Enriching Mobile Interaction
with Garment-Based Wearable

Computing Devices

Stefan Schneegass

00000

#5 Universitat Stuttgart







Enriching Mobile Interaction with
Garment-Based Wearable
Computing Devices

Von der Fakultit fiir Informatik, Elektrotechnik und
Informationstechnik und dem Stuttgart Research Centre for
Simulation Technology (SRC Sim Tech) der Universitit
Stuttgart zur Erlangung der Wiirde eines Doktors der
Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

vorgelegt von

STEFAN SCHNEEGASS

aus Essen
Hauptberichter: Prof. Dr. Albrecht Schmidt
Mitberichter: Prof. Dr. Paul Lukowicz
Mitberichter: Prof. Dr. Bjorn Eskofier

Tag der miindlichen Priifung: 15.07.2016

Institut fiir Visualisierung und Interaktive Systeme
der Universitét Stuttgart

2016






Abstract iii

ABSTRACT

Wearable computing is on the brink of moving from research to mainstream.
The first simple products, such as fitness wristbands and smart watches, hit the
mass market and achieved considerable market penetration. However, the number
and versatility of research prototypes in the field of wearable computing is far
beyond the available devices on the market. Particularly, smart garments as a
specific type of wearable computer, have high potential to change the way we
interact with computing systems. Due to the proximity to the user‘s body, smart
garments allow to unobtrusively sense implicit and explicit user input. Smart
garments are capable of sensing physiological information, detecting touch input,
and recognizing the movement of the user.

In this thesis, we explore how smart garments can enrich mobile interaction.
Employing a user-centered design process, we demonstrate how different input
and output modalities can enrich interaction capabilities of mobile devices such
as mobile phones or smart watches. To understand the context of use, we chart
the design space for mobile interaction through wearable devices. We focus on
the device placement on the body as well as interaction modality.

We use a probe-based research approach to systematically investigate the possible
inputs and outputs for garment based wearable computing devices. We develop six
different research probes showing how mobile interaction benefits from wearable
computing devices and what requirements these devices pose for mobile operating
systems. On the input side, we look at explicit input using touch and mid-air
gestures as well as implicit input using physiological signals. Although touch
input is well known from mobile devices, the limited screen real estate as well
as the occlusion of the display by the input finger are challenges that can be
overcome with touch-enabled garments. Additionally, mid-air gestures provide a
more sophisticated and abstract form of input. We present a gesture elicitation
study to address the special requirements of mobile interaction and present the
resulting gesture set. As garments are worn, they allow different physiological
signals to be sensed. We explore how we can leverage these physiological signals
for implicit input. We conduct a study assessing physiological information by
focusing on the workload of drivers in an automotive setting. We show that we
can infer the driver’s workload using these physiological signals.

Beside the input capabilities of garments, we explore how garments can be used as
output. We present research probes covering the most important output modalities,
namely visual, auditory, and haptic. We explore how low resolution displays can
serve as a context display and how and where content should be placed on such a
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display. For auditory output, we investigate a novel authentication mechanism
utilizing the closeness of wearable devices to the body. We show that by probing
audio cues through the head of the user and re-recording them, user authentication
is feasible. Last, we investigate Electrical Muscle Stimulation (EMS) as a haptic
feedback method. We show that by actuating the user‘s body, an embodied form
of haptic feedback can be achieved.

From the aforementioned research probes, we distilled a set of design recom-
mendations. These recommendations are grouped into interaction-based and
technology-based recommendations and serve as a basis for designing novel ways
of mobile interaction. We implement a system based on these recommendations.
The system supports developers in integrating wearable sensors and actuators by
providing an easy to use Application Programming Interface (API) for accessing
these devices.

In conclusion, this thesis broadens the understanding of how garment-based wear-
able computing devices can enrich mobile interaction. It outlines challenges and
opportunities on an interaction and technological level. The unique characteristics
of smart garments make them a promising technology for making the next step in
mobile interaction.
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ZUSAMMENFASSUNG

Tragbare Computer stehen kurz davor, sich im Massenmarkt durchzusetzen. Die
ersten auf dem Markt eingefiihrten Fitnessarmbénder und Smartwatches erreich-
ten beachtliche Verkaufszahlen. Vergleicht man aber den Entwicklungsstand und
die Vielfalt von Forschungsprototypen und die verfiigbaren Gerite am Markt,
zeigt sich, dass es nur ein Bruchteil der Prototypen zum marktreifen Produkt
geschafft hat. Insbesondere intelligente Kleidung zeigte in Forschungsprotypen
grof3es Potenzial, das dominierende Interaktionsgerit der Zukunft zu werden. Die
Nihe zum Benutzer bringt einige Vorteile im Vergleich zu handelsiiblichen, nicht
stoffbasierten tragbaren Geriten, wie der Moglichkeit der impliziten als auch
expliziten Eingabeerfassung. Sie kann physiologische Benutzer-Daten messen
und Druckeingaben und Bewegungen des Benutzers erkennen.

In dieser Arbeit wird untersucht, wie intelligente Kleidung die mobile Interaktion
bereichern kann. Mithilfe eines benutzerzentrierten Gestaltungsprozesses wird
gezeigt, wie verschiedene Eingabe- und Ausgabemodalititen die Moglichkeiten
mobiler Gerite wie Smartphones oder Smartwatches erweitern konnen. Zur
Erforschung des Benutzungskontextes wird der Gestaltungsraum der mobilen
Interaktion mit tragbaren Computern untersucht. Hier wird insbesondere auf die
Positionierung der Gerite sowie verschiedener Eingabe- und Ausgabemodalititen
Wert gelegt. Es wird ein auf Forschungsproben basierender Ansatz genutzt, um
systematisch die Eingabe- und Ausgabemdglichkeiten fiir intelligente Kleidung
zu untersuchen. Es werden sechs verschiedene Forschungsproben vorgestellt,
die aufzeigen, wie die mobile Interaktion von tragbaren Computern profitieren
kann und welche Anforderungen tragbare Computer an mobile Betriebssysteme
stellen.

Beziiglich der Eingabemdglichkeiten wird explizite Eingabe durch Beriihrung und
Gesten untersucht. Herausforderungen, wie der begrenzte Eingaberaum und die
Verdeckung bei der Eingabe durch den Eingabefinger, konnen durch druckemp-
findliche Kleidung gelost werden. Zusitzlich ermdglichen Gesten in der Luft eine
elegante und wirkungsvolle Form der Eingabe. Es wurde ein benutzerdefiniertes
Gestenset entwickelt, welches den besonderen Herausforderungen der mobilen
Interaktion gerecht wird. Durch das Tragen von intelligenter Kleidung kénnen
verschiedene physiologische Signale des Nutzers erfasst werden, welche als im-
plizite Eingabe genutzt werden konnen. Hierfiir wird eine Benutzerstudie im
automobilen Kontext durchgefiihrt, die durch gemessene physiologische Signale
Riickschliisse auf die Arbeitslast des Nutzers zulésst.
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Neben den Eingabemdglichkeiten bietet intelligente Kleidung auch Ausgabemog-
lichkeiten. Hierbei werden die wichtigsten Ausgabemodalititen betrachtet. Es
wird untersucht, wie niedrigauflésende Bildschirme als Kontextbildschirme ge-
nutzt werden konnen, wo diese platziert werden und wie Inhalte auf diesem
Bildschirmtyp gestaltet werden konnen. Beziiglich der auditiven Ausgabe wird
ein neues Authentifizierungsverfahren vorgestellt, welches die Nihe von trag-
baren Computern zum Korper des Anwenders nutzt. Durch das Senden von
Audiosignalen durch einen Knochenleitkopthorer wird ein biometrisches Au-
thentifizierungsverfahren geschaffen. Zuletzt wird eine haptische Ausgabe durch
elektrische Muskelstimulation durchgefiihrt. Durch das Stimulieren bestimmter
Muskeln des Nutzers wird eine korpernahe Ausgabe realisiert.

Durch diese Forschungsprojekte wurden Gestaltungsrichtlinien abgeleitet, wel-
che sich auf die Interaktion sowie die Technologie beziehen und als Grundlage
zur Gestaltung neuartiger mobiler Interaktion dienen. In der Umsetzung eines
Systems zur Entwicklung mobiler Interaktion fanden diese Gestaltungsrichtlinien
Anwendung. Dieses System unterstiitzt Entwickler bei der Einbettung tragbarer
Sensoren und Aktuatoren durch eine einfach zu nutzende Entwicklerschnittstelle.

Zusammengefasst vergroB3ert diese Arbeit das Verstidndnis iiber die Erweiterung
mobiler Interaktion durch kleidungsbasierte tragbare Computer. Es werden Her-
ausforderungen und Moglichkeiten sowohl im technologischen Bereich als auch
in der Interaktion aufgezeigt. Die einzigartigen Eigenschaften von intelligenter
Kleidung machen diese zu einer vielversprechenden Moglichkeit, den néchsten
Schritt in Richtung mobiler Interaktion zu gehen.
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PREFACE

This thesis contains work created over the last couple of years at the University of
Stuttgart. Since the developed wearable computing devices require different types
of expertise, this thesis has been done in close collaboration with experts from
the University of Stuttgart, partners within the SimpleSkin project, and external
experts bringing in knowledge from their respective fields. These collaborations
resulted in publications which are a core part of this thesis. The contributing au-
thors (i.e., co-authors of papers) are clearly stated at the beginning of each chapter
together with the reference to the publication when applicable. To emphasize
these collaborations, I use the scientific plural (“we”) throughout this thesis.
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Chapter

Introduction

In the last years, mobile devices became the leading everyday computing plat-
form. More and more smart phones, smart watches, and eyewear computers
are becoming mainstream. With constantly increasing processing capabilities,
mobile devices replaced the personal computer and laptop for the majority of
everyday tasks. At the same time, the number of application scenarios for these
devices increased from simply placing phone calls and receiving notifications to
complex information retrieval, social networking, and entertainment. The input
and output possibilities of these devices increased dramatically as well to allow
the user to perform all the novel tasks. While early mobile phones used only
hardware buttons, the mobile phone evolved into a sensor-rich device that enables
a wide variety of interaction techniques using a touch screen, microphone, and
sensors such as accelerometer or magnetometer to control myriads of applications.
Particularly, the availability of these contextual sensors allowed creating novel
interaction techniques such as performing gestural input by moving the phone
through mid air. Despite all the sensors, the form factor of the smart phone is
still one of the limiting factors restricting interaction. The touch-enabled display
has a limited size and provides only limited input (i.e., direct touch input). This
can lead to cumbersome ways of interacting with a steadily increasing number
of applications. Additionally, information about the user are not taken into ac-
count such as the user‘s posture, movement of other parts of the user‘s body, or
biosignals generated by the user. All these information could help increasing the
interaction capabilities but are currently not often taken into account for mobile
devices.
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One way to further extend the sensing and actuating capabilities of mobile devices
is using wearable computers as additional interaction means. They offer a rich set
of sensors and actuators at various locations on the user‘s body allowing novel
interaction techniques. These interaction techniques could be of explicit as well
as implicit nature. Thus, wearable computing has huge potential to shape the way
we interact with mobile devices in the future. Currently, mainly wearable gadgets
are used for this purpose. For example, fitness bracelets are used to extend the
functionality of mobile phones by the possibility of measuring the arm movement
and heart rate of the user. These information are used to infer on the steps by the
user which is exploited for sports tracking as well as quantified self applications.

In contrast to wearable gadgets, smart garments allow even more sensing and
actuating possibilities due to closeness to the user‘s body. Humans naturally
use garments for several reasons such as protection or aesthetics. Many parts
of the human body are naturally covered by garments which can be enriched
with technology. Smart garments can thereby either implicitly sense information
about the user or be used for direct input and output. This can be done similar to
wearable gadgets without the necessity of attaching additional sensing but only
wearing enriched clothing. In addition, the area of the user‘s body which can
be used for interaction is increased since clothing can comfortably cover more
locations compared to wearable gadgets.

We expect that with further advancement in smart garments, regular garments
eventually get substituted by smart garments. As soon as smart garments are
producible for similar costs and offer similar properties with regards to their
wearability and durability compared to regular cloth, smart clothing will become
pervasive. Every piece of garment will incorporate technology that can be used
for designing novel ways of interacting. These novel interaction techniques
imply a fundamental change in human-computer interaction, particularly with
mobile devices. However, several challenges still need to be tackled. This thesis
investigates how smart garments can be used for interaction and be integrated
as building block into the interaction with mobile devices. Through research
probes of potential applications, we show the versatility of smart garments and
demonstrate ways of how basic fabrics can be used for different interaction
techniques and application scenarios. One of the core challenges involves the
integration of sensors and actuators into the mobile device eco-system of offering
interfaces so that application programmers and end-users can use them.
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Research Question RQ Part
Interaction centered

How to structure a design space for wearable interaction? RQ1 I
How to realize input methods using garment based sensors? RQ2 1I
How to realize output methods using smart garments? RQ3 1III

Technology centered
How to integrate sensors and actuators in mobile platforms? RQ4 IV
How to represent sensor data for developers and end-users?  RQ5 IV

Table 1.1: Summary of research questions addressed in this thesis.

1.1 Research Questions

When technology is integrated into everyday garments and the resulting smart
garments become mainstream, fundamental challenges have to be addressed.
Two main groups of challenges tackled in this thesis are interaction centered
and fechnology centered challenges, posing important research challenges. The
corresponding research questions are presented in Table 1.1.

Smart garments can cover almost the whole body of the user and can be built using
a huge variety of different sensors and actuators. Understanding the design space
is necessary to understand the full capabilities of smart garments. Therefore, the
first research question focuses on how a design space needs to look like and how
such a design space can be structured (RQ1). Similar to applications on nowadays
smart phones, the number of applications which can be realized using smart
garments is manifold. Thus, the same sensor can be used for several different
applications (RQ2). While garment based sensing technologies are well explored,
the output side remains mainly unexplored. However, textiles offer huge potential
for output. The question is how each type of output can be realized (RQ3).

After understanding the interaction based challenges, technology based challenges
need to be tackled. Garment-based sensors and actuators are just one of the
building blocks necessary to developed a functional system. Interfaces between
the physical sensor and the virtual application need to be defined. Thus, the
integration of sensors into the mobile software and hardware infrastructure needs
to be explored (RQ4). Further, the extracted data needs to be provided to the
application developer. Thereby, the application developers need to be supported
and the end-users need to understand the implications sharing their data with an
application could have (RQ5).
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Identify Need for
User Centered
Design

Understand and Specify User and Institutional
Specify Context Requirements using Research Probes
of Use
Understand and
Specify Context
of Use

Evaluate Design System Satisfies
ETETE Specific Evaluate Design Specify User and

Requirements Requirements of Probe against Institutional
Requirements Requirements.

Produce Design
Produce Design Solution for
Solution Probe

Figure 1.1: The User-Centered Design methodology extended with a probe
based approach. Within the requirements elicitation step, research probes are
used to explore these requirements. The probe based approach itself uses a
nested user-centered design methodology.

1.2 Methodology

Wearable computing is a field driven by advances in technology. Starting with
the first electrical wearable computer in the 1960s [257], most evaluation method-
ologies focus on showing the feasibility of novel technology. Examples include
demonstrating that a sensor is capable of detecting a specific phenomenon (e.g.,
performed gesture) or the possibility to develop an actuator capable of commu-
nicating certain information. In most cases, the user is not taken into account
for the development process and the evaluation of novel technology. Reasons
include complex setups or low robustness. With the recent move of some of the
prototypical sensors and actuators to the mass market as consumer devices, the
possibilities changed. Prototypes gained robustness and were easier and faster
to develop. Developed prototypes made out of sensor, actuators, and processing
boards are usable in evaluations beyond feasibility level allowing user centered
evaluations. However, focusing on the user is still not considered a core activity
when evaluating wearable devices.
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We apply the user-centered design process [120] as main methodology in this
thesis to investigate how a system should be designed to help integrating garment-
based wearable computing into mobile interaction (cf., Figure 1.1). User-centered
design is an iterative process with dedicated steps that needs to be performed.
This iterative design is also reflected in other processes or methodologies such as
Design Thinking [70]. In addition to that, the involvement of potential users is
the core aspect behind each of the steps [93]. In a fist step, we develop a design
space to understand the context of use of such a system. Taking the diversity of
garment-based wearable computing devices into account, we use a probe based
research methodology for assessing the requirements. Within this step, we again
apply the user-centered design process for each research probe. Thus, we create a
number of prototypes, evaluate them, and extract requirements from each of these
probes focusing on interaction and technology centered requirements. The probes
were chosen to cover input and output techniques which are mainly realized
with wearable computers. These requirements feed back into the user-centered
design process of the overall system. Finally, we derive design principles for
a system that integrates garment-based sensors and actuators into the mobile
interaction. Additionally, we present a reference implementation of such a system.
This system supports the integration of garment-based sensors in the mobile eco-
system, the development of applications using garments as sensors and actuators,
and supports the user in understanding privacy implications of such a system.

1.2.1 Understand and Specify the Context of Use

To understand and specify the context of use, we developed a design space. The
design space covers all possible garment-based wearable computing devices. It
further groups them based on the interaction and location, helping to systemati-
cally address all important groups of devices. Each research probe developed in
the course of this thesis covers a dedicated part of the design space.

1.2.2  Specify User and Institutional Requirements

To specify requirements, we applied a research probe approach. We focus on
developing as diverse as possible research probes and covering as much of the
design space as possible. Every research probe covers a different application
scenario and poses its own requirements. Within each probe, we again used a
nested user-centered design approach as methodology (cf., Figure 1.1 — right).
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This includes understanding and specifying an application scenario, specifying
the requirements of a prototype, producing a prototype (cf., Table 1.2), and
evaluating the prototype. The developed prototypes solve a challenge within a
certain application scenario. They have been developed and evaluated in close
collaboration with colleagues, students, and external researchers. Expertise in
different fields such as machine learning, interaction with displays, or haptic
feedback helped shaping the probes in a way that they represent the current state
of research. For evaluating the prototypes, we chose different research questions
commonly investigated in the field of Human-Computer Interaction (HCI) for
devices used in public space (we provide an overview of currently used research
questions for interacting in public space [10]). These research questions include
investigating user experience, user acceptance, and user performance. Even
though not all requirements can be covered using a probe based approach, we
gain insights into the most important requirements from a technical as well as
interaction centered perspective.

1.2.3  Produce Design Solution

Taking the requirements extracted from the different research probes, we devel-
oped design principles and a prototypical system for allowing utilizing garment-
based wearable sensors and actuators for enriching mobile interaction. The
system provides interfaces for sensor developers as well as application developers.
Sensors and applications are used as building blocks for an overall system. Thus,
users can exchange them based on their needs.

1.2.4 Evaluate Designs

To evaluate the developed system, we conducted several evaluations. First,
we evaluated the research probes with regards to their performance. Next, we
evaluated the feasibility of the general approach on a technical level by showing
the interchangeability with different physical sensors and actuators.

1.2.5 Ethics

The research presented in this thesis has been conducted within the scope of the
SimpleSkin project. Within the project we used an ethic process derived from the
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pd-net project [144]. Each of the studies was conducted in line with this ethics
process as well as the declaration of Helsinki'.

1.3 Summary of Research Contributions

This thesis makes three main contributions to the field of smart garments. First,
we present a design space for using smart garments in the field of mobile human-
computer interaction. Second, we explore possible applications of future smart
garment systems and derive requirements. Third, we provide a mobile system
that leverages the communication between hardware sensors and actuators and
applications using the derived requirements.

1.3.1 Research Context

The research leading to this thesis was mainly carried out during the last three
years at the University of Stuttgart in the Human-Computer Interaction Group.
During this time, different collaborations with project partners as well as other
researchers influence this thesis and the presented results.

SimpleSkin

The main part of this thesis was conducted within the SimpleSkin project® within
the European Union FP7 Programme. By bringing together experts for each
step that is necessary to create garment-based wearable computing devices, this
project investigated novel ways of bridging the gaps between each of them. This
helped to increase the understanding for the challenges of each field and their
respective possibilities which created valuable input for this thesis.

Furthermore, the Smart Textiles — Fundamentals, Design, and Interaction book
was edited together with Oliver Amft. It will be published in the Springer HCI
Series. The book reflects on the ideas of the project and helps identifying the
different challenges that need to be tackled to create smart textiles and garment.

! http://www.wma.net/en/30publications/10policies/b3/index.html

> www.simpleskin.org


http://www.wma.net/en/30publications/10policies/b3/index.html
www.simpleskin.org
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Max-Planck Institute

Together with Andreas Bulling, an expert for perceptual user interfaces and usable
security, we realized a novel auditory authentication mechanism for wearable
computers. Besides this work, we also worked towards understanding the authen-
tication with mobile devices in general leading towards publication at Ubicomp
2014 [239] and MobileHCTI 2015 [9].

University of Munich

Several cooperations with Florian Alt shaped the understanding of how user
interact with pervasive displays. In the context of this thesis, particularly the work
towards wearable displays helped understanding how on-body displays can be
used and what requirements they pose. In addition, the cooperations resulted into
publications beyond the scope of this thesis at various venues [5, 6, 7, 8, 10, 32,
33, 34, 35, 36, 37, 96, 183, 221, 222, 223, 224].

Leibniz University Hanover

Together with Max Pfeiffer and Michael Rohs we explored using EMS as a tech-
nology for providing haptic feedback. We conducted several studies that helped
understanding the potential of EMS especially in the context of garment-based
wearable computing. This collaboration led to an award winning publication at
CHI 2015 [191] and several other publications [193, 194, 195].

University of Stuttgart

Beside the work presented in this thesis, we realized various projects at the
University of Stuttgart over the last years. These projects increased the under-
standing of how different input and output technologies can in the future be
used [16, 17, 84, 101, 129, 131, 167, 196, 198, 214, 236, 238, 265, 275].

1.3.2 Research Prototypes

This thesis contains different prototypes that helped exploring the requirements
for each interaction technique. The hardware for each prototype is mainly realized
using off-the-shelf hardware, electronic platforms [140], or prototypes developed
within the SimpleSkin project. An overview of the developed prototypes is
presented in Table 1.2.
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Prototype

Description

Chapter

The GestureSleeve prototypes uses touch-
sensitive fabric to detect simple 2-dimensional
gestures such as strokes or basic shapes (e.g.,
circle). It is connected to a smart watch that
shows the graphical user interface of a simple
running application. With each gesture, a certain
command can be executed such as pausing the
application or starting the next round.

Chapter 3

The GestureWatch is a combination of a smart
watch and a capacitive wristband. This research
probe was mainly used to record different hand
gestures and use this data to post-hoc analyze it.

Chapter 4

We developed a low-resolution WearableDisplay
by using two 8x8 led matrices connected to an
Arduino. Each of the pixels can individually con-
trolled using an Android application. The com-
munication between Android device and Wear-
ableDisplay is realized using Bluetooth. In addi-
tion, the display is capable of displaying points of
interest that are outside the viewport of a mobile
device.

Chapter 6

The GlassAuthenticator consists of an Android
application that runs on Google Glass. It is capa-
ble of sending and recording arbitrary audio files.
The recorded files can be analyzed using Mel Fre-
quency Cepstral Coefficients (MFCCs) and com-
pared to a group of pre-saved pattern. Thereby,
a lightweight k-Nearest Neighbors approach is
used.

Chapter 7

' Study App

EMS Control g oo oo

[ ol |
L )o“ Electrodes
GRER @EAr2

The EMSActuator consists of an Android appli-
cation controlling an off-the-shelf EMS devices.
The mobile phone connects via Bluetooth to an
Arduino which is capable of changing the inten-
sity of the EMS device.

Chapter 8

Table 1.2: Prototypes developed within the scope of this thesis. Each pro-
totype is used in a single research probe which is presented in a dedicated
chapter within this thesis.
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Part |: Introduction & Background

Chapter 1 Chapter 2
Introduction Wearable Computing and
Smart Garments

Part II: Part IV: Part I11:
Research Probes System Design Research Probes

Garments for Input Garments for Output
Chapter 8

ChErir 3 Understanding Privacy CligniEr @

Touch Input Visual Output

Chapter 10

Design Considerations

Chapter 4
Mid-Air Gestures

Chapter 7
Auditory Output

Chapter 11
Conceptual Architecture

Part V: Conclusion & Future Work
Chapter 12
Conclusion and Future Work

Figure 1.2: Outline of this thesis with the connection between the different
chapters and parts.

Chapter 5 Chapter 8
Physiological Input Haptic Output

1.3.3 Thesis Outline

This thesis consists of eleven chapters grouped into five parts. The overview
is depicted in Figure 1.2. The first part introduces the topic of this thesis. The
Background part provides an in-depth introduction to wearable computing and
smart textiles and a design space for interacting with smart garments. It is
followed by the two main parts of the thesis. The Research Probes: Garments
for Input and the Research Probes: Garments for Output parts present different
application scenarios, including authentication, controlling smart gadgets, and
garment-based output. These scenarios are relevant to extract requirements for a
operating system managing integration and usage of smart garments. The System
Design part presents an analysis of the end-user”s privacy concerns, derived design
recommendations, and a prototypical system managing garment-based sensors
and actuators. In the last part, the Conclusion and Future Work are presented.
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Part I: Introduction & Background

Chapter 1 - Introduction. The first chapter motivates the topic of this thesis.
Furthermore, it contains a description of the used research methodology and
research context. Last, the contribution of the thesis and a brief outline are
presented.

Chapter 2 - Foundations and Design Space. In this chapter, smart garments
are introduced in-depth. The most important terms used throughout this thesis are
defined and differentiated from each other. An overview of research in the field of
wearable computing is presented. Additionally, a design space is presented that
helps gaining an overview of used approaches and build prototypes. The different
systems are grouped based on three dimensions, namely, input, output, and body
location.

Fart II: Research Probes: Garments for Input

Chapter 3 - Touch Input. One of the most common input techniques known
from nowadays smart watches is touch input. Beside the simple tap, gestures are
becoming more and more common such as the pinch gesture for zooming. In this
probe, we explore different stroke-based gestures performed on touch-enabled
textiles on the forearm. As an application scenario, we evaluate the usage of
gestures to control a fitness application running on a smart watch. We show that
these gestures can outperform state of the art input techniques and provide a
benefit for the user.

Chapter 4 - Mid-Air Gestures. Mid-air gestures are well known from devices
such as Microsoft Kinect? or Leap Motion®*. These devices, however, are build
for a static setup. To achieve similar input in a mobile setup, smart garments
can be used to sense the movement (i.e., movements as gestures) of the user.
In particular, we use a smart watch scenario in this research probe. One of the
drawback of smart watches is that the user needs both hands for operating them.
We utilize a textile-based capacitive watch strap for controlling content on the
watch with gestures performed by the hand wearing the watch. Thus, the other
arm of the user is not occupied for the interaction.

Chapter 5 - Physiological Signals. The closeness of smart garments to the
user‘s body allows measuring physiological signals of the user. This input can
be used — in contrast to the touch and mid-air gestures presented before — as

3 https://dev.windows.com/en-us/kinect

4 https://www.leapmotion.com/product/desktop


https://dev.windows.com/en-us/kinect
https://www.leapmotion.com/product/desktop
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implicit input. In this research probe, we report on a user study in the automotive
domain measuring different physiological signals and inferring on the context of
the driver. We explore the requirements measuring physiological signals pose
from a technical perspective. We further present application scenarios in which
physiological signals can be used as everyday implicit input.

Part I11: Research Probes: Garments for Output

Chapter 6 - Visual Output. Visual output is the main source of output for
computing devices. Due to the large body area covered with smart textiles,
visual output can be presented on many different locations. This makes visual
output interesting for smart garments. However, garment based displays are
fundamentally different to conventional displays with respect to display resolution
and presented content. As an example application scenario, a focus and context
display is presented in this chapter. The design space of such a display is explored
and the performance evaluated using an off-screen location visualization example.

Chapter 7 - Auditory Authentication. Auditory output is well explored for
providing feedback and entertaining the user. In contrast to the classical usage of
auditory output, we explore an authentication application scenario. We developed
an auditory biometric authentication system using the bone-conduction speaker
and a microphone of an off-the-shelf eye-wear computer. A sound cue is played
back with the speaker and again recorded with the microphone creating a closed
loop. Since the difference between the recorded and played-back signal is based
on the anatomy of the user, this approach can be exploited for identifying and
authenticating the user. We show the general feasibility in a user-study (N=10).

Chapter 8 - Tactile Output. While current mobile devices mainly use vibro-
tactile feedback as tactile feedback, smart garments allow due to the closeness to
the body the usage of EMS as tactile feedback. In this probe, we conduct studies
showing that EMS works as simple feedback but also provides the possibility
to actuate the user. This allows generating an embodied feedback extending
the possibility of vibro-tactile feedback. To highlight the novelty, we provide
application scenarios in which EMS can be further applied.

Part IV: System Design

Chapter 9 - Understanding Users” Perceived Privacy. This chapter explores
the user’s understanding of sensor data from wearable sensors. We explore the
difference between data (e.g., pressure value) and information level (e.g., step
count) using a web survey. We show that users understand both levels differently.
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Chapter 10 - Design Recommendations. Different aspects need to be consid-
ered when enriching mobile interaction with smart garments. By analyzing each
of the developed research probes in Part I and Part III, Design Recommendations
are distilled. These Design Recommendations help to develop a usable way
of interacting with garments and to create a system capable of being used for
multiple applications.

Chapter 11 - Conceptual Architecture. Knowledge in different fields is neces-
sary when developing smart garments. This ranges from hardware aspects such
as fabric production, sensor and actuator development, and textile connecting to
software aspects such as communication with sensors and actuators, data storage,
and the development of algorithms. Using the design consideration stated in
Chapter 10, we present an operating system for smart garments in this chapter
tackling the software aspects of smart garments.

Part V: Conclusion and Future Work

Chapter 12 - Conclusion and Future Work. This chapter summarizes the
contribution of this thesis and reflects back to the research questions stated in the
beginning of the thesis. Furthermore, it outlines open questions that still need to
be tackled in future developments.
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Chapter

Wearable Computing and

Smart Garments

Smart garments have huge potential to shape the way we interact with computing
systems in the future. Current interaction techniques on mobile devices mainly
realize dedicated input actions from the user with touch and speech to execute
certain commands. In contrast, smart garments move the interaction from the
tip of the finger more closely to the body. The ubiquity of clothing in our
everyday life allows a continuous surveillance of the whole body. This again
allows implicit measurements of the user‘s physiological conditions and posture
as well as the detection of explicit user input through full-body and hand gestures.
Another important aspect that makes smart garments increasingly promising is
their unobtrusiveness. While many current wearable devices are add-ons to the
user, the clothing of the user can be enriched with smart textiles so that - on
a first glance - the clothing did not change. By doing so, explicit and implicit
interaction techniques allow users to control computing systems while input and
output devices stay unobtrusive and weave themselves into the clothing of the
user. In this chapter, we introduce the most important terms in the field of smart
garments. We provide an overview of the history of wearable computing and
smart garments in particular, explain the current development and evaluation
process, and present challenges that need to be tackled to allow smart garments to
become mainstream. Last, we present a design space with an in-depth discussion
of the different dimensions.
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This chapter is based on the following publications:

¢ S. Schneegass and O. Amft. Introduction to Smart Garments. In
S. Schneegass and O. Amft, editors, Smart Textiles — Fundamentals,
Design, and Interaction. Springer HCI Series, 2016

* S. Schneegass, T. Olsson, S. Mayer, and K. van Laerhoven. Mobile In-
teractions Augmented by Wearable Computing:. International Journal
of Mobile Human Computer Interaction, 8(4):104—114, Oct. 2016

2.1 Wearable Computing, Smart Garments,
and Smart Textiles

A Wearable Computer is a computing device that is body worn and, thus, closely
connected to the user. It has the potential of interweaving itself with its users and
their everyday life achieving true pervasiveness. In contrast to mobile devices
such as smartphones, wearable computers are always on, always ready, and always
accessible [162]. They do not need to be explicitly switched on but automatically
react to the wearer’s explicit (e.g., a voice command) or implicit (e.g., change
in heart rate) input. There are many different definitions of wearable computing.
For example, Steve Mann defines a wearable computer as follows:

Wearable Computer is a data processing system attached to the body,
with one or more output devices, where the output is perceptible
constantly despite the particular task or body position, and input means
where the input means allows the functionality of the data processing
system to be modified.

Steve Mann [159]

There are two strands of wearable computing devices that need to be distinguished.
First, Wearable Gadgets, for example fitness bracelets or eyewear computers, are
miniaturized computers that can be attached to certain body parts such as the
wrist or head. They provide input and output capabilities as well as connectivity
to either a central device or directly to the world wide web. Nevertheless, the user
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needs to attach these devices explicitly, may forget or chose not to use the device,
and the device is always an addition to the user. In contrast, Smart Garments
(also referred to as smart clothing) are clothes which are enriched by certain
functionality.

These particular garments are mainly built using Smart Textiles for sensing or
actuating the wearer. Although some Smart Textiles are not used as garments, we
focus in this thesis mainly on Smart Textiles used for Smart Garments. These
textiles offer the same functionality as regular textiles and are on first glance
indistinguishable from them. In addition to that, these textiles have certain func-
tionality so that they are able to track the users postures, gestures, or physiological
properties or provide feedback to the user. Van Langenhove and Hertleer define
Smart Textiles as follows:

Smart Textiles are textiles that are able to sense stimuli from the
environment, to react to them and adapt to them by integration of
functionalities in the textile structure. The stimulus and response can
have an electrical, thermal, chemical, magnetic or other origin.

Lieva Van Langenhove and Carla Hertleer [142]

Cherenack et al. defined three different categories of Smart Textiles [49]. The
first category of smart textiles uses the textiles as carrier to integrate off-the-shelf
electronic components. Conductive yarns and fibers replace cables to connect
different sensors, actuators, or processing boards. In the second category, more
and more of the electronics is substituted by textiles. Textiles serve as sensors
or actuators and only some parts of the system use traditional electronics. In
contrast to the first two categories, the approach in the third category significantly
differs. The idea for these textiles is rather smarting up textiles and not including
electronics in textiles. Logic boards and electronic components such as transistors
are made out of textiles in this category [97].

2.2 History of Wearable Computing

In a broad sense wearable computing refers to devices that support wearers with
data input/output and functionality based on context awareness. The history of
wearable computing dates back long before the actual development of computers
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as known today. Glasses and watches provide a benefit to the users and enhanced
their senses. Providing explicit input, abacus calculators that could be worn as
rings were developed by Chinese pioneers back in the Qing Dynasty era (1644-
1911)°. While this device is neither electrical nor adopting, it incorporates basic
input and output features.

2.2.1 The first (electrical) Wearable Computer

Edward O. Thorp conceived the first electronic wearable computer in 1955 [257].
The goal of this machine was to calculate roulette probabilities. Thorp realized
his idea together with Claude Shannon and others in 1961 by using switches in
the shoe for input, acoustic output came through a tiny ear-plug, and a small
hand-made computing unit was worn at a belt [20]. They achieved a 44% per-
formance increase when playing roulette. The first wearable computer that was
systematically researched was published in 1968. Back then, Ivan Sutherland
presented a head mounted display using small CRT displays placed in front of
the the user’s eyes [249]. Using half-silvered mirrors the user was able to see the
virtual as well as the physical environment. After this seminal work, the main
focus in the field of wearable computing was on eyewear computing. One of the
pioneer in this field, Steve Mann, developed several prototypes that use a near-eye
display, on-body computer, and one-handed input device [161].

As of today, the number of wearable gadgets increases significantly. In addition to
eyewear computing, different sensors and actuators placed at different locations
on the user’s body were used to get knowledge about many different aspects of
the user such as the current health status or performed activity.

2.2.2 Smart Garments and Smart Textiles

In the early 90’s, the benefits of smart textiles became apparent. The unobtru-
siveness of augmented clothing [158] and the possibility to interact with this type
of wearable computer even at night [160] motivated a new strand in wearable
computing research. One of the first textile-based wearable computers was the
Sensor Jacket [76] which allowed measuring the posture of the wearer‘s upper
body utilizing eleven knitted stretch sensors placed over the joints. Detecting
the posture was researched in various projects. For example, Shyr et al. use a

5 http://www.chinaculture.org/classics/2010-04/20/content_383263_4.htm
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textile strain sensor to infer on the flexion angle showing that the resistance of the
sensor linearly correlates to the flexion angle of the leg or arm of the user [242].
Cho et al. compared different conductive textiles and their performance for mea-
suring joint angles [50]. By integrating these sensors into a knee sleeve, Munro
et al. showed that they were able to prevent injuries for athletes [177]. They
used conducting polymer technology and audible feedback as soon as they reach
25 and 45 degree knee flexion to keep the leg in an optimal range. In another
example, Helmer et al. show that by using strain sensors they were able to analyze
Australian football kicking actions without interfering the normal movement of
the athlete [105].

In addition to physical measures, physiological status of the wearer is a inves-
tigation focus across many research projects. One of the first approaches was
the Georgia Tech Wearable Motherboard [206, 92] that allowed developers to
plug in different sensors into a single garment. Paradiso et al. presented a smart
garment that can be used as wearable healthcare system [184]. In the multi-
national European MyHeart project, a underwear was developed and evaluated
in cardiovascular diseases, providing electrocardiogram (ECG), respiration, and
several other measurements [11]. The SimpleSkin shirt combines physiological
and physical sensing [229].

In particular the integration of electrodes and measurement of cardiorespiratory
activity has received broad attention. Cho et al. developed an ECG shirt [50] and
compared three different types of ECG electrodes (i.e., embroidered, knitted, and
a combination of both). They showed that the combined fabric achieves the best
performance. Choi and Jiang presented a system intended for cardiorespiratory
measurement to monitor sleep condition [51]. They used belt worn sensors for
measuring respiratory cycle and RR-wave interval using polyvinylidene fluoride
film and two sensors made of conductive fabric.

The overall construction principles of smart textiles and garments are continuously
extended. Dunne et al. provided an overview on textile integration strategies and
component attachments [71]. Key challenges regarding the interpretation of
garment-sensors is their varying attachment depending on movement and body
shape. Harms et al. provides an overview on a prediction framework dealing with
errors due to loose fitting in orientation, skin contact, and strain sensing [98].
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2.3 Production of Smart Garments

Several steps need to be taken to create smart garments. While some of the steps
overlap with the steps needed to create classical wearable computing devices,
smart garments have additional challenges in the production process that need to
be tackled.

2.3.1 Fabric Production

In contrast to gadget based wearable computing, the usage of fabrics yield several
challenges. The production of these fabrics is the first challenge especially
when taking mass-production into account (cf., Poupyrev et al. work on Project
Jacquard [202]). Classic production techniques include Fleece, Warp Knit, Weft
Knit, Weave, Braid, and non-comp fabrics (cf., Goenner for an overview of textile
production techniques [91]). Each used technique combined with the used type
of yarn impact the wearability of the garment and allows generating different
properties such as stretchability.

2.3.2 Sensors and Actuators

Several research prototypes of textile based sensors and actuators have been
developed. Most of these sensors and actuators consist of a textile electrode
and electronics interpreting the measured signal or applying a signal to it. The
majority of research focuses on the sensing part. Using touch resistive textiles as
pressure sensors (e.g., Zhou and Lukowicz [283]) or textiles capable of measuring
the bend angle of joints (Lorussi et al. [151]) highlight only two types of textile
sensors. On the output side, visual output has gained center stage (e.g., the work
of Peiris [188] or Devendorf et al. [63]). Furthermore, haptic feedback using EMS
received considerable attention due to the possible integration of the electrodes
into textiles [125]. The one common aspect between all these approaches is that
they use the textile in combination with an electronic board. This necessity of an
electronic board can be overcome by integrating more complex structures into
the textile (cf., Varga and Troester for a summary of textile electronics [261]).
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2.3.3 Contacting and Integration

Different methods exist to connect textiles with electronics. The methods can
be grouped into non-reversible (i.e., the electronics cannot be easily removed
from the textile) and reversible methods (i.e., the electronics can be removed
for charging or washing of the textile). The non-reversible methods include
form-locked connections (e.g., sewing) and cohesive joining (e.g., soldering,
epoxy based methods, etc.). Besides the simple reversible methods such as using
push buttons, magnets, or hooks, more sophisticated methods such as ball-grid
connectors [169] proved to be a more usable approach. Mehmann et al. provide
an overview of different types of connectors [170].

2.3.4 Communication and Operating Systems

In order to use the sensor values or provide feedback through actuators, infor-
mation needs to be transferred from the electronic board (e.g., Arduino, Field
Programmable Gate Array (FPGA)) to a more powerful entity that realizes the
intended application. While textile solutions exists (e.g., textile antennas [168]),
the most common way is connecting the electronics to a mobile phone or com-
puter. Interfaces used for such a connection are Serial Peripheral Interface (SPI)
(synchronous 1:N communication) or Universal Asynchronous Receiver Trans-
mitter (UART) (asynchronous 1:1 communication) which can be used to connect
devices offering the same interface. By connecting Bluetooth modules to these
interfaces, consumer devices such as mobile phones can communicate to sensors
and actuators.

2.4 Evaluation of Smart Textiles and their
Applications

We identified three different groups of methods used to evaluate smart garments
and their potential applications. While different contributions require different
evaluation methods, it is important to chose the evaluation method fitting to the
investigated issue. In general, different evaluation methods are valued differently
in each field of research related to smart textiles.
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2.4.1 Asking and Observing Users

One very basic approach that is mainly used in HCI is asking and observing
the user. The observation of the user (also known as Ethnographic Research)
generates new opportunities or challenges for applying smart textiles. Researchers
observe users without interfering with their tasks and habits. They derive new
possible application areas or products from their observations. In contrast, asking
the user directly involves them. Several methods are available such as surveys,
interviews, or elicitation studies. The main objective is to understand the likes
and dislikes of users. This is mostly done by presenting a prototype or a final
system and asking the user certain questions about the (proposed) system and can
be combined with Laboratory Studies.

2.4.2 Laboratory Study

In laboratory studies, a certain system is evaluated with regards to a certain
aspect in a controlled environment. These aspects could be focusing on feasibility
(e.g., showing that a proposed system works), technical aspects (e.g., system
performance or reliability), or the user (e.g., usability, user performance). Since
smart textile research is still at the beginning, the main goal of evaluation is
oftentimes limited to demonstrating the feasibility of a specific approach. This
includes testing of materials, for example, how well does a certain material work
as a textile sensor. One large strand of work shows that approaches that are
currently realized with non-textile based systems can be realized with textile
based sensors. In this case, the textile under investigation is compared to a
non-textile baseline which has been previously shown to realize the task.

2.4.3 Field Studies and Research through Deployed
Systems

In contrast to laboratory studies, field studies aim at evaluating smart textiles in
realistic settings. This evaluation method poses additional challenges to the smart
textile under evaluation with regards to robustness and functionality. Parameters
such as the placement of the textiles cannot be controlled as in a laboratory study.
Data collection and power consumption are further challenges that make these
types of evaluation cumbersome. All this leads in the end to a reduced internal
validity. However, facing these challenges, the evaluation benefits from high
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ecologic validity. It is a further step towards a usable system since aspects such
as privacy implications and social effects can hardly be assessed in the lab.

Taking the evaluation a step further, research trough deployed systems allows
gaining insights into the user‘s behavior with almost no interfering of an arti-
ficial study setup. This method is currently mainly used for evaluating mobile
phones [108] due to their ubiquitous availability. In the future, smart textiles
definitely need to go along this line to fully understand the symbiosis between
users and textiles.

2.5 Design Space for Effectively Utilizing
the Human Body

Since the interaction possibilities of mobile devices are limited, wearable com-
puting and in particular smart garments create a much broader design space for
input and output technology. To create a operating system supporting the majority
of sensors and actuators, the whole design space needs to be understood. In the
following, we present a design space similar to the work of Card et al. [43] for
wearable devices that can be used to augment mobile interaction. We thereby
present examples for each dimension which are not restricted to garment-based
wearable computing but might be in the future realizable with garments. This
design space is based on an extensive review of products and literature. We
present a matrix representation of the design space (Figure 2.1) and discuss each
of the dimensions.

2.5.1 Body Location

An important design consideration for wearable computing devices is the body
part on which the sensors, actuators, and processing unit are placed. We differen-
tiate between six different parts of the body and external systems. The body parts
are segmented into upper body (hands, arms, torso, and head) and lower body
(legs and feet). Specific sensors need to be placed at specific positions on the
user’s body. Physiological input, for example, needs to be measured at specific
parts to sense the desired physiological properties. Accelerometers for detecting
the activity of the user needs to be placed at dedicated locations distributed on
the user’s body [19] and a wristband for detecting the hand movement of the



26 2 Wearable Computing and Smart Garments

right hand needs to be placed exactly at this location [47]. On the other hand, to
actuate specific parts of the body, the actuators need to be placed at the respec-
tive location or at the muscle responsible for the desired actuation. Vibrational
feedback, for instance, at the arm requires the placement of a vibrational engine
exactly at the dedicated location, that is, the arm. However, when actuating the
user’s hands using electrical muscle stimulation, the electrodes need to be placed
at the arm [150] and turning the legs for changing the walking direction requires
a placement of the electrode on the inner side of the legs [191]. Thus, the body
part that is used needs to fit the use-case of the devices but the destination of
sensing and actuation is not always the same location the sensor or actuator is
placed. This can be further explored during the development process, for example,
through user-centered design [2].

2.5.2 Input and Output

Most wearable computing devices focus either on input or on output, and the
ones focusing on input are in the majority. Devices focusing on input strive to
detect the user‘s activity, posture, or explicit input. This can be sensed through
three different classes of sensing mechanism. First, physical movement gener-
ates pressure or movement that can be sensed through, for example, pressure
sensors [282] or strain sensors [152]. This can be used to detect, for instance, the
posture [152], performed gesture [47], or activity [19] of the user. By moving
his or her body, the user physically generates pressure that is sensed by pressure
sensors or changes the posture that forces stretch sensors to expand. Second,
changes in the physiological properties of the human body can be detected. This
includes Electrocardiography (ECG) or the body temperature of the user. Gar-
ment based systems are especially used to measure physiological properties due
to the close and fixed connection between body and sensor. Several systems
show that measuring ECG [78] or respiratory frequency [65] is possible and
beneficial for mobile health-care applications. Carpi and De Rossi presented an
overview and background knowledge on smart textiles and smart garments as well
as their opportunities [44]. In addition to health-care applications, such sensors
enable systems to detect changes in the physiological state of the user to adapt
services to the current needs (e.g., simplify a User Interface while the user is
strained [235]). Last, a system can sense contextual data from the environment the
user currently is in. Examples range from environmental audio from integrated
microphones [154] to QR codes scanned through head-mounted camera which
can all be used to enhance the mobile interaction.
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On the output side, the wearable computing device gives feedback to the user
mainly using visual or auditory cues. Visual output can be either designed for the
users themselves [75] or as an output medium for others as a public [217]. The
visual output ranges from color changing fabric [141], small LEDs embedded
into bracelets [79] or clothing [73] to rich displays that can be placed somewhere
on the body [74, 180]. While auditory feedback can be used for notification or
entertainment similar to visual feedback, it can also be exploited for purposes
such as user identification and authentication [233]. Additionally, the usage
of physical actuators such as vibrational feedback [109] or feedback through
Electric Muscle Stimulation (EMS) provides feedback to users [195]. It provides
feedback to the user directly at the intended position, for example, to enhance
the posture of the user [268] or to give directional cues [164]. In addition
to that, some types of output are used to create physiological output. These
systems directly manipulate the human body. Examples include EMS to directly
manipulate the user‘s muscles [150, 191] or changing the body temperature [121].
Last, the contextual output is used for systems that are not limited to wearable
output themselves but used the mobile device or other systems (e.g., a public
display [220]) as an output medium. An important aspect is the combination of
several output devices such as several displays [94] creating novel experiences
for the user.

2.5.3 Design Space Visualization

Due to the rapidly increasing capabilities of both mobile and wearable devices
there are numerous possible use cases in which (garment-based) wearable sensors
and actuators could augment the input or output in mobile interaction. This
thesis presents five prototypes (cf., Table 1.2) which we classify in the visual
representation of the design space (cf., Figure 2.1).

The GestureSleeve uses physical input through a touch-enabled fabric on the
arm of the user. This input is transferred to a smart watch which processes the
information and presents visual (i.e., physical) output at the same arm. In contrast
uses the GestureWatch prototype physical input of the user’s hand. Physical
output as well as processing is done using a smart watch on the arm of the user.
The WearableDisplay presents output on the arms and torso of a user. Again,
processing is done on the user’s smart watch. The GlassAuthenticator uses
the physical form of the user’s head to generate a specific auditory frequency
response. This response is captured through a microphone build into a Google
Glass which also serves as processing unit. Last, the EMSActuator solely focus
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Figure 2.1: Visual representation of the Design Space including the five
prototypes presented in this thesis: GestureSleeve (blue circle), GestureWatch
(green square), WearableDisplay (red star), GlassAuthenticator (yellow cir-
cle), and EMSActuator (pink hexagon).

on providing physical output (i.e., movement) of the user’s limbs. The high-level
processing is done on a mobile phone.

2.6 Current Challenges for Smart Garment

2.6.1 Integration

Users nowadays have their own microcosm of computing devices. In addition to
a mobile phone, these devices include watches, TVs, cars, and many more. By
integrating the smart textiles in this microcosm, the textile can act as a further
interaction medium. The user can explicitly enter commands (e.g., controlling
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the watch using touch gestures on smart textiles) or the textile can be used to
implicitly track the user‘s status (e.g., turning of the TV when textile based
sensor detect that the user is sleeping). Due to this integration, the smart textile
becomes an integral part of the user. However, interfaces between garment and
environment need to be created.

2.6.2 Privacy and Control

Privacy has been an important topic since the advent of pervasive computing. The
more devices move to the background, the less the devices remind the user of
potential privacy violations. Since smart textiles have the potential to become
indistinguishable from regular clothing the privacy of the user is an important
criterion which needs to be considered during the whole design process (cf.,
Lengheinrich‘s work on privacy by design [143]). Textiles are closely connected
to the user‘s body and allow sensing various information types hardly possible
with current regular computing devices. The degree to which the user‘s privacy is
protected will determine how accepted smart textiles will be in the future. Thus,
smart textiles need to allow the user to stay in control of the data. The user should
decide which information is shared with whom and this process needs to be as
transparent as possible.

2.6.3 User-Centered Evaluations

While most smart textiles are nowadays evaluated with regards to their technical
soundness, taking the user into account during the evaluation process has become
best practice in other areas of research. For current smart textile research, however,
the user mainly plays a minor role during evaluations. The approach of starting
by exploring the technical feasibility allows rapid development of novel textile
sensors and actuators and is a valid first step. Since the development of smart
textiles has matured, the next step in evaluating smart textiles needs to be taken.
Applying, for instance, the user-centered design process [93] to the development
of smart garments allows the refinement of requirements for these and present —
in return — novel challenges for the design of textile based sensors and actuators.
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RESEARCH PROBES:
GARMENTS FOR INPUT






OUTLINE

In the following part of the thesis we investigate three different approaches to use
smart garments as explicit input devices. We realize gesture-based input which is
known from mobile devices such as mobile phones or smart watches. Thereby,
we present work using smart garments for detecting 2D gestures on a surface (cf.,
Chapter 3) and free-hand mid-air gestures (cf., Chapter 4). Both approaches can
be realized using the same textile. However, the 2D gesture input uses a resistive
sensing board and the mid-air gesture input uses a capacitive sensing board. This
highlights one of the core challenges for garment-based computing. To make
garment-based computing successful in the mass market the production of the
garments needs to kept simple. By using only one type of textile with different
sensing hardware and applications, this goal is fulfilled. In addition to explicit
input, we present work on how smart garments can be used for implicit input.
Since smart garments are closely connected to users’ bodies, different implicit
input techniques can be realized. The current posture [152] or movement [284] of
the user can be detected as implicit input. Further, assessing the users’ biosignals
can be realized with smart garments [78, 184]. These signals yield promising
insights on the user which can be used as implicit input (cf., Chapter 5).

This part includes the following three chapters:

¢ Chapter 3 — Touch Gesture. Touch input is the most common input
technique for mobile devices such as smart phones and tablet computer.
Touch sensitive fabrics allow making each piece of clothing to be fully
touch enabled similar to the displays of these devices. Thus, the input
that is currently performed on the mobile device can also be performed on
clothing. In this chapter, we present a system that detects simple tabs and
2D gestures. We use this system to control a sports application on a smart
watch. In an evaluation, we show that this system outperforms direct touch
input on a smart watch.
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¢ Chapter 4 — Mid-Air Gestures. Mid-air gestures are a well known input
technique mainly used in the entertainment sector (e.g., Microsoft XBox®).
The input is detected using devices such as the Microsoft Kinect’ or Leap
Motion®. While these devices are hardly usable in a mobile setting, smart
garments yield the potential to detect similar gestures. In this chapter, we
present a system which is able to detects mid-air gestures using a capacitive
wristband. Since there is no unified gesture set yet, we conduct a gesture
elicitation study and derive a gesture set. We show how these gestures can
be used to control different application on a smart watches.

» Chapter 5 — Physiological Signals. Different physiological signals can be
measured using smart garments. In this chapter, we explore these signals
in the context of an automotive use case. We measure physiological signals
of ten participants while they are driving. We show that we can use these
values to infer on the workload of the driver and compare the results with a
subjective measure of workload. Further, we highlight application scenarios
of implicit input using physiological signals.

6 http://wuw.xbox.com/

7 https://developer.microsoft.com/de-de/windows/kinect

8 nttps://uww.leapmotion.com/
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Chapter

Touch Input

Touch enabled textiles are gaining importance (e.g., Project Jacquard [202]).
These textiles detect touch input similar to touch screens. Thus, they are capable
of detecting taps as well as 2D gestures. In contrast to touch screens, touch
enabled textiles have similar properties as regular textiles. They are similarly
comfortable to wear and flexible — they can achieve a similar wearability [88]. By
including patches made from such textiles in everyday life clothing or producing
clothing made fully out of touch sensitive textiles, novel input possibilities can be
created.

Mobile devices such as smart watches or smart phones can be controlled using
touch sensitive textiles as input. Particularly smart watches can benefit from this
technology. For example, during sports activities, smart watches provide benefit
compared to smart phones due to their fixed location at the user‘s wrist and their
reduced weight. Users can still perceive content without the necessity of getting
their phones out of their pockets. This allows reading incoming messages and
performance measures from fitness applications. Even though they offer quick
information access and can be controlled while on the move, they suffer from the
drawback of the limited input space. Current smart watches have touch-enabled
displays similar to smart phones. Due to the reduced size of the displays, touch-
based interaction becomes even more cumbersome compared to smart phones
(cf., Leiva et al. [147]). Combining the high resolution display of a smart watch
with touch enabled clothing, the draw backs of both devices can be overcome.
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Figure 3.1: A user wearing the GestureSleeve at the forearm made out of
touch-enabled textile. The GestureSleeve is capable of detecting gestures
extending the input space of mobile devices.

In this chapter, we introduce GestureSieeve, a novel input system for mobile
devices such as smart watches using a touch sensitive textile at the forearm
(cf., Figure 3.1). The textile is compensating the drawback of the smart watches*
limited input space. At the same time, the smart watch provides output as well as
processing power that is not integrated in the textile itself. Showing the feasibility
of GestureSleeve, we implemented a fitness tracking application on the user‘s
smart watch. The application can be controlled with touch gestures performed on
the touch-enabled textile on the forearm and with touch input on the smart watch.
In a user study, we compare both approaches and show that touch enabled textiles
are a feasible solution for controlling applications on smart watches.

This chapter is based on the following publication:

¢ S. Schneegass and A. Voit. GestureSleeve: Using Touch Sensitive Fab-
rics for Gestural Input on the Forearm for Controlling Smart Watches.
In International Symposium on Wearable Computers (ISWC). ACM
New York, NY, USA, 2016
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3.1 Related Work

The basic interaction techniques of nowadays smart watches have been adopted
from mobile phones. The screen is touch-enabled and allows direct touch as
well as small gestures. However, due to the reduced device size, the display
size is reduced as well. One way to deal with the small display size is adopting
the interface. This has mainly be done for text entry. Zoomboard, for example,
uses multiple taps for entering characters [181]. With the first tap, the a broad
region on a qwerty keyboard is s selected and, with the second tap, the actual
character is selected out of a zoomed-in part of the keyboard. In addition, Funk
et al. developed a touch-sensitive wristband for text entry on a smart watch [83].
Moving the interaction beyond the touch screen, Partridge et al. proposes adding
tilt movements to ease up the text input [185]. Text is entered by tilting in a certain
direction and pressing a button. Moving this concept even further, Xiao et al. use
tilting in addition to panning, twisting, and clicking to control watches [277].
They show different example applications that can be controlled using these
operations without occluding the screen.

Different approaches for gesture based input that utilize the space around the
smart watch are explored. This is realized using simple depth sensors [271],
cameras [247], or magnetic field sensors [14]. Due to the placement at the wrist,
smart watches are capable to detect wrist and hand gestures of the hand the
watch is placed by augmenting the watchstrap with sensors. Examples include
the capacitive wristband by Rekimoto [207] which is capable of sensing the
movement of the wrist and fingers. Similarly, Zhang and Harrison use electrical
impedance tomography detecting similar movements [281].

In contrast to mid-air gestures, 2D gestures on the user‘s body can also be used to
control smart watches. These gestures are more socially acceptable in compari-
son to mid-air gestures because they are less expressive [208]. While using 2D
gestures for controlling smart watches is sparsely used, different approaches for
on-body gestures have been explored. Skinput, for example, is capable of detect-
ing taps on the arm measuring acoustic signals inside the body [100]. However,
the authors are mainly focusing of detecting taps rather than more sophisticated
gestures. Garment-based sensors, in contrast, allow a variety of different touch
gestures integrated into the clothing of the user. Using simple stitched buttons,
Komor et al. explored textile based input on the strap of a messenger bag [135].
They present different layouts and analyze their performance while swiping over
or pressing the buttons. Focusing on interaction with smart glasses, Dobbel-
stein et al. propose performing swipe gestures on the belt [68]. However, the
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approach could also be extended to smart watches. In addition to using button
based approaches, fabrics with similar functionality as touch screens have been
proposed with various spatial resolutions and refresh rates (cf., Zhou et al. for an
overview [282]). An early example using these fabrics is GesturePad [207], a
textile touchpad that can be integrated in clothes of the user. Similarly, Heller et
al. used a touch sensitive fabric at the tights showing the influence of different
activities such as walking, sitting, and standing on input performance [104]. In
contrast, we use a fabric at the forearm of the user which offers an easy to reach
input space while looking at the smart watch‘s display.

3.2 Hardware Prototype: The GestureSleeve

Performing gesture input on the forearm provides a large input area. Different
touch enabled fabrics have been proposed such as the work of Zhou et al. [282]
or Project Jacquard [202]. These fabrics are similar to regular, non-interactive
fabrics and allow manufacturing clothes with similar comfort and wearability (cf.,
Gemperle et al. [88]). We present GestureSleeve which augments the forearm
with touch functionality. Using this functionality, we can detect various kind of
input such as taps or stroke gestures. We envision using this input as a means to
control smart watches. Thereby, GestureSleeve fills the blanks between touch
input on devices with small form factor and complex and not always socially
accepted, mid-air gestures.

We use a touch enabled fabric with the size of 16 x 16 cm (cf., Figure 3.2). The
fabric consists of three layers. On top and bottom, groups of 32 parallel stripe
electrodes of 3 mm width and 2 mm spacing between two electrodes are attached
to the top and bottom fabric. Both fabrics with electrodes are placed perpendicular
to each other. A force sensitive fabric is placed between both layers changing
the resistance based on the applied vertical pressure. The final fabric is fixed
with Velcro tape around the arm of the user. The fabric is connected via cables
to a processing board’ (cf., Figure 3.2 — top right) measuring the resistance for
each of the 32 x 32 (i.e., overall 1024 pressure sensors) points where two stripe
sensors overlap. The sampling rate is 50 Hz. The measured values are transfered
via Bluetooth to the smart watch. As a smart swatch, we use the Simvalley AW
414.GO running Android 4.0.

9 The board was developed by Zhou - cf., Zhou et al. for more details [282].
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Figure 3.2: The touch enabled textile used for the Gesture Sleeve. Two layers
of stripe electrodes placed perpendicular to each other with a force sensitive
fabric in between. The processing electronics is shown on the top right.

3.2.1 Sensor Placement

Even though related work suggests placing the touch enabled textiles at the thighs
might perform slightly more intuitive compared to the user‘s lower arm [111, 256],
we decided using the lower arm since our system is designed to be used while
on the move. The thigh might not be easily reachable due to the movement,
especially during sport activities such as running. In contrast, the lower arm is
reachable most of the time. The proximity to the smart watch further increases
the placement at the forearm. Users can observe the feedback on the watch while
entering commands on the sleeve. In addition, Profita et al. investigated in a
study the social acceptance of inputs on smart clothes [203] and found out that
interactions on the forearm and the wrist are mostly social accepted. While we
used a patch of touch enabled fabric for our prototype, we envision the full sleeve
being touch-enabled so that the user does not need to find the touch sensitive area.
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3.2.2 Gesture Detection

Due to the placement of the GestureSleeve on the forearm and its continuous
movement, the sensor data is noisy. When the user shakes his or her arm, the
GestureSleeve reacts on this movement in terms of changing the values of some
of the 1024 pressure sensors. Tackling this, we included an empirical determined
threshold defining a minimum pressure value counting as an intended input. To
prevent folds in the fabric from generating unintended input, we dismiss all sensor
values exceeding the threshold which do not have at least 6 neighbors that also
exceed the threshold. Even though the user just taps the fabric, the resistance of
the adjacent sensors also exceed the threshold. As soon as an intended input is
detected, we instantly start a new gesture. Since most of the time the pressure
value changes for more than a single sensor, we always use the sensor with the
highest pressure as intended input. The position of this sensor in the 32 x 32
matrix (i.e., the “pixel” position as known from touch screens) is added to a list
that stores the currently performed gesture. We add the sensor position with
the current highest value to the list until no further input is detected for at least
10 frames (i.e., 200 ms). Afterwards, the gesture detection is started with the
recorded data.

In the initial version of GestureSleeve, we focus on detecting taps as well as
stroke gestures. For detecting the stroke gestures, we used the $P algorithm [263]
with N = 64 points. A gesture is recognized if the sum of all Euclidean distances
between the points of the performed and a respective template gesture is smaller
than 7 px. For detecting taps, we extended the gesture recognizer. It detects a
tap when the length of a gesture is between 10 and 50 points and the Euclidean
Distance between all points smaller than 7 px.

3.3 Evaluation: Sports Tracking Application

We conducted a user study to evaluate our GestureSleeve using a sports tracking
application as use case. Interacting during running activities gains more and more
importance. In addition to controlling sport tracking applications, other use-cases
for interacting while running are proposed. Wozniak et al. present an approach
for remote cheering to the runner [276]. They use a watch like device providing
visual and haptic feedback and a single button to ask for and acknowledge remote
cheering. In contrast, Smus and Kostakos used foot gestures for controlling music
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Tracking Information Information zum Tracking Information zum Tracking

00:00:00 00:00:00 00:00:20
0,00 km/h  Duration 0,00 m 0,00 km/h  Daver 0,00 m 0,00 km/h  Daver 0,00 m
Speed Distance Geschwindigkeit Distanz Geschwindigkeit Distanz
Warning: No GPS Signal Warning: No GPS Signal Warning: No GPS Signal

Figure 3.3: The running application used in the user studies. The user
interface at the beginning (left), after the participant started the recording
(middle), and after pressing pause (right).

player while running [246]. Nevertheless, we focus on basic features of running
applications.

3.3.1 Sports Tracking Application

We developed a prototype of a sport tracking application that is capable of
tracking jogging activities (cf., Figure 3.3). The application can be controlled
either via touch buttons on the smart watch or via gestures on the GestureSleeve.
In a first step, we investigated how current sports application are designed. We
analyzed the user interface of the top three Android applications (Endomondo!?,
Runtastic!!, and SportsTracker'?) offering the functionality we wanted to use in
the study (i.e., start the tracking, pause the tracking, stop the tracking, and initiate
a new training lap). Then, we derived our user interface from these applications.
The start button is placed left and turns into pause button as soon as the user
starts the training. The button for starting the next lap is placed on the right and
appears as soon as the training is started. When the runner pauses the training,
the next lap button turns into the stop button. The design is deliberately chosen to
be minimalistic to that the interface does not distract the runner.

For the gesture based input, we chose four different gestures — one for each
command. These gestures are derived from the icons that are shown in the user

10 https://play.google.com/store/apps/details?id=com.endomondo.android
'l https://play.google.com/store/apps/details?id=com.runtastic.android

12 https://play.google.com/store/apps/details?id=com.stt.android
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Figure 3.4: The trail used for the user study of approximately 400 m. The
positions of the signs are indicated where the participants performed a task.

interface of the different sports applications (cf., Figure 3.6). The training is
started with an arrow gestures (derived from the triangle symbol of the running
app‘s play button), paused by a stroke (derived from the pause symbol with but
with a single line), and stopped by a simple tap (similar to a square of the stop
button). A new lap is started by drawing a circle indicating the lap in a stadium.
We defined templates for the gesture detection and asked 14 persons to perform
each of the gestures 15 times to train our system. None of them took part in the
user study afterwards.

3.3.2 Participants and Procedure

We invited 16 participants (6 female, 10 male) aged between 21 and 38 years
(M =27.3, SD = 4.6) through university mailing lists. Each of the participants
received 10 € as remuneration. After participants arrived in our lab they filled in
a consent form and we equipped them with a smart watch and the GestureSleeve.
The processing board was placed in a back pack with an external battery pack.
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Next, we explained the GestureSleeve and the four gestures as well as the smart
watch application and the touch interface. We allowed the participants to get
familiar with both interfaces. Before each condition we repeated this instruction
so that participants knew which gesture to perform, how the gesture looks like,
and how the application was controlled using the touch screen.

We designed our study as a within subject study and, thus, each participant took
part in both conditions, namely controlling the smart watch application with
gestures and with touch input. The order of the conditions was alternated. We
prepared a jogging trail of about 400 meters (cf., Figure 3.4). Along the trail,
we distributed paper signs with commands (e.g., “pause”). We instructed the
participants to jog along the trail and perform the commands seen on the signs as
soon as they reach the line in front of the signs. We also told them not to pause
for executing the commands. In total, each participant should perform “start”
three times, “new lap” and “pause” twice, and “stop” once per condition. We
deliberately chose the “pause” commands in areas were the participants needed
to cross the street and we instructed them to carefully cross the street.

We logged the user interaction with the smart watch and the GestureSleeve
(i.e., the raw pressure sensor values and the detected gestures). Further, we
videotaped the whole study for post-hoc video annotation of interaction times and
to understand issues during the interaction. We used high quality video setting
with a frame rate of 60 FPS for the videotaping. We selected the video frame in
which the user‘s hand starts moving into the direction of the GestureSleeve or
the touch screen of the smartwatch and the one the participant lifted the finger
again from the input device (cf., Figure 3.5). We deliberately chose this method
since we wanted to investigate the whole interaction time including the time the
user needs to select the input areas on the smart fabric or the buttons on the touch
screen of the smart watch. Therefore, we did not only measure the time needed to
perform the gesture and the time the button was pressed.

3.3.3 Results

We analyzed objective measurements (Task Completion Time (TCT), Error Rate
(ER)) and the conducted semi-structured interviews with all participants after
they performed both conditions.
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Figure 3.5: Video recordings of a user performing three different inputs. The
user performs input on the smart watch using touch (top) and two different
gestures on the GestureSleeve (middle and bottom).

Performance Measures

In general, the GestureSleeve performed well and every participant was able to
use the system to control the smart watch. Examples of the detected gestures are
depicted in Figure 3.6. We excluded two participants for technical reasons. One
participant interacted while pressing the arm against his body so that we could
not identify the starting point of interaction using the video recording. The other
participant took a shortcut of the trail and, thus, did not perform all commands.
We first compared the TCT. We extracted the TCT by manually encoding the
start and end time of each interaction from the video data (cf., Figure 3.5). As
soon as a participant moved his or her arm towards either the GestureSleeve or
the touch screen of the smart watch, we started measuring the interaction time.
The end point was defined as the video frame in which the participant first lifts
the finger.

We conducted a dependent ¢ test comparing both interaction techniques with
regards to the TCT and ER. For the TCT, the results show that participants con-
trolled the smart watch application significantly faster using the GestureSleeve
(M = 1.50s, SD = 0.09) compared to touch input (M = 1.85s, SD = 0.12),
t(13) = —3.583, p = .003, r = .78. The ER for using the GestureSleeve (M =
0.28, SD = 0.37) was higher compared to touch input (M = 0.17, SD = 0.27).
The t test, however, could not show any statistically significant differences,
t(13) = 1.649, p = .123, r = .33.
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Figure 3.6: Examples of the performed “start”, “new round”, “pause”, and
“stop” gestures of four different participants recorded during the user study.

Qualitative Feedback

In the semi-structured interviews, we ask the participants questions about the
GestureSleeve and the perceived performance. The participants stated using
gestures is fun, novel [P2], and easy [P5]. However, they also noted that they
would have needed more time to perfectly master the gesture input [P6]. One
participant acknowledged that he needed to look at the sleeve for performing
the gestures but is confident that this would not be necessary with more practice
[P14]. Additionally, participants agreed on the fact that the ease of input is mainly
influenced by the used gestures. Tap and stroke gestures were easier to perform
compared to circles. Especially when the fabric was not tightly fitted to the arm,
the circle gesture was not easy to perform. Furthermore, participants noted that
performing gestures without looking at the GestureSleeve was possible which
was not the case for touch input on the smart watch [P2, P9].
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3.4 Discussion

The evaluation of the GestureSleeve yields promising results. We showed users
are capable of faster entering commands compared to touch input on the smart
watch‘s display. The error rate is slightly higher which could be caused by
the fact that gestures have the inherent drawback that they need to be learned
and remembered. There is no cue reminding user‘s which gesture needs to be
performed to fulfill the desired task. This is also supported by statements of the
participants during the interviews. Even though we derived the gestures from the
well known icon set of known running applications, participants needed to think
about which gesture is mapped to which command (as stated by, for example, [P6,
P14]). By giving participants more time to practice the gestures, we believe that
the error rate will be further reduced and eventually match or even surpass the
error of the smart watch interface. Further, the used smart watch is an off-the-shelf
product which we compared to our prototype of a GestureSleeve. A more mature
version of the GestureSleeve would most likely perform even better.

We decided to focus on interacting on the arm due to the closeness between
input and output medium. In the summer, however, wearing short-armed shirts
is common in many regions. While a similar gesture-based interaction could
be applied using the skin as input surface (cf., Skinput [100] or iSkin [269]),
using other parts of the body can also enhance the interaction with smart watches.
As related work suggests [111, 256] the thighs are another promising area for
entering commands. Situations in which thighs are especially useful include, for
example, sitting on a chair in a meeting or watching movies on a sofa. The user
is then able to easily enter commands on the thighs. Thus, the GestureSleeve
concept could be applied to the thighs as well.

In this work, we used a prototypical version of the GestureSleeve which we
designed as an add-on patch to the normal clothing of the user. We believe that in
the future, clothing will be produced using touch enabled fabric [48]. Thus, the
user can perform gestures on the whole sleeve and is not restricted to a certain
patch. However, since we used a patch of 16 x 16 cm, we believe that the size did
not influence the results of our study. The forearm of the participants was always
completely covered by the GestureSleeve.

We focus on gestures performed on the sleeve since gestures are not influenced
by a decoupled input and output space. However, additional types of input are
also possible with our system. One example could be mapping different parts
of the GestureSleeve to parts of the smart watch (e.g., the four quarters of the
display space). Thus, a touch event on the upper left quarter of the GestureSleeve
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is mapped to an input on the upper left quarter of the smart watch. More fine
grained direct touch input (e.g., mapping a QWERTY keyboard to the touch-
sensitive textile) would probably require a visual feedback using textile display
elements [189].

In addition to controlling the smart watch while running, GestureSleeve has the
potential to be used for various applications beyond the fitness domain. One
example could be, for instance, using the gestural input to start applications as
proposed by Poppinga et al. for smart phones [201]. By performing stroke gestures
linked to certain applications, the user has quick access to these applications.
Furthermore, pre-defined answers to received text messages could be defined.
When the user receives a message, he or she could, for instance, perform a
gesture similar to a tick mark to send a quick reply. Even though we deliberately
chose enriching the input of smart watches, GestureSleeve can also be used in
combination with other smart devices such as eyewear computer.

The performed study used a jogging trail of 400 meters and presenting dedicated
commands to the participants. Allowing the participants using a jogging distance
they normally use and to perform the commands they actually would perform for
measuring their performance could have increased the ecologic validity of the
study. However, we believe that for an initial evaluation of our GestureSleeve con-
cept, the usage of a more controlled setup is appropriate. Additional aspects we
did not investigated are the environmental conditions. We conducted the study in
the summer during days of sunshine. We did not evaluate how the GestureSleeve
performs during rain or snow and how gloves impact the interaction.

In this chapter, we used a prototypical version of the GestureSleeve. We believe
that in the future, clothing will be produced using touch enabled fabric [48]. Thus,
the user can perform gestures on the whole sleeve and is not restricted to a certain
patch.

3.5 Lessons Learned

This research probe shows how touch-enabled textiles can be used as input means
for mobile devices such as smart watches or smart phones. We can derive the
following two insights from the research probe:

* Enable touch-gesture input on the smart textile. As the research probe
shows, gesture input is an easy to use way of entering commands to mobile
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devices. Detecting these gestures is similar for several different application
and can, thus, be done on an OS level. This will also help using a unified
gesture set for all applications.

Provide API calls on different abstraction layers. From an application
developer perspective, the raw sensor data is important in order to have
all opportunities for the application development. We explored different
modifications to the algorithm to be able to detect different gestures which
would not have been possible without the raw sensor output. However,
this research probe also shows that detecting gestures can be challenging.
Thus, allowing application developer to automatically include gesture input
without the necessity of implementing the detection algorithm eases up
application development in some cases. This could, for example, be done
using callbacks that are triggered as soon as a specific gesture is detected.

3.6 Conclusion

In this chapter, we explore touch gestures on smart garments as an additional
input means for mobile devices. We present the GestureSleeve prototype. By
providing a large input area, GestureSleeve helps overcoming the drawback of
the limited input space which is a common issue for mobile devices — especially
smart watches. To evaluate our approach we developed a fitness application and
conducted a user study in which we compared gestural input on the GestureSleeve
and touch input on the smart watch. Our results show that the GestureSleeve
outperforms touch input with regards to the task completion time. While our
prototypical version is build as an add on to the normal clothes of the user,
we believe that in the future sleeves of regular clothes can incorporate similar
interaction possibilities.



Chapter

Mid-Air Gestures

While touch gestures on smart textiles (cf., Chapter 3) provide an easy way
of entering commands, performing mid-air gestures yield several advantages.
The expressiveness of the gestures is increased due to the additional degree
of freedom and only the hand performing the gesture is needed for input. A
number of technologies have been proposed that would allow single-handed
mid-air gesture input ranging from camera based solutions [18] to wrist worn
devices [128]. Especially wrist worn devices seem to be promising. One of the
first solutions is presented by Rekimoto who proposed to use capacitive sensors
integrated into a wristband to sense gestures performed with the same hand [207].
In addition to requiring only one hand for input, the approach has the potential
advantage that the wrist does not move extensively, which is especially important
when entering commands to smart watches placed at the same hand.

Smart watches have been proposed as devices that provide users with almost
instant and ubiquitous access to digital information. Miniaturization only recently
enabled devices that combine displays, allow outdoor usage, allow pervasive
internet access, and have long battery time. Therefore, smart watches gained
major commercial attention in the last years. From a technical perspective,
current smart watches provide almost the same input functionality as current
smart phones. However, combining smart watches with the possibility of one-
handed input yield promising results since smart watches are already attached
to the hand (i.e., input and output mechanisms are placed at the same position).
This allows the hand currently unused for input to be involved in other tasks
(cf., Figure 4.1). Previous work on smart watches proposed touch-based input
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Figure 4.1: Interacting with a smart watch can be troublesome when the
second hand is needed, for example, to hold an umbrella or to carry a briefcase.
Moreover, sometimes users cannot use the touchscreen (e.g., when wearing
gloves or having wet fingers).

techniques (e.g., [155]), additional artifacts, such as magnets that are moved
around the device [99] or using proximity sensors to track the movement of the
opposite hand [41, 137]. While these input techniques have certain advantages,
they require the hand not wearing the watch for input. Thus, both hands are not
free for other tasks while using these input techniques.

In this chapter, we provide a holistic assessment of hand gestures for wrist-worn
devices. In an initial guessability study we explore potential gestures for smart
watches without considering technical constraints. In a controlled user study,
we compare the collected gestures and assess their suitability from three user
perspectives. We determine participants’ preference, social acceptance, and the
ability to perceive content on the screen while interacting. From the results we
derive a gesture set for typical applications such as map navigation or phone call
control. We show that with basic algorithms, these hand gestures can be detected
and used as input providing a promising performance while not requiring two
hands. As a research prototype, we use a smart textiles placed at the wrist of the
user capable of detecting gesture-based input. Such a textile can in the future be
integrated into the cuff of a shirt or in textile-based watch straps.
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This chapter is planned to be published as follows:

¢ S. Schneegass, M. Hassib, A. Reiss, K. Wolf, N. Henze, J. Cheng,
P. Lukowicz, and A. Schmidt. Exploring Gestures for One-handed
Smart Watch Interaction

4.1 Related Work

In this section, we draw upon different areas of related work. First, we show ways
to enable smart watch input for both, two-handed and one-handed interaction.
Then, we present work on gathering gesture design suggestions from users.

Two-handed Smart Watch Interaction

Various approaches have been proposed using two hands for interacting with
devices, for example, in touch-based interaction. Even for interacting with very
small devices such as smart watches, two-handed interaction has been investigated
in a large body of work. Since most smart watches are equipped with a touch
enabled display, investigating touch input is the first step in making the interaction
easier for the user. For instance, Lyons et al. presented Facet, a wrist worn device
with a multitouch display [155]. It supports multi-segment touch, resulting in
arich set of touch input techniques. However, since smart watches are smaller
than other mobile devices such as smart phones or tablets, researchers explored
ways to extend this interaction space. Ashbrook et al. studied the errors when
interacting with buttons placed around the rim of the watch [15]. Blasko and
Feiner used tactile landmarks on a watch’s bezel [28]. Even the watchstrap has
been explored for interaction by making it touch sensitive, as shown by Funk et
al. [83]. They used capacitive sensors on the watchstrap to enable touch input for
text entry.

Baudisch and Chu proposed to use the rear of very small devices, such as neck-
laces and watches, for interaction [21]. However, the back of the watch cannot
directly be accessed for direct touch interaction, thus, a strand of work investigated
interaction around the watch using different sensors and interaction techniques.
Thus, gesture input in the space above the watch is explored. Harrison and Hud-
son presented Abracadabra, a watch with an embedded magnetometer [99]. The
user is able to interact with the watch by moving a magnet around the device.
Similarly, Ashbrook et al. used a magnetic finger ring [14]. The rotation of the
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ring serves as input tool for a watch worn on the same hand and that has a built-in
magnetometer. Thereby, they allow one-handed and two-handed input. All these
approaches, however, require an additional dedicated input device. In contrast, an
array of proximity sensors is used to detect movement around devices in several
research prototypes (e.g., [41, 137]). The GestureWatch [133], for instance, al-
lows simple direction-based gestures to be executed by the other hand with the
use of proximity sensors, but it requires both hands for interaction.

One-handed Smart Watch Interaction

Smart watches are used in everyday life including situations in which one hand
is unavailable for entering commands. Thus, we explore one-handed input that
allows interacting with smart watches even when one hand is currently occupied.

Since touch-based interaction and most other interaction techniques require a sec-
ond hand for input, Morganti et al. explored one-handed mid-air gestures for smart
watches [173]. They use an accelerometer, a gyroscope, and a magnetometer to
track the gestures. These gestures, however, have the drawback that the watch
needs to be moved while performing the gestures resulting in potential issues in
reading the content shown on the watch. In contrast, armband or wristband-style
gesture sensors have been proposed in the past using a variety of techniques,
including acoustic [64], pressure sensors [62], orientation sensing [40] or photo
reflector and distance sensing [81]. Moreover, Rekimoto presents a capacitive
sensing technique exploited for gesture input with the wrist [207]. GestureWTrist
allows for detecting simple hand gestures (stretched index finger, stretched index
and middle finger or with clenched fist) through measuring the hand capacitance
with sensors that are integrated in a wristband. Although not all of these works are
proposed for smart watch control, they would be directly applicable to a modern
smart watch through allowing for forearm or hand pose detection.

Moreover, one-handed gestures sensed through a range of wearable sensing
technologies have been used for hand modeling and gesture detection, and most
of them could also serve for one-handed smart watch interaction. For instance,
Digits is an inner wrist mounted camera combined with a laser light projector
that points to the fingertips when the fingers are bent [132]. Measuring the laser
light*s reflection time enables the prediction of the finger bending angle and
the hand configuration. However, like all computer-vision based approaches,
the Digits interface suffers from strong limitations due to occlusion. Fukumoto
and Tonomura augmented each finger and the wrist of one hand [82]. They
have shown with a body-coupled FingerRing that accelerometers can be used for
detecting finger tapping. Another non-optical approach was proposed by Hrabia
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et al. using inertial sensors embedded in finger rings [115]. They model the whole
hand using eight finger-worn sensors. Others (e.g., [47, 134]) use muscle signals
to detect gestures, and, for instance, Saponas et al. shows that muscle sensing can
be used to track gestures even when the hands are busy with carrying bags [216].

Eliciting Input from Users

Eliciting input from users to, for example, define gestures for controlling various
interactive systems puts the user first ensuring a model of participatory design that
is essential in the field of human-computer interaction. User-defined gesture ap-
proaches aim to provide easy-to-master interaction with various modalities [174].
Wobbrock et al. [273] investigated creating a set of user-defined gestures for
tabletop interaction. They conducted a think-aloud guessability study for defining
one- and two-handed gestures for surface interaction. Using agreement scores,
they reached a coherent final set. Qualitative measures like ease and goodness
of the gestures were also measured, and a taxonomy classification of surface
gestures was proposed.

Afterwards, researchers followed this approach to collect user-defined gestures
for a variety of context. Ruiz et al. investigated user-defined motion gestures
for smart phone interaction. They classified the gestures according to physical
characteristics and real life metaphors [211]. Mauney et al. conducted a study
across nine countries to discover the cultural differences and similarities in elic-
iting user input to define gesture sets on small touch hand-held devices [165].
Kray et al. collected user-defined gestures across different device configurations,
namely phone-to-tabletop, phone-to-public display and phone-to-phone. Physical
properties of the gestures, such as the distance between the devices, rotation,
touch between the devices, and the location of the phone in 3D space were ana-
lyzed [138]. Henze et al. generated a user-defined gesture set for a music playback
application. Two classes of gestures, static and dynamic, were identified and a
qualitative and quantitative assessment of the gesture set was conducted [107].
Wolf et al. gathered user-defined gestures for a WIMP-based auditory interface
that can be tracked with touch and inertia sensors of hand-held devices [274].
Gestural interaction with smart TVs was researched by Vatuva [262] where a
guessability study was conducted using a Microsoft Kinect to determine gestures
for 12 TV commands. Pfleging et al. proposed a gesture and voice based system
for performing simple commands in the car [197].
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Summary

Overall, previous work shows different ways to interact with smart watches
using either one-handed or two-handed input. However, gestural input has been
explored with a second hand performing the gestures using either an additional
item (e.g., magnetic ring) or sensors to directly track the second hand. In contrast,
we propose using only one hand (i.e., the hand with the watch) to perform the
gestures. Thus, we keep the second hand free. Furthermore, previous work shows
that conducting formative studies is a well recognized approach to gather gesture
in various contexts. In contrast, however, we focus not only on the opinion of the
participant but also on three additional factors that take the specific context of a
smart watch into account.

4.2 Hardware Prototype: The GestureWatch

Currently, most smart watches utilize touch screens as their main input means.
This incorporates two main challenges which we tackle in our approach. First,
current smart watches use small touch-enabled displays (e.g., 1.5 inch (SimValley
AW-420'3)). These displays use similar input methods as mobile phones or tablets
but on a much smaller scale and hence face similar challenges that research in
the area of mobile devices is also currently facing. The fat finger problem [243]
becomes even a more crucial challenge to solve for smart watches with the
reduced screen size. Secondly, smart watches are designed to be worn all day
long and in many different situations. One of their main benefits should be that the
time needed to check notifications and messages should be shorter compared to
mobile phones. However, in many situations, the second hand needed to interact
with the watch is occupied and it takes, again, time to start the interaction.

In this probe, we tackle both issues by using one-handed gesture input through
a garment-based wearable computing device for smart watches. While we are
using the hand on which the watch is placed, we allow the other hand to be
occupied (cf., Figure 4.1) giving the user the ability to interact with the watch
with a single hand. For this approach, several different sensing modalities can be
used. Since smart watches are currently equipped with sensors similar to smart
phones (e.g., accelerometer), it seems obvious that these sensors can be used for
gesture input as well. However, these sensors either need an additional device
(e.g., magnetic item for the magnetometer [99]) or more excessive movement of

3 http://www.simvalley-mobile.de/Android-Watch- IP67-PX-1795-919.shtml
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the arm (e.g., raising the whole arm). Thus, interaction is sometimes unsuitable
and socially unacceptable in public spaces or the content shown on the watch
barely readable. To address these challenges we strive to design the interaction
in a way that it does not need excessive movement. Starting with the pioneering
work of Rekimoto et al. [207], many different approaches are presented that allow
measuring the movement of the user‘s hand by using pressure sensors [62] or
capacitive sensors [47]. In contrast to resistive sensors, capacitive sensors focus
rather on the movement within the arm and are, thus, more suited to measure
small movements that do not generate much movement at the user‘s wrist (e.g.,
tiny movements of the user‘s fingers).

As a first prototype, we developed a wristband with four capacitive sensors'4.

Four pairs of conductive textile strips form four capacitive sensors (cf., Figure 4.2).
The same analog design is used as in previous work [47], but the prototype is
advanced in two aspects. First, the sensor strips are made of conductive threads
and woven into the strip, thus fully flexible. Second, the data is broadcasted no
longer through Zigbee but BLE, allowing connections with computers and mobile
devices. Because in the paper we focus on exploring gestures, we broadcast the
raw data to a PC and perform analyze there.

On top of the watchstrap, we placed a Simvalley AW420 smart watch running
Android 4.2. It includes different sensors such as an accelerometer and magne-
tometer and offers wireless connectivity via WiFi and BLE. To minimize the
influence of the watch on the sensor, we 3D printed a case to prevent direct
physical contact. The setup is depicted in Figure 4.2.

4.2.1 Capacitive Sensing

Capacitive sensing is a well-known sensing modality that senses the mechanical
or material change between two conductive pads through the change of capaci-
tance between them. When applied to human body, these changes are then the
mechanical change of the pads and the material near the pads (including clothes
and human tissues like skin and muscle). Using pads made of conductive textiles,
capacitive sensors can be fully integrated into normal clothes and have several
attractive properties.

14 The board was developed by Cheng - cf., Cheng et al. for more details [47].
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Figure 4.2: Prototype of the smart watch with capacitive watch strap. The
textile sensors are placed below the watch that sticks on a protective case
preventing direct contact. The device at the arm of the user is for processing
and communication and can in the future be integrated in the watch.

Freedom for both Hands and "local" sensing

The selected sensing modality allows not only interaction with just one hand, but
also gives certain freedom to the hand which wears the watch, because all the
fingers and palm can be still free. Finger gestures can be still detected (although
with less accuracy as discussed later) through the movement of skin and muscle
on the wrist, while these are hard to detect using the state of art IMU embedded
in smart watches. For example, tapping one finger can be used as control gesture
when riding a bicycle, where the user needs to hold both handles with hands.
While in such scenario the accelerometer/gyroscope outputs are dominated by the
riding accelerations and turns, capacitive sensing focuses on the "local" changes
of skin and muscle which is not much influenced by the riding itself.

“Look-inside” capability

Capacitive sensors also react to changes taking place deeper underneath the
electrodes, effectively providing the capability to “look inside the body”. With
careful analog design, Cheng et al. managed to get a user’s pulse from the wrist
using textile capacitive sensing [46]. This additional information provides further
benefits compared to pressure sensor based approaches (e.g., [62]).
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4.2.2 Wearability

The garment-based electrode consists of conductive textile pads can be soft and
flexible. A watch‘s strap consisting of this material achieves a high wearability.
The sensing electronics can be integrated into watches themselves. Because the
capacitance change is sensed through electromagnetic field which propagates
through almost all material, there is no need for the electrodes to touch the user’s
skin directly. Thus, there are no special requirements for the material between the
electrodes and the skin except that it should be nonconducting. In particular, this
is an advantage compared to EMG, the typical muscle activity sensing modality,
which requires conductive electrodes directly on the skin and thus limits the
design space and might cause allergies.

Furthermore, the used technology is also combinable with the textile used for
the GestureSleeve in Chapter 3. The stripes which are woven into a fabric for
our prototype can be substituted with a patch of the same mass-producible fabric
as used for the resistive sensing. Thus, a shirt can be created with only a single
garment and could be sensing enabled for different sensing technologies and
applications.

4.3 Eliciting Gestures

Since free-hand gestures using the lower part of the arm (i.e., wrist and fingers)
are not commonly used, we conducted a formative study to explore and generate
initial gestures for tasks used for interacting with a smart watch.

4.3.1 Task Definition

We first started with defining commonly used tasks which are currently performed
with smart watches. To do so, we explored current smart watches as well as
different applications that are used on them. The resulting list of 17 abstract tasks
is presented in Table 4.1. Since we strive to generate gestures that are applicable
to other instances as well, we used an abstract task definition. Similar to the work
of Ruiz and Lank [211], we grouped the abstract tasks that can be done on a smart
watch into three main groups depending on the functionality: Navigation (e.g.,
item selection, scrolling), Media (e.g., audio, video, and camera controls), and
Communication (e.g., accepting or declining a phone call).
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# Group Task Description
1 Select Select item from a list or start an app
2 Back Go back to the previous screen
3 Home Switch directly to the home screen
4 Move Up Select/scroll to the previous item in a list
5 Navigation Move Down Select/scroll to the next item in a list
6 Move Left Pan content left/show next screen
7 Move Right Pan content right/show previous screen
8 Zoom In Zoom into screen content
9 Zoom Out Zoom out of screen content

10 Volume Up Increase the volume of audio

11 Volume Down Decrease the volume of audio

12 Media Mute Audio Mute the audio

13 Take Picture Take a picture instantly

14 Record Video Start a video recording instantly

15 Stop Video Stop a video recording

16 Communication Accept Call Accept an incoming call

17 Decline Call Decline an incoming call

Table 4.1: The 17 abstract tasks and their description used in the formative
user study. We grouped these tasks based on the categories navigation, media,
and communication.

4.3.2 Participants and Procedure

In total, we invited 15 participants (3 female) aged between 20 and 42 years
(M = 24.67, SD = 5.43) to participate in our formative user study. After the
participants arrived in our lab, we asked them to fill in a consent form and to wear
a smart watch so that performing the tasks becomes more realistic. We then asked
the participants to perform all 17 gestures in a randomized order by providing
them a screenshot of the current application state, the desired application state,
and a brief abstract textual description. An example is depicted in Figure 4.3. We
explained that we focus on one-handed input and that we focus on gestures of their
forearm, wrist, and fingers. During this process, participants were encouraged
to think aloud and to explain the rationale behind choosing a gesture. One
researcher noted the gestures participants performed for each task as well as the
user‘s comments. Furthermore, the sessions were video recorded for a post-hoc
video analysis of the performed gestures.
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Select an item from a list (e.g., a contact from the contact list).
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Figure 4.3: The select task example (select a contact) used in the forma-
tive user study. A textual description of the abstract task and two images
representing the initial and final state. Screenshots from SimValley smart
watch.

4.3.3 Results

We depict the results of the formative user study in two sections. Analyzing
the think-aloud protocols recorded on video, we first provide a thorough qualita-
tive analysis. This analysis explores the different mental models and concepts
of the users that rationalizes and groups their gesture choices. Secondly, we
quantitatively analyze the elicited user gestures to determine the most frequently
suggested gestures.

Qualitative Analysis

We used a bottom-up and open coding approach to categorize the user-defined
gesture ideas in five main categories: real-world metaphors, mental models, touch-
screen gestures, shortcuts, and gesture combinations. Results of user-designed
ideas often base on prior knowledge and expertise of the participants, which are
triggered through the experiment questions. For instance, metaphors are used
for gesture design through previous experiences with real-world objects [119],
and mental models describe experience-based procedural and abstract knowledge,
such as spatial image schemata, which provide a common understanding that
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#  Task Gesture 1 Gesture 2 Gesture 3 Score
1 Select Index finger click Tap thumb & middle ~ Move wrist down 0.09

fingers
2 Back Wrist to the left Arm to the left Tap thumb & ring fin-  0.11
ger
3 Home Shake wrist Arm down 0.10
4 Move Up Index finger up Wrist away from body ~ Wrist up 0.24
5  Move Down Index finger down Wrist Down 0.26
6  Move Left Index finger right Wrist to the left Arm to the left 0.14
7 Move Right Index finger left Wrist to the right Arm to the right 0.19
8  ZoomIn Pinch with index &  Pinch with all fingers Wrist up 0.19
thumb
9 Zoom Out Pinch with all fingers Pinch with index &  Wrist down 0.24
thumb
10 Volume Up Index finger up Wrist up Tap index & thumb &  0.11
move up
11 Volume Index finger down Wrist down 0.10
Down
12 Mute Audio Make a claw/half fist Make a fist &turn 0.08
wrist
13 Take Picture Turn wrist & make a  Arm to front & wrist  Index finger click 0.14
fist down
14 Record Make a fist & thumbs  Index finger click 0.08
Video up
15 Stop Video Make a fist Turn wrist Make a fist & turn  0.09
wrist
16  Accept Call Raise hand to ear Wrist to the right Arm from left to right 0.16
17 Decline Call Shake wrist Wrist to the left Form a fist 0.14

Table 4.2: Top 3 gestures and agreement scores for each of the 17 abstract

tasks.

an UP gesture rather relates to commands like increase volume, while a DOWN
gesture would most likely be used to decrease volume [118]. Previous knowl-
edge was also used for generating new gestures as some generated ideas were
influenced by established touch-gesture commands like pinching for zooming.
Other gestures are unrelated to a specific context but rather defined for certain
tasks. These are mainly abstract and clear. We combined them in the shortcut
category. Finally, combinations of the described ideas build the fifth category. In
the following paragraphs we explain exemplary gesture ideas arranged by the five
categories described before.

Real-world Metaphors In accordance with [211] many participants sug-
gested real-life metaphors for certain gestures. For example, a number of partici-
pants suggested raising their hands to their ears for accepting a call as they would
do with both a smart phone and a land line phone. For going back to the main
home menu, a number of participant shook their hand stating that this made sense
to them like they were ’erasing’ all their progress. Other participants suggested a
closing and opening of the fist resembling camera aperture motion to instantly
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take a photo, and moving their wrists in a circular motion to start a video like the
way a video recorder would move while recording.

Mental Models Furthermore, the participants applied different mental models
for navigating through a list or in a map. On one hand, participants wanted to move
the digital map with their finger as commonly done for navigating with digital
maps on smart phones (i.e., moving the map). On the other hand, participants
moved their wrist or arm to the side they want to navigate to (i.e., moving the
viewport). Moving the wrist up/down was used to scroll up/down through a list,
and moving the wrist to the right would navigate to the next screen, while a move
to the left would get the previous one.

Touchscreen Gestures Throughout the study, participants performed a va-
riety of gestures that are known from smart phones. For instance, they applied
pinch gestures for zooming-in and zooming-out. For panning and moving through
a map left and right, many participants used finger movements in the 2D space to
depict such gestures, which they also said was similar to what they would do on
their smart phones. For answering and rejecting an incoming call, participants
who were familiar with the Android OS performed the same swipe right/left for
such tasks.

Shortcuts Within the idea collection, we also found shortcuts that were mainly
used to perform rather abstract tasks that are not part of certain interaction flow.
We have particularly noticed that in tasks that are special like snapping a photo,
starting a video, or going back to the home screen. Participants suggested to use
finger-tap gestures (i.e., moving the thumb to one of the other fingers like the
index, middle, or ring finger) to trigger these shortcuts. Accordingly, participants
proposed to use these gestures for user-defined functions: "One could use each
of the four fingers as a shortcut to one application" (P2). Other participants
suggested tapping their palm to the face or to the upper leg as gesture to go to the
home screen. They suggested that such gestures would be easily memorized and
hence be often used. Other shortcut gesture ideas, like making a fist or making
a thumbs up, were suggested for various tasks including starting or stopping a
video as well as to go to the home screen.

Gesture Combinations Participants proposed also to use combinations out
of two simple gestures to release commands. These gestures are performed
one after another. For example, they proposed to first make a fist and then turn
their wrist or raising their arm then pointing up with their wrist for a variety of
commands. For the recognition part of the evaluation, we treat such gestures as
two gestures that need to be detected one after another.
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Quantitative Analysis

After the qualitative analysis, we also conducted a quantitative one. We went
through the notes as well as the video recordings for each of the 255 performed
gestures and grouped the most similar gestures together considering using the
same body parts as well as the same body motions as similarity. We then computed
the agreement scores, defined by Wobbrock et al. [273], to calculate the agreement
of user-defined gestures per task as shown in Equation 1:
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In this equation the agreement score of one task from the task set 7 is given as
A; and is in the range of [0, 1]. P, is the set of all user-defined gestures for this
particular task and P; is the repeated gestures which are a subset of F;.
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By applying this equation to our set of 17 defined tasks we get the agreement
scores for each of the tasks. We also defined the top three most performed
gestures for each task, which, together with the agreement scores, are depicted in
Table 4.2.

Since the participants were encouraged to freely choose any gesture with the
finger, hand, or wrist with no restrictions, the choice of gestures varied a lot.
For this reason, we received many different gestures for each task. Aiming to
identify gestures with high agreement scores, we excluded gestures which were
only mentioned once in the remainder of the analysis. Thus, some of the tasks
only have two gestures defined. This also explains why the agreement score is
lower compared to previous work (e.g., [273])

By taking a closer look at the top gestures for each task we can draw some con-
clusions based on the previous qualitative and quantitative analysis. Navigation
gestures almost always fall in one of two categories: the spatial image schema
mental model or the touchscreen gesture model which we discussed earlier. For
example, up is often depicted as moving the wrist up, suggesting an increase (e.g.,
in volume or a vertical scroll) whereas down is depicted as moving the wrist down
suggesting a decrease. Gestures which are by their semantic nature defined to
be the opposite image schema to each other (e.g., up/down, left/right, and zoom
in/zoom out) have similar agreement scores.

We also noted that the agreement scores for special abstract tasks such as taking a
photo (0.14), starting a video (0.08), or stopping a video (0.09) are comparatively
low. This coincides with our previous qualitative analysis where we noted that
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such tasks are not following a specific interaction flow. In such cases participants
created self-defined abstract gestures that were not based on any models or the
variety of possible models was huge and depicted them as ’shortcuts’ to a certain
functionality or application. Due to the freedom given to participants in choosing
the gestures as well as due to the lack of existing metaphors or mental models,
we have found little agreement regarding shortcut gesture designs.

4.4 Evaluation of the Elicited Gestures

To further evaluate which gestures are most suitable to comprise our final gestures,
we use three different measures: user rating, watch content visibility, and social
acceptability. In contrast to other formative studies that simply generated a gesture
set out of the most frequent gestures that are not duplicated, we focus on these
three measures. We did that since we believe that the applicability of the gestures
performed on smart watches not only depends on the users’ preferences but on
each of the three aspects. In the following subsections we describe a second user
study to subjectively gather information about the three qualitative measures via
a questionnaire.

4.4.1 Participants and Procedure

To collect information about the three subjective measures, we invited 10 users
aged between 20 and 31 years (M = 25.4, SD = 2.9) to take part in our user study.
None of these participants took part in the formative study. After participants
arrived in the lab, we briefly introduced them to the purpose of the study and
explained how we gathered the gestures beforehand. Afterwards, we went through
the 17 tasks and explained them the top mentioned gestures. Then, we presented
each task to the participant and asked them to rate the three top chosen gestures
on a seven point Likert item (1 = totally agree, 7 = totally disagree). Thereby, we
presented a statement for each measure to the participant regarding to (1) how
they liked the gesture, (2) if they would perform this gestures in public, and (3)
how much can they see the content of the watch during the gesture. In contrast
to Rico et al. [208], we chose to particularly investigate the social acceptability
of performing gestures in public settings. We did that since the public setting is
described as the most challenging setting for people performing gestures.
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Gesture 1 Gesture 2 Gesture 3
#  Task Rating Visibility Social Rating ibility Social Rating Visibility Social
1 Select 6.0 (1.7) 5.5(1.8) 7.0 (0.4) 5.0 (L.1) 6.5 (1.8) 7.0 (1.3) 4.0 (1.8) 4.5 (2.0 5.0 (1.8)
2 Back 6.0 (1.1) 6.5 (1.0) 5.0(2.1) 4.0(1.6) 6.5 (2.0) 6.0 (2.6) 4.0 (2.0) 6.0 (0.9) 7.0 (0.7)
3 Home 6.5 (1.7) 5.5(1.5) 4.5(2.5) 5.0(1.6) 5.5(1.6) 2.5(2.8)
4 Move Up 6.0 (1.2) 6.0 (1.3) 7.0 (0.8) 45@2.1) 6.5(2.3) 5.0 (2.1) 5.5(1.6) 4.0(1.7) 5.5(1.3)
5 Move Down 6.0 (1.8) 6.0 (0.9) 7.0 (0.8) 5.0 (1.9) 5.5(1.6) 6.5(2.1)
6 Move Left 452.1) 7.0 (1.1) 7.0 (0.8) 5.0 (2.1) 6.0 (1.7) 7.0 (1.6) 6.0 (2.1) 6.0 (2.5) 5.0 (2.5)
7  Move Right 4522 7.0 (1.1) 7.0 (0.8) 6.0 (1.8) 6.0 (1.7) 7.0 (1.6) 6.0 (2.1) 3.5(2.6) 4.0(2.3)
8  ZoomIn 7.0 (0.7) 6.5(0.8) 7.0 (0.7) 6.0 (0.9) 5.0(1.3) 7.0 (0.8) 25(1.4) 4.02.2) 5.5(1.9)
9  Zoom Out 7.0 (1.0) 6.5(1.2) 7.0 (1.1) 6.0 (0.9) 6.0 (1.1) 7.0 (0.7) 3.0 (1.6) 4.0(2.3) 5.5(1.9)
10 Volume Up 5.5(1.1) 6.5 (1.5) 7.0 (1.0) 6.5(1.4) 6.5(1.2) 5.5(1.3) 6.5(1.9) 3.0 (2.0) 2.0 (2.6)
11 Volume Down 5.5 (1.1) 6.5 (1.5) 7.0 (0.9) 6.5(1.4) 6.0 (1.1) 6.0 (1.4)
12 Mute Audio 3522 4024 6.5(1.9) 4.0(1.6) 55(1.4) 4.0(2.1)
13 Take Picture 3.5(1.8) 5.0(1.9) 25024) 4.0 (1.9) 5.5(2.0) 5.5(2.1) 6.0 (2.0) 6.5 (1.7) 7.0 (0.7)
14 Record Video 3.5(1.8) 2.0(2.4) 2.0(1.9) 5.0(1.2) 6.0 (1.3) 7.0 (1.0)
15 Stop Video 6.0 (0.7) 7.0 (1.1) 7.0 (1.0) 4.0 (1.7) 5.5(L5) 3.0(2.2) 4.0(1.4) 5.0 (2.1) 3522
16  Accept Call 7.0 (1.0) 6.0(2.4) 4.5(2.6) 3.5(1.9) 6.0 (1.4) 6.5 (1.4) 4.0(1.8) 5.0(2.1) 6.5 (1.8)
17 Decline Call 6.0 (2.0) 6.0 (2.1) 4.5(1.9) 4.0(1.6) 5.5(1.3) 5.5(2.0) 5.0(2.2) 6.0 (1.4) 6.5 (0.9)

Table 4.3: Median ratings of the participants for each gesture with regards to how they rated the suitability of the
gesture (Rating), the visibility of the content is during interaction (Visibility), and the social acceptability (Social).
The standard deviation is shown in brackets.
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(a) Index click (#1) (b) Wrist Left (#2)

(d) Index up (#4) (e) Index down (#5) (f) Index left/right (#6, #7)

(g) Pinch (#8, #0%) (h) Wrist Up (#10%) (i) Wrist Down (#11%)

(j) Half Fist (#12) (k) Index finger click (#13) (1) Fist Thumbs Up (#14%)
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(m) Fist (#15) (n) Hand to Ear (#16) (o) Form Fist (#17)

Figure 4.4: Final gestures for each of the tasks.
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4.4.2 Resulting Gestures

The result of user study is shown in Table 4.3. We chose a single gesture for each
of the 17 tasks. These gestures are determined on the basis of Table 4.2, while
taking several constraints and the three different measures into account. The first
constraint is that, following Wobbrock [273], a gesture should be used for a single
task only. Another constraint is defined by opposites: Either both gestures of an
opposite pair are included or both are excluded. The final gestures for each task
are shown in Figure 4.4.

4.5 Evaluation: Controlling Smart Watch
Applications

In the previous section, we derived a consistent set of 17 gestures for abstract
tasks. We used abstract tasks to make the gestures applicable for a wide range
of potential applications. In this section we investigate the suitability of gesture
input for three specific smart watch applications from a technical perspective (i.e.,
menu navigation, phone call control, and camera application).

4.5.1 Participants and Procedure

We conducted a user study with ten participants aged 25 to 31 years (M = 26.2,
SD = 1.8) to record signal data for each of the gestures determined for the 17
abstract tasks. Again, none of these participants took part in the previous studies.
After the participants arrived in the lab, we explained them the purpose of the study
and equipped them with the prototype. During the study, we recorded the signals
from the capacitive sensors of the watchstrap as well as from the accelerometer
and magnetometer built in the smart watch itself to analyze whether these sensors
might be sufficient for gesture detection. These signals were sent to a PC for later
offline analysis and labeling.

The study consisted of two blocks to reduce sequence effects. In each block
participants performed each gesture five times resulting in a total of ten recordings
for each gesture. Thereby, we reduced the probability that participants perform
a gesture exactly the same and to avoid the effects of potential sensor drifts.
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Figure 4.5: Four-channel signals from the capacitive watchstrap performed
by P1. Top row: Index finger Down/Up, Bottom row: Wrist Down/Up.

Additionally, we randomized the order of the gesture to further reduce sequence
effects and account for learnability.

4.5.2 Data Analysis

For the analysis, we consider the recognition of the gestures as a time-series
classification problem, where the goal is to distinguish the different gestures from
each other. From each of these gestures, ten samples are available for each of the
ten participants. These samples can be regarded as separately labeled segments, a
signal from each of the four capacitive sensor channels. Example segments of
a four gestures are shown in Figure 4.5. The shown signal patterns correspond
to the skin and muscle alignment changes underneath the respective capacitive
sensors, while a gesture is performed. From visual inspection of the signals, it is
clear that different gestures produce different signal patterns, thus distinguishing
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them is generally possible. Nevertheless, detecting gestures is a challenge due to
(1) signal changes of not all sensor channels are significant and (2) signal changes
from the finger gestures are relatively small.

We use the nearest neighbor (NN) algorithm to classify the time-series data [66,
116]. Therefore, we use the 1-NN classifier for the defined gesture classification
problem. As distance measure, we use derivative dynamic time warping (DDTW),
which generally performs well on small training sets [66, 127]. Since the recorded
gesture set is highly subject dependent, we performed 5-fold cross-validation for
each of the participants separately and then combined the results. Training was
controlled to avoid class skew. Furthermore, we performed the same evaluation
procedure, but using the internal sensors of the smart watch (i.e., accelerometer
and magnetometer) instead of the capacitive watchstrap. In this case, each gesture
segment consists of a six-dimensional signal.

4.5.3 Applications

Input commands can be globally the same for controlling a device, but often
commands are defined particularly for certain applications. We have selected
three common smart watch applications to exemplary calculate the differentiation
accuracy of the corresponding gestures for each of the three applications. To
evaluate the elicited gestures and to transfer them into useful contexts, we describe
three different use cases that are typically known from using smart watches: Menu
Navigation and Phone Call Control and a Camera Application. We calculate for
each application the accuracy of the according user-defined gestures using the
method described before. An overview of the results of the capacitive sensors
and the internal sensors of the smart watch as well as the combination of both are
presented in Table 4.4.

Menu Navigation

Smart watch menus are commonly list-based structured. They allow the user to
navigate to the next item in the list (Table 4.2, #4), to select (#1) an item, and to
go back (#2) to a higher menu level. Thus, three gestures cover the most common
commands needed for menu navigation. The accuracy for differentiating these
gestures using our approach is 88%.
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Application Capacitive Sensors Internal Sensors Combination

Menu Navigation 88% 63% 85%
Phone Call Control 96% 96% 98%
Camera Application 88% 66% 80%

Table 4.4: The three applications and the detectability values using the
capacitive sensors, internal smart watch sensors, or a combination of both.

Phone Call Control

Managing incoming phone calls, two different gestures are necessary, namely
accepting calls (#16) and declining calls (#17). The accuracy for differentiating
these gestures is 96%.

Camera Application

To control the camera within the smart watch, four gestures are needed. First, the
user can take a picture (#13). Second, it is necessary to start (#14) and to stop
(#15) video recordings. Additionally, a command to return back (#2) within the
menu is needed. These gestures can be differentiated with 88% accuracy.

4.6 Discussion

In the course of our investigation it became apparent that one-handed interaction
with wrist worn devices is desirable and increases the utility of such devices. In
many situations, ranging from carrying bags to cycling, access to information
and issuing commands on a smart watch should be possible without requiring
the second hand for input. Not using the touch screen requires people to rethink
how to input. Similarly to first touch screen the interaction language is new but
as the study shows easy to understand. For instance, some of the gestures (e.g.,
swipe) that were very popular in the study are already known from smartphone
interaction. Theses gestures are very successful in touch-based interaction but
they do not work well for free-hand interaction in 3D space. Although the gesture
itself is detectable, the specific zoom factor would be hardly detectable with the
proposed system. When designing a gesture set for a specific application, this
needs to be taken into account.
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For the machine learning approach, we used basic algorithms. Although these
algorithms provided good results, by using more sophisticated algorithms, the
detection of the gestures can be increased. In the current prototype, the classi-
fication processing was done offline and a data acquisition box was added. In
a future version we imagine that the processing is done in real time and that
the data acquisition and processing hardware is fully integrated with the watch.
The implementation and study show that using capacitive sensing integrated into
the strap of a watch is feasible and different gestures can be recognized. The
hardware required to implement this sensing modality is minimal and completely
unobtrusive. Embedding capacitive pads within the strap will be possible with
a broad range of materials such as the one used for the touch-enabled fabric in
Chapter 3.

4.7 Lessons Learned

This research probe explored mid-air gestures using garment-based capacitive
sensors to detect finger, hand, and arm movement. We gained two major insights
from this research probe:

» Knowledge of placement of the sensors. Different sensor positions allow
sensing different input. While most sensors have their dedicated location,
garment-based sensors can be applied at different body positions such as
the arm or at the neck. Thus, taking the location of a sensor into account is
mandatory to understand what information are measured.

» Take the context of use into account. In contrast to the context of other
elicitation studies, the presented gesture-based input approach is used in
various public settings. When creating a gesture set for garment-based
wearable computing devices, different aspects such as social acceptability
need to be taken into account.

4.8 Conclusion

In this chapter, we show how garment-based wearable computing devices in form
of a textile strap can be used to detect gestures. Since this type of interaction
is novel, we explored how we can design gestures so that are usable, socially



4.8 Conclusion 71

acceptable, and still allow perceiving content of a smart watch placed at the same
arm. Thereby, we developed a consistent set of gestures for 17 tasks commonly
performed on smart watches. We first conducted a user-defined gesture study to
elicit potential gestures from users. In a next step, we analyzed these gestures
with regards to three different factors (i.e., user rating, watch visibility, and
social acceptability) in a further user study. We then extracted the preferred
gesture for each task based on these measures. We finally show for typical use
cases that theses gestures are well differentiable using capacitive sensing and
basic algorithms. Overall, capacitive sensing using a fabric based electrode
is a promising gesture sensing modality and superior compared to the sensors
embedded into current smart watches.
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Chapter

Physiological Signals

In addition to explicit input using touch and mid-air gestures, smart garments
allow realizing different types of implicit input. Due to the closeness of clothing
to the user‘s body, sensors integrated into clothing are capable of assessing dif-
ferent physiological signals. Early examples include the Georgia Tech Wearable
Motherboard [92] or the MagIC System [65] measuring the user‘s physiological
signals such as Electrocardiography (ECG). The ECG can in return be used
to assess the user‘s workload [210] or quality of sleep [51]. It has also been
demonstrated that other physiological signals can be assessed with smart gar-
ments. Examples include SCA [103], respiration rate [184], or a combination
integrated in a multipurpose garment [182]. Focusing on the user‘s head, Brain
Computer Interfaces (BCIs) are becoming popular in the mass market as well as
in HCI. They are using Electroencephalography (EEG) to measure the activity in
the user‘s brain. This information is then used, for example, to detect highlights in
video clips [215] or to recognize different cognitive activities such as reading and
listening to music [241]. While most devices are wearable gadgets, the integration
into garment-based headgear will help to increase the usability as well as social
acceptability of these devices.

In addition to physiological signals, garments can be used to detect the flexion of
the user‘s limbs. Examples include clothing that detect the flexion angle of the
arm [242] or leg [177]. This information can then be used in different application
scenarios such as measuring the exercises a user performs in a gym [284] or
provide feedback on the way users perform football kicks [105]. Summing up
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the flexion angles of different limbs, insights on the posture of the user can be
derived as well. This allows full body tracking of the user.

In this chapter, we focus on sensing physiological signals. We use off-the-
shelf sensing gadgets because of the robustness and ease of use in a user study
setting compared to textile-based sensors. The presented study takes place in an
automotive setting in which the physiological signals could provide insight into
the current status of the driver. These measurements could be used to identify
high workload situations as well as situations in which the driver is tired and not
focused on the driving task. With highly automated driving, the measurement can
be used to gain insights into the time the driver will need to take over the vehicle.
These application scenarios make the automotive setting perfect for exploring
physiological signals.

This chapter is based on the following publications:

¢ S. Schneegass, B. Pfleging, N. Broy, F. Heinrich, and A. Schmidt. A
data set of real world driving to assess driver workload. In Proceedings
of the 5th International Conference on Automotive User Interfaces and
Interactive Vehicular Applications, pages 150-157. ACM, 2013

Parts of this chapter are also planned to be published as follows:

* M. Hassib, S. Schneegass, N. Henze, F. Alt, and A. Schmidt. En-
gageMeter: A System for Implicit Audience Engagement Sensing Us-
ing Electroencephalography

¢ Parts of this paper are also included in the PhD thesis of Bastian Pfleging.

5.1 Related Work

Different physiological signals exist that reflect different phenomena in the human
body. Due to the closeness to the human body, smart garments have a unique
opportunity to assess physiological signals in a natural and implicit way. In
HCI, the following physiological signals are mainly used as implicit input for
interactive systems.
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5.1.1 Electrocardiography

ECG is the process of measuring the electrical signal generated by the heart.
The signal frequency lies between 0.05 to 100 Hz with a dynamic range of 1-10
mV [53]. Different values can be derived from this EEG signal. Most prominently,
the Heart Rate (HR) and Heart Rate Variability (HRV) can be derived. Research
showed strong correlations between these values and user‘s physiological states.
For example, HR is a valid method to assess the workload of users [210] whereas
HRYV is especially important for long-term health monitoring [157].

5.1.2  Skin Conductance Activity

A SCA sensor (also referred to as galvanic skin response (GSR), electrodermal
activity (EDA), or skin conductance response (SCR)) measures the sweat gland
activity. It is mostly applied to the user‘s hand. Physiological states such as stress
and arousal can be measured with such a sensor. Especially gaining insights
in the workload of users has been in the focus of HCI research. For example,
Michaels [171] showed that the SCA is related to the amount of traffic the driver
is facing at the moment. The direct relation to the workload is shown by Collet et
al. in an experiment with air traffic controllers [54].

5.1.3 Electroencephalography

EEG signals from the brain can be used for explicit and implicit interaction.
While the possibility to code information for explicit interaction is rather low
(i.e., only some bytes), research showed that many different information about
the user can be assessed using EEG. Scenarios for implicit interaction include
neurofeedback applications for giving feedback to the user about their mental
state. Other examples for using EEG include, for example, for retaining focus
during reading tasks [250] or personalizing computer games by adapting the
content and difficulty depending on the player‘s state of mind [279].

Current commercial EEG headsets are low-cost, portable, and wireless. One
example of the commercially available EEG headsets is the Neurosky’s Mindwave
headset!3. It provides access to the raw EEG data at 512 Hz which can be used to
extract different EEG frequency bands. There are five frequency bands comprising

!5 http://neurosky.com/biosensors/eeg-sensor/biosensors/
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Band Frequency (Hz) Description

Delta (8) 1-3 Deep sleep, dreamless state

Theta (0) 4-7 Light sleep, meditation

Alpha (&) 8-13 Deep relaxation, closed eyes, imagination
Beta (B) 14-30 Waking state of consciousness, alertness
Gamma (y) 30-50 High brain activity, information processing

Table 5.1: Description of the different EEG frequency bands

EEG signals that provide insights into the user’s cognitive and mental state (cf.,
Table 5.1 for a description). Literature has extensively studied EEG frequencies
and their relation to cognitive states [26, 89, 146].

5.2 Assessing Users Physiological Signals

In this probe, we focus on an automotive setting to explore assessing physiological
signals of a user. While controlling a car, different events influence drivers which
is reflected in changes of their physiological signals. We expect these changes
to be greater and occur more often compared to interacting with mobile devices
while strolling up and down the street.

5.2.1 User Study

The driver’s physiological signals are an important indicator to estimate the
driver’s ability to maneuver a car. Despite the primary task of driving a car,
nowadays drivers are engaged in various other tasks. These tasks are not only
related to the actual driving task but also comprise secondary and tertiary tasks [87,
130]. While secondary tasks are related to increase the safety of the car, the
driver and the environment, tertiary tasks (e.g., using mobile phones) are related
to infotainment and communication and are factors that influence the driver’s
ability to maneuver a car. By using physiological measurements, we are able
to understand the current situation of the driver (i.e., the physiological state of
the driver). In this study, we are particularly interested in the workload of the
driver. Different methods to assess the driver’s workload have been explored in
the automotive domain. The methods are either subjective (e.g., asking the user)
or objective (e.g., measuring the users physiological properties or performance).
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Figure 5.1: Study setup: Two cameras and a smart phone are placed within
the car (bottom left). The driver is connected to electrodes measuring the
HR (top left). SCA (top right) and BTemp (bottom right) are measured at the
drivers left hand.

We record a mixture of subjective (VR — created post-hoc by the participants
using video recordings from two perspectives) and objective (SCA, BTemp, and
HR — measured during the driving study) measures.

Apparatus

To assess the physiological properties of the user, we used an off-the-shelf Nexus
4 Biofeedback systeml6. We used SCA sensor, BTemp sensor, and an ECG
Sensor. The SCA and BTemp sensors were attached to the participant‘s left
hand whereas the ECG was attached to the participant‘s chest. The ECG (in uV)
is recorded at 1024 Hz and is used to calculate the HR (beats per minute) and
HRYV at 128 Hz. The SCA (in uS) and BTemp (in degree Celsius) are recorded
at 128 Hz, respectively. The Global Positioning System (GPS) position was

16 yww.mindmedia.nl
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collected through an Android Smartphone (Google Nexus S) to gain knowledge
about the road type. Two webcams (Logitech QuickCam Pro 9000 and Creative
VF0610 Live! Cam Socialize HD) were used to record the driving scenario
(passenger view onto the road) and a view of the driver as shown in Figure 5.2.
As all data sets were recorded with different sampling frequencies, timestamps
were used to synchronize all data post-hoc.

Farticipants and Procedure

In total, ten participants (3 female, 7 male) aged between 23 and 57 years (M =
35.60, SD = 9.06) took part in this study. We recruited the participants within the
employees of our institute to be covered by insurance. All of them owned a valid
driver’s license and brought their own car which was used during the study. The
participant and the participant’s car were first equipped with the different sensors
by a researcher. Then, the participant was instructed to drive a specific route (cf.,
Figure 5.3) with the researcher guiding them by simple voice commands (e.g.,
“on the next intersection: please turn left”) from the backseat. After returning
from the drive, the participant was guided to our lab and directly performed a
video rating, evaluating the perceived workload from high to low using a slider.
The video shown was a side by side composition of the video recorded while
driving (cf., Figure 5.2).

Route

The selected route for our study has a total length of 23.6 km and consists of
various road types (cf., Figure 5.3). For the evaluation of our study, we classified
five different road types: 30 km/h zone, 50 km/h zone, highway, freeway, and
tunnel. The runnel in general is an ordinary road. However, we chose to add it as
a special road type, because of the special conditions that may influence the driver
(e.g., lighting). Furthermore, we defined different points of interest: 2x on-ramp,
2x freeway exits, 2x roundabouts, 20x traffic lights, and 2x curvy roads. Due
to the fact that we conducted a real world driving study, we cannot control the
environment (e.g., traffic, weather). However, we strove for a consistent setting
among all participants: none of the participant drove during rush hours and the
study was only conducted during daylight.

Data Preparation

Before evaluating the recorded data, it needs to be prepared to remove noise
effects as well as to normalize the physiological properties of each participant.
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Figure 5.2: The five different road types: 30 km/h zone, 50 km/h zone,
highway, freeway, and tunnel. The view of the driver camera is shown on the
left side and the front view on the right side. This side by side composition
video was shown to the participant during the video rating session.
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START/FINISH

Figure 5.3: Map of the route each participant drove during the study. Each
type of road is marked accordingly (AS8: freeway, B14/B27: highway, ordinary
streets (50 km/h), 30 km/h zone. All points of interest (freeway on-ramp/exit,
roundabout, traffic lights, roundabouts, tunnel entry/exit) are shown with the
respective symbols. Map ©OpenStreetMap contributors, tiles CC-BY-SA
2.0.

We sampled the data up to one sample per second. We normalized the biosignals
as well as the VR results to achieve comparable values between all participants in
the range of O to 1.

5.2.2 Results

In the following we present the results of the study. We focus on two biosignals
(SCA and BTemp as suggested by related work (cf., [171, 172])) and the results of
the VR. In particular, we investigate how the physiological signals and subjective
VR correlate. Additionally, we explore how the type of road or POI influences
the physiological signals and subjective feedback of the user.
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Figure 5.4: A participant is performing the video rating task.

Comparing Subjective and Objective Workload Data

We compared the measured physiological properties (SCA and BTemp) with the
video rating (VR). First, we compared the subjective measurement (VR - cf.
Figure 5.4) with the objective measurements (SCA and BTemp). For this, we
conducted correlational research using Pearson ‘s correlation coefficient. The SCA
and VR, r(17725) = .202, p < .001, as well as the BTemp and VR, r(17725) =
.128, p < .001, are positively correlated. The correlations are both statistically
significant; however, the effect size is small.

Evaluating all participants individually, we see a high variability in the corre-
lational patterns across participants. For instance, the data of participant # 10
shows high correlation for VR with SCA, r(1903) = .689, p < .001, and VR with
BTemp, r(1903) = .449, p < .001 (cf., Figure 5.5). In contrast, the data of par-
ticipant # 6 shows a significant correlation for VR with BTemp, r(1710) = .072,
p < .01, but we could not show statistical significant relationship between VR and
SCA, r(1710) = .043, p = .078. This variability needs to be taken into account
when using physiological signals of users in an automotive but also in a mobile
setting.

Impact of Road Types

Next, we evaluated the differences between the five road types. Since the measure-
ments highly depend on each other and the different road types are not equally
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Figure 5.5: The Graph shows the normalized SCA (blue), normalized BTemp
(orange), and the normalized result from the VR (red) of a single user (User
#10).
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Figure 5.6: Boxplots for SCA and BTemp for each of the five road types.

distributed within our sample (cf., Figure 5.5), we chose to use the mean values
of each participant on each type of road. In doing so, we eliminated most of the
dependencies in the data and create an equal distribution.

The results show that the physiological data (SCA and BTemp) is influenced
by the road type. The variability in the data is high (cf., Figure 5.6), which
indicates that all types of roads have situations in which the workload is high.
We used a repeated measures Analysis of Variance (ANOVA) to investigate
statistically significant differences. A Shapiro-Wilk test shows for all cases that
the assumption of normal distribution is not violated.
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Road Type Mgcr SDscr MBTemp SDBTemp

30 km/h zone 482 178 357 152
50 km/h zone 423 152 484 137
Highway .343 .110 487 .156
Freeway 271 121 522 155
Tunnel .394 223 468 266

Table 5.2: Overview of the mean and standard deviation of the normalized
skin SCA and BTemp on the different road types.

Skin Conductance Activity The SCA is lowest for the freeway and highest
for the 30 km/h zone (cf., Table 5.2). Mauchly ‘s test indicates that the assumption
of sphericity had been violated, y*(9) = 17.890, p = .041. Therefore, degrees
of freedom were corrected using Greenhouse-Geisser estimation of sphericity,
€ =.529. The ANOVA reveals statistically significant differences between the five
road types, F(2.116,19.042) = 6.756, p < .05, n? = .429. A Least Significant
Difference (LSD) post-hoc test reveals a statistically difference for all pair-wise
comparisons, p < .05, except for the comparisons of Tunnel with 50 km/h zone,
p < 438, and highway, p < .439. This can be explained by the fact that the
Tunnel in our route is at a highway with a speed limit (50 km/h).

Body Temperature The BTemp is lowest for the 30 km/h and highest for
the freeway (cf., Table 5.2) indicating that the workload is highest for the 30
km/h zone and lowest for the freeway. Again, Mauchly‘s test indicated that the
assumption of sphericity had been violated, x2(9) = 27.069, p = .002. There-
fore, degrees of freedom were corrected using Greenhouse-Geisser estimation of
sphericity, € = .357. After the correction, the ANOVA does not reveal statistically
significant differences within the road types F(1.427,12.842) = 1.305, p = .292,
n?=.127.

Video Rating In the VR session, the participant rated the highway lowest
and the 30 km/h zone highest (cf., Table 5.2). The assumption of sphericity had
been violated, shown by Mauchlys test of sphericity, x*(9) = 20.589, p = .017.
Thus, degrees of freedom were corrected using Greenhouse-Geisser estimation
of sphericity, € = .601. Between the road types, the ANOVA does not reveal
any statistically significant difference, F(2.405,21.647) = 1.249, p = .312, % =
.122. Again, the largest difference is between the 30 km/h zone and the other
road types.
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Points of Interest

We identified five different categories of POI: on-ramps, exits, roundabouts,
traffic lights, and very curvy road segments. In this evaluation we focus on the
freeway on-ramp and exit. Hence, we compare the SCA, BTemp, and VR at these
POI with the average of the freeway by using a series of 7 tests.

The SCA increases at two POI (on-ramp: M = .409, SD = .095; exit: M = .328,
SD = .152) compared to the average of the freeway (M = .271, SD = .122). A
repeated-measures ¢ test shows that the difference between on-ramp and freeway
average is statistically significant, #(9) = —3.546, p < .05. However, we could
not show a statistically significant difference between exit and freeway, #(9) =
—1.624, p > .05.

Investigating the BTemp, we see a reduced BTemp on the on-ramp (M = .437,
SD = .210) compared to the average of the freeway (M = .522, SD = .155) but
an increased BTemp on the freeway ‘s exit (M = .561, SD = .145). A dependent
t test could not show statistically significant differences comparing the average
freeway ‘s BTemp with on-ramp, #(9) = 1.668, p > .05, and exits, #(9) = —1.176,
p > .05.

5.2.3 Discussion

Interpreting the physiological signals, the road type has an influence on the
driver‘s workload. The workload seems to be high especially in the 30 km/h
zone (low BTemp and high SCA and VR) that contains spots in which the driver
has to decide who has the right of way. This may, in turn, increase the work-
load. Furthermore, there are many parked cars that are potentially sources for
unexpected events such as pedestrians crossing the street, playing children, or
car doors that are carelessly opened. In contrast, the freeway (high BTemp and
low SCA) is very predictable and does not need that much attention due to larger
distances between the cars. These results are similar to the results from Micheals
et al. [171] as well as from Mittelmann and Wolff [172].
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Figure 5.7: Implicit audience sensing: Participants during an initial user
study wearing an off-the-shelf BCI connected to their mobile phone (top left)
and the overall system architecture with sensing, administration, and visual-
ization component (top right). Three different visualizations for analyzing
the audience engagement in real time and post-hoc (bottom). The post-hoc
view enables fine-grained analysis of each presented slide.

5.3 Application Scenarios

Physiological signals as a source of implicit input enable various applications.
In this section, we briefly introduce two different application scenarios in which
physiological signals support users in interacting with mobile systems.

5.3.1 Implicit Audience Sensing

Obtaining information on an audience’s physiological and cognitive state is
valuable for many applications, including but not limited to recommendation
systems [258], teaching and education [67], marketing and businesses [86], and
media and performance arts [205]. Active and explicit audience feedback tech-
niques have long existed. Voting systems, for example, are used during live
performances, movie screenings, product advertisements, or lectures to gather
feedback [13, 38, 45, 186, 255]. While these methods have their virtues and are
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straight forward to interpret, they create challenges. Clickers and other types
of real-time feedback usually add effort and workload to the person providing
feedback [124, 259]. Other forms of subjective and explicit feedback are usually
collected at the end of the performance, advertisement or lecture, depending on
the context. While this provides a holistic overview, these methods miss out on
important fine-grained feedback [145].

As physiological signals can be assessed with smart garments, there is an oppor-
tunity of employing such sensors to implicitly sense physiological and cognitive
properties of the audience. Prominent research in the past few years already
started exploring implicit sensing for audience response systems in performance
arts [145, 244] and in one-on-one context in learning [250, 251]. The mobile de-
vice of the user can connect to a central server and can implicitly provide insights
on the physiological and cognitive state by measuring physiological signals. Since
this can be realized in real time, it is possible to react to the audience and adapt
the performance or lecture. We started exploring this concept in a real world user
study using BCIs (cf., Figure 5.7). We equipped participants with off-the-shelf
BCIs which send their measured engagement score via the participants® mobile
phone to a central entity. The presenter can access this information during the
presentation and afterwards. Thus, he or she is capable of reacting to changes in
the engagement of the participants in-situ and analyze the presentation afterwards.

5.3.2 Adaptive In-Car User Interfaces

Mobile devices play a central role in nowadays cars. The mobile device is used
for placing phone calls, stream the user‘s favorite music, or access the calender.
However, while driving the car, interacting with the interface — even though using
hardware controls provided by the car — is challenging and potentially dangerous.
This is especially the case when the driver‘s workload is high due to bad weather
and lighting condition or high traffic. Using smart garments to asses physiological
signals of the user can help identify these situations and adapt the interface in a
way that the driver can safely operate the mobile device. Hence, an interface with
a reduced complexity would be easier and more safe to operate. For instance, a
workload adaptive navigation system could be easier to operate in high-workload
conditions. A system that uses different settings for the driver assistance systems
can react to the different workload and increase its involvement in the driving
task (e.g., pre-load the brake pressure). Another benefit of sensing physiological
signals with smart garments is to make the driver aware of his or her workload.
This could be done using on-body displays [231] or haptic feedback [195].
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5.4 Lessons Learned

Using physiological signals poses a number of different challenges. In particular,
we gained two insights from this research probe.

¢ Allow individual calibration of physiological signals. During the evalu-
ation of the user study it became apparent that the physiological response
differed considerably between users’. A system managing these signals
needs to allow the user calibrating the values or — if possible — automatically
calibrate.

e Provide derivations of the physiological properties. Access to the raw
physiological signals (i.e., ECG, EEG) is useful for experts in the field of
physiological signals. However, most application developers of mobile
applications do not have the expertise to derive meaningful information
from these values (e.g., workload or stress). Using abstract levels for
physiological signals (i.e., high HR, low SCA) helps application developers
to interpret the user‘s physiological signals.

5.5 Conclusion

In this chapter, we present our work on exploring physiological signals. Physio-
logical signals are one of the core features of many research prototypes in the field
of smart garments. However, interpreting and using this data beyond applications
for reflection (e.g., quantified self) remains still challenging. Especially using
these signals as implicit input for interactive systems is not fully understood
yet. We conducted a user study with off-the-shelf sensors and explore require-
ments this particular type of data poses. In addition, we describe two application
scenarios in which physiological signals can enrich the interaction with mobile
devices.
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In contrast to using garments for input, this part of the thesis investigates garments
as output modalities. For exploring the output possibilities, we use the three
most common output techniques for wearable computers, namely, visual, tactile,
and auditory output. Each output is, again, explored by creating a prototype,
an application, and an evaluation. However, since textile based actuators still
have technical drawbacks, we substitute them with their non-textile counterparts
to achieve a stable and robust prototype. We nevertheless take constraints of
garments into account when developing the non-textile output devices. By doing
so, we are able to evaluate the prototypes in user studies gaining more insights
into what requirements these output modalities have.

This part includes the following three chapters:

« Chapter 6 — Visual Output. Visual output is the most common output
modality. In contrast to mobile devices such as smartphones and smart-
watches, garments have a way bigger surface. Even though the resolution of
current garment-based displays is low, garment based displays can be used
to extend displays and present additional information such as off-screen
content or notification. In this chapter, we explore different locations for
garment based displays and present a user study in which we use a display
to extend a display of a smartwatch. As an application example, we use
off-screen locations of a navigational system and compare our approach
with on-display off-screen visualizations.

* Chapter 7 — Auditory Authentication. Auditory output is normally used
to provide feedback to the user which is well explored and understood.
By integrating speakers into hats or caps, smart garments can gain the
opportunity to present auditory output. In addition to presenting feedback,
we use auditory output to authenticate and identify users by using bone-
conduction audio. While playing an audio signal, we record the same signal
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that is influenced by the user’s head. In a user study, we show the general
feasibility of this approach.

Chapter 8 — Haptic Output. Since smart garments are closely connected
to the user’s body, tactile output can be generated on almost arbitrary
locations on the body. EMS is a promising way of realizing tactile output
for smart garments. In addition to creating feedback, EMS allows actuating
muscles as well. In this chapter, we present a user study that actuates
users in a way that they automatically perform gestures. We investigate
how these gestures can be used to represent emotions. Furthermore, we
present application scenarios that underline the variability of EMS as haptic
feedback.



Chapter

Visual Output

Visual output is the most common output form for current mobile devices. Mostly
rectangular pixel based displays are used to provide output such as in mobile
phones or smart watches. These devices, however, have a limited screen size
and may not always be visible to the user. In this research probe, we develop
a prototype incorporating visual output for a potential garment-based on-body
display. Even though early research prototypes of garment based displays exist,
we used a wearable display made out of light emitting diodes (LEDs). We chose
LEDs since they have similar properties as current textile based displays with
regards to display resolution and size [12]. In particular, we focus on the interplay
of high resolution wearable displays (i.e., smart watches) and low resolution
textile displays. We see an opportunity here for fusing both types of displays
to create what has been previously coined focus and context screens [22]. In
2001, Baudisch et al. presented an approach that allowed the display space of a
high-resolution Liquid Crystal Display (LCD) screen to be extended with a low-
resolution projection while at the same time maintaining the context. Similarly,
low-resolution on-body displays can extend the visual output capabilities of a
high-resolution smart watch or smart phone. In this way it does not only become
possible to show additional, contextual information — for example, the location
of a hotel a user is currently navigating to but whose position is currently off
the smart watch screen — but also to first draw the attention towards the on-body
display and then allow more fine-grained information to be accessed through the
smart watch — for example, showing a heart rate curve on the on-body display
and providing detailed physiological data as the user is out running.
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Figure 6.1: The wearable on-body display used in a t-shirt. The heart rate
visualized on the chest (left) and a progress bar, weather information, and
e-mail notification on the forearm (right).

In the remainder of this chapter, we first present the wearable display research
probe. For this probe we used an off-the-shelf LED matrix display. In the future,
these displays can be exchanged with textile based displays offering similar
properties (cf., [12, 189]) We report on the design space and implementation
of this probe. Thereby, we use a navigational application scenario in which
off-screen content is displayed at the wearable display. In a lab study, we show
that the display is able to increase users’ performance as they interact with the
display compared to current off-screen visualization techniques.

This chapter is based on the following publication:

* S. Schneegass, S. Ogando, and F. Alt. Using On-Body Displays for
Extending the Output of Wearable Devices. Proceedings of The Inter-
national Symposium on Pervasive Displays - PerDis 16, 2016
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6.1 Related Work

Our work draws from several strands of prior research, most notably, on-body dis-
play technologies, focus and context screens, and wearable display applications.

6.1.1 On-body Display Technologies

On-body displays can be realized using various technologies. To allow displays
to be worn on the body, there is an inherent need to design them flexibly so as to
fit the user’s physiology.

Single (small-sized) displays can be easily attached to different parts of the human
body. Examples for such displays are smartwatches or displays in the form of a
brooch [30, 74]. Furthermore, larger displays that would have otherwise been
difficult to attach to the body directly have been integrated with backpacks [4]
and handbags [55].

Building larger on-body displays is challenging, since their form needs to fit the
user’s body shape. On one hand, displays can be explicitly manufactured so as to
fit a particular body part. For example, von Zadow built a prototype of a display
in the form of a sleeve [266]. On the other hand, a more flexible approach is to
create displays consisting of a matrix of smaller displays. The small displays in
such a matrix can consists of small but high-resolution displays themselves [180].
Or, to add further flexibility, they can consist of small pixels (e.g., single LEDs).

Furthermore, on-body displays can be directly integrated with fabric. Solutions
include optical fibres to create light-emitting fabric'’. Combining this technology
with a controlling unit, Koncar used such fibers to create a display jacket [136].
Another approach is using electroluminescence which can be printed in a matrix
design to realize a multifunction display or in custom shaped segments [179, 189].
Besides the application on paper and other stiff material, it can also be printed
onto fabrics [12] or woven into fabrics [90].

Finally, on-body displays can be realized using projection. Harrison et al. suggest
using projections to augment the human skin with visual output [100]. Similarly,
Freeman et al. projected cues on the user’s hand to support learning gestures [80].
Following this idea, Olberding et al. presented applications and interaction possi-
bilities for augmented skin, focusing on the forearm [180].

7 http://wew. lumigram. com/
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In our work we focus on fabric-based displays which can be in the future inte-
grated into everyday clothing. However, due to technical limitations of current
displays (e.g., resolution, color), we use low-resolution LED displays as a proto-
type, simulating fabric-based displays that could be integrated into clothing in the
near future.

6.1.2 Wearable Display Applications

Wearable and on-body displays have been used for a variety of applications.
Meme Tags were among the first digital wearable public displays. Worn around
the neck, they allowed 64 character messages (memes) to be shown to the pub-
lic [30]. Since the meme tags did not have any input capabilities, messages
were authored by means of a kiosk system that then pushed the messages to
the tags. One year later, BubbleBadge was a wearable display in the form of
a brooch [74]. Based on a GameBoy, it allowed notifications and quotes to be
presented to the public. Ten years later, Alt et al. presented the concept of a
contextual, mobile display integrated with the user’s clothes which was capable
of displaying information based on the users’ context, such as location [4]. In
this way it was possible to, for example, provide information about a nearby
sight. SleeD was a wearable display designed as an interaction device for large
interactive screens [266]. In particular, it allowed interaction to be personalized
as multiple people interact. Finally, Colley et al. presented a wearable display in
the form of a handbag allowing users to observe the content of the bag [55].

While in previous work most applications were developed with a particular task
in mind, the aim of our work is to provide a wearable display that is capable of
supporting various tasks. Furthermore, we use it to enlarge the display real-estate
of small high-resolution displays, such as smart watches.

6.1.3 Focus and Context Screens

Dealing with limited screen real-estate when it comes to displaying information
has been at the focus of InfoVis research since its inception. We believe this
so-called presentation problem to be an immanent challenge for the design of
wearable displays. Prior approaches employed in desktop and mobile applica-
tions include zoomable user interfaces [24, 190] as well as overview and detail
interfaces [114]. However, it is often important to maintain the context of a visu-
alization. A popular solution to this is the use of Fisheye views [85]. However,
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Figure 6.2: The components used for the Wearable Display research probe.

this form of a visualization that maintains the context infers distortion which we
believe to be a major challenge for small (wearable) displays, in particular if
presenting text.

Hence, we employ the concept of focus and context screens introduced in
2001 [22]. At that time, the concept aimed to address a similar challenge as
today’s wearable displays: on one hand, small high-resolution displays were
available (LCD screens) which could be complemented with large, but lower-
resolution projections. Applying this concept to wearable displays seems reason-
able, since as of today, both small high-resolution displays are available in the
form of smart watches whereas display technology integrated with fabric is still
low-resolution but can considerably extend the available display space and be
used for contextual information.

6.2 Hardware Prototype: WearableDisplay

We created an on-body display prototype, called WearableDisplay, using two
8 x 8 multicolor LED matrices (cf., Figure 6.2). We deliberately chose a display
with a low resolution since we strive to explore garment-based displays which
will at the beginning have a lower resolution. Both LED displays are attached to
an Arduino'® that is connected via Bluetooth to a smart watch. The smart watch
used for the implementation is a Simvalley Mobile AW-414 smart watch with a
240 x 240 px, 1.51n touch screen running Android. The content of the display
is controlled via an Android application that defines the color of each LED and
sends the values to the Arduino.

18 https://www.arduino.cc/
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6.3 Design Space for On-Body Displays

In the following we present a design space for on-body displays. The design space
is centered around four dimensions — user, context & application, interaction, and
technology. This design space is useful for designers of applications for on-body
displays.

6.3.1 User

On-body displays allow the content to be targeted towards the wearer or towards
third persons. While we envision — similar to the smart phone — most applications
to be targeted towards use by the wearer (e.g., notifications or a navigation app),
interesting use cases may be created by presenting information to others. As
an example, at work, colleagues may be informed that the wearer is currently
deeply engaged in a task, leading to that an inquiry is postponed. There may also
be cases where content is targeted towards both the wearer and bystanders (i.e.,
joint use), for example a multi-player game where the on-body display serves
as a shared game board. As a result, designers need to consider the following
dimensions:

Observer People observing the display may be the wearer himself or third
persons, such as passersby, or both. As a result, designers need to think
where to place a display and whether there needs to be a mirror feature (i.e.,
wearers might want to see what is being displayed on their back).

Content Origin The displayed content can either be generated by the wearer or
the observer. For many use cases, the wearer and the observer are the same
person. However, for some use cases, the wearer could create content for
the observer. One example would be visualizing physiological parameters
of the wearer so that the observer could take them into account (e.g., stress
level).

6.3.2 Context & Application

Wearable displays enable a myriad of applications that can be used in a variety of
contexts, such as at home, at work, during commuting, or while being in a public
space. Of particular interest for the designers of applications is whether or not
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on-body displays extend existing applications or are self-contained. In addition,
privacy considerations may need to be taken into account, i.e., whether content
should be only perceivable by the wearer or also by bystanders.

Application Purpose Apps for wearable displays may be manifold. Examples
include, but are not limited to navigation, quantified self, notifications, and
entertainment.

Extension of Application In cases where on-body displays are being used to-
gether with smart watches or phones, designers need to think about how
existing applications can be extended, using the on-body display. Direct
extension, for example, includes showing content that does not fit on the
smart device screen, such as off-screen locations in a navigational task
or additional information on a played music track. In contrast, indirect
extension includes presenting notification (e.g., for messages or calendar)
or physiological data (e.g., pulse).

Privacy Applications may be private, personal, or public. Private applications
may provide access to sensitive data (e.g., the user’s current account balance
or a Transaction Authentication Number (TAN) the user is supposed to
enter at an Automated Teller Machine (ATM)). Such information should
be shown in a way such that passersby cannot easily shoulder-surf it. In
personal applications, for example, information that is relevant for people
who know each other may be shown. For instance, two people may want to
exchange an address. In this case, a display application should account for
that information is visible to a close bystander while not being visible from
afar. Finally, public applications show primarily content that is meant for a
wider audience or for which it is uncritical if perceived by bystanders. Such
information can include advertisements, current time, or news headlines.

6.3.3 Interaction

The third dimension concerns interaction with the wearable display: input modal-
ity, output, and flow of interaction.

Input Modality Different input modalities can be supported by an on-body dis-
play [176]. This may include touch input (e.g., directly on the display or
on a connected mobile phone or smart watch), gesture-based input (e.g.,
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gestures performed in front of the body, recognized through a camera inte-
grated with the users’ glasses), gaze input (e.g., using a camera / eye tracker
integrated with glasses), or speech (e.g., using a microphone integrated into
clothing).

Feedback Today, displays mainly provide visual feedback to users. Yet, there is
also research on displays using other modalities such as haptic, auditory,
or even olfactory.

Flow of Interaction Wearable focus and context displays enable two different
ways of how interaction can flow. On one hand there may be a flow of
the interaction from the focus display to the context display. This is the
case if interaction starts at the smart device (e.g., entering a location a user
wants to navigate to) and then extends to the context display (for example,
showing information on the distance and direction of the nearest subway
station). In other cases, interaction may flow from the context display to
the focus display. The user might receive abstract information on heart rate
on the context display while running but then at some point decide to look
up additional, more specific information on time and distance covered.

6.3.4 Technology

Finally, the available / employed technology needs to be considered when creating
on-body display applications.

Size We expect future on-body display to come in arbitrary sizes. While primarily
being limited by the available garment surface, future research on-body
displays may seek to extend the available space through projection (e.g.,
on the part of the floor the user is standing on).

Shape On-body displays can be manufactured in many different shapes, match-
ing the intended body location and/or screen real-estate required by the
application.

Orientation Based on whom the content is being targeted to, the orientation of
the display needs to be taken into account. Whereas for the wearer the
display should be oriented in a way such that content can be optimally
perceived, the direction from which third persons are approaching is often
not clear and hence orientation would need to be flexible. In this case,
application designers may also need to take into account that the user is
moving and hence update the orientation dynamically.
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Position on Body In case only parts of the body serve as a display, designers
need to consider different aspects: who are the users, how many users need
to be supported, how do they interact, and from where do they see the
display.

Display Technology Current on-body displays need to make a trade-off between
wearability [88] and spatial, temporal, and color resolution. While dis-
plays completely fabricated using garments have a low resolution, flexible
Organic Light Emitting Diodes (OLEDs) achieve similar performance as
smart phone screens but with reduced flexibility and, thus, reduced weara-
bility. Again the application for which such a display is used is important.
Simple notification for a single purpose are easily realizable with garment
based displays but more complex User Interfaces (Uls) would currently
require flexible OLEDs.

Display Factors Finally, display properties may be chosen based on the intended
use case. Properties may include color depth, brightness, and resolution.

6.4 Exploring Location and Visualizations

In the first study, we explored at which location potential users prefer on-body
displays for either personal or public usage. In addition, we explored different
visualizations for each of the application scenarios.

6.4.1 Participants and Procedure

We invited 16 participants (3 female, 13 male) between 20-31 years (M = 23.6,
SD = 2.9) via university mailing lists. After participants arrived at the lab, we
first introduced them to the purpose of the study. We showed them our physical
prototype of an on-body display. To make the idea of an on-body display more
tangible to participants, we presented 6 different application scenarios. These
scenarios were developed through a review of available products in the filed of
wearable computing and current smart watch applications. Each of them can
utilize the on-body display as an additional context display.

Heart Rate Physiological measures are becoming more and more important and
the number of wearable devices capable of measuring them is increasing.
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While the sensing part can be easily integrated into clothing, the communi-
cation of the measured information is mainly done via smart phones. Using
an on-body display, this information is instantly accessible for the user.

Step counter Fitness bracelets allow the steps made by the user to be measured.
However, most of the time, output is limited due to the small device size.
Exploiting a larger on-body display, users can easily keep track of their
steps.

Message notifications The number of notifications being generated on mobile
phones is steadily increasing. Utilizing on-body displays helps to quickly
and unobtrusively notifying users of incoming messages.

Navigation Providing navigational cues to the user becomes more an more
common due to navigational systems being available on smart phones.
However, carrying the phone in the hand while walking can be cuambersome
and, thus, an on-body display can help presenting necessary navigational
information.

Calendar On-body displays allow proving instant access to the calendar by
showing the next appointment, the time till it starts, or the location.

Weather As an example of simple, static information, we chose weather infor-
mation.

The application scenarios were presented in counter-balanced order (Latin square).
For each of the scenarios, participants were given two tasks. First, we wanted them
to think about the perfect location of the display on the body given a particular
task. Therefore, participants were asked to mark the position on a print-out of a
human body (cf., Figure 6.3). In addition, we asked them to sketch a visualization
for the output on the wearable display (cf., Appendix VII — Questionnaire).

6.4.2 Results

Location Preferences

We identified 6 different options to place the display: forearm, upper arm, torso,
head, legs, feet. Overall participants preferred placing the display on the forearm
when used by themselves (68.8%) and torso when used by others (67.8%). The
main reason for this might be the display size which can be perceived from a
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Figure 6.3: Heatmaps of the location preferences of the participants in the
first study when the display is showing content for the wearer (left) and public

(right).

greater distance on the torso compared to small displays on the forearm. While
most participants naturally located the display on the front of the user for personal
use, the front (57.0%) and back (43.0%) was evenly chosen for public usage. An
overview of the chosen locations is depicted in Figure 6.3.

Participants also expressed the need for a mapping between content and location.
For instance, two participant would display the heart rate next to the actual
position of the heart at the torso. Similarly, placing measurements from fitness
applications such as the number of steps made today directly at the feet or legs
supports an easy and intuitive understanding of the information.

Visualizations

Participants envisioned various visualizations for the proposed use cases. Most
visualizations are adopted from current visualizations known from smart phone
applications to the requirements of the on-body display. For example, many
participants depicted arrows for the navigational scenario or a mail icon for
incoming email notifications. Examples of the drawn visualizations are shown in
Figure 6.4.
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Figure 6.4: Two of the visualizations for each application scenario drawn by
the participants in the first study. Top row: step count, weather, and calendar —
bottom row: heart rate, notification, and navigation.

6.5 Use Case: Navigation

As a next step, we decided to implement a particular application — a navigation
application — and explore how it could be adapted to our wearable focus and
context display. Both the focus display (smart watch) as well as the context
display were placed next to each other. The map is shown on the smart watch.
Presenting off-screen objects such as POIs is a common challenge when designing
navigational systems. Research explored different ways of visualizing this. Most
prominently, Baudisch and Rosenholtz present Halo [23]. Halo surrounds off-
screen objects with large enough rings to reach the border of the display view
port. Thus, the user can infer the location of the off-screen object by estimating
the center of the ring. Burigat et al. compared Halos to Arrows [39]. They show
that arrows perform similar compared to Halos. Furthermore, their results suggest
that Halos perform better the less off-screen objects are presented. We believe
that on-body displays have the potential to present off-screen elements in a more
natural way and communicate the distance and direction to an object simply by
showing it accordingly on the display. In a user study, we compared all three
visualizations with respect to the task completion time, errors, usability, and user
preferences.

6.5.1 Prototype

We used our display prototype and created an Android navigational application
based on Google Maps. The application is capable of displaying a map on the
smart watch and the off-screen points of interest on the on-body display. We
included in total 4 different maps with 10 different locations each. None of the
location was known to the persons beforehand. As a baseline in our user study,
we re-implemented two techniques: halos (following the explanation of Baudisch
and Rosenholtz [23] — Figure 6.5, left) and arrows (as used by Burigat et al. [39] —
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Figure 6.5: The three off-screen visualizations used in the user study: halos
(left), arrows (center), and low resolution on-body display (right).

Figure 6.5, center). In addition to that we used our on-body display and presented
colored dots at the location the points of interest are (cf., Figure 6.5, right). Thus,
the spatial ratio between points in the real world and in the visualization stays the
same, similar to the size of the halos.

6.5.2 Participants and Procedure

We invited 16 participants (5 female, 11 male), aged 18-26 years (M = 21.94,
SD = 2.05) to take part in the user study through University mailing lists. After
participants arrived at the lab we explained them the purpose of the study. The
main study consists of two tasks, namely, locate the closest POI and locate a
specific POI. The zoom function was disabled for both tasks. For each task,
we equipped the participant with a smart watch and the on-body display on the
forearm. Then, they performed each task. After the participants performed both
tasks they filled in a final questionnaire.

Locate the Closest POI

First, the participant should identify the closest point of interest on a map. As
an example, we provided them the scenario of finding the closest restaurant. We
presented the three off-screen visualization technique (i.e., halos, arrows, and
on-body display) in Latin-squared order. Participants received one task as an
example so that they could make themselves familiar with the technique. After
understanding the visualization, participants should locate three times the closest
POI for each technique. We measured task completion time and errors. After
performing the task with each technique, participants filled in a System Usability
Scale (SUS) questionnaire. We also asked how easy participants could estimate
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Figure 6.6: The task completion time of the three different visualization
techniques for the locate the closest POI task.

the distance and direction to a target on two 5-Point Likert items (1=simple;
S=complicated).

Locate a Specific POI

Second, participants should identify a certain item out of a group of items. This
was introduced as a certain restaurant a table was booked at. In this task, we
furthermore explored the influence of the display size of the on-body display on
the task completion time and error rate. Thus, we used four different sizes: 1 x 4,
4 x 4,6 x6,and 8 x 8 pixel for visualizing the off-screen content. Again, each
technique was used three times and each display size was used three times as
well. We measured the task completion time and errors.

6.5.3 Results

Overall, we recorded 144 performed search tasks. We removed all data points in
which participants did not select the correct POI (Halos 5, Arrow 8, Display 12).
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Figure 6.7: The task completion time of the three different visualization
techniques and different display sizes for the locate a specific POI task.

Opverall, participants rated the usability of the on-body display (M = 79, SD = 13)
and halos (M =79, SD = 14) higher compared to arrows (M =78, SD = 16) using
the SUS questionnaire. For the locate the closest POI task, participants using the
halos (M = 5.1s, SD = 1.8) method located the POI faster compared to arrows
(M = 8.3s, SD = 4.8) and on-body display (M = 8.3s, SD = 4.1). The result of a
repeated measures analysis of variance shows a statistically significant difference
between the task completion times, F(2,28) = 8.096, p = .002. Bonferroni
corrected post-hoc ¢ tests show participants performed statistically significant
faster using halos compared to arrows (p = .018) and on-body display (p < .001).
The post-hoc tests did not show any statistically significant differences for arrows
and on-body display (p = 1.000) In contrast, the on-body display (M = 1.69)
outperformed halos (M = 2.50) and arrows (M = 2.75) with regard to ease of
distance judging as stated by the participants in the Likert items question.

For identifying a specific POI, participants performed best for the halos (M = 5.2s,
SD = 1.3) condition, followed by using arrows (M = 6.0s, SD = 2.0) and on-
body display (M = 8.8s, SD = 4.2). When comparing the different display sizes,
the results show that participants perform best using 6 x 6 px displays (M = 8.3s,
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SD = 3.1) followed by 1 x 4 px displays (M = 8.8s, SD = 5.6) which both
outperform 4 x 4 px (M = 9.3s, SD =4.6) and 8 x 8 px (M = 8.9s, SD = 3.3)
displays. A repeated measures analysis of variance shows that these differences
are statistically significant as well, F(5,60) = 8.602,p < .001. The Bonferroni
corrected post-hoc ¢ tests reveal that halos perform statistically significant faster
compared to the on-body display versions. All other comparisons did not show any
statistically differences. In contrast, using the Likert items question, participants
rated the arrows (M = 1.19) best, followed by on-body display (M = 1.50) and
halos (M = 2.31).

6.6 Discussion

The presented results show that on-body displays are a valuable alternative to
current off-screen visualization techniques. We used a display with a low number
of pixels that could in the future be integrated into clothing. In particular in the
user ratings, the display outperforms the halos and arrow methods.

Another benefit of the on-body display is that the off-screen visualization does
not mask parts of the map. While this was not an issue in the study since the
participants did not need to take care of streets or possible modes of transportation,
this could further increase the usability in a real world application.

6.7 Lessons Learned

Through the development of this research probe probe we learned the following
lessons.

 Support different display types and purposes. Different types of dis-
plays should be supported such as low resolution context and high res-
olution focus displays. Each display type need different ways of being
addressed. While high resolution displays are capable of displaying regular
content as known from mobile phones (e.g., array of pixel), low resolution
displays need specially designed content. This content could be presented
on an information level (e.g., low heart-rate, POI at 95 °) rather than array
of pixels and interpreted by the display based on its capabilities.
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 Specify display location. The location of the displays on the human body
needs to be influenceable by the developer so that different displays can be
combined. Application could need special grouping of on-body locations
to achieve the desired effect. For instance, the off-screen locations need to
physically match the high resolution map.

6.8 Conclusion

We explore in this research probe pixel-based on-body displays. These displays
offer the possibility to present various types of information similar to displays
known from mobile devices. We conducted a user study showing that different
use cases can be covered with a limited display size. Due to the placement
possibilities on the whole body, these displays can provide useful information
to the wearer as well as to people in the vicinity. Thus, they are able to serve as
public and private display. While we used a smart watch placed at the wrist of
the user, in the future, a (non-textile based) focus display could also be placed on
the lower arm. This would enable a low-resolution context display expanding all
directions.

Additionally, the analysis of related work reveals that non-pixel based displays
provide also a benefit to the user (cf., [179, 189]). Especially the ease of integra-
tion into smart garments provides a huge benefit. These displays can then serve
as an additional notification channel or to communicate the physiological state of
the user. For instance, a heart shaped display created out of 10 tiles could fill up
based on the heart rate of the user.
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Chapter

Auditory Authentication

In addition to entertainment purposes such as playing music or videos, auditory
output is used as one of the main notification and feedback mechanisms for
mobile devices. Short auditory cues are played to get the attention of the user for
incoming calls oder messages. Currently, several projects utilize such cues for
garment based wearable computer projects to provide feedback about their sensing
results. Helmer et al. used, for example, auditory feedback to communicate the
flexion of the knee while performing sports activity [105]. However, these cues
can be disturbing in quiet environments (e.g., in a library or restaurant). Thus,
bone conduction audio embedded into caps, hats, or scarfs could be a more subtle
solution for providing auditory feedback.

Audio as feedback and for entertainment purpose is well understood through
research and products in the mobile computing domain and also used in wearable
computing projects. Thus, we investigate how audio can be used in other appli-
cation scenarios. We exploited audio cues in combination with a microphone to
create an authentication system in this research probe. By integrating a bone-
conduction speaker and a microphone in, for example, a hat or cap, this garment
can be used to identify the person wearing it. A feedback loop emerges through
the closeness of the system to the human body. This loop can also be realized
with other input and output modalities.

Exploring this feedback loop using audio for authentication, we present in this
probe SkullConduct, a biometric system that uses bone conduction of sound
through the user’s skull for secure user identification and authentication. Bone
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conduction has been used before as a transmission concept in different consumer
devices, such as hands-free headsets and headphones, bone anchored hearing
aids, as well as special-purpose communication systems, such as for diving or
high-noise environments. Bone conduction has also recently become available
on eyewear computers, such as Google Glass, as a privacy-preserving means of
relaying information to the user. Therefore, we use a Google Glass as research
tool to explore our concept. SkullConduct uses the microphone readily available
in this device to analyze the frequency response of the sound after it traveled
through the user’s skull (cf., Figure 7.1).

This chapter is based on the following publication:

* S. Schneegass, Y. Oualil, and A. Bulling. SkullConduct: Biometric
User Identification on Eyewear Computers Using Bone Conduction
Through the Skull. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, New York, NY, USA, 2016.
ACM?

“ A video of the SkullConduct system is available at YouTube:
https://wuw.youtube.com/watch?v=BX1-RE9krSM.

7.1 Related Work

Secure user authentication is important for mobile phones given that these devices
store an increasing amount of personal information. Current authentication
schemes such as Personal Identification Number (PIN), password, or graphical
password [239] have the inherent drawbacks that the user needs to remember
the secret to authenticate and the secret can be stolen by user centered attacks
(e.g., shoulder surfing) while authenticating in public. To address limitations
of established knowledge-based authentication schemes, such as passwords and
PINSs, recent works exploit the sensors readily integrated into mobile devices. For
example, previous works proposed the analysis of keystroke dynamics [122, 156],
gait patterns [163], ambient sound [123], micro-movements while interacting [29],
the shape of the user’s ear [112], bioimpedance [58], or the way a user places
or answers a phone call [56]. In contrast, secure user authentication using audio
cues remains largely unexplored.
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Figure 7.1: SkullConduct uses the bone conduction speaker and microphone
readily integrated into the eyewear computer and analyses the characteristic
frequency response of an audio signal sent through the user’s skull.

7.2 Hardware Prototype: The SkullConduct
System

There are, in general, two different pathways audio can take to get from a source to
the user. The most widely used pathway, as for example in the case of headphones
or speakers, is via air conduction in which the audio travels through the air and
the auditory channel to the user’s inner ear. The second pathway is via bone
conduction, that is directly through the skull to the inner ear. Especially for
eyewear computers or garments that already are located close or even at the head
of the user, using bone conduction yields the advantage that the audio is not well
audible to bystanders and thus more private.

So far, systems typically used speech to identify different users (see [204] for an
example). In contrast, SkullConduct exploits the characteristic changes in an
audio signal while it travels through a user’s skull (see Figure 7.1). When audio
is played back with a bone conduction speaker (i.e., the audio travels through
the head) it is modified by the user’s head. If recorded with a microphone, the
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changes in the audio signal reflect the specific characteristics of the user’s head.
Since the structure of the human head includes different parts such as the skull,
tissues, cartilage, and fluids and the composition of these parts and their location
differ between users, the modification of the sound wave differs between users
as well. First, the speed of sound transmission differs for each of the parts of
the human head [178] and, second, the different signal frequencies are damped
differently [248]. In this work we opted for Gaussian white noise as the input
signal since it covers the whole frequency range and therefore all frequency bands
that might get affected by individual skull characteristics.

We implemented SkullConduct on Google Glass as one of the most common
used smart eyewear devices having similar speaker and microphone placement as
could be realized for hats or caps. We developed an application that plays back an
audio file using the integrated bone conduction speaker and records concurrently
with the integrated microphone. The recording is saved on the Glass as a byte file
with 44100 samples per second, a single channel (i.e., mono), and a precision of
two bytes per sample. To authenticate users, the system is capable of extracting
features from the recording and comparing it to a training set using a 1-Nearest
Neighbor (NN) classifier.

7.2.1 Recognition Pipeline

Our recognition pipeline to identify and authenticate users combines Mel Fre-
quency Cepstral Coefficients (MFCC) [60] as acoustic features with a computa-
tionally light-weight 1-NN classifier (cf., Figure 7.2). MFCC are commonly used
in speech classification and speaker identification but were shown to also perform
well for non-speech event classification (cf., [200] for an example). In a first step,
the signal as a whole is transformed using a Fourier transform. Afterwards, the
power spectrum is mapped to the Mel scale using a Mel Filter Bank. Then, the
Discrete Cosine Transform (DCT) is calculated after taking the logarithm. Finally,
the MFCC are given by the 2-13 DCT coefficients. In this work, we extend the
12 MFCC features with their first derivatives (deltas) resulting in 24 features. All
features are then used as input to a 1-NN classifier to identify or authenticate
users. As a distance measure we used the sum of the Euclidean distances of each
feature of a sample.
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Figure 7.2: The recognition pipeline we used to authenticate users: (1) white
noise is played back using the bone conduction speaker, (2) the user’s skull
influences the signal in a characteristic way, (3) MFCC features are extracted,
and (4) a 1-NN algorithm is used for classification.

7.2.2  Application Scenarios

We envision two main application scenarios in which our system will be useful.

Personalization

Mobile devices such as eyewear computers are used in an increasing number
of applications, such as for training in laboratories [117], medical documenta-
tion [1], educational purposes [153], or even during surgeries [175]. In all of
these domains, multiple users may use a single device on a regular basis. As
soon as a user puts on the device, SkullConduct can immediately identify the
user and configure user-specific settings, such as preferred applications or system
preferences.

Protecting Private Content

Mobile phones are personal devices that contain sensible information about the
owner, such as social media logins or bank account details. Current protection
mechanisms, such as PINs and passwords, are vulnerable against different attacks
such as shoulder surfing or smudge attacks [239]. User authentication could
automatically be triggered after SkullConduct has been put on by a user. In addi-
tion, as soon as specific applications are started, such as the banking application,
SkullConduct could re-authenticate the user to ensure he is allowed to access the
application data.
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7.3 Evaluation: User Recognition

We evaluated SkullConduct with respect to the two main operating modes of
biometric systems, namely user identification and authentication [199]. We
designed a user study to record characteristic frequency responses for multiple
people wearing Google Glass in a controlled laboratory setting.

7.3.1 Data Collection

We recorded data of 10 participants (9 male, 1 female) aged between 21 and 36
years (M =28, SD = 4.35). The recording took place in a quiet room without any
other source of noise and the participants sat down on a chair in the middle of the
room. In this initial evaluation of the approach, we opted to have no confounding
audio sources that may influence our results, such as sounds of other electronic
devices or people. We used a randomly generated Gaussian white noise audio
signal with a length of 23 seconds. We recorded each participant 10 times with
the same audio signal. After five recording trials, we asked participants to take
off the device and put it back on to include different placements of the device on
the participant’s head.

7.3.2  Analysis

After recording the samples of all users, we analyzed the recorded data using
10-fold cross validation. In each fold, similar to Holz et al. [112], we excluded
all recordings of one participant (i.e., the attacker). Within each fold, we did an
additional two-fold cross validation. To this end, we grouped the recordings of
the nine remaining participants into two folds. The first five recordings went into
the first fold and the second five recordings, recorded after taking off Google
Glass and putting it back on, went into the second fold. In total, we trained our
system with 45 recordings (i.e., fold 1) of the nine known participants and used
55 recordings (i.e., fold 2, 45 recordings from known and 10 from unknown
participants) for testing. We deliberately chose to split the data of each user since
the placement of the bone-conducting speaker might influence the results [106,
2438].
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Figure 7.3: ROC curves summarizing the performance in terms of true
acceptance rate vs. false acceptance rate for different recording lengths.

User Identification

The first evaluation task for our SkullConduct system is to identify a known
user. In our case, the system achieves a 97.0% accuracy (cf., Figure 7.3 — True
Acceptance Rate (TAR)). Thus, the lowest Euclidean distance between the new
sample is with a recorded sample of the same user. In only 3% of the cases, a
user is mistaken with another one.

User Authentication

The second evaluation task for our system is to authenticate a known user while
rejecting unknown ones. The main measure of goodness for authentication
system is the Equal Error Rate (EER) which is the point for which the False
Acceptance Rate (FAR) and the False Rejection Rate (FRR) are equal [199]. We
calculate both rates for our system for specific thresholds that decide whether
a user will be authenticated or rejected (i.e., the euclidean distance between a
training data and the authentication data needs to be lower than the threshold).
Next, we calculated the EER out of the FAR and FRR (cf., [199]). The FAR is
the percentage of samples that are mistakenly granted access even though they
are from an unknown user. In contrast, the FRR is the percentage of samples that
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Figure 7.4: The user-specific modification (top) of the white noise input
signal (bottom) takes place in the range of 1 kHz to 8 kHz with most modifi-
cations occurring between 2 kHz and 4 kHz.
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Figure 7.5: The power spectral density visualized for two recordings of each
of the ten participants before and after removing and putting the device back
on (trial 1 shown in red and trial 2 in blue) in the range of 0 kHz to 8§ kHz.
The changes in the power spectral density are almost similar for the different
placements but differ between participants.

are mistakenly refused to access even though they are from known users. In our
case, both rates were the same at 6.9%. The ROC curve in Figure 7.3 shows the
SkullConduct precision for different thresholds. For a high true authentication
precision (97.0%), the FAR was 10.2%.
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7.3.3 Influence of Different Frequency Bands

As related work suggested [248], different frequencies are influenced in charac-
teristic ways by the head and skull. To investigate this phenomena, we calculated
the Power Spectral Density (PSD), which describes how the power of the signal
traversing the skull is distributed over the frequency range (see Figure 7.4). As
can be seen from the figure, the head and skull for each participant influenced the
PSD of the original signal in a specific way (cf., Figure 7.5). This influence varies
among participants but is constant for the same user even over several trails (i.e.,
only slightly affected by misplacement of the eyewear computer). Furthermore,
the user-specific differences are skewed towards the lower frequency ranges and
the main influence of the user’s skull is for frequencies between 2 kHz and 4 kHz.

7.3.4 Influence of Audio Length

Current authentication systems on mobile devices require about 1.5 seconds to
authenticate a user [239]. We used audio recordings of 23 seconds length which
would take significantly longer for a user to authenticate. Therefore, we evaluated
the performance of our system using audio with shorter lengths. Specifically, we
cut each recording after 15, 10, 5, 1, 0.5, or 0.05 seconds and calculated a ROC
curve for each length of audio samples using the same procedure as described
before. As shown in Figure 7.3, the EER significantly drops when using audio
samples shorter than 1 second.

7.4 Discussion

The evaluation of our system yielded promising results. We showed that bone-
conduction audio is well suited as a biometric security system. However, we
tested our approach only in a controlled setting without any background noise.
Thus, we used a best-case scenario for our user study to explore the general feasi-
bility of our approach. It will be interesting to see if and how much additional
noise, such as other people talking in the room or appliances, reduces perfor-
mance. One potential solution to this problem are algorithms that preserve the
specific characteristics of each skull but remove the environmental influences [42].
Furthermore, there might be additional influences such as hair growth or gained
weight that might impact the accuracy of our approach and need to be evaluated
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in the future. Although we show that a white noise signal of 1 second is sufficient
to achieve high authentication accuracy, white noise signals may be unpleasant
for the user. In the future, we envision that white noise could be replaced by more
pleasant audio sounds such as common start-up jingles or even short music clips.
Any alternative sound, however, needs to cover a sufficient number of frequency
bands to discriminate well between different users.

We used a Google Glass as a research prototype. Even though the same speaker
and microphone could also be integrated into garment based wearable computing
devices, minor differences could influence the accuracy of our system (e.g.,
movement of the garment during playback). In the future, a garment based
version of the prototype needs to be developed to gain insights if such an effect
exists and how large the influence is.

7.5 Lessons Learned

We derive the following insights from the research probe.

« Interaction in the Loop One of the main ideas of this research probe is to
create a loop involving sensing and actuating. In this loop the user can be
continuously authenticated. This loop might also be created with other input
and output modalities such as a combination of Electromyography (EMG)
and EMS. However, a loop always requires the combination of sensing and
actuating devices. Wearables therefore might depend on each other and
should not only be considered isolated.

¢ Wearables for Authentication Wearable devices yield high potential to
be used as a tool for user authentication and identification. Especially
the pervasiveness of clothing allows an implicit and continuous way of
authentication. In contrast to using similar approaches on the mobile phone
(e.g., [61]), wearables are not limited to the actual interaction but might
be used between the actual interactions as well. This enables systems to
gain increased security but also challenges current metrics used to rate
authentication systems. For example, a single unsuccessful login of an
implicit authentication system might not necessarily indicate an intrusion
or violation of systems integrity.
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7.6 Conclusion

In this research probe, we present SkullConduct, a biometric system that exploits
the characteristic frequency response of the human skull for user identification
and authentication on devices equipped with bone conduction technology. While
other biometric systems require the user to enter information explicitly (e.g., place
the finger on a fingerprint reader), our system does not require any explicit user
input. We demonstrated that our approach works well and can differentiate 10
users in a lab-based user study users with 97.0% accuracy as well as an EER
of 6.9%. We implemented our system on Google Glass but we believe that in
the future, bone conduction speaker can also be integrated into garments such
as hats, caps, or scarfs. The presented approach of creating a feedback loop is
especially interesting for smart garments. The closeness of to the user’s body
allows probing into the body to perceive information normally not accessible for
mobile interaction.
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Chapter

Haptic Output

Humans perceive feedback generated by computing systems mainly through
their visual and auditory senses. These senses are also highly occupied while
walking in the city center, sitting in a restaurant, or watching TV. When providing
feedback to the user, using a different modality that does not occupy a sense that
is currently in extensive use helps acquiring the attention of the user. Haptic has
shown to be useful in these situations. Hence, it is widely embedded into mobile
phones and wearable devices such as fitness bracelets.

Van Erp et al. distinguish two types of haptic feedback, namely, cutaneous and
kinesthetic feedback [260]. Cutaneous feedback includes mechanical, thermal,
chemical, and electrical stimulation to the skin. Examples include the work of
Werner et al. who utilize vibro-tactile feedback communicating the heartbeat of a
beloved person using a ring [270] and Heuten et al. communication navigational
cues through a vibro-tactile belt [109]. Kinesthetic feedback, in contrast, includes
body force, body position, limb direction, and joint angle. This sensation is
generated in muscles, tendons, and joints. Exoskeletons or force feedback devices,
for example, allow providing such kind of feedback. EMS is capable of generating
both types of feedback. Using a weak signal on the skin provides a cutaneous
feedback similar to vibro-tactile feedback. However, EMS devices also offer the
possibility to provide an embedded type of kinesthetic feedback. By applying
a certain amount of current to the muscles of the user, the specific muscle is
actuated and starts contracting.
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In this chapter, we use EMS for actuating the user, thus, we are generating force
feedback. This actuation is designed in a way that the user is performing a
certain gesture. We defined six gestures representing three different emotions
(i.e., amusement, anger, and sadness). Three of them are based on a literature
review of natural human movement and three are based on the American Sign
Language (ASL). In a user study, we explore how well users can link the different
gestures to the emotions. The main idea is to use these gestures to communicate
the feelings of a remote partner to the user. Due to the EMS, these feelings are
more embodied and create a closer connection between them.

This chapter is based on the following publications:

* M. Pfeiffer, T. Diinte, S. Schneegass, F. Alt, and M. Rohs. Cruise
Control for Pedestrians: Controlling Walking Direction using Electrical
Muscle Stimulation. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, New York, NY, USA, 2015.
ACM“

¢ S. Schneegass, M. Pfeiffer, M. Hassib, F. Alt, and M. Rohs. Emotion
Actuator: Embodied Emotional Feedback through Electroencephalog-
raphy and Electrical Muscle Stimulation. In Paper under Submission

* M. Pfeiffer, S. Schneegass, F. Alt, and M. Rohs. A Design Space for
Electrical Muscle Stimulation Feedback for Free-Hand Interaction. In
Proceedings of the CHI Workshop on Assistive Augmentation., 2014

* M. Pfeiffer, S. Schneegass, F. Alt, and M. Rohs. Let Me Grab This: A
Comparison of EMS and Vibration for Haptic Feedback in Free-Hand
Interaction. In Proceedings of the Sth Augmented Human International
Conference, 2014

¢ A video of the CruiseControl system is available at YouTube:
https://wuw.youtube.com/watch?v=GxhapXZJ2Sc.

8.1 Related Work

Electrical Muscle Stimulation sends an electrical signal to the human body using
electrodes. Different types of electrodes exists such as textile based electrodes,
non-invasive surface electrodes placed on the skin, or implantable electrodes
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which are mainly used in a medical setting. Depending on the placement of
the electrodes and the used current, different sensations can be achieved. Weak
currents, for example, can be used to provide realistic haptic feedback which
is similar to vibro-tactile feedback [195]. In addition to that, when placing the
electrodes on top of muscle fibers, EMS elicits action potentials on motor nerves
resulting in a contraction of the muscle.

EMS has a long tradition in rehabilitation engineering under the term Functional
Electrical Stimulation (FES). FES is used to restore motor functions of paralyzed
patients. Application in the rehabilitation domain include knee joints movement,
cycling, standing up, keeping body balance, and walking (see [280] for a review).
Inducing EMS to muscles for helping users to walk, for example, is a complex
task because many independent muscles have to be controlled in a coordinated
way [25]. Further, each involved joint has multiple degrees of freedom. Other
aspects which need to be considered are time delays between signal and response
and muscle fatigue.

The haptic sensing capabilities of humans are based on the different nerves in the
skin, tissue, and muscle. For electrical impulses of a duration longer than 10 ms
a current of 10-20 mA stimulates only the sensory nerve fibers, of 20-40 mA
in addition stimulates the motoric nerve fibers, and of more than 40 mA also
stimulates the pain nerve fibers [77]. Depending on the body position, the density
of the different types of nerves varies which needs to be taken into account
when calibrating EMS devices. Beside the electrode (e.g., size and material), the
following characteristics have an influence on the haptic perception when it comes
to applying the current: the strength of the applied current, the applied duration,
the impulse form, the impulse frequency, and the impulse duration. The form of
the impulse is mostly following the characteristics of a sine wave, a square wave,
or a sawtooth wave. Frequencies between 1 Hz and 1 kHz are typically used with
short impulses of 100 us. This is done because the skin resistance decreases with
short impulses. In contrast, long pulse durations increase the skin resistance. For
contacting a muscle, typically impulse durations of up to 400 s are used.

In the field of HCI, the usage of EMS starts with the work of Tamaki et al. who
controlled the user‘s hand [252]. After this seminal work, many different ap-
plication scenarios using EMS have been envisioned in HCI. Connecting EMS
feedback with physical objects, Lopes et al. show that the intended way of using
objects can be communicated [150]. They apply EMS to the hand and arm so
that simple movements such as turning or grabbing can be communicated and
understood by the user. Kruijff et al. use EMS feedback in 3D games [139],
whereas Lopez and Baudisch extend mobile devices with EMS to provide haptic
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Figure 8.1: Different placements of EMS electrodes for different application
scenarios. Performing gestures with the arms (left), turning the leg (center),
and providing feedback on the forearm (right).

feedback [148]. Research also show that EMS can be used as a feedback method
for virtual reality applications [149] or as novel notification method [237].

The main challenge in using EMS for HCI applications is that it needs to be
attached to specific body locations to achieve the intended effect (cf., Figure 8.1).
Textile electrodes can help tackle this challenge. Integrating the electrodes into
smart garment allows reducing the overhead of attaching self-adhesive electrodes.

8.2 Hardware Prototype: EMS Actuator

We used an off-the-shelf EMS/Transcutaneous Electrical Nerve Stimulation
(TENS) devices'? connected to an Arduino nano (cf., Figure 8.2). The Arduino
controls the EMS device and is capable of modifying the intensity of the signal
generated by the EMS device (cf., Pfeiffer et al. for an in-depth description of the
EMS system and a toolkit supporting easy prototyping of haptic feedback [192]).
It contains two galvanically isolated circuits so that the actual EMS signal is only
generated by the EMS device itself and the handling of the communication is
done by the other. We used an Android application connected to the Arduino
via Bluetooth LE (BLE) which sends control commands such as switching the
EMS on or off or adjusting the intensity. Using the application, a muscle can be
actuated by pressing a button whereas the intensity is controlled using a slider.

19 Breuer Sanitas SEM 43
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Mobile Application

Electrodes Wireless Controlboard EMS Device

Figure 8.2: The electrodes, Arduino-based controlboard, EMS device, and
the user interface of the Android application.

8.3 User Study: Communicating Emotions

We conducted a user study in which we explored actuating users‘ muscles to
perform certain movements. These movements are designed in a way that they
represent gestures. Thus, we let users perform gestures. As a use case, we
explored the feasibility of communicating emotions through gestures. The main
idea is to let the user perform a gesture that he or she links to a certain emotion
and, thus, perceives the emotion in an embodied way. We thereby explored how
well different gestures are suited for communicating the emotion.

The human body reveals emotional states through measurable signals, such as
movements and EEG signals (cf., Chapter 5 for an introduction to physiologi-
cal signals). However, such manifestations of emotional states are difficult to
communicate to others over distance. While more and more people are living
in long-distance relationships, communicating the emotions and maintaining a
social connectedness becomes a challenging task. Today, people are relying on
text, voice, and video communication to exchange and express their emotions to
their partners. In this research probe, we proposed communicating emotions via
EMS gestures. By actuating certain muscles, the user performs gestures linked to
specific emotions such as sadness, anger, or happiness. The feedback is provided
by the own body allowing the user to feel more connected to the remote person.
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8.3.1 Linking Emotions and Movement

Human emotions are linked to the user‘s movement and body language [69,
72, 209]. In a first step, we conducted a literature review to explore which
movement is naturally linked to which emotion. We focused on anger, sadness,
and amusement as three core emotions and well-distributed in Russel’s model of
affect [212]. From this review of literature, we elicited gestures (i.e., movements
inducible via EMS) that represent each emotion (natural gesture from here on).
We did not take actuating the face into account for emotion output. Even though
facial expressions are a strong indicator for emotions [72], attaching EMS pads
to the face would be socially not acceptable. Furthermore, we used gestures
known from the ASL?°. Although ASL is an artificial language, the gestures are
designed in a way that they have some sort of connection to the word they are
used for.

Amusement The gesture related to amusement is mostly linked to lifting up
both arms [69] and keeping the hands high [95]. It is described as an open gesture
extending the body of the user [267]. Thus, we designed the natural gesture as
lifting both hands and keeps them up in the air (cf., Table 8.1, top). The ASL
gesture for amusement consists of making a fist with the right hand and then open
and close the index and middle finger while lifting the lower arm up to the face
(cf., Table 8.1, bottom).

Anger Anger is an emotion that is linked to an aggressive forward positioning
of the body [59]. The core part of the gesture linked to anger is clenching one’s
fists [69], sometimes in combination with shaking the fists [267]. We designed
the gesture as making a fist with both hands that is slightly lifted (cf., Table 8.1,
top). The related ASL gesture is to form a claw with the right hand in front of the
face (cf., Table 8.1, bottom).

Sadness Sadness is generally characterized as either putting both hands into
the pocket [59] or folding them in the lap [69]. The movements are performed
rather slowly and gently [267]. Thus, we designed the gesture in a way that the
user folds both hands on the lap (cf., Table 8.1, top). In the ASL, the gesture
consists of moving the right hand up in front of the upper body and slowly sliding
them down the chest (cf., Table 8.1, bottom).

2 nttps://www.signingsavvy.com/sign/
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8.3.2 Study Design

In the user study, we compared both groups of gestures (i.e., ASL and natural
gesture) against each other for each emotion. We used a repeated-measures
study design, thus, each participant performed each gesture. To prevent sequence
effects, we used a Latin squared order of gestures.

8.3.3 Participants and Procedure

In total, we invited 8 participants (4 female) aged 20-28 years (M = 22.4, SD =
2.7) via institutional mailing lists. Each participant received a 15 € compensation
for about 60-90 minutes of study. After arriving at our lab, we first explained the
purpose of the study. Then the participant filled out a consent form (an example
can be found in Appendix VII — Consent Form) and a demographic questionnaire.
We introduced the EMS system by introducing the participants slowly to the
desired effect. Thereby, we applied the EMS signal to the extensor digitorum
muscle in the lower arm of the participant. As soon as the participant experienced
the movement sensation, we started calibrating the participant for the main task.
First, we equipped the participant with the electrodes required to actuate the
muscles for the intended movements (cf., Table 8.1). Next, we calibrated each
muscle individually so that the desired effect is achieved. We did not actuate
complete gestures to not bias the participants. They experienced the gestures
linked to each emotion for the first time in the study. We also did not show a
depiction of the gestures to the participants.

After the calibration, the participants were actuated to perform each gesture in
Latin-squared order. Each gesture was performed multiple times. We did that to
allow the participants to get used to the actuation of this particular muscles. After
being actuated with a gesture, we presented the statement “this gesture fits to the
emotion” to the participants. We asked them to rate on a 7-point Likert items (1
= strongly disagree, 7 = strongly agree) how well each gesture represented the
three emotions (i.e., amusement, anger, and sadness). Additionally, we asked the
participants in a semi-structured interview to describe the gesture we let them
perform.
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Table 8.1: Linking emotions to gestures and elementary movements. Differ-
ent muscles are used to evoke certain movements with a specific timing so
that the combination of the different muscle movements results in a gesture.
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Figure 8.3: Median rating of how well the gesture fits the emotion for
amusement, anger, and sadness on 7-point Likert items.

8.3.4 Results

Overall, the study shows that users are capable of linking gestures to emotions.
As shown in Figure 8.3, the emotion linked to the gesture received the best rating
in all cases except for the natural anger gesture.

Overall, participant described the emotion they linked with the gesture in the
intended way. The amusement gestures derived from the natural movement
was mainly described as “funny” due to raising the hands [P1]. Similarly, the
amusement gestures was described as “exciting” [P6]. Looking at the feedback
we received for the anger gestures, participant overall described feelings closely
linked to anger. One participant stated that the natural gesture felt like he wants
to box someone [P5]. However, we also found that the natural anger gesture
was misinterpreted as representing amusement by two of the participants [P7,
P8]. The ASL gesture for anger was described as aggressive and defensive [P7].
Participants described the natural gesture for sadness as defensive [P6] and that it
made them look puzzled [P8]. The ASL gesture was rather described in a way
that it made them feel thoughtful [P7].
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Overall, the ASL gestures performed slightly better compared to the naturally
derived gestures. The ASL gestures not only managed to convey each emotion
correctly, but were more distinctive and slightly favored by our participants.

8.3.5 Discussion

The results show that gestures can be induced using EMS. Even rather complex
gestures with more then a single muscle involved are feasible. When commu-
nicating emotions through these gestures, the performed user study reveals that
most gestures can be linked to the dedicated emotions. Even though the commu-
nicated information is not entirely distinctive, the feeling participants had when
perceiving the gesture is similar to the feeling describing the original gesture.

8.4 Application Scenarios

EMS can be used in many different application scenarios. In this section, we
outline two examples we are currently investigating: First, we explore how
walking can be enriched using EMS. Second, we show work that builds upon
the actuation used in the user study described in this chapter. We show further
examples in which letting the user perform gestures is beneficial.

8.4.1 Controlling Walking

In recent work, we showed that changing the walking direction is feasible with
EMS [191]. We actuated the musculus sartorius in the upper leg of the user which
is in charge of turning the leg outwards (cf., Figure 8.4 — left). As soon as this
actuation happens while the user is walking, he or she implicitly changes direction.
This change depends on the intensity of the signal applied to the muscle. To
evaluate this approach we conducted a lab study and a field study (cf., Figure 8.4 —
right). The lab study showed the general feasibility of our approach. By actuating
the musculus sartorius using EMS the walking direction can be manipulated. In
the field study, we explored a realistic application. Simulating a navigational
system, a Wizard of Oz walking behind the participant used a mobile application
which could actuate the participant‘s muscles in both legs. The participants were



8.4 Application Scenarios 133

Figure 8.4: Exploring EMS for navigation. The general principle of turning
the leg outwards (left) and the conducted user studies in the lab (right — top)
and field (right — bottom).

steered through a park and could avoid obstacles such as other pedestrians or
trees.

In a next step, we strive to extend the amount of control from simple control
over the walking direction to control over the balance of the user. Therefore,
we propose actuating a set of muscles to prevent users from losing balance and
falling. Falling while walking is especially dangerous for elderly but might also
help in everyday situation in which users oversee obstacles. When applying EMS
to certain muscles, the user can be automated in a way that in case of losing
balance the EMS system helps the body to automatically regain balance. The
same approach could also be applied during sports (e.g., skiing). As soon as the
athlete looses balance or does not move in an optimal way, muscles are actuated
so that he or she stays in balance.
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8.4.2 Performing Gestures

When interacting with gesture based systems, communicating the available ges-
tures is one of the main challenges [176]. The user needs to understand which
gestures are understood by the system and which command is linked to which
gesture. When using EMS, for example integrated into everyday clothes, the user
can be actuated in a way that he or she performs certain gestures. As soon as the
user approaches a system controllable by gestures, the system automatically lets
the user perform available gestures. This helps to overcome certain challenges
such as understanding interactivity, communicating the way of interaction, and
explaining how the (gesture based) input could look like. Another aspect is that
due to the embodiment of the gestures the user might learn the gestures faster and
more precise compared to currently used picture based introductions.

Using EMS to enable users can also be used in application scenarios beyond
gesture input. The possibility to let the user perform gestures can also be exploited
as a way to communicate using sign language. This overcomes the challenge of
communicating with deaf people. When the user speaks, the EMS is used to let
the user form sign language gestures. Even though the amount of gestures and
precision is still challenging with surface electrodes, a simple set of words could
also enable basic communications.

8.4.3 Ethical Implications

EMS allows computing systems to take control over specific parts of the user’s
body. Thereby, the user is not entirely in control of the movement even though
capable of consciously overriding the applied signal. This is particularly important
to consider since even small actuation might result into dangerous situations such
as when the user is steering a vehicle. Due to security leaks in computing systems,
intruders might be able to take control of certain muscles of users. By controlling
the access and minimizing the possible signal strength, harm for the user can
be reduced. In contrast, many different applications can be create that support
users and their health. In addition to preventing users from falling as introduced
in the controlled walking application scenario, several other potential harms can
be prevented using EMS. Examples include preventing users from touching hot
stove plates or stepping on icy parts of the sidewalk in winter.
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8.5 Lessons Learned

We derive the following insights from the performed user study and postulated
application scenarios.

 Provide a fine grained way of feedback. Let the application developer
define location of feedback, intensity, and pattern. For creating meaningful
and implicit feedback with EMS, the developer needs to decide on these
factors. Thus, the developer needs more control compared to other types of
haptic feedback due to the increased number of design decisions.

* Embodied Feedback. The study shows that embodying feedback provides
further benefits compared to regular haptic feedback. While actuation can
be used to implicitly control the user, it also is more substantially perceived
by them.

8.6 Conclusion

In this chapter, we presented how EMS can be used to actuate users. We show
the potential of actuating users in a way that they implicitly perform gestures. By
postulating further application scenarios, we show the diversity of the capabilities
of EMS. However, there are also drawbacks that became apparent during the
user study. Main drawbacks are that electrodes need to be placed at certain body
locations and the system needs to be individually calibrated to generate the desired
effect. Another drawback is the usage of self-adhesive electrodes which need to
be sticked to the muscles for each interaction. When using smart garments, the
closeness to the user‘s body helps to overcome this drawback. Smart garments
cover the majority of muscles and can have integrated textile electrodes. Thus,
EMS is especially well suited as a haptic feedback method for smart garments.
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SYSTEM DESIGN






OUTLINE

One of the core challenges when designing mobile interaction with smart garments
is the technical integration. Developers of mobile applications need to be able
to access sensors and actuators and utilize them for their ideas. Several different
aspects need to be considered for making the access as easy and transparent
as possible. In this part, we present a system that allows integrating wearable
computing devices into the cosmos of the already existing mobile devices. We
report on privacy implications of such a system and the design recommendations
derived from Part II and Part III.

This part includes the following three chapters:

« Chapter 9 — Understanding Users’ Perceived Privacy. Due to the close-
ness to users’ body, smart garments are a potential threat to users’ privacy.
Users are wearing garments every day. As soon as the smart counterparts
are not easy to differentiate from the non-smart counterparts, the user might
not be aware of the information extracted. To understand users* privacy
concerns, we conducted a web survey showing that users do not understand
the connection between (physical) sensors and extracted information. This
chapter reports on the results of this survey.

« Chapter 10 — Design Recommendations. This chapter summarizes the
design recommendations distilled from the presented research probes as
well as the survey tackling the user’s understanding of privacy. We derive 12
recommendations focusing on the core interaction and technology aspects.

e Chapter 11 — Conceptual Architecture. In this chapter, we apply the
design recommendation distilled in Chapter 10 to design and implement a
system managing garment-based sensors and actuators for mobile interac-
tion. We present details on the implementation and on developed physical
sensors and actuators which can be connected to the system.
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Chapter

Understanding Users*

Perceived Privacy

Since the presented research probes are investigated in a lab-based setting, we
did not look into how the devices used in these probes affect the user*s privacy.
However, keeping the user‘s data private and gaining informed consent is crucial.

The diversity of wearable devices hitting the mass-market is constantly increas-
ing. These devices contain myriads of integrated sensors that are specialized for
extracting different types of information concerning the user, which can conse-
quently be relied on by a variety of applications [27]. While most of these devices
are wrist-worn and the information extracted from the wrist is limited, smart
textiles are gaining importance and prominence (e.g., Project Jacquard [202]).
Given their close proximity to the user’s body, smart textiles allow for a more
pervasive (and robust) assessment of physiological responses, such as breathing
rate or pulse [184]. In other words, recent developments allow for more personal
data to be extracted, which has an increasing potential to violate user-desired
levels of personal privacy.

Wearable technology poses an implicit contradiction that users and designers
have to resolve. On the one hand, users are led to believe that it is desirable to
track and share their activities, for example through motivational applications
that are based on fitness trackers. On the other hand, privacy and data security are
prevalent concerns in everyday life, especially with regards to money transactions
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via online banking or when using GPS services on the mobile phone. Most
recently, this was demonstrated by the controversial use of Google Glasses in
public spaces. This initiated a debate over the permissible extent of data collected
via wearables and resulted in a blanket ban of Google Glass from a number of
public locations [187]. While this particular discussion was centered around
the issue of non-consensual photography, user-based information that can be
extracted from other wearable sensors (e.g., physiological sensors) constitute a
new dimension of privacy threats. In these cases, users are mainly unaware of
their private information being collected and tracked by others [113]. Allowing
the users to make informed consents on what and with whom their data is shared
with is a central challenge that remains unexplored.

Thus far, related work has mainly focused on a generic and easy to understand
situation, in which users’ privacy is threatened, namely the extraction of location
information from GPS sensors [253, 254]. In contrast, wearable sensors pose
novel and multi-faceted challenges. Here, the recognition of possible threats to the
user’s privacy requires the user to understand the potential privacy violations that
could result from the information extracted from the sensor data. Almuhimedi et
al. [3] show that raising the awareness of data access of mobile applications could
lead participants to reconsider their previous willingness to share information
with applications. Even putting potential privacy threats more into the focus when
installing mobile applications affects the user‘s decision on installing applications
which potentially share private information [126]. However, it remains unclear
how well users understand potential privacy risks by allowing access to specific
Sensors.

In this chapter, we explore users’ understanding regarding which information can
be derived from wearable sensor data. For this purpose, we conducted an online
survey that assessed users’ willingness to share their data when the data was
requested either at the sensor level (e.g., accelerometer) or at the level of informa-
tion that can be derived from the sensor data (e.g., step count). Henceforth, we
will refer to these two different levels as the representation levels of users’ private
data. We show that the willingness to share physiological information varies
as a function of the representation level — sensor data vs. derived information.
This is especially interesting because the latter can be readily inferred from the
former but not vice versa. In addition, we find that the type of the derived infor-
mation influences users’ willingness to share. In particular, users prefer to share
information regarding Sport & Fitness over Health & Wellbeing information.
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This chapter is planned to be published as follows:

¢ S. Schneegass, R. Kettner, and T. Machulla. Understanding the Impact
of Information Representation on Users‘ Willingness to Share Private
Information

9.1 Representation Levels

To begin, we performed a literature review on wearable sensors and the infor-
mation that can be derived from them. For further exploration, we selected five
sensors targeting physical movement and physiological measurements: accelerom-
eter, heart rate sensor, skin conductance activity (SCA) sensor (also referred to as
GSR), temperature sensor, and light sensor. In addition, we identified ten types of
user-centered information that could be derived from these sensors.

The accelerometer is one of the most common sensor found in wearable devices.
The amount of information that can be derived from it is huge and includes
information that could potentially violate user privacy. Most commonly, data
from wrist-worn accelerometer is used to derive information on step count [213]
and the amount of active minutes [57]. Besides this, sleep quality [52], coarse
location [278], and the type of activity [31] can also be inferred from accelerome-
ter data. The heart rate sensor plays an important role with respect to the user’s
health status [245] and life expectancy [285]. The level of skin conductance,
as measured by the SCA sensor, is determined by the activity of the humans
sweat glands. Therefore, this sensor provides information about the user’s stress
level [264]. For monitoring training intensity, measurements from the skin tem-
perature sensor can be used [218]. The light sensor provides information about
ambient brightness and can, therefore, indicate the amount of sunlight that the
user is exposed to [166]. The information derived from the above sensors can be
grouped into three broad categories, namely, Health & Wellbeing information
(sleep quality, stress, and health status), Sport & Fitness information (step count,
active minutes, training intensity, and life expectation), and Context & Activity
information (sunlight exposure, location, and activity).
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9.1.1 Target Audience

We identified four different target audiences for information sharing ranging from
everybody to no one. To obtain more fine-grained results, we also included a
certain person (e.g., a close friend) and a theme-based community (e.g., a sports

group).

9.2 Survey on Sharing Behavior

To assess users’ willingness to share information from wearables, we conducted
an online survey. We were particularly interested in the effect that the representa-
tion levels as well as the different target audiences might have on participants’
willingness to share sensor information. To this end, we presented participants
with 15 different statements, each addressing the participants’ willingness to
share a certain type of information (i.e., five types of sensors and ten types of
derived information). The presentation order of these statements was randomized
between participants. Each statement was further subdivided into four simulta-
neously presented variations — one for each target group (e.g., “I would share
the accelerometer data with a theme-based community.”). Participants rated
their agreement with each of the four variations on a 7-point Likert item (1 =
totally disagree; 7 = totally agree). In addition, we collected information about
participants’ demographic background.

9.2.1 Value Proposition

To motivate users to share private data, we provided a scenario that involved them
in acquiring a new wearable device. Setting up this device required them to install
an application on their mobile phone. Subsequently, users were asked to grant the
application access to their personal data for the purpose of sharing. We presented
the scenario at the beginning of the questionnaire and, thus, it applied to each of
the 15 statements.
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Mean Willingness to Share

Figure 9.1: The mean values for each data presentation averaged across the
four target audiences. The error bars show the standard error.

9.3 Results

Our online survey was completed by 249 participants (127 male, 115 female, 7
did not specify). Their mean age was 34.3 years (SD = 12.2). Our participants
had diverse backgrounds that included: computer science (20%), natural science
(12%), commercial occupations (31%), social science (7%), craft industry (7%)
and not specified (23%). Before analyzing the data, we excluded any participants
whose survey completion time was more than one standard deviation below the
group mean (M = 10.2 minutes, SD = 6.4 minutes). This criterion applied to
four datasets. One more dataset was excluded since completion took longer than
one hour.

For all subsequent analyses, the polarity of the Likert item for the target audience
no one was inverted to correspond to the polarities of the Likert items for the
other three target audiences (i.e., stronger agreement equals higher willingness
to share). As a first step, we analyzed the overall sharing preferences as a
function of representation level (i.e., sensor data vs. derived information) and
the target audience (i.e., no one, person, community, public) using a two-way
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repeated measures ANOVA. For this, we first calculated the mean over all sensor
statements and over all derived information statements for each target group.

Overall, participants are more willing to share derived information (M = 3.3,
SD = 1.6) than to share sensor data (M = 3.1, SD = 1.5), F(1,248) = 22.051,
p < .001, o = .28). With regard to the target audience, the participants pre-
ferred sharing their data with a certain person (M = 4.4, SD = 2.0) followed
by sharing the data with no one (M = 3.7, SD = 2.2), sharing with a theme-
based community (M = 2.9, SD = 1.8), and sharing with everybody (M = 1.9,
SD = 1.5), F(3,744) = 156.740, p < .001, @ = .62). Post-hoc Holm-Bonferroni
corrected ¢ tests reveal statistically significant differences between all four groups,
all p < .001. Further, the effect of representation level is modulated by the size
of the farget audience, F(3,246) = 124.889, p < .001, @ = .62. This interaction
can be mainly attributed to the fact that participants were more likely to share
derived information than sensor data as the target audience decreased.

To explore our findings regarding representation level in more detail, we con-
ducted ten pairwise comparisons, one for each type of sensor and each type
of information derived from that sensor (e.g., motion sensor vs. sleep quality;
two-tailed paired-samples ¢ tests with Holm-Bonferroni correction for the overall
number of ¢ tests performed on each data set). For this, we averaged the Likert
scores across the four different target audiences for each participant and each
statement. Table 9.1 presents detailed statistics for each comparison.

The results reveal a more complex answer pattern as initially suggested by the
ANOVA. Of the ten comparisons, eight are statistically significant, indicating that
participants exhibit differential preferences regarding the sharing of sensor data
vs. derived information. Interestingly, participants indicated a higher willingness
to share sensor data in four of these cases. In contrast, they indicated a higher
willingness to share derived information in four other cases. These findings will
be discussed in the following section.

9.4 Discussion

In this section, we discuss the presented results and present limitations to our
research.
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Sensor Information t p
Sport & Fitness

Accelerometer Active Minutes —3.236 .001x
Accelerometer Step Count —6.900 <.001%
Body Temperature  Training Intensity ~ —8.010 <.001*
Health & Wellbeing

Accelerometer Sleep Quality 3.020 .003x
SCA Sensor Stress 0.037 970
Heart Rate Sensor ~ Health Status 4.450 <.001x
Heart Rate Sensor  Life Expectation 6.424 <.001x%
Context & Activity

Accelerometer Activity —-0.174 .862
Accelerometer Location 2.255 .025x%
Light Sensor Sunlight Exposure  —2.502 .013x%

Table 9.1: The ten Holm-Bonferroni corrected ¢ tests conducted between
sensor data and information data derived from the sensors. Statistically
significant comparisons are marked with *.

9.4.1 Sensor Data vs. Derived Information

The results of our online survey demonstrate that users’ understanding of the
relationship between sensor data and the information derived from these data is
still limited. Primarily, users were not consistent in their willingness to share
their sensor data and information derived from this data in a way that could be
explained by privacy concerns.

If users were purely concerned with data privacy, they should have demonstrated
greater willingness to share derived information rather than sensor data. Each
type of derived information makes use of only a subset of the available sensor
data. In other words, several different types of information can be derived from a
single sensor (e.g., active minutes and step count from the accelerometer). Thus,
the overall amount of disclosed data is less with derived information. Our results
indicate that users exhibit this trend only for Sports & Fitness information. In
contrast, they were more likely to share sensor data compared to the derived
information when it comes to information related to Health & Wellbeing. This
behavior is paradoxical since the derived information on Health & Wellbeing
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can be easily extracted from the sensor data. This finding suggests that users are
currently not fully aware of what information can be extracted from sensor data.

9.4.2 Willingness to Share

Our survey revealed that there is an overall tendency of users to be more liberal
when it comes to sharing derived information as compared to sensor data. Upon
closer inspection of the data, we found that this preference is not uniform across
different types of information. On the one hand, participants’ willingness to share
information regarding Sports & Fitness as well as Sunlight Exposure was higher
than their willingness to share the associated sensor data. On the other hand, their
willingness to share Health & Wellbeing information as well as their location
information was lower than their willingness to share the associated sensor data.
One possible reason for the increased willingness to share derived information
related to Sport & Fitness is that it has mainly positive connotations, such as being
athletic, competitive, or disciplined. Even when actual physical performance is
not extraordinary, the sharing of such information can communicate a willingness
for self-improvement (e.g., increased fitness, weight loss, etc.) and will generally
be met with support and approval by the target audience. In short, there are
usually no negative repercussions to sharing this information. In contrast, derived
information related to Health & Wellbeing or to a person’s location can have
negative consequences, such as disclosing poor health to an employer or one’s
whereabouts to an unknowing spouse. In sum, there is an influence of the type of
derived information on the willingness to share.

9.4.3 Target Groups

The participants of the online survey showed the highest preference for sharing
their data with single persons and lowest preference for sharing with the general
public. Thus, we believe that in general, users are comfortable with sharing their
sensor and information data as long as they retain some control over whom they
are sharing this information with.
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9.4.4 Limitations

The current work is limited in the following ways. First, the present study
addresses only a subset of the sensors that are currently available and a subset of
information that can be derived from these sensors. Second, we chose the types of
derived information based on previous research findings. While for some of these
types of information the extraction from sensor data is reliable or has even been
implemented in commercially available wearables, for others only the general
feasibility of extraction has been shown. Last, the selected target audiences are
just a subset of possible audiences. In particular, users’ ratings might differ
depending on the community to share with (e.g., colleagues vs. soccer club).

9.5 Conclusion

In this chapter, we investigated users’ willingness to share wearable sensor data
and the personal information derived from these data. We report two major
findings. First, users show differential preferences concerning the sharing of raw
sensor data and the information that is derived from these data. We believe that
this reflects a lack of understanding regarding the relationship between these two
representation levels. In particular, users do not seem to be fully aware of the type
of information that can be derived from different sensors. Second, the willingness
to share varies according to the type of derived information. Health & Wellbeing
related information is less readily shared than Sport & Fitness related information,
possibly due to potential negative consequences that sharing may have for the
individual.
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Chapter 1 ()

Design Recommendations

This thesis contains six in-depth application driven research probes informing the
design of mobile interaction using garment-based wearable computing devices.
In this chapter, we present design recommendations distilled from the previous
chapters. These design recommendations are tackling mobile interaction from an
interaction and technological perspective.

10.1 Interaction-Centered Design Recom-
mendations

In this section, we postulate design recommendations regarding the interaction
with garment-based wearable computing devices. Smart garments have the
potential to provide novel ways of interacting with mobile devices implicitly as
well as explicitly.

Design Recommendation 1. Take social acceptability into account when creat-
ing input and output methods.

Smart garments are already used pervasively in myriads of situations. These
situations include public situations such as in restaurants, bar, and malls. When
conducting the evaluation steps of our different research probes it became apparent
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that social acceptability is one of the main criteria for smart garments. Particularly
for mid-air gestures (cf., Chapter 4), social acceptability was a main aspect when
identifying suitable gestures. This was also reflected in the extension of the
user-defined gestures method by using three criteria (i.e., social acceptability,
content visibility, and suitability) instead of one criterion (i.e., suitability — cf.,
Wobbrock et al. [272]) for rating the gestures.

Design Recommendation 2. Allow input on arbitrary locations.

While related work preferred the thighs as input location for touch-based input,
we show that performing input on the forearm is also beneficial. Particularly
while doing sports, using the forearm yields advantages compared to the thighs.
The preferred input area highly depends on the situation. This became apparent
during the exploration of touch-input on the sleeve (cf., Chapter 3). For example,
during meetings in which interacting with the mobile phone is not appropriate,
unobtrusive gesture commands on the thighs could be performed. As soon as
regular garments get substituted by their smart counterparts, the user is capable
of interacting on arbitrary locations. This needs to be taken into account when
creating touch input.

Design Recommendation 3. Create unified input mechanisms.

Both research probes which explore explicit input (cf., Chapters 3 and 4) show
that gesture-based input is a valuable approach of entering commands with smart
garments. However, the necessity to learn gestures is a major drawback that also
became apparent in this work. Learning gestures is the main challenge. Using
a unified set of gestures elicited through a user-defined gesture study reduces
this drawback. When the user is capable of using known gestures even for an
unknown application, the hurdle of learning new gestures to enter commands is
removed.

Design Recommendation 4. Design for enriched tactile feedback.

Current mobile devices such as smart watches and smart phones only use simple
vibro-tactile feedback. This limits application developers to only choose the
duration of feedback. The research probe focusing on garment-based haptic
output (cf., Chapter 8) showed that EMS is a novel and promising way of creating
haptic feedback. EMS is capable of actuating muscles and, thus, uses the users
body as output medium. When designing an interface to allow application
developer to create haptic feedback using EMS, additional aspects need to be
considered. First, the location at which the electrodes are placed needs to be
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taken into account. The feedback can achieve an entirely different implication
on the user depending on the location. Second, the intensity and duration of the
feedback need to be controlled in a way that the resulting feedback achieves its
purpose. This includes a calibration of the EMS device so that the signal is in
a comfortable range but achieves its purpose (i.e., it is capable of actuating a
muscle).

Design Recommendation 5. Combine sensing and actuation hardware.

Currently, most research prototypes of smart garments either focus on sensing or
on actuation. Nevertheless, an OS needs to combine the sensing and actuation
to allow applications to use both generating a more holistic user experience.
Especially for feedback methods such as EMS (cf., Chapter 8) and sensing of
the user‘s physiological signals (cf., Chapter 5) this poses additional challenges.
Textile electrodes could be reused for different sensing and actuating methods.
Since specific sensors and actuators needs to be placed exactly at the same place,
the system needs to communicate with sensors to switch modes and enable or
disable specific parts, for instance, to reduce energy consumption.

Design Recommendation 6. Utilize pre-defined visual output possibilities.

Garment-based visual output differs from visual output as it is known from
mobile phones. Even though the used display in the research probe is pixel-
based (cf., Chapter 6), related work shows that most of the currently developed
displays do not work on a strict pixel-based level. Thus, interfaces need to be
designed in a way to allow the presentation of information instead of pixels. A
garment-based display, for example, could be specialized on physiological signals.
Thus, the display could visualize different heart rates and stress levels. Instead
of developing a visualization on a mobile phone and sending the pixels to the
display, the information could be sent and the display handles the output based
on its capabilities. For example, the display could be shaped like a heart which is
filled based on the heart rate.

10.2 Technology-Centered Design Recom-
mendations

In addition to interaction-centered design recommendations, the presented re-
search probes allowed deriving design recommendation towards mobile platforms.
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These recommendations help to integrate garment-based sensors and actuators
and help application developers as well as end-users.

Design Recommendation 7. Allow fine-grained selection of permissions.

While current wearable systems (e.g., Android Wear) mainly request access at the
sensor level, the user may not be aware of the full extent of the information that
can be derived from these wearable sensors. Our results suggest that users make
fine grained distinctions on the information they want to share (cf., Chapter 9).
Especially when several types of information can be extracted from the same
sensor, users are not willing to share them equally. Thus, users want to choose
based on the information level which enables them to protecting their privacy.
Regarding potential permission systems for wearable sensors, this implies that
users should be presented with a larger number of derived information requests,
which users can individually allow or deny. Particularly, when moving from
wearable gadgets — which need to be additionally attached to the body — to smart
garments, the implicit possibility of measuring information (cf., Chapter 5) may
not be easy to understand for the user.

Design Recommendation 8. Create secure and privacy-aware access to mobile
devices.

Using (garment-based) wearables devices to identify the user yields promising
results. We used auditory output in combination with auditory input to create an
authentication loop (cf., Chapter 7). The signal traveling through the head of the
user changes in a way which allows identifying the user based on the composition
of the head. Thus, the head can be used as a biometric. Besides this probe, smart
garments allow for different types of biometrics such as exploiting the user‘s
physiological signals or gait. In order to allow garments to manage the access to
private data on mobile devices, the communication and connection needs to be
secured.

Design Recommendation 9. Support developers with algorithms.

During the development process of the research probes different algorithms
needed to be implemented. We used the $P algorithm [263] for detecting gestures
(cf., Chapter 3) and used MFCC [60] and k-NN for identifying users (cf., Chap-
ter 7). Even though these algorithms are state of the art and detailed instructions
exist on how to implement them, implementing them on one‘s own is timely
and error-prone. Thus, these algorithms should also be implemented so that
developers simply can apply them to sensor data.
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Design Recommendation 10. Provide developers access on information and
raw data level.

For the most common aspects (e.g., gesture input), algorithms should be applied
automatically to specific input (cf., Chapters 3 and 4). This is the case for implicit
as well as for explicit input. Implicitly sensed physiological signals usually
require normalization based on the actual user in order to be interpretable. For
example, the information on the user‘s current condition is more valuable than
the raw ECG data for most application developers. They are most likely more
interested in the current workload or engagement level. However, for creating
some applications (e.g., medical life logging), the ECG data may also be useful
in some cases. Thus, the system should provide data access on raw data (e.g.,
ECG, EEG) as well as useful derivations (e.g., stress, workload, or engagement).
This is also the case for explicit input. For example, as soon as the user uses a
resistive sensing fabric placed in a location in which gesture input is feasible (e.g.,
sleeve, thighs), the system should listen for specific gestures. The developer may
then be able to receive call-backs (e.g., circle gesture detected) instead of polling
the data. This allows even novice developers to use gesture based input without
the necessity to learn how to detect gestures. Furthermore, many applications
can listen for these call-backs and do not have to run their own algorithms which
is computation intense. In order to achieve that, the system needs to predefine
interfaces which are used by sensor developers as well as application developers.

Design Recommendation 11. Dependency of resources, abstraction, and appli-
cation.

Different resources need to be managed. These resources include the sensors
integrated in the garments, actuators serving as feedback channel to the user,
communication channels, processing of the measured data, applications, and the
generated data itself. These resources rely on each other (e.g., an application
needs a specific sensor). Furthermore, the user needs to be in charge of controlling
it. For privacy reasons the user might not want to grant access to specific resources
for every application. Additionally, abstraction layers need to be integrated so that
the applications can be deployed on different garments since different garments
can provide the same sensing or actuation functionality (e.g., a step counter can
be achieved with smart socks as well as with smart trousers). An application
should run if any garment is available that provides the necessary functionality
and should not depend on an actual type of garment.

Design Recommendation 12. Create an API supporting the variety of wearable
sensors, wearable actuators, and application scenarios.
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Providing an easy to use API is one of the key aspects to gain a huge number
of applications for a system. The API should provide possibilities for beginners
to rapidly develop small application with low complexity but should allow a
low level access to the sensing and actuating possibilities of the garments for
expert developers. In addition to the knowledge usually required for application
development (e.g., on mobile phones), developing effective applications for smart
garments requires more knowledge. Knowing the most efficient algorithms for
activity recognition and gesture spotting as well as interpreting physiological
reactions are only two areas in which the application developer needs knowledge
and experience. Since not all application developers are experts in this areas, the
API should take this tasks off the developer. To allow novice developer to use this
functionality, the API needs to provide off-the-shelf integration of algorithms that
solve these issues and provide simple events, application developer can easily use
(e.g., waving-gesture detected).
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Conceptual Architecture

In this chapter, we apply the proposed design recommendations (cf., Chapter 10)
to a mobile system — called Garment OS. The system is capable of managing
wearable sensors and actuators focusing on supporting application developers
as well as end-users using the developed applications. First, we present the
concept and implementation as an Android service and application. The system
serves as an add-on to Android using the already existing interfaces to wireless
communication technologies and mobile applications. We discuss each developed
entity as well as the interfaces in detail. Second, we introduce physical sensors
and actuators developed in the course of this thesis. Besides single purpose
sensors and actuators, a physical prototype of a sensor-equipped smart shirt is
introduced.
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11.1 Designing a Garment OS

11.1.1 Integration into the End-Users‘ Device Infras-
tructure

The integration into the microcosm of the end-users” devices is a crucial success
criterion. Mobile devices serve as central communication tool, maintain all of the
users‘ data, and are one of the main sources of entertainment. While the benefit
for the mobile device has been discussed in the research probes, the linkage is
beneficial for the smart garment as well. They can exploit the processing, memory,
and connection capabilities the mobile phone offers. Thus, the garments do not
need an additional high-level processing platform which dramatically reduces the
complexity of the electronics on the garment itself.

11.1.2 Separation of Concerns

Developing mobile interactions with smart garments is a challenging task that
need different types of expertise. The process can be grouped into four distinct
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User Experience Design
Interaction Design Application
Application Development
Interface Definition
Information Extraction
Data Analyzation Operating System
Data Preprocessing
Data Persistence
Communication Electronics and Mobile
Electronic Development Electronics
Connecting Electronics and Fabric
Fabric Tailoring

Fabric Production

Figure 11.1: The main expertises necessary to develop a mobile system
utilizing garment based sensor or actuator as input or output.

groups of expertises (cf., Figure 11.1). First, the textile itself needs to be devel-
oped. This includes expertise in producing fabrics and tailoring fabrics into a
piece of garment. In a second step, the preprocessing electronics needs to be de-
veloped which includes developing the custom electronics, connecting the textile
electrode with preprocessing electronic, and communication protocol. Next, the
retrieved data needs to be processed, analyzed, interpreted, and persisted. For
this step, knowledge in computer science and algorithm development is needed.
Last, the gained knowledge on the user needs to be used to create a benefit for
the user. This could be a certain application that is generating a positive impact
on the user’s health or wellbeing, allow easier control of the user’s device, or
adopt system based on the user‘s current activity. All this requires expertise in
interaction design, HCI, and User Experience (UX) design. The OS we propose
in this chapter mainly tackles the third step (cf., Figure 11.1 — green).

11.1.3 Diversity of Sensors and Actuators

The diversity of consumer devices is huge. Myriads of devices exist fulfilling
the same sensing or actuating task. For example, heart rate sensors exist in
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Figure 11.2: Conceptual Architecture of the Garment OS. The actual Gar-
ment OS (green) and its connections to third party applications (blue) and to
sensors and actuators (orange).

form factors of chest straps, wrist worn devices, or integrated into garments. All
of these devices are capable of providing the heart rate among others. An OS
needs to abstract on the actual hardware and provide interfaces for application
developers working independently of the devices.

11.2 Garment OS

The developed Garment OS is mainly divided into three parts (cf., Figure 11.2):
(1) the Garment OS Service, (2) the Settings Application, and (3) the Garment
OS SDK. The main part of the system is the Garment OS service. It handles
the connection of the sensors and actuators via Bluetooth and BLE, persists
the incoming sensor data, and allows sensing data to actuators. The main user
interaction takes place in the Settings Application in which the user can connect
sensors and actuators. The Settings Application connects to the Garment OS SDK
similar to applications developed by application developers via an API.
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11.2.1 Garment OS Service

The main part of the Garment OS Service runs as a service in the background and
handles the sensors, persistence, communication and visualization.

Connectivity

One of the most important parts is the communication between the Garment OS
and the external sensors and actuators. Current mobile phones offer a variety of
different communication methods, most prominently Near Field Communication
(NFC), Wi-Fi, and Bluetooth. Each of these methods has its own advantages and
disadvantages. While Wi-Fi offers the highest data rate, the power consumption is
high as well. Additionally, most mobile phones are already connected to a Wi-Fi
which would force wearable devices to connect to the same network or require an
additional server in between. In contrast, NFC allows only a small distance and
low data rate. Bluetooth as well as BLE have the advantage ob being at the same
time energy-efficient and allowing a high data rate. Thus, we mainly focus on
Bluetooth (using the Serial Port Profile) and BLE connections as the default way
of communication.

Persistence

The amount of data created using garment-based wearable sensors is huge. Thus,
persisting the data for long-term use as well as for analysis using larger time
windows is mandatory. We store all data generated by sensors first on the user’s
mobile phone via text files. These files can be easily accessed and exported to
cloud services as a backup, for example for long term measurements. Further,
these files can be used for analysis by more powerful computing devices later
on. We implemented three cloud services, namely DropbonI, OneDrive??, and
Google Drive. Before uploading the files to the cloud service, they are packed
and encrypted to ensure that the data is secure and the privacy of the user is
preserved.

Driver

Different garment-based sensors have different data formats. Thus, we developed
a driver for each sensor that interprets the received data stream and extracts the

21 http://www.dropbox.com
22 nttps://onedrive.live.com/about/

2 https://drive.google.com
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private boolean initializeDriver () {
try |
mDriver = Class.forName("de.ustutt.vis.wearable.os.sensorDriver."
+ mSensor. getDriverName () ) ;
mReceiver = mDriver.newlnstance () ;
Method sendInitData = mDriver. getMethod ("sendInitData",
OutputStream.class);
sendInitData.invoke (mReceiver, mOutputStream) ;
mEncodeData = mDriver. getMethod ("encodeData", String.class);
} catch (Exception e) {
Log.e(TAG, "Failed to initialize driver: " 4+ e.getLocalizedMessage());
return false;
}
Log.i(TAG, "Driver " + mSensor.getDriverName() + " for sensor "
+ mSensor. getSensorName () + " initialized");
return true;

Listing 11.1: Drivers are dynamically loaded at runtime.

values. Further, each driver implements a number of specific interfaces. These
interfaces define which information can be extracted from a sensor. The heart-rate
interface indicates that a sensor is capable of providing the heart rate. It is, for
example, implemented by the ECGZ driver and by the Polar HR driver. A list
of interfaces can be found in Listing 11.2. In general, drivers are dynamically
loaded at runtime (cf., Listing 11.1). When the driver is successfully loaded,
the sendInitData method is immediately invoked to potentially set up sensor
properties. Then, the encode method is loaded and passed to the thread that
executes the method as soon as new data is received. The encode method encodes
the received data and extracts information.

The drivers used for the actuators are sending strings to the actuators. These
strings can be simple strings (e.g., “heart rate 90”) or serialized matrices of vectors
(e.g., for LED matrix). The simple strings are pre-defined within the Garment OS.

11.2.2 Settings Application

In order to control the Garment OS we developed an Android application that
keeps the user in control (cf., Figure 11.3). In this application the user can manage
preferences such as privacy, persistence, or the used sensors and actuators. The
Settings Application uses a specific API that has additional functionality compared
to the regular application API such as management functions for the sensors and
actuators.
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Manage Sensors and Actuators

Managing the sensors and actuators is one of the main tasks of the Settings
Application. The view presents a list of available devices (i.e., sensors and
actuators). In this view, the user can add new devices (connected via Bluetooth
or BLE), enable existing devices (i.e., start a connection to a Bluetooth device),
remove existing devices, or view device details. The device detail view presents
information about the device (i.e., name, available driver) and a visualization
of the current sensor values. Within the visualization, a graph-based and text-
based visualization is available that can be used to see the raw data of a sensor.
Furthermore, there are text-based visualizations (e.g., the values of each pressure
sensors of a pressure sensor matrix).

Manage Privacy

In the privacy view, the user can select which application is allowed to access
certain devices. The user choses the device based on the information level (cf.,
Design Recommendation 7) requested by an application. For example, the
application requests the user‘s heart rate. In the view, the user is able to select
all available sensors that provide heart rate information such as an ECG device
or a dedicated heart rate chest strap. This also makes sure that the user has all
necessary sensors and actuators for an application (cf., Design Recommendation
11).

Manage Storage

The user can upload the measured sensor data to cloud services or to the local file
system. Further the user can enable and disable the encryption of the data which
is in line with Design Recommendation 8.

11.2.3 Garment OS SDK

The SDK provides an API to connect applications to events (i.e., using callbacks),
to get the current value of sensors (i.e., polling), or to send data to actuators.
Further, it includes a developer module to support novice developers.

Application Programming Interface

We developed an API that can be used by the application developer to create
applications for the garment OS which is in line with Design Recommendation 12.
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Figure 11.3: Three views of the settings application of the Garment OS.
The main menu (left), sensors view (center) and the sensor information view
(right).

An excerpt of the AIDL file of the API calls can be found in Listing 11.2. While
these functions cover a large set of typical sensors and actuators, specific sensors
might need different functions and, thus, the API could need to be extended in
future. In general, the API is divided into two parts. The first part consists of
calls that return the sensor and actuator objects themselves, so that developers
can use the sensor objects to access their values and the actuator objects to send
information to them. The second part has predefined functions returning popular
information such as heart rate and step count (cf., Design Recommendation 9
and 10).

If an application developer wants to create a basic fitness application, he or she
can do the following using the API. After registering the application to the Gar-
ment OS (registerApp(String app) ;), the developer would use the heart
rate and visualize it as a graph. This can easily be done by calling the API func-
tion API_getHeartRate(String app, int numValues) ;. When requiring
a more sophisticated algorithm, the application developer could also use the raw
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ECG values (API_getECG(String app, int numValues) ;) and extract the
heart rate manually. In a second step, the developer could get the object of a re-
sistive sensing matrix sensor (API_getPressureSensor (String app) ;). The
end-user needs to place this sensor into the shoe sole. Then, the developer calls
the API_getPressure(String app, int numValues) function that reports
the values of the sensor. With this, the developer can calculate how the user treads.
This data could be used to apply custom algorithms to count steps or analyze the
pressure distribution of the feet. The above presented simple steps are sufficient
to create a basic application.

11.3 Physical Prototypes

We developed basic sensors and actuators to show the capabilities of the developed
system. These sensor and actuators were also used to explore different interaction
concepts and help realizing novel ideas in workshops conducted within the scope
of this thesis [219, 226].

11.3.1 Visual Output

We developed two different visual outputs. First, the LED matrix displays de-
scribed in Chapter 6. This display allows visualizing 8 x 16 pixels and is con-
nected via Bluetooth. It displays arbitrary content that is sent as an array of RGB
values. Additionally, we used a small 32 x 32 pixel display that is capable of
displaying the heart rate. Depending on the the value sent to the display, the
frequency in which the heart blinks changes.

11.3.2 Heart Rate Sensors

We implemented two types of heart rate sensors. First, we connected an off-
the-shelf Polar chest strap via breakout board to an Arduino. The Arduino
connects via Bluetooth to the Garment OS and sends the heart rate every second.
Furthermore, the ECGZ device is able to provide the heart rate which is extracted
out of the ECG data. The ECGZ is also connected via Bluetooth.
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interface IGarmentAPI {

void registerApp (String app);

void registerCallback (String app, IGarmentCallback cb, int ID);
void unregisterCallback (String app, IGarmentCallback cb, int ID);
PSensor|[] API_getAllSensors (String app);

PSensor [] API_getAllSensorsByType (String app, int sensorType);

PSensor API_getSensorByld (String app, int id);

// Functions for the App to get the default Sensor
PSensor API_getECGSensor(String app);

PSensor API_getHeartRateSensor(String app);
PSensor API_getTemperatureSensor(String app);
PSensor API_getBiolmpedanceSensor(String app);
PSensor API_getBioPotentialSensor(String app);
PSensor API_getPressureSensor(String app);
PSensor API_getPressureMatrixSensor(String app);
PSensor API_getCapacitiveSensor(String app);
PSensor API_getTwoDSensor(String app);

PSensor API_getAccelerometerSensor(String app);
PSensor API_getGPSSensor(String app);

PSensor API_getDefaultSensorByType(String app, int sensortype);

// Functions for the apps to get the sensor values from their default
Sensors
PSensorData API_getECG(String app, int numValues);
PSensorData API_getHeartRate(String app, int numValues);
PSensorData API_getTemperature(String app, int numValues);
PSensorData API_getBiolmpedance(String app, int numValues);
PSensorData API_getBioPotential (String app, int numValues);
PSensorData API_getMaxPressurePoint(String app, int numValues);
PSensorData API_getCapacitiveValues(String app, int numValues);
PSensorData API_get2DPoint(String app, int numValues);
PSensorData API_getLastGesture(String app, int numValues);
PSensorData API_getSkeleton(String app, int numValues);
PSensorData API_getAccelerometer(String app, int numValues);
PSensorData API_getPressure(String app, int numValues);
PSensorData API_getGPS(String app, int numValues
PSensorData API_getDefaultValues(String app, int numValues, int
sensortype);

// Function calls forward to Sensor object

boolean SENSORS_SENSOR_isEnabled ( String app, int sid);

boolean SENSORS_SENSOR_isConnected ( String app, int sid);

boolean SENSORS_SENSOR_connectSensor ( String btMac, String driverName ,
boolean on);

String SENSORS_SENSOR_getDisplayedSensorName ( String app, int sid);
String SENSORS_SENSOR_getDriverName ( String app, int sid);

int SENSORS_SENSOR_getSampleRate ( String app, int sid);

int SENSORS_SENSOR_getSensorType( String app, int sid);

PSensorData SENSORS_SENSOR_getRawData( String app, int sid);

Listing 11.2: Excerpt of the API from the Android AIDL.
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Figure 11.4: First prototype of the SimpleSkin Shirt. The sensors are put out
of their pockets for visibility.

11.3.3 Posture Detection

We further included two types of sensors that are capable of estimating flexion
angles of joints. First, the resistive pressure matrix (cf., Chapter 3) is connected
via BLE. It uses a resolution of 4 x 4 pressure values which are sent in four
packages. As a low resolution alternative, we built a bend sensor out of two
stripes made of conductive fabric with force-resistant fabric in between. The
sensor is connected to an Arduino sending the measured values at 100 Hz using
Bluetooth.

11.3.4 Multipurpose Garment

We combined three sensing modalities within a single shirt, namely capacitive
sensing, resistive sensing, and bio-impedance sensing. We used each of the three
sensing modalities on dedicated locations within the shirt. Since bio-impedance
sensors detect vital parameters of the user (e.g., heart rate), we placed them on
the chest area of the shirt. We placed the capacitive sensor on the wrist area of
the shirt. With this placement, we are able to detect movement of the wrist and
fingers as well as the head (cf., [46, 110]). Lastly, we used resistive sensor arrays
(cf., [282]) at the user*s elbow. It is intended for detecting the angle of the elbow
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and, thus, give insights about the current posture of the user. We integrated all
three sensing modalities in an off-the-shelf long-sleeved shirt (cf., Figure 11.4).
The sensor is fixed by sticking it into the sleeve of the shirt, whereas the sensor
board is using an enclosure attached at the forearm. For the resistive sensor
array, we used a small patch of textile with a 4 x 4 pressure sensors similar to
Zhou et al. [282]. We placed it at the right elbow to explore the feasibility of
posture detection with this sensing modality. Both fit into a pocket at the elbow.
Additionally, for bio-impedance sensing, we glued four fabric cushions inside the
shirt. These cushions are connected to the sensor sitting on the outside of the shirt.
All three control boards are connected via Bluetooth and BLE and continuously
send their data to the developed system architecture.

11.4 Discussion

In this chapter, we discuss a potential architecture for integrating garment-based
wearable computing devices into a mobile device infrastructure. The focus hereby
lies on the specific context of garment-based wearable computing. In particular,
different parts of wearable computing devices and applications are identified.
Interfaces between these parts help separating the concerns for different types of
developer.

The proposed layered architecture is one way to deal with the challenges arising.
Other approaches such as, for example, a service oriented architecture, might
also achieve similar results. Nevertheless, the design recommendations (cf.,
Chapter 10) as well as the design considerations for creating a garment OS (cf.,
Section 11.1) should be taken into account for all different architectures. By
following these recommendations, the architecture will be capable of realizing
the most common applications using the main interaction methods.
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Conclusion

This thesis explores the usage of garment-based wearable computing devices in
the context of mobile interaction. We follow the user-centered design process
extended through a probe-based approach for understanding the requirements.
In the following, we summarize the research contribution, answer the research
question, and point towards future work.

12.1 Summary of Research Contribution

Overall, we provide four main contributions in this thesis. First, we apply and
extend the user-centered design process to design mobile interaction enriched
by garment-based wearable computing. Second, we present research probes
increasing the understanding of how different input and output modalities should
be designed. Third, we provide a set of design recommendations helping to inte-
grate smart garments into the mobile interaction. Fourth, we present a reference
architecture implementing the design recommendations.

12.1.1 User-centered Design

We applied the user-centered design process to the field of wearable computing.
We analyzed how a mobile platform should look like that is capable of enriching
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mobile interaction. In a first step, we charted a design space to understand the
specific context of use and its characteristics. To specify the requirements from
a technical and interaction point of view, we extended the user-centered design
process with a probe-based research approach. By designing, implementing, and
evaluating research probes tackling different input and output possibilities, we
learned fundamental aspects that resulted in design recommendations. In the last
step, we developed and evaluated a mobile platform. This platform is capable
of managing wearable sensors and actuators, supports the developer of mobile
applications, and allows users to manage their privacy preferences.

12.1.2 Garment-based Interaction

The developed research probes provide insights into how the interaction can be
enriched with smart garments. Nowadays mobile devices mainly rely on touch
input on displays and speech input. In contrast, we outline interaction techniques
currently not used for mobile devices. While still technical challenges with
regards to miniaturization and robustness need to be tackled, we show the general
feasibility of the interaction techniques.

Input using Garments

We explored touch-based input on smart garments to control mobile applications.
We thereby showed the benefit of smart garments in comparison to interacting
on the mobile device itself. Due to an increased input surface and non-obtrusion
of the display, user’s are capable to interact faster. In a next step, we used
capacitive sensing to detect mid-air gestures. Integrating the electrodes into the
cuff of a shirt or the wrist strap of a watch, the input can be performed with the
same hand leaving the other hand available for other tasks. While using mid-air
gestures has been explored before, we used the developed prototype to conduct
a gesture elicitation study. We defined three criteria to rank the gestures taking
socially acceptability, visibility, and the user’s ranking into account. The study
revealed insights into how the user wants to perform gestures in contrast to taking
the gestures that are easy to differentiate. One of the key advantages of smart
garments is the closeness to the user‘s body. We show in an automotive use-case
that we can use biosignals to infer on the current level of workload of the driver.
This information can in the future be used to create automotive user interfaces
that react on the condition of the driver and provides a safer driving experience.
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Output using Garments

On the output side, we looked into on-body displays. We fostered the under-
standing of how content can be displayed. We also explored where on the body
these display should be placed at. The results showed that the arms and chest are
preferred for most of the presented application scenarios. Further, we explored
a navigational use-case in more detail by showing the advantages of on-body
displays for showing points of interests located outside the viewport of a mobile
device. The results suggest that such a display can be used as context display
helping to extend the focus display of a smart watch. Using auditory feedback,
we created a novel type of biometric. We used the characteristic frequency re-
sponse the user’s head to identify and authenticate the user. This approach can
be implicitly used to continuously and implicitly authenticate users. Last, we
outline the benefit of EMS as haptic feedback. We show that this technology
allows actuating users in a way that they perform gestures or change their walking
direction. Due to the embodiment, this type of haptic feedback has a more natural
and intense feeling compared to feedback nowadays known from mobile devices.
Another aspect we outline is that using EMS gestures, emotions from a remote
partner can be communicated.

12.1.3 Design Recommendations

We present 12 design recommendations supporting the integration of smart gar-
ments into mobile interaction. These recommendations are grouped into interac-
tion and technology centered. They were distilled from the lessons learned of the
research probes. The interaction centered recommendations support interaction
designers to cope with the special combination of garment based sensors and
actuators and mobile interaction. In contrast, the technology centered recommen-
dations help to design an OS for that copes with the challenges of integrating
garment based sensors and actuators.

12.1.4 Reference Architecture

We provide a technical contribution by showing how an OS should be designed.
We developed a prototypical system called Garment OS. It consists of an Android
service and an Android application. The service handles the connection to the
sensors and actuators, persists and interprets the data, and provides interfaces for
application developers. The application is used to control the service, add and



174 12 Conclusion

remove sensors and actuators, and manage the user‘s privacy preferences. Mobile
application developers can access the information extracted from the sensors and
send information back to the user using actuators.

12.1.5 Limitations

We use research probes throughout this thesis to explore different input and
output possibilities. By using this methodology, we achieved (1) an in-depth view
into all parts of the development process of garment-based wearable computer
and (2) a variety of different input and output possibilities by selecting specific
probes. However, we focused on the interaction and, thus, did use prototypes to
as tools. These prototypes have fundamental differences compared to the envision
products in the future. For example, the GestureSleeve presented in Chapter 3
used additional Velcro layers to be adjustable and, thus, usable for different users
in the user study. For other prototypes, we used non-garment-based hardware.
The EMS electrodes used in Chapter 8 are off-the-shelf products that need to be
attached to the user’s body. All these differences might impact the user studies
and, thus, the results. Nevertheless, the gained insights of each research probe
should be valid even when changing the used technologies.

12.2 Research Questions

In the beginning of this thesis, we stated five research questions. During the
course of the thesis, we gained knowledge to answer the questions as follows.

RQI: How to structure a design space for (enriching) mobile inter-
action?

Through an in-depth analysis of related literature, we charted a design space.
The design space allows structuring wearable computing applications particularly
with taking mobile interaction into account. We identified the most important
dimensions of the design space, namely, the location on the body and the type
of interaction. All research prototypes developed in the course of this thesis are
classified using the design space as examples (cf., Chapter 2).
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RQ2: How to realize different input methods using garment based
sensors?

To analyze the different input methods we developed three research probes. We
covered with these research probes explicit touch and gesture-based input as
well as implicit input through biosignals. Touch-enabled fabric offers similar
possibilities as touch screens. We showed that touch on the sleeve of a shirt
provides benefit compared to direct input on mobile devices by overcoming issues
such as occlusion and the limited input space (cf., Chapter 3). Additionally, we
presented a gesture set for mid-air gestures (cf., Chapter 4). These gestures can be
used to control a mobile device. Both input modalities can be combined using the
same fabric. This eases up the production process and enables mass-producibility.

RQ3: How to realize output on smart garments?

Tackling the output side of smart garments, we present research probes addressing
the most common output modalities. For visual output, we gained knowledge on
the placing behavior which depends on the purpose of the display. Particularly,
extending the output space of smart watches showed promising results. The re-
search probe focusing on auditory output shows that by creating a loop with input
and output, novel application scenarios can be realized. We further investigates
EMS as novel way of providing haptic feedback. Due to the closeness to the
body, smart garments compensate some of the drawbacks of EMS. In addition,
we show that the feedback is more versatile and rich compared to regular haptic
feedback in the mobile domain.

RQ4: How to integrate sensors and actuators in mobile platforms?

We used different types of hardware to develop the research probes (i.e., differ-
ent Arduinos, FPGAs). Each of them having its own type of transmitted data,
sampling frequencies, and methods of connection. Looking at current mobile
devices, Bluetooth emerges as one of the key technologies for wirelessly attaching
devices. We identified Bluetooth as common interface for attaching sensors and
actuators to mobile devices. We developed an Garment OS that manages the
communication with the devices and provides access through an API. The API
allows easy access to the sensors and actuators on a software level.
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RQ5: How to represent sensor data for Application Developers and
End-users?

Representing data is a core challenge in using garment-based wearable sensors.
The raw data extracted from a sensor is mainly designed to achieve a high
data throughput. Thus, extracting information out of this data stream can be a
challenging task. Application developers as well as end-users need to understand
what information is available for the application. We identified two core levels
at which the data can be accessed. After the the raw data is preprocessed by
removing communication overhead, transforming binary data, and chunking
the received data to actual values, the raw data is transformed to a data level.
This is particularly important for application developers which want to run own
algorithms or extract exotic information. However, we showed that end-users
do not understand what information is actually extracted from the sensor (cf.,
Chapter 9). Thus, we proposed using a second layer, namely, information layer.
In this layer the actual information is provided. Besides allowing the end-user
to understand the privacy implications of allowing application accessing the
data, this also supports the application developer. As we showed in the API,
providing access on the information level helps application developers to use the
most common information without the necessity of implementing algorithms on
their own. Detecting gestures from touch input, calculating steps from different
pressure sensors, and extracting the heart-rate from an ECG signal are just three
examples in which such an information level supports the application developer.

12.3 Future Work

This thesis provides a common ground for future research in the area of enriching
mobile interaction and interaction with smart garments. However, during the
course of this thesis, several additional research challenges have arisen which are
beyond the scope of this thesis. This section explains these research challenges in
detail.

12.3.1 Smart Garment as Enabler for Interaction in
Public Space

As discussed in this thesis, the input possibilities of smart garments is manifold.
Explicit gesture and touch input as well as implicit input offer a rich set of input
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techniques. However, the visual output possibilities are rather limited. Textile
displays are offering low resolution output which is capable of covering many
application scenarios. Combining the input possibilities of smart garments with
the recent advent of public displays, this drawback can be overcome. Displays in
public space can be exploited as an additional output mean. The user can walk up
the display and interact with it using input via smart garments [220]. For example,
gesture based input has been widely used in public display research [10]. The
challenge when deploying displays in the wild is the usage of camera systems
such as the Kinect which is used for the research prototypes. Smart garments, for
example, allow detecting gestures with strain sensor in long-sleeved shirts. Future
research needs to explore how an infrastructure needs to be designed to enable
such an interaction. How can user‘s be identified and their performed input be
understood as input for the public display.

12.3.2 Evaluation of Wearable Computing Devices in
the Wild

Current evaluation methods for wearable devices such as smart garments are
mainly limited to feasibility studies in the lab. While these evaluations include a
high internal validity and show the general feasibility of the envisioned devices,
moving from the lab to field is the necessary next step. In this thesis, a first step
towards this goal is made. We investigate smart garments in studies at the boarder
between lab and field. However, there is still room for further increasing the
ecologic validity. A first step would be to deploy several wearable computing
devices in a long-term deployment. The way user‘s interact with these systems
will show how usable and utilitarian wearable devices actually are. In a next
step, the evaluation needs to be pushed from a field evaluation into the wild.
With the recent advent of evaluations through deployed systems [108], novel
methods for conducting evaluations received considerable attention. Transferring
this methodology to wearable computing devices will allow gaining more in
depth knowledge of how actual user‘s interact with wearable devices in realistic
scenarios.
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12.3.3 User Identification through Wearable Com-
puter

In the auditory feedback research probe (cf., Chapter 7), we showed how user‘s
can be identified and authenticated by looking into their body [233]. In this
case, we used the changes in an audio signals send through the user‘s head
to differentiate users. We conducted a very controlled study. Aspects such as
the influence of background noise, different audio cues (e.g., music files), or
microphones and speakers capable of recording and producing audio signals in
higher quality need to be investigated in more depth.

The presented approach can also be adopted to several other signals and locations.
Identifying further body parts such as the wrist or chest may provide similar
unique responses as we showed using the user‘s head. Additionally, other signals
such as generated through EMS devices can be used to develop similar systems.
As discussed in the Chapter 8, the response of the user‘s muscles highly differs
between users. Exploring whether this difference can be served as a biometric
will open up myriads of novel research challenges.

12.4 Concluding Remarks

This thesis investigates how garment based wearable computing devices can be
used to enrich the interaction with mobile devices. It addresses fundamental
challenges designers and developers of such system will face in the future. When
we reach the point where smart garments that offer similar wearability, durability,
and quality for about the same price as their non-smart counterparts, smart
garments will replace their non-smart counterparts. We see the first steps made
when Google started exploring Project Jacquard®* and Ralph Lauren announced
their tech shirt?. However, development has not progressed far enough to
substitute every garment but, eventually, research will be able to meet market
requirements with regard to price and quality. From then on, understanding how
this development influences the interaction and system design of mobile devices
becomes crucial.

2 nttps://uwa.google.com/atap/project- jacquard/

% nttp://wuw.ralphlauren.com/product/index. jsp?productId=69917696
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¢ Consent form used for all user study involving EMS technology.

¢ Questionnaire to investigate placement and visualization possibilities for
on-body displays.
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Human Computer Interaction Group (MCI), VIS
University of Stuttgart
Germany

Prof. Dr. Albrecht Schmidt

Consent Form

DESCRIPTION: You are invited to participate in a research study on finding out if certain
muscles can be used to influence the human balance if actuated by EMS (Electronic
Muscle Stimulation).

IMPORTANT! You can not participate in the study under the following circumstances:
¢ High fever
¢ Cardiac Arrhythmia or other heart conditions
e Seizure disorder (e.g., epilepsy)
¢ Pregnancy

e Cancer
* After operations where intensified muscle contractions can disturb the healing
process

e Skin diseases
* After alcohol consumption

TIME INVOLVEMENT: Your participation will take approximately 60 minutes.

DATA COLLECTION: For this study we will actuate certain muscle groups using ems and
record the center of gravity as well as the weight distribution. Also we will measure the
circumference of the thighs, lower legs and arms. We may take some pictures of the study
setup. Also, you will need to fill in questionnaires.

RISKS AND BENEFITS: No risk associated with this study. The collected data is securely
stored. We do guarantee no data misuse and privacy is completely preserved. Your decision
whether or not to participate in this study will not affect your grade in school. You can decide
whether the recorded pictures can be published or not.

PARTICIPANT’S RIGHTS: If you have read this form and have decided to participate in
this project, please understand your participation is voluntary and you have the right to
withdraw your consent or discontinue participation at any time without penalty or
loss of benefits to which you are otherwise entitled. The alternative is not to
participate. You have the right to refuse to answer particular questions. The results of
this research study may be presented at scientific or professional meetings or published in
scientific journals. Your identity is not disclosed unless we directly inform and ask for your
permission.

CONTACT INFORMATION: If you have any questions, concerns or complaints about this
research, its procedures, risks and benefits, contact following persons:

Pascal Knierim (pascal.knierim@yvis.uni-stuttgart.de)

Stefan Schneegal (stefan.schneegass@vis.uni-stuttgart.de)
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Human Computer Interaction Group (MCI), VIS
University of Stuttgart
Germany

Prof. Dr. Albrecht Schmidt

PICTURE DATA: (select one)
O Please do not publish the pictures recorded during my participation of study.
O | allow you to publish the pictures recorded during my participation of study.
O | allow you to publish the anonymous pictures recorded during my participation of
study.

By signing this document | confirm that | agree to the terms and conditions.

Name: Signature, Date:
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Questionnaire B.1 PID___

Use-Case 1: Heartrate Visualization
The heartrate is visualized for example in context of fitness trackers.

Where on the body should the display be placed to display this information? (Please mark
below)

For yourself For others

How should this information be displayed (16x8 display)?

Additional Comments:






Stefan Schneegass
Enriching Mobile Interaction with Garment-Based
Wearable Computing Devices

Wearable computing is on the brink of moving from research to
mainstream. The first simple products, such as fithess wristbands and
smart watches, hit the mass market and achieved a considerable
market penetration. However, the number and versatility of research
prototypes in the field of wearable computing is far beyond the
available devices on the market. Particularly, smart garments as a
specific type of wearable computer have high potential to change the
way we interact with computing systems. Due to the proximity to the
user's body, smart garments allow to unobtrusively sense implicit and
explicit user input. Garments are capable of sensing physiological
information, detecting touch input, and recognizing the movement of the
user.

The core question of this thesis is how garment-based wearable
computing devices can enrich mobile Interaction. Interaction centered
and technology centered challenges are tackled by exploring six
different research probes. These probes cover different input and
output methodologies and lay the foundation for a set of twelve design
recommendations. Based on these design recommendations, a
reference architecture is presented easing up the integration of
applications and hardware through an operating system layer.

This thesis broadens the understanding of how garment-based
wearable computing devices can enrich mobile interaction. It outlines
challenges and opportunities on an interaction and technological level.
The unique characteristics of smart garments make them a promising
technology for making the next step in mobile interaction.



	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	List of Acronyms
	I Introduction and Background
	Introduction
	Research Questions
	Methodology
	Understand and Specify the Context of Use
	Specify User and Institutional Requirements
	Produce Design Solution
	Evaluate Designs
	Ethics

	Summary of Research Contributions
	Research Context
	Research Prototypes
	Thesis Outline


	Wearable Computing and Smart Garments
	Wearable Computing, Smart Garments, and Smart Textiles
	History of Wearable Computing
	The first (electrical) Wearable Computer
	Smart Garments and Smart Textiles

	Production of Smart Garments
	Fabric Production
	Sensors and Actuators
	Contacting and Integration
	Communication and Operating Systems

	Evaluation of Smart Textiles and their Applications
	Asking and Observing Users
	Laboratory Study
	Field Studies and Research through Deployed Systems

	Design Space for Effectively Utilizing the Human Body
	Body Location
	Input and Output
	Design Space Visualization

	Current Challenges for Smart Garment
	Integration
	Privacy and Control
	User-Centered Evaluations



	II Research Probes: Garments for Input
	Touch Input
	Related Work
	Hardware Prototype: The GestureSleeve
	Sensor Placement
	Gesture Detection

	Evaluation: Sports Tracking Application
	Sports Tracking Application
	Participants and Procedure
	Results

	Discussion
	Lessons Learned
	Conclusion

	Mid-Air Gestures
	Related Work
	Hardware Prototype: The GestureWatch
	Capacitive Sensing
	Wearability

	Eliciting Gestures
	Task Definition
	Participants and Procedure
	Results

	Evaluation of the Elicited Gestures
	Participants and Procedure
	Resulting Gestures

	Evaluation: Controlling Smart Watch Applications
	Participants and Procedure
	Data Analysis
	Applications

	Discussion
	Lessons Learned
	Conclusion

	Physiological Signals
	Related Work
	Electrocardiography
	Skin Conductance Activity
	Electroencephalography

	Assessing Users Physiological Signals
	User Study
	Results
	Discussion

	Application Scenarios
	Implicit Audience Sensing
	Adaptive In-Car User Interfaces

	Lessons Learned
	Conclusion


	III Research Probes: Garments for Output
	Visual Output
	Related Work
	On-body Display Technologies
	Wearable Display Applications
	Focus and Context Screens

	Hardware Prototype: WearableDisplay
	Design Space for On-Body Displays
	User
	Context & Application
	Interaction
	Technology

	Exploring Location and Visualizations
	Participants and Procedure
	Results

	Use Case: Navigation
	Prototype
	Participants and Procedure
	Results

	Discussion
	Lessons Learned
	Conclusion

	Auditory Authentication
	Related Work
	Hardware Prototype: The SkullConduct System
	Recognition Pipeline
	Application Scenarios

	Evaluation: User Recognition
	Data Collection
	Analysis
	Influence of Different Frequency Bands
	Influence of Audio Length

	Discussion
	Lessons Learned
	Conclusion

	Haptic Output
	Related Work
	Hardware Prototype: EMS Actuator
	User Study: Communicating Emotions
	Linking Emotions and Movement
	Study Design
	Participants and Procedure
	Results
	Discussion

	Application Scenarios
	Controlling Walking
	Performing Gestures
	Ethical Implications

	Lessons Learned
	Conclusion


	IV System Design
	Understanding Users` Perceived Privacy
	Representation Levels
	Target Audience

	Survey on Sharing Behavior
	Value Proposition

	Results
	Discussion
	Sensor Data vs. Derived Information
	Willingness to Share
	Target Groups
	Limitations

	Conclusion

	Design Recommendations
	Interaction-Centered Design Recommendations
	Technology-Centered Design Recommendations

	Conceptual Architecture
	Designing a Garment OS
	Integration into the End-Users` Device Infrastructure
	Separation of Concerns
	Diversity of Sensors and Actuators

	Garment OS
	Garment OS Service
	Settings Application
	Garment OS SDK

	Physical Prototypes
	Visual Output
	Heart Rate Sensors
	Posture Detection
	Multipurpose Garment

	Discussion


	V Conclusion and Future Work
	Conclusion
	Summary of Research Contribution
	User-centered Design
	Garment-based Interaction
	Design Recommendations
	Reference Architecture
	Limitations

	Research Questions
	Future Work
	Smart Garment as Enabler for Interaction in Public Space
	Evaluation of Wearable Computing Devices in the Wild
	User Identification through Wearable Computer

	Concluding Remarks


	VI Bibliography
	Bibliography

	VII Appendix
	Additional User Study Documents


