of “fierce
wolves approach the first wolf through a specially limited
number of times of rushing” in the call and rushing
process, and the principle of “fierce wolves pass through a
specially limited number of times of rushing” in the siege
process greedy search for prey “in this operation mech-
anism, the algorithm itself too imitates the actual hunting
behavior of wolves, especially in” grey wolf optimization,”
which divides the wolves in the algorithm into a more
detailed level. /e advantage of doing so is that it can
effectively guarantee the final convergence of the algorithm
because it completely mimics the biological foraging
process; however, the goal of the intelligent optimization
algorithm of wolves is to solve the optimization problem
efficiently, and imitating wolves’ foraging behavior is only
a way. /erefore, the intelligent optimization algorithm of
wolves should be more abstract on the basis of imitating
wolves’ foraging behavior in order to improve its opti-
mization ability and efficiency. Due to the reasons above,
each of variants about wolf pack algorithm mentioned
above has its own limitation or inadequacy, including slow
convergence, weak optimization accuracy, and narrow
scope of application.

1.3. Contribution and Paper Organization. To further im-
prove the wolf pack optimization algorithm to make it have
better performance, this paper proposed an adaptive
shrinking grid search chaotic wolf optimization algorithm
using standard deviation updating amount (ASGS-CWOA).
/e paper consists of five parts including Introduction,
Principle of LWPS and CWOA (both of them are classic
variants of wolf pack optimization algorithm), Improve-
ment, Steps of ASGS-CWOA, Numerical Experiments, and
corresponding analyses.

2. Materials and Methods

2.1. Principle of LWPS and CWOA. Many variants about
original wolf pack algorithm are mentioned above; in this
article, we focus on LWPS and CWOA.
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2.1.1. LWPS. /e leader strategy was employed into tradi-
tional wolf pack algorithm, detailed in [24], unlike the simple
simulation of wolves’ hunting in [26]; LWPS abstracts wolves’
hunting activities into five steps. According to the thought of
LWPS, the specific steps and related formulas are as follows:

(1) Initialization. /e step is to disperse wolves to search
space or solution space in some way. Here, the number of
wolf populations can be represented by N and dimensions
of the search space can be represented by D, and then, we
can get the position of the i-th wolf by the following
equation:

xi � xi1, xi2, . . . , xid, . . . , xi D( 􏼁, (i � 1, 2, . . . , N; d � 1, 2, . . . , D),

(1)

where xid is the location of the i-th wolf in d-th dimension,N
means the number of wolf population, and D is the maxi-
mum dimension number of the solution space. Initial lo-
cation of each wolf can be produced by

xid � xmin + rand(0, 1) × xmax − xmin( 􏼁, (2)

where rand (0, 1) is a random number distributed uniformly
in the interval [0, 1] and xmax and xmin are the upper and
lower limits of the solution space, respectively.

(2) Competition for the Leader Wolf. /is step is to find the
leader wolf with best fitness value. Firstly, Q wolves should
be chosen as the candidates, which are the top Q of wolf
pack according to their fitness. Secondly, each one of the Q
wolves searches around itself in D directions, so a new
location can be got by equation (3); if its fitness is better
than the current fitness, the current wolf i should move to
the new location, otherwise do not move, then searching
will be continued until the searching time is greater than
the maximum number Tmax or the searched location
cannot be improved any more. Finally, by comparing the
fitness ofQwolves, the best wolf can be elected, and it is the
leader wolf:

xi−new � xid + rand(−1, 1) × step a, (3)

where step_a is the search step size.

(3) Summon and Raid. Each of the other wolves will raid
toward the location of leader wolf as soon as it receives the
summon from leader wolf, and it continues to search for
preys during the running road. Finally, a new location can be
got by equation (4); if its fitness is better than the one of
current location, the wolf will move to the new one, oth-
erwise stay at the current location:

xid−new � xid + rand(−1, 1) × step b × xld − xid( 􏼁, (4)

where xld is the location of the leader wolf in d-th dimension
and step_b is the run step size.

(4) Siege the Prey [30]. After the above process, wolves come
to the nearby of the leader wolf and will be ready to catch the
prey until the prey is got./e new location for anyone except
leader wolf can be obtained by the following equation:

xid−new �
xid, rm <R0,

xld + rand(−1, 1) × step c, rm >R0, rm � R0,
􏼨

(5)

where step_c is the siege step size, rm is a number generated
randomly by the function rand (−1, 1) distributed uniformly
in the interval [−1, 1], and R0 is a preset siege threshold.

In the optimization problem, with the current solution
getting closer and closer to the theoretical optimal value, the
siege step size of wolf pack also decreases with the increase in
iteration times so that wolves have greater probability to find
better values. /e following equation is about the siege step
size, which is obtained from [31]:

step c � step cmin × xd−max − xd−min( 􏼁

× exp
ln step cmin/step cmax( 􏼁∗ t

T
􏼠 􏼡,

(6)

where step_cmin is the lower limit of the siege step size,
xd–max is the upper limit of search space in d-th dimension,
xd–min is the lower limit of search space in d-th dimension,
step_cmax is the upper limit of the siege step size, and tmeans
the current number of iterations while T represents the
upper limit one.

Being out of boundary is not allowed to each wolf, so
equation (7) is used to deal with the possible transboundary:

xid−new �
xd−min, xid−new <xd−min,

xd−max, xid−new <xd−max.
􏼨 (7)

(5) Distribution of Food and Regeneration. According to the
wolf group renewal mechanism of “survival of the strong,”
group renewal is carried out including the worst m wolves
will die and be deleted and new m wolves will be generated
by equation (2).

2.1.2. CWOA. CWOA develops from the LWPS by intro-
ducing the strategy of chaos optimization and adaptive
parameters into the traditional wolf pack algorithm. /e
former utilizes logistic map to generate chaotic variables that
are projected to solution space in order to search, while the
latter introduces adaptive step size to enhance the perfor-
mance, and they work well./e equation of logistic map is as
follows, which is from [32]:

chaosk+1 � μ × chaosk × 1 − chasok( 􏼁chaosk ∈ [0, 1], (8)

where μ is the control variable and when μ is 4, the system is
in chaos state.

/e strategy of adaptive variable step size search includes
the improvement of search step size and siege step-size. In
the early stage, wolves should search for preys with a large
step size so as to cover the whole solution space as much as
possible, while in the later stage, with the wolves gathering
continuously, wolves should take a small step size to search
for preys so that they can search finely in a small target area.
As a result, the possibility of finding the global optimal
solution will be increased. And by equation (9), we can get
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the step size of migration, while by equation (10), the one of
siege can be obtained:

step anew � α × step a0, α � 1 −
t − 1
2

􏼒 􏼓
2
,

(9)

step cnew � step c0 × rand(0, 1) × 1 −
t − 1
2

􏼒 􏼓
2

􏼢 􏼣, (10)

where step_c0 is the starting step size for siege.

2.2. Improvement

2.2.1. Strategy of Adaptive Shrinking Grid Search (ASGS).
In the solution space with D dimensions, a searching wolf
needs to migrate along different directions in order to find
preys; during any iteration of themigration, it is according to
the thought of the original LWPS and CWOA that there is
only a dynamic point around the current location to be
generated according to equation (3).

However, a single dynamic point is isolated and not well
enough to search in the current domain space of some a wolf;
Figures 1(a) and 1(b) show the two-dimensional and the
three-dimensional spaces, respectively. In essence, the al-
gorithm needs to take the whole local domain space of the
current wolf to be considered in order to find the local best
location, so ASGS was used to generate an adaptive grid
centered on the current wolf, which is extending along 2×D
directions and includes (2×K+ 1)D nodes, where K means
the number of nodes taken along any direction. Figures 2(a)
and 2(b) show the migration about ASGS in two-dimen-
sional and three-dimensional space, respectively, and for
brevity, here, K is set to 2, detailed in the following equation:

k, xid−new􏼂 􏼃 � xid + step anew × k,

(k � −K, −K + 1, . . . , 0, . . . , K − 1, K).

(11)

So a node in the grid can be defined as

xi−new � k, xi1−new􏼂 􏼃, k, xi2−new􏼂 􏼃, . . . , k, xi D−new􏼂 􏼃􏼈 􏼉,

(k � −K, −K + 1, . . . , 0, . . . , K − 1, K).

(12)

During any migration, the node with best fitness in the
grid should be selected as new location of the searching wolf,
and after any migration, the leader wolf of the population is
updated according to the new fitness. It needs to be par-
ticularly pointed out that the searching grid will be smaller
and smaller as the step_anew becomes smaller. Obviously,
compared to a single isolated point in traditional methods,
the searching accuracy and the possibility of finding the
optimal value can be improved by ASGS including
(2×K+ 1)D nodes.

As the same reason, during the process of the siege, the
same strategy is used to find the leader wolf in the local
domain space including (2×K+ 1)D points. But the different
is that the step size of siege is smaller than the one of mi-
gration. After any migration, the leader wolf of the pop-
ulation is updated according to new current fitness, and
then, the current best wolf will be the leader wolf
temporarily.

2.2.2. Strategy of Opposite-Middle Raid (OMR).
According to the idea of the traditional wolf pack algo-
rithms, it is unfortunately that raid pace is too small or
unreasonable and wolves cannot rapidly appear around the
leader wolf when they receive the summon signal from the
leader wolf, as shown in Figure 3(a). So OMR is put forward
to solve the problem above, and its main clue is that the
opposite location of the current location relative to the
leader wolf should be calculated by the following equation:

xid−opposition � 2 × xld − xid. (13)

If the opposite location has better fitness than the current
one, the current wolf should move to the opposite one.
Otherwise, the following is obtained:

xi−m d �
xi d + xl d

2
,

xi � bestfitness xi 1, xi 2, . . . xi (D−1), xi D􏽨 􏽩, xi 1, xi 2, . . . xi (D−1), xm D􏽨 􏽩, . . . xi−m 1, xi−m 2, . . . xi−m (D−1), xi−m D􏽨 􏽩􏼐 􏼑,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(14)

where xi−m_d is the middle location in d-th dimension be-
tween the i-th wolf and the leader wolf, xi_d is the location of
the wolf i in d-th dimension, and xl_d is the location of the
leader wolf in d-th dimension. “Bestfitness” returns a wolf
with the best fitness from the given ones.

From equation (14) and Figure 3(b), it is seen that there
are 2D points among the current point and the middle point,
and as the result of each raid, the point with best fitness is
chosen as the new location of the current i-th wolf. /ereby,

not only the wolves can appear around the leader wolf as
soon as possible but also they can try to find new preys as far
as possible.

2.2.3. Standard Deviation Updating Amount (SDUA).
According to the basic idea of the leader wolf pack algo-
rithm, during the iterations, some wolves with poorer fitness
will be continuously eliminated, while the same amount of
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Figure 1: (a)/e range of locations of searching or competing wolves in CWOAwhen dimension is 2; (b) the range of locations of searching
or competing wolves in CWOA when dimension is 3, where step_a� 10 or step_c� 10 (the red point means the current location of some a
wolf).
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Figure 2: /e searching situation of wolves in ASGS-CWOA when dimension is (a) 2 and (b) 3, where step_a� 10 or step_c� 10 and K� 2
(the red point means the current location of some a wolf, and the black ones mean the searching locations of the wolf).
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Figure 3: (a) /e range of locations of wolves in raid when dimension is 3 according to the original thought of wolf pack algorithm; (b) the
range of locations of wolves in raid when dimension is 3 according to OMR, where step_a� 2. /e red point means the current position of
some wolves, the pink one indicates the position of the lead wolf, and the blue one means the middle point of current wolf and lead wolf.
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wolves will be added to the population to make sure that the
bad gene can be eliminated and the population diversity of
the wolf pack can be ensured, so it is not easy to fall into the
local optimal solution and the convergence rate can be
improved. However, the amount of wolves that should be
eliminated and added to the wolf pack is a fixed number,
which is 5 in LWPS and CWOA mentioned before, and that
is stiff and unreasonable. In fact, the amount should be a
dynamic number to reflect the dynamic situation of the wolf
pack during any iteration.

Standard deviation (SD) is a statistical concept, which
has been widely used in many fields. Such as in [33],
standard deviation was used into industrial equipment to
help process the signal of bubble detection in liquid sodium;
in [34], standard deviation is used with delay multiply to
form a new weighting factor, which is introduced to enhance
the contrast of the reconstructed images in medical fields; in
[35], based on eight-year-old dental trauma research data,
standard deviation was utilized to help analyze the potential
of laser Doppler flowmetry; the beam forming performance
has a large impact on image quality in ultrasound imaging,
to improve image resolution and contrast; in [36], a new
adaptive weighting factor for ultrasound imaging called
signal mean-to-standard-deviation factor (SMSF) was pro-
posed, based on which researchers put forward an adaptive
beam forming method for ultrasound imaging based on the
mean-to-standard-deviation factor; in [37], standard devi-
ation was adopted to help analyze when an individual should
start social security.

In this paper, we take a concept named “Standard De-
viation Updating Amount” to eliminate wolves with poor
fitness and dynamically reflect the situation of the wolf pack,
which means the population amount of wolf pack and
standard deviation about their fitness determine how many
wolves will be eliminated and regenerated. Standard devi-
ation can be obtained as follows:

σ �

������������

1
N

􏽘

N

i�1
xi − μ( 􏼁

2

􏽶
􏽴

, (15)

whereNmeans the number of wolf pack, ximeans the fitness
of the i-th wolf, and μ is the mean value of the fitness. /en,
SDUA is gained by the following formula:

SDUA �

SDUA + 1, fitness(xi)<
μ − σ
2

􏼒 􏼓,

do nothing, fitness(xi)≥
μ − σ
2

􏼒 􏼓.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(16)

SDUA is zero when the iteration begins; next, difference
between the mean value and the SD about the fitness of the
wolf pack should be computed, and if the fitness of current
wolf is less than the difference, SDUA increases by 1; oth-
erwise, nothing must be done. So the value of SDUA is got,
and SDUA wolves should be eliminated and regenerated.

/e effect of using a fixed value is displayed in
Figure 4(a), and Figure 4(b) shows the effect of using ASD. It
is clear that the amount in the latter is fluctuant as the wolf

pack has a different fitness during any iteration and better
than the former to reflect the dynamic situations of itera-
tions. Accordingly, not only will the bad gene from the wolf
pack be eliminated, but the population diversity of the wolf
pack can be also kept better so that it is difficulty to fall into
local optimal solution and the convergence rate can be
improved as far as possible.

2.3. Steps of ASGS-CWOA. Based on the thoughts of
adaptive grid search and adaptive standard deviation
updating amount mentioned above, ASGS-CWOA is pro-
posed, the implementation steps are following, and its flow
chart is shown in Figure 5.

2.3.1. Initialization of Population. /e following parameters
should be initially assigned: amount of wolf population is N
and dimension of searching space is D; for brevity, the
ranges of all dimensions are [rangemin, rangemax]; the upper
limit of iterations is T, value of step size in migration is
step_a, value of step size in summon and raid is step_b, value
of step size in siegement is step_c, and the population can be
generated initially by the following equation [25]:

xid � range min + chaos(0, 1) ×(range max − range min),

(17)

where chaos (0, 1) returns a chaotic variable distributed in
[0, 1] uniformly.

2.3.2. Migration. Here, an adaptive grid centered on the
current wolf can be generated by equation (12), which in-
cludes 2 nodes. After migration, the wolf with best fitness
can be found as the leader wolf.

2.3.3. Summon and Raid. After migration, the others begin
to run toward the location of leader wolf, and during the
process of raiding, any wolf keeps searching for preys fol-
lowing equations (13) and (14).

2.3.4. Siege. After summon and raid, all other wolves come
to be around the leader wolf in order to siege the prey
following equations:

k, xid−new􏼂 􏼃 � xid + step c × k,

(k � −K, −K + 1, . . . , 0, . . . , K − 1, K),

xi−new � k, xi1−new􏼂 􏼃, k, xi2−new􏼂 􏼃, . . . , k, xi D−new􏼂 􏼃􏼈 􏼉.

(18)

After any siegement, the newest leader wolf can be got,
which has best fitness temporarily.

2.3.5. Regeneration. After siege, some wolves with poorer
fitness will be eliminated, while the same amount of wolves
will be regenerated according to equation (14).
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2.3.6. Loop. Here, if t (the number of current iteration) is
bigger than T (the upper limit of iterations), exit the loop.
Otherwise, go to 4.2 for loop until t is bigger than T. And
when the loop is over, the leader wolf maybe is the global
optima that the algorithm can find.

2.4. Numerical Experiments. In this paper, four state-of-the-
art optimization algorithms are taken to validate the per-
formance of new algorithm proposed above, detailed in
Table 1.

2.4.1. Experiments on Twelve Classical Benchmark Functions.
Table 2 shows benchmark functions for testing, and Table 3
shows the numerical experimental data of five algorithms on
12 benchmark functions for testing mentioned above, es-
pecially the numerical experiments were done on a com-
puter equipped with Ubuntu 16.04.4 operating system, Intel

(R) Core (TM) i7-5930K processor and 64G memory as well
as Matlab 2017a. For genetic algorithm, toolbox in Matlab
2017a is utilized for GA experiments; the PSO experiments
were implemented by a “PSOt” toolbox for Matlab; LWPS is
got from the thought in [24]; CWOA is carried out based on
the idea in [25], and the new algorithm ASGS-CWOA is
carried out in Matlab 2017a, which is an integrated devel-
opment environment with M programming language. To
prove the good performance of the proposed algorithm,
optimization calculations were run for 100 times on any
benchmark function for testing as well as any optimization
algorithm mentioned above.

Firstly, focusing on Table 3, seen from the term of
best value, only new algorithm can find the theoretical
global optima of all benchmark functions for testing, so
ASGS-CWOA has better performance in optimization
accuracy.

Furthermore, for 100 times, the worst and average values
of ASGS-CWOA in the all benchmark functions for testing
except the F2 named “Easom” reach the theoretical values,
respectively, and the new algorithm has better standard de-
viation about best values detailed in Figure 6, from which it
can be seen that nearly all the standard deviations are best
except F2 and F6, especially the standard deviations are zero
on F1, F3, F4, F5, F7, F9, F10, F11, and F12. Figure 6(b) shows
that the value of standard deviation about ASGS-CWOA on
F2 is not worst in five algorithms, and it has better perfor-
mance than GA; Figure 6(f) indicates that the value of
standard deviation about ASGS-CWOA on F6 reaches 10−11,
weaker than the values on others; Figure 6(h) demonstrates
that the value of standard deviation about ASGS-CWOA on
F8 reaches 10−30, which is not zero, but best in five algorithms.
/erefore, ASGS-CWOA has better stability than others.

In addition, focusing on the number of mean iteration,
ASGS-CWOAhas weaker iteration times on the test function 2
“Easom,” the test function 8 “Bridge,” and the test function 10
“Bohachevsky1,” but it has better performances on the other
test functions, especially the iteration times on test function 3,
4, 5, 6, 11, and 12 are 1 or about 1. So ASGS-CWOA has better
advantage on performance of iteration number.
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Figure 4: (a)/e number that how many wolves will be starved to death and regenerated as the iteration goes on. It is a fixed number 5. (b)
/e number that how many wolves will be starved to death and regenerated following the new method named SDUA as the iteration goes
on.

Step 1 :  initialize parameters of algorithm

Step 2 :  migration process with ASGS

Step 3: summon – raid process with OMR

Step 4 :  siege process with ASGS

Step 5 :  population regeneration with SDUA

End condition 
satisfied? 
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Step 6

Figure 5: Flow chart for the new proposed algorithm.
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Table 1: Arithmetic configuration.

Order Name Configuration

1 Genetic algorithm [16] /e crossover probability is set at 0.7; the mutation probability is set at 0.01, while the generation gap is
set at 0.95

2 Particle swarm
optimization

Value of individual acceleration: 2, value of weighted value of initial time: 0.9, value of weighted value of
convergence time: 0.4, limit individual speed at 20% of the changing range

3 LWPS Migration step size stepa: 1.5, raid step size stepb: 0.9, siege threshold r0: 0.2, upper limit of siege step size
stepcmax � 106, lower limit of siege step size stepcmin � 10−2, updating number of wolves m: 5

4 CWOA
Amount of campaign wolves q: 5, searching direction h: 4, upper limit of searchHmax: 15, migration step
size stepa0: 1.5, raid step size stepb: 0.9, siege threshold r0: 0.2, value of siege step size stepc0: 1.6, updating

amount of wolves m: 5

5 ASGS-CWOA Migration step-size stepa0: 1.5, upper limit of siege step-size stepcmax� 1e6, lower limit of siege step size
step cmin� 1e− 40; upper limit number of iteration T: 600; number of wolf population N: 50

Table 2: Test functions [25].

Order Function Expression Dimension Range Optimum
1 Matyas F1� 0.26× (x2

1 +x2
2)− 0.48× x1 × x2 2 [−10, 10] min f� 0

2 Easom F2� −cos (x1)× cos (x2)× exp[− (x1− π)2 − (x2− π)2] 2 [−100, 100] min f� −1
3 Sumsquares F3� 􏽐

D
i�1 i∗ x2

i 10 [−1.5, 1.5] min f� 0

4 Sphere F4� 􏽐
D
i�1 x2

i 30 [−1.5, 1.5] min f� 0
5 Eggcrate F5� x2

1 + x2
2 + 25× (sin2 x1 + sin2 x2) 2 [−π, π] min f� 0

6 Six hump camel
back F6� 4× x1 − 2.1x4

1 + (1/3)× x6
1 + x1 × x2 − 4× x2

2 + 4× x4
2 2 [−5, 5] min

f� −1.0316
7 Bohachevsky3 F7� x2

1 + 2× x2
2 − 0.3× cos (3πx1 + 4πx2) + 0.3 2 [−100, 100] min f� 0

8 Bridge F8� (sin
������
x2
1 + x2

2

􏽱
)/

������
x2
1 + x2

2

􏽱
− 0.7129 2 [−1.5, 1.5] max f� 3.0054

9 Booth F9� (x1 + 2× x2 − 7)2 + (2× x1 + x2 − 5)2 2 [−10, 10] min f� 0
10 Bohachevsky1 F10� x2

1 + 2x2
2 − 0.3× cos (3πx1)− 0.4× cos (4πx2) + 0.7 2 [−100, 100] min f� 0

11 Ackley F11� −20× exp (−0.2×

�����������

(1/D) 􏽐
D
i�1 x2

i

􏽱

)− exp
((1/D) 􏽐

D
i�1 cos 2 πxi) + 20 + e

6 [−1.5, 1.5] min f� 0

12 Quadric F12� 􏽐
D
i�1 (􏽐

i
k�1 xk)2 10 [−1.5, 1.5] min f� 0

Table 3: Experimental results.

Function Order Best value Worst value Average value Standard deviation Mean iteration Average time

F1

1 3.64E− 12 2.83E− 08 3.52E− 10 2.83E− 09 488 0.4038
2 4.14E− 21 3.26E− 14 1.15E− 15 3.87E− 15 591 0.4282
3 4.79E− 26 4.95E− 21 2.58E− 22 5.79E− 22 585 2.4095
4 1.04E− 119 1.69E− 12 5.85E− 24 2.13E− 13 295 0.4266
5 0 0 0 0 27.44 0.10806

F2

1 −1 −0.00008110 −0.97 0.1714 153 0.0375
2 −1 −1 −1 3.24E− 06 583 0.4196
3 −1 −1 −1 0 507 1.9111
4 −1 −1 −1 0 72 0.0321
5 −1 0 −0.02 0.0196 592.62 2.7036

F3

1 8.50E− 07 1.61E− 05 2.77E− 06 3.35E− 06 593 1.4396
2 0.00017021 0.0114 0.0023 0.0022 595 0.4792
3 7.60E− 07 8.7485 1.4802 1.5621 600 4.8319
4 5.61E− 07 1.49E− 05 1.07E− 06 8.74E− 06 600 4.1453
5 0 0 0 0 1 10.2205

F4

1 0.004 0.0331 0.0127 0.0055 592 3.1902
2 0.0351 0.1736 0.0902 0.0292 594 0.4868
3 3.5579 10.3152 8.0497 1.2048 600 1.4742
4 0.00001114 0.0098 0.0012 0.0048 600 0.8431
5 0 0 0 0 1 10.0834
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Finally, the mean time spent by ASGS-CWOA are smaller
than the others’ on F1, F5, F6, and F11, as shown in Figures 7(a),
7(e), 7(f), and 7(k), respectively. On F7, F9, and F10, the five
algorithms spent time roughly in the same order of magnitude,
and ASGS-CWOA has better performance than GA, PSO, and
LWPS on F7 and F9, as shown in Figures 7(g) and 7(i). Un-
fortunately, ASGS-CWOA spent most time on F2, F3, F4, F8,
and F12, yet it is a comfort that the times spent byASGS-CWOA
are not too much to be unacceptable. /is phenomenon con-
forms to a philosophical truth that nothing is perfect and flawless
in the world, and ASGS-CWOA is without exception. Ac-
cordingly, in general, ASGS-CWOA has a better speed of
convergence. /e detailed is shown in Figure 7.

2.4.2. Supplementary Experiments. In order to further verify
the performance of the new proposed algorithm, supplementary

experiments are conducted on CEC-2014 (IEEE Congress on
Evolutionary Computation 2014) testing functions [38], detailed
in Table 4. It is different with the above 12 testing functions that
CEC2014 testing functions are conducted on a computer
equipment with Win7-32 bit, Matlab 2014a, CPU (AMD A6-
3400M), and RAM (4.0GB), due to the match between the given
cec14_func.mexw32 andwindows 32 bit system, not Linux 64 bit.

From Table 5 and Figure 8(a), obviously, it can be seen
that new proposed algorithm has better performance than
GA and LWPS in terms of “optimal value,” which means
ASGS-CWOA has better performance in finding the global
optima. From Figures 8(b)–8(d), it can be seen that the new
proposed algorithm has best performance in terms of “worst
value,” “average value,” and “standard deviation;” in other
words, the new proposed algorithm has best stability and
robustness. From Figure 8(e), the proportion of ASGS-

Table 3: Continued.

Function Order Best value Worst value Average value Standard deviation Mean iteration Average time

F5

1 4.67E− 10 4.67E− 10 4.67E− 10 3.12E− 25 73 0.0085
2 9.20E− 22 6.66E− 15 1.34E− 16 6.78E− 16 594 0.4298
3 1.23E− 23 1.76E− 19 1.56E− 20 2.60E− 20 585 2.4112
4 3.75E− 136 1.31E− 19 4.28E− 22 2.24E− 11 195 0.2169
5 0 0 0 0 1.01 1.06E− 03

F6

1 −1.0316 −1.0316 −1.0316 1.79E− 15 68 0.0077
2 −1.0316 −1.0316 −1.0316 1.47E− 15 578 0.4597
3 −1.0316 −1.0316 −1.0316 1.52E− 15 519 2.4727
4 −1.0316 −1.0316 −1.0316 1.25E− 15 157 0.1823
5 −1.0316 −1.0316 −1.0316 5.60E− 11 3.32 0.021855

F7

1 4.07E− 08 1.64E− 06 3.17E− 07 5.01E− 07 437 0.327
2 2.78E− 16 2.60E− 10 8.85E− 12 3.10E− 11 590 0.4551
3 0 1.67E− 16 7.77E− 18 2.50E− 17 556 1.7745
4 0 1.69E− 11 6.36E− 15 2.36E− 11 139 0.0793
5 0 0 0 0 24.06 0.1064

F8

1 3.0054 2.7052 2.9787 0.0629 69 0.0079
2 3.0054 3.0054 3.0054 4.53E− 16 550 0.3946
3 3.0054 3.0038 3.0053 0.00016125 399 1.2964
4 3.0054 3.0054 3.0054 9.41E− 11 67 0.0307
5 3.0054 3.0054 3.0054 9.66E− 30 600 3.0412

F9

1 4.55E− 11 3.68E− 09 8.91E− 11 3.67E− 10 271 0.1276
2 2.47E− 20 1.91E− 11 1.97E− 13 1.91E− 12 591 0.4525
3 6.05E− 24 3.12E− 19 2.70E− 20 5.48E− 20 580 1.9606
4 0 3.15E− 11 1.46E− 22 5.11E− 12 132 0.0738
5 0 0 0 0 26.86 0.11364

F10

1 4.36E− 07 0.4699 0.0047 0.047 109 0.0197
2 0 3.65E− 12 1.12E− 13 4.03E− 13 588 0.4564
3 0 0 0 0 539 1.6736
4 0 0 0 0 78 0.025
5 0 0 0 0 184.88 0.86886

F11

1 1.5851 1.5851 1.5851 3.78E− 07 434 0.5788
2 1.5934 1.594 1.5935 0.0000826 595 0.4998
3 1.55E− 06 2.1015 0.7618 0.5833 594 1.789
4 9.21E− 07 0.00018069 5.20E− 05 4.1549–5 535 1.0822
5 0 0 0 0 1 0.19021

F12

1 2.0399 × E− 4 0.0277 0.0056 0.0059 597 1.577
2 0.0151 0.2574 0.0863 0.0552 592 0.5608
3 0.139 1.6442 0.9017 0.3516 600 2.1169
4 4.28E− 08 0.0214 0.00038043 0.0013 600 1.9728
5 0 0 0 0 1 7.4354
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CWOA is better than PSO, LWPS, and CWOA, and it means
the new proposed ASGS-CWOA has advantages in time
performance.

In a word, ASGS-CWOA has good optimization quality,
stability, advantage on performance of iteration number,
and speed of convergence.

3. Results and Discussion

/eoretical research and experimental results reveal that
compared with traditional genetic algorithm, particle swarm
optimization, leading wolf pack algorithm, and chaotic wolf

optimization algorithm, ASGS-CWOA has better global
optimization accuracy, fast convergence speed, and high
robustness under the same conditions.

In fact, the strategy of ASGS greatly strengthens the local
exploitation power of the original algorithm, which makes it
easier for the algorithm to find the global optimum; the strategy
of ORM and SDUA effectively enhances the global exploration
power, whichmakes the algorithm not easy to fall into the local
optimum and thus easier to find the global optimum.

Focusing on Tables 3 and 5 and Figures 6 and 7 above,
compared with the four state-of-the-art algorithms, ASGS-
CWOA is effective and efficient in most of terms on
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Figure 6: Histograms of the SD about the benchmark functions for testing: (a) –F1; (b) –F2; (c) –F3; (d) –F4; (e) –F5; (f ) –F6; (g) –F7; (h)
–F8; (i) –F9; (j) –F10; (k) –F11; (l) –F12 (red means the value is out of upper limit of the chart).
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Figure 7: Histograms of the mean time spent on the benchmark functions for testing: (a) –F1; (b) –F2; (c) –F3; (d) –F4; (e) –F5; (f ) –F6; (g)
–F7; (h) –F8; (i) –F9; (j) –F10; (k) –F11; (l) –F12.

Table 4: Part of the CEC’14 test functions [38].

No. Functions Dimension Range Fi
∗ � Fi (x∗)

1 Rotated High Conditioned Elliptic Function 2 [−100, 100] 100
2 Rotated Bent Cigar Function 2 [−100, 100] 200
3 Rotated Discuss Function 2 [−100, 100] 300
4 Shifted and Rotated Rosenbrock’s Function 2 [−100, 100] 400
5 Shifted and Rotated Ackley’s Function 2 [−100, 100] 500
6 Shifted and Rotated Weier Stress Function 2 [−100, 100] 600
7 Shifted and Rotated Griewank’s Function 2 [−100, 100] 700
8 Shifted Rastrigin’s Function 2 [−100, 100] 800
9 Shifted and Rotated Rastrigin’s Function 2 [−100, 100] 900
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Table 4: Continued.

No. Functions Dimension Range Fi
∗ � Fi (x∗)

10 Shifted Schwefel’s Function 2 [−100, 100] 1000
11 Shifted and Rotated Schwefel’s Function 2 [−100, 100] 1100
12 Shifted and Rotated Katsuura Function 2 [−100, 100] 1200
13 Shifted and Rotated Happycat Function [6] 2 [−100, 100] 1300
14 Shifted and Rotated HGBat Function [6] 2 [−100, 100] 1400
15 Shifted and Rotated Expanded Griewank’s Plus Rosenbrock’s Function 2 [−100, 100] 1500
16 Shifted and Rotated Expanded Schaffer’s F6 Function 2 [−100, 100] 1600

Table 5: Results of supplementary experiments.

Order Function Algorithm Optimal value Worst value Average value Standard deviation Average iteration Average time

1 CEC’14-F1

GA 104.9799 30721.11 7855.763 81199210 576.0667 5.9246
PSO 100 7167.217 966.9491 2364293.9 600 0.18536
LWPS 104.035 2219.115 650.7181 276101.7 600 8.7827
CWOA 100.4238 806.3862 303.46 48999.1796 600 9.0239

ASGS-CWOA 100 100 100 0 17.06 0.75354

2 CEC’14-F2

GA 201.6655 5624.136 1511.7 2202859.8 535.9 5.5281
PSO 200.0028 5541.629 1877.3888 2559554.7 600 0.1806
LWPS 208.964 2723.770 769.9574 475101.54 600 9.2476
CWOA 200.0115 1815.693 489.5193 169111.57 600 8.6269

ASGS-CWOA 200 200 200 0 15.78 0.70151

3 CEC’14-F3

GA 316.1717 17077.5349 4508.479 23875975 533.3 5.7871
PSO 300.0007 2391.641 446.9141 101563.53 600 0.18159
LWPS 300.3407 5796.796 889.49 1104949.7 600 9.2331
CWOA 300.1111 2196.991 734.5405 232245.81 600 8.5499

ASGS-CWOA 300 300 300 0 17.62 0.72644

4 CEC’14-F4

GA 400 400.0911 400.0109 0.0005323 86.7333 0.924
PSO 400 400 400 3.23E− 29 600 0.17534
LWPS 400 400 400 5.90E− 17 600 8.7697
CWOA 400 400 400 0 308.7 3.9497

ASGS-CWOA 400 400 400 0 12.96 0.53133

5 CEC’14-F5

GA 500 520 507.3432 50.5077 71.4333 0.76291
PSO 500 515.2678 500.9217 6.7366 600 0.18704
LWPS 500 500.0006 500.0001 1.49E− 08 600 8.8697
CWOA 500 500 500 1.34E− 22 600 8.5232

ASGS-CWOA 501.7851 520 514.18 28.5606 600 29.8243

6 CEC’14-F6

GA 600.0001 600.9784 600.302 0.10694 67.9 0.86812
PSO 600 600 600 2.86E− 11 600 1.3431
LWPS 600.0001 600.4594 600.0245 0.0087421 600 19.5858
CWOA 600 600 600 2.32E− 25 599.5667 19.1092

ASGS-CWOA 600 600 600 0 45.16 17.5578

7 CEC’14-F7

GA 700 701.4272 700.3767 0.19181 61.4333 0.67019
PSO 700 700.6977 700.0213 0.0089771 600 0.18424
LWPS 700 700.323 700.0795 0.0063773 600 8.5961
CWOA 700 700.0271 700.0053 4.69E− 05 514.5667 7.5231

ASGS-CWOA 700 700 700 0 238.2 11.578

8 CEC’14-F8

GA 800 801.9899 801.0945 0.48507 57.6333 0.62438
PSO 800 801.4806 800.2342 0.13654 594.26 0.17554
LWPS 800 800.995 800.1327 0.11439 600 8.486
CWOA 800 801.9899 800.6965 0.53787 497.3667 7.2666

ASGS-CWOA 800 800.995 800.2786 0.19957 469.34 21.8131

9 CEC’14-F9

GA 900 903.9798 901.3929 1.1615 58.2667 0.63184
PSO 900 900.995 900.186 0.10073 591.31 0.17613
LWPS 900 900.995 900.0995 0.089095 600 8.5478
CWOA 900 901.9899 900.6965 0.53787 503.5333 6.9673

ASGS-CWOA 900 903.9798 900.5273 0.50398 496.31 23.0867
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Table 5: Continued.

Order Function Algorithm Optimal value Worst value Average value Standard deviation Average iteration Average time

10 CEC’14-F10

GA 1000 1058.504 1005.603 140.4036 63.5333 0.68942
PSO 1000 1118.750 1009.425 808.3984 591.93 0.19874
LWPS 1000 1017.069 1000.839 9.1243 600 8.7552
CWOA 1000 1058.192 1006.533 145.8132 547.8333 7.833

ASGS-CWOA 1063.306 1363.476 1174.777 7651.0577 600 33.4225

11 CEC’14-F11

GA 1100 1333.896 1156.947 3936.7124 62.2333 0.67663
PSO 1100 1218.438 1107.871 228.3351 593.69 0.19941
LWPS 1100 1100.624 1100.208 0.047643 600 9.0343
CWOA 1100 1218.438 1105.273 459.2835 534.2 7.6136

ASGS-CWOA 1100.312 1403.453 1323.981 5000.5589 600 29.089

12 CEC’14-F12

GA 1200.000 1205.058 1200.198 0.84017 74.1667 0.90516
PSO 1200 1200.286 1200.008 0.00091935 590.03 1.0801
LWPS 1200.001 1201.136 1200.242 0.041088 600 17.2774
CWOA 1200 1200 1200 1.49E− 20 600 17.6222

ASGS-CWOA 1200 1200.016 1200.001 9.25E− 06 537.61 173.256

13 CEC’14-F13

GA 1300.005 1300.188 1300.02 0.0012674 69.2667 0.74406
PSO 1300.003 1300.303 1300.123 0.0073239 591.87 0.18376
LWPS 1300.007 1300.267 1300.089 0.0039127 600 8.7117
CWOA 1300.000 1300.132 1300.017 0.0010414 600 9.0362

ASGS-CWOA 1300.013 1300.242 1300.120 0.003075 600 28.6266

14 CEC’14-F14

GA 1400.000 1400.499 1400.264 0.035262 57.9 0.63369
PSO 1400 1400.067 1400.023 0.00039174 591.8 0.19591
LWPS 1400.000 1400.175 1400.037 0.0015846 600 9.0429
CWOA 1400.000 1400.179 1400.030 0.001558 600 9.3025

ASGS-CWOA 1400.111 1400.491 1400.457 0.0032626 600 30.4334

15 CEC’14-F15

GA 1500 1500.175 1500.073 0.0033323 54.7667 0.59602
PSO 1500 1500.098 1500.012 0.0004289 591.32 0.18265
LWPS 1500 1500.139 1500.021 0.0010981 600 7.4239
CWOA 1500 1500.098 1500.015 0.0003538 477.6667 6.5924

ASGS-CWOA 1500 1500.020 1500.001 2.24E− 05 101.29 4.8

16 CEC’14-F16

GA 1600 1600.746 1600.281 0.038563 53.8333 0.58607
PSO 1600 1600.356 1600.015 0.001519 593.95 0.18491
LWPS 1600.019 1600.074 1600.024 0.000272 600 8.7907
CWOA 1600 1600.254 1600.058 0.0031938 593.5 9.0235

ASGS-CWOA 1600 1600.019 1600.007 8.69E− 05 545.55 26.1972
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Figure 8: Continued.
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benchmark functions for testing, but it has weaker perfor-
mance in some terms on some benchmark functions for
testing, such as functions 2, 3, 4, 8, and 12 shown, re-
spectively, in Figures 7(b)–7(d), 7(h), and 7(l); ASGS-
CWOA spent more time on iterations than the four other
algorithms. When D (dimension of the solution space) is
very large, this means too much memory space of the
computer is required to implement the algorithm completely
according to the formula, and it is impossible to meet the
spatial demand growing exponentially, which is also a re-
flection of its limitations. Moreover, in the supplementary
experiments, ASGS-CWOA spent more time than the other
algorithms, and its proportion is 0 in the optimal time
statistic index of 16 times, detailed in Figure 7(f).

Our future work is to continue perfecting the perfor-
mance of ASGS-CWOA in all aspects and to apply it to
specific projects and test its performance.

4. Conclusions

To further improve the speed of convergence, and optimi-
zation accuracy under a same condition, this paper proposes
an adaptive shrinking grid search chaotic wolf optimization
algorithm using standard deviation updating amount.
Firstly, ASGS was designed for wolf pack algorithm to en-
hance its searching capability, through which any wolf can
be the leader wolf and this benefits to improve the proba-
bility of finding the global optimization. Moreover, OMR is
used in the wolf pack algorithm to enhance the convergence
speed. In addition, we take a concept named SDUA to
eliminate some poorer wolves and regenerate the same
amount of wolves, so as to update wolf population and keep
its biodiversity.
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