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Abstract: This paper presents the analysis and a methodology for monitoring asparagus crops from
remote sensing observations in a tropical region, where the local climatological conditions allow
farmers to grow two production cycles per year. We used the freely available dual-polarisation GRD
data provided by the Sentinel-1 satellite, temperature from a ground station and ground truth from
January to August of 2019 to perform the analysis. We showed how particularly the VH polarisation
can be used for monitoring the canopy formation, density and the growth rate, revealing connections
with temperature. We also present a multi-output machine learning regression algorithm trained on a
rich spatio-temporal dataset in which each output estimates the number of asparagus stems that are
present in each of the pre-defined crop phenological stages. We tested several scenarios that evaluated
the importance of each input data source and feature, with results that showed that the methodology
was able to retrieve the number of asparagus stems in each crop stage when using information
about starting date and temperature as predictors with coefficients of determination (R2) between
0.84 and 0.86 and root mean squared error (RMSE) between 2.9 and 2.7. For the multitemporal SAR
scenario, results showed a maximum R2 of 0.87 when using up to 5 images as input and an RMSE
that maintains approximately the same values as the number of images increased. This suggests
that for the conditions evaluated in this paper, the use of multitemporal SAR data only improved
mildly the retrieval when the season start date and accumulated temperature are used to complement
the backscatter.

Keywords: tropical agricultural monitoring; canopy development analysis; phenology retrieval;
Sentinel-1; multitemporal SAR; multi-task machine learning

1. Introduction

Due to the recent and future growth of freely available satellite remote sensing data, there is an
opportunity to implement near real time agricultural monitoring systems to increase yield and crop
management efficiency. This is based on informed decision making with information derived fully or
partially from satellite sensors.

Such a system is particularly important in tropical regions which highly contribute to the global
food production but for many crops with considerably lower yields per hectare compared with
temperate regions [1]. It is also essential given the necessity in the tropics to preserve natural
ecosystems by increasing yield in existing crop areas rather than transforming tropical forests to
low yield croplands [1]. A distinctive operational characteristic in tropical and subtropical regions for
several crop types is the uninterrupted production cycles, with cultivation of more than one cycle per
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year. Each of these production cycles or campaigns may be under slightly different meteorological
conditions due to a “soft seasonality”, e.g., mild winters, thus modifying to a certain extent the
crop growth rate and structure (as will be shown later in this paper). This leads to the different
responses captured by the satellites at each campaign. This paper considers the above-mentioned
conditions for agricultural monitoring, particularly analysing the case of asparagus crops in Peru.
Asparagus officinalis L. is a key crop for the country’s agricultural exports, being the largest exporter in
the world, the second largest producer after China [2] and an important source of job [3].

In this context, crop phenology has been used as a tool to measure crop status at any given time
during the cultivation period and to measure the development rate relative to previous campaigns
or relative to neighbour plots [4]. Accordingly, monitoring phenological evolution and accurately
knowing crop status and development rate, the farmers can strategically plan the management.

Given the importance of monitoring phenology during the campaign without interruptions,
synthetic aperture radar (SAR) emerges as a potential technology for this task. The capabilities to
acquire images at day and night and under nearly all-weather conditions of SAR satellites offer
significant opportunities for systematic monitoring regardless of cloud coverage [5]. On the other
hand, to consider the impact of different climatological conditions on each campaign of a year,
temperature records can be analysed to support the crop development monitoring.

1.1. Related Work

An initial step for crop monitoring from SAR data is to understand the time series evolution of the
features derived from sensor observations. To this end, ground truth surveys are used as a reference
and for validation, correlating measurements in the field with the SAR response.

In the case of Quad-polarimetric data, multi-temporal polarimetric SAR (PolSAR) analysis is
used to characterise a crop signature in terms of evolution of scattering mechanisms along the season
identifying key moments [6–8].

Recently, more attention is being given to dual polarimetric systems given the free access to these
data (Sentinel-1). Research to understand the interaction of Sentinel-1 signal response to crop evolution
has been presented for several crop types. The authors found sensitivity of the VH, VV backscatter
and the ratio between the two polarisations with different crop biophysical parameters [9–12].

For the case of crop phenology retrieval, once the temporal evolution of the SAR indices has been
analysed, an initial approach is to use the polarimetric features as inputs to a statistical or a machine
learning model. These models are trained with SAR and ground truth from past campaigns [13,14].

Other authors have proposed the use of distance measures to compare the covariance matrix of a
given SAR resolution cell inside a parcel with a set of previously characterised covariance matrices that
are associated with a phenological stage [15]. The aim is to find the most similar predefined covariance
matrix and assign the pixel under analysis, the crop stage with the most similar covariance matrix.

However, these approaches consider the phenology retrieval as a classification application,
aiming at classifying the current parcel state as one of the previously defined pool of possible states
(e.g., emergence, vegetative stage, maturation, etc.). This generates inconveniences selecting the
appropriate boundaries for each stage in a process that may be subjective, often selecting ones (biasing)
that the algorithm can actually identify. On the other hand, if standard phenological scales are used,
such as the BBCH scale [16], the algorithm may not be able to disentangle every stage since the
SAR response may not be sensitive to all these agronomic processes. Likewise, previous approaches
ignore the fact that it is possible to have simultaneously more than a single stage in a parcel due to
different plant growth rates and the fact that in the real evolution adjacent stages overlap (e.g., a parcel
with some plants in flowering and some in fructification simultaneously). These approaches predict
current phenology based on a single SAR image without considering the multi-temporal information.
This leads for instance to stages at the beginning of the season being miss-classified by the model with
final crop stages as they may have similar SAR response, as occurred in [13,17].
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To overcome this, a hidden Markov model technique was proposed in [18,19] so that a prediction
of the current stage is dependant on the previous stage, following a Markov property. However,
the problem of subjectively selecting the boundaries for the crop stages still remains. Other authors
have proposed a different approach whereby they consider the crop evolution as a time dependant
dynamical process that follows a trajectory governed by the crop underlying dynamics [20–22].
The aim of these methodologies is to retrieve the crop state in that trajectory when a new SAR
image is analysed. However, these last methods have only been proven using polarimetric SAR data,
which provides a much richer amount of information to characterise a target compared to the freely
available data from Sentinel-1. Studies associated with the potential of space borne radar remote
sensing concerning asparagus fields have been presented in [23–27], although all of them focus on the
crop type classification problem rather than in the analysis of individual crop stages as we present
in this paper. In [23–25], C-band ENVISAR ASAR satellite data in VH and VV polarisations are used
to identify land use of two agricultural regions, with asparagus being one of several crop types to
identify. However, neither description of the crop stages nor the backscatter response over time is
presented. In [26], time series of HH and VV polarisations of X-band data from TerraSAR-X satellite
are reported. This study aims to evaluate the potential for classification of agricultural areas by
analysing the crop signature of several crop types. Among them, 12 parcels of asparagus are studied
and both the HH and the VV polarisations using X-band data are presented. The backscatter seems to
increase during the period of vegetation growth, with a widespread distribution among the 12 parcels.
This increase happens during the summer similar to several other crop types which was identified as an
inconvenient to classify asparagus. This same effect was reported in [23,24], where asparagus response
is particularly similar to sugar beet. In [27], among other 13 crop types, the multitemporal response of
asparagus was evaluated to use the crop signature for agricultural fields classification purposes using
Sentinel-1 data. The authors report an increase of the VH backscatter during the periods of vegetation
growth. Interestingly, the authors also report a more constant backscatter response during the whole
cultivation period using the VV polarisation. This is aligned to what is presented in Section 2.6.1 of
this paper and in contrast to [26] although it has to be highlighted that in [26], X-band data was used.
The authors, also report low accuracies for classifying asparagus due to similarities to summer crop
types as reported in [23,24].

Please note that none of the reported work in asparagus focuses on monitoring growth
development or stages classification. Also note that since the climatological conditions in Peru are
different to [23–27], direct comparisons are not straight forward. For instance, in [27], authors report
that the agricultural season length is more than a year, which is not the case for our test site. Similarly,
the crop signature is inherently different since the senescence periods for crops located in temperate
regions are not present in our test site.

1.2. Objectives of the Study

The main objectives of this paper are the following:

1. To analyse the SAR response to the asparagus crop evolution.
2. To present examples of how the seasonal climatological conditions influence the crop development

in the test site (tropical conditions).
3. To present the implementation of a data-driven methodology that captures the recurrent patterns

in the SAR response and the temperature to provide an approximation of the crop development
at every new SAR acquisition. It consists of a Multi-output machine learning regression algorithm
in which each output estimates the number of asparagus stems that are present in each of the
predefined phenological stages at a given date.
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2. Materials and Methods

2.1. Asparagus Crop Development and Production Cycles

In this section, we briefly introduce the asparagus crop and the main phases of development. For a
more detailed description of the asparagus growth and physiology the reader is directed to [28,29].
Asparagus is a vegetable perennial crop which once is in a productive phase, re-emerges after harvest
without the need to re-plant it. The cultivation process begins by transplanting to the fields the
seedlings grown in a nursery. The roots system below ground, also known as the crown, and the
fern above ground begin to grow and after approximately 2 years of development and establishment,
the ferns are cut, the asparagus spears emerge and the crop is lightly harvested for the first time [30,31].

After the first harvest, at the emergence crop stage, the next stems that emerge from the buds
of the crown develop into a fern as shown in Figure 1. The asparagus stems grow vertically and
will start producing the horizontal branches in a crop stage known as ramification. From this
point, the cladophylls (leaf-like structures in the branches) will develop during the aperture stage.
The aggregation of several consecutive individual asparagus stems that emerged from the root system,
with their respective side branches and cladophylls compose the fern.

Subsequently, the fern thickens and covers the sandy soil intercepting light and beginning the
production of carbohydrates which are sent down via translocation to replenish the roots system and
be stored [29]. The fern development is followed by the short appearance of small yellow flowers and
a maturation period, which corresponds to the longest crop stage. In total, each production cycle takes
between four to five months before the crop is ready to be harvested.

During harvest, the spears that emerge from the buds are harvested after reaching approximately
20 cm until a minimum level of carbohydrates depletion in the root system. At this point, the new
asparagus stems are left to develop and grow again to begin a new production cycle, in a life cycle that
can last up to 15 years [30,31].

The crop stages in Figure 1 are the same stages that are recorded during the ground surveys and
that are estimated in Section 2.7.

Figure 1. Asparagus crop growth and production cycles. Every season after harvest, new asparagus
stems emerge to begin a new production cycle
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2.2. Test Site

The asparagus fields (Figure 2) are located in the north of Peru in a dry coastal zone with sandy
soil, divided in plots of an average of two hectares. We considered approximately 442 parcels in total,
where timing and management practices such as starting and harvest dates as well as application of
nutrients and pesticides among other activities, are performed simultaneously in groups of around
four to six neighbouring parcels.

Figure 2. Test site. (Left): Sentinel 2 RGB image acquired the 29/09/2018. (Center): Sentinel-1 RGB
image acquired the 30/09/2018. (Right): Location of test site in Peru

2.3. Climatological Conditions

The temperature and solar radiation present the maximum variability in the local test site,
following the seasons of the southern hemisphere with a maximum peak of temperature around
mid-February (summer) reaching up to 26 degrees Celsius and lowest values in August (winter) with
temperatures of around 15 degrees (Figure 3).

Since the winter never reaches extremely low temperatures, the asparagus crop does not reach
a dormant stage which permits growers to have two productive cycles per year. However, since the
conditions along the year are not exactly the same, there may be a difference in the crop evolution of
the same plot in two consecutive productive cycles, in response to these changing conditions. This is
an important factor that will be analysed in Section 2.6.2.

The rainfall levels are extremely low given the desert conditions where the parcels are located
with an average of less than 1 mm per month.

2.4. Ground Truth

A survey campaign to collect asparagus phenological information was carried over a period
of 8 months, from January to August of 2019, for 442 asparagus parcels. For each parcel evaluated,
field surveyors randomly selected two transects to assess, with each transect being a metre in length.
Within each transect the surveyors identified the phenological stage of each stem and counted the
total number of stems in each stage present. Results for the two transects were averaged and recorded.
In this way, the proportion of stems per parcel in any of the phenological stages identified in Figure 1
can be recorded, and a proxy for the evolution of crop stage over time can be established. The average
temporal evolution of asparagus stems in each crop stage is presented in Figure 4 for all the production
cycles covered in the ground truth. Please note that after the asparagus stems have emerged from the
ground, the total number of stems remains approximately the same throughout the season while the
number of stems present at each stage changes as the crop develops.
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Figure 3. Average temperature and solar radiation conditions in the test site.

Figure 4. Number of asparagus stems in each of the crop stages. The solid lines represent the averages
of all the ground measurements collected in 442 plots during the first 8 months of 2019. The shaded
regions represent plus and minus two standard deviations.

An average of 36 surveys were performed per parcel during the eight months of the ground data
collection, i.e, approximately one survey per week per parcel. However, given the complexity of the
operation not all surveys were carried on systematically, e.g., exactly every week, but rather with
irregular sampling. Also, note that given the climatological conditions as explained in the previous
section, it is possible to grow up to two production cycles per year independently of the starting month
and consequently the resulting surveys contain information to characterise multiple times an entire
asparagus campaign or season. This enable us to create a rich spatio-temporal dataset to characterise
the crop development.
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2.5. Sar Datasets

The Sentinel-1 dataset used for the analysis was built using the Level-1 Ground Range Detected
(GRD) and the Interferometric Wide swath (IW) acquisition mode, with VV and VH polarisation
channels. The data was collected using the Google Earth Engine (GEE) platform [32] in which the data
pre-processing steps include applying orbit file, GRD border noise removal, thermal noise removal,
Radiometric calibration and terrain correction. After obtaining the data from the GEE, a 3 × 3 boxcar
averaging window was used as speckle filter.

Table 1 shows the three acquisition geometries available for the test site with the corresponding
average incidence angles and acquisition times, including the orbit 142 in descending pass direction
and the orbits 18 and 91 in ascending pass. Using the three available orbits the revisit frequency
corresponds to between 3 and 5 days while it is 12 days using a single incidence angle.

Table 1. Sentinel-1 acquisition geometries available in the test site

Pass Direction Relative Orbit Inc. Angle Acquisition Time

Descending 142 35 10:54

Ascending 18 31 23:34

Ascending 91 45 23:42

In order to analyse the long-term behaviour of the backscatter signal (e.g., seasonality), a time
series of nearly two years was built from Sentinel-1 data over a typical parcel of asparagus where the
ground truth is known and which includes four consecutive agricultural seasons. For the methodology
to monitor asparagus development presented in Section 2.7 data from January to August of 2019 was
used for the 442 plots when ground truth is available. Figure 5 shows the average temporal evolution
of the backscatter for all the production cycles covered in the ground truth. The crop characteristics that
cause the SAR observations in Figure 5 will be further explained in Section 2.6.1. Please note that the
VH polarisation presents more significant changes through time and with less statistical variance than
the VV polarisation as described in Section 2.6.1. Also note that after the day 125 there is a significant
increase in the variance of the response. This is due to different cultivation period lengths as will be
explained in Section 2.6.2. Figure 7 shows the VH backscatter profile with the corresponding ground
truth of a typical asparagus parcel over time, covering 4 consecutive production cycles.

2.6. Methodology for Estimating Asparagus Stems Per Stage

The methodology developed in the present analysis consists of three main parts:
(1) Understanding of Sentinel-1 signal interaction and sensitivity with the asparagus temporal
evolution, (2) Analysis of the impact that the local climatological conditions, particularly the
temperature, have over the canopy development and (3) the multi-output machine learning regression
model training and use to estimate the number of asparagus stems in the phenological stages of
Figure 1.
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Figure 5. Sentinel-1 temporal backscatter evolution. This chart shows the mean backscatter plus/minus
two standard deviations of 442 parcels backscatter time series.

2.6.1. Sar Sensitivity to Crop Evolution

Due to the mild winters with minimum temperatures of around 16 degrees Celsius, the asparagus
crop does not reach a dormant stage naturally and there is not a harvest time forced by the
climatological conditions. This allows growers to plan the starting and ending dates of the season
(occasionally for individual parcels) so that is possible to have more than one production cycles per
year (normally two) and if required, adjust to the market needs and contractual planning. Given this,
at a single SAR acquisition there are plots at almost all possible crop stages.

The photographs presented in Figure 6 were taken the same date as a SAR acquisition
(28/05/2019). Based on this, it is possible to locate in the time series of each parcel where the picture
was taken, what the SAR response to the crop is and compare it with the crop status recorded in the
footage. Please note that all the images were taken the same date to parcels at different growth stages,
a possibility enabled by the local climatological conditions. Since the parcels are at different crop
stages, the backscatter is also different as shown in the VH polarisation time series of Figure 6, in which
the lowest backscatter of the season is present during the harvest periods given that the fern has been
mechanically removed and the new emerging spears are being harvested (Figure 6, images 1 and 2).
At this point, the SAR signal interacts only with the soil presumably with a predominant surface
scattering mechanism.

The SAR response to these conditions has been shown to depend on the dielectric and geometric
properties of the soil, e.g., surface moisture and roughness [33,34]. In the test site, the moisture is mainly
dependant on the irrigation since the rainfall levels are extremely low given the desert conditions
(average of less than 1 mm per month). On the other hand, the roughness is determined by the ridges
and furrows created by the rows where the plants were sowed. In this case, the height of these rows,
the plot age (the younger the crop, the more sand present), together with the row orientation and the
incidence angle define the soil-SAR signal interaction. This effect is particularly evident with the VV
polarisation (although not shown here).
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Figure 6. Images taken in the fields the 28/05/2019 (red vertical line) when a Sentinel-1 image was
also acquired. The time series correspond to the VH backscatter. Each pair of image and time series
correspond to a different parcel. The parcels are at different growth stages taking advantage of the
local climate.

Both polarisations, but particularly the VH polarisation increase significantly as the asparagus
stems start emerging and vertically elongating up to two meters height. This increase may be a
consequence of the double bounce created with the SAR signal reaching the soil and bouncing off
the vertical spears back to the satellite (Figure 6, image 3), although a more detailed polarimetric
analysis would be required to confirm it. Please note that as show in Figure 4, the VV backscatter
has less increment in time than the VH backscatter possibly due to the VH being more sensitive to
the quasi-horizontal branches that grow sideways from the main vertical asparagus stems. A similar
result was reported in [27] where authors present an almost constant VV response during the periods
of vegetation growth.

However, when the crop reaches approximately the peak of the aperture stage (see Figure 7),
the backscatter also reaches the peak in the entire cultivation period. At this point, the fern already
has developed branches and the leaf-like structures in the stems are developing. From this moment,
the contact of the SAR signal with the soil decreases thus also reducing the backscatter measured.
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Subsequently, at the flowering stage (image 5 of Figure 6) the fern is fully developed and denser
covering the soil and presumably creating a volume scattering response. The latter is less intense
than the previous double bounce at the aperture stage, causing a decrease in the overall backscatter.
Once the crop has reached the mature stage (images 6 to 8 of Figure 6), no significant changes happen
in the biomass of the canopy hence the SAR signal remains at approximately the same level until the
end of the season. An additional aspect to highlight is that as presented in Figure 4 and mentioned in
Section 2.5, during the maturation stage the VV channel presents more statistical variation presumably
since the VV backscatter still has an important ground component present as opposed to the VH
backscatter which after the fern develops and stabilises, seems to have a strong contribution from
the canopy and less from the ground. As a consequence, the VV captures features related to the soil,
such as changes in moisture or roughness.

2.6.2. Impact of Temperature on the Crop and the Sar Response

In this section, we analyse the impact of the seasonality and the variable climatological conditions
on the crop evolution. This analysis is relevant to build a phenology retrieval algorithm since these
factors change the crop behaviour and/or the SAR response in time thus modifying the inputs for an
algorithm and affecting the accuracy results. Please note that in this analysis of effect of temperature,
we have used the VH channel given that it shows a more dynamic and cleaner signal than the
VV polarisation.

Based on empirical observations, growers have noticed that the crop evolution during a “winter”
and a “summer” campaign in the same year are different, in terms of canopy volume and development
rate, possibly due to the different climatological conditions. Similarly, previous research showed that
temperature influences asparagus plant growth rates and may cause growth depression [35,36]. On the
other hand, mechanistic models of asparagus shoots height have been developed as a function of the
temperature [36].

To investigate this effect in our test site using remotely sensed observations, time series of
meteorological information, ground truth and SAR backscatter were analysed. Figure 7 shows the SAR
and ground truth data for a typical parcel during four consecutive campaigns.

Figure 7. VH polarisation and ground truth observations for a typical parcel during four consecutive
campaigns. Both the backscatter and the ground truth show a seasonal behaviour. The green and red
vertical lines represent the start and end of the cultivation period respectively. The campaigns 1 and 3
correspond to summer season while the campaigns 2 and 4 represent winter campaigns.
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The bottom plot of Figure 7 shows that the number of asparagus stems in maturation recorded
during surveys are lower in the first semesters of 2018 and 2019 compared to the corresponding second
semesters of the same years. Looking closely at the backscatter level for the same periods in the
plot of the same figure, it is possible to see that the same pattern is followed in the time series of the
VH polarisation once the crop has reached the maturation stage. This provides initial evidence of
sensitivity of the SAR signal to the changes in the canopy volume (measured as number of stems in
maturation, which would represent the total number of stems in the parcel for this period).

On the other hand, the left side of Figure 8 shows the VH backscatter response for the same parcel,
during the winter campaign (second semester of 2018) and the summer campaign (first semester
of 2019) as a function of the number of days after the cultivation started (DaS). It is possible to see
the difference in the growth rate at the beginning of the cultivation, where in the summer campaign
(red line) the crop reaches the peak of the VH time series faster relative to this same point in the cold
season (blue line).

Figure 8. SAR backscatter of two consecutive campaigns aligned as function of cultivation days
(DaS) and accumulated temperature (GDD). The blue line corresponds to the campaign one that grew
during the colder season (“winter”) and red line corresponds to one in the warmer season (“summer”).
The plots at the bottom show the cultivation period length measured as a function of time (left) and
temperature (right).

In order to confirm that the temperature impacts the crop growth rate, a test was done using
the temperature as independent variable instead of the number of days after the campaign start.
A measure of daily accumulated heat has been previously used in the literature for this purpose.
It considers an averaged measure of the daily maximum and minimum temperature to determine
how much heat the crop receive in a day (Growing Degree Day) and how much it accumulates day
after day during a period of time [37]. For the present study, 10 degrees Celsius was considered to be
base temperature [30]. By accumulating the Growing degree days (GDD) and using it as independent
variable, the plot on the right side of Figure 8 shows that the VH backscatter observed for the winter
and summer campaigns are approximately aligned. This suggests that the temperature drives the
rate of canopy formation as suggested in other studies [35,36], and that it is observable with the VH
polarisation measurements. It also provides insights about the potential usefulness of the temperature
as input feature for a remote sensing algorithm to retrieve crop stage information.

The boxplot of Figure 9 presents the median accumulated temperature (GDD) in all the campaigns
registered in the ground truth, from the campaign start to harvest. It can be seen that depending on
the month when the cultivation started, there is a seasonal trend in the accumulated temperature.
This information is key to for example estimate the harvest date given the campaign starting month,
based on the required accumulated temperature.

To summarise, in principle there are three visible effects of the temperature on the crop. The first
one, corresponds to the canopy volume developed, being less biomass during hotter temperatures.
The SAR backscatter signal is sensitive to this by measuring lower backscatter intensity during the
maturation period (Figure 7).
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The second effect is associated with the growth rate, since as shown in the left side plot of Figure 8,
it causes the stages at the beginning of the season to develop faster in a warmer campaign (red line).
This effect is also visible from the backscatter response.

The third effect is related to the season length depending on the accumulated temperature during
the cultivation period (Figure 9). This accumulated temperature in turn depends on the month of the
year when the campaign started.

Figure 9. Campaign length measured in degrees Celsius (accumulated temperature) as a function
of the production cycle starting month. As an example, if a campaign starts in January it normally
accumulates around 600 degrees more than a campaign that starts in July. A total 442 campaigns were
considered to generate this plot.

2.7. Estimation of Number of Asparagus Stems in Each Crop Stage

This section presents the methodology used for monitoring asparagus development as described
by the number of asparagus stems in each of the stages of Figure 1. We use a data driven model to
estimate ground measurements measurements from SAR observations. Please note that a deterministic
physical model inversion is an ill posed problem since the number of unknowns are greater than
the number of independent SAR measurements [38,39]. However, we exploit the patterns and
correlations found in the SAR observations and temperature together with the ground truth to build
empirical models.

We consider the retrieving the number of asparagus stems as a regression problem since it
is possible to avoid selecting crop stage boundaries and allow soft transition between adjacent
phenological stages. Please note that the ground truth used for training corresponding to phenological
information is given by multiple and correlated variables (Figure 4). These variables do not evolve in
time independently but rather they have temporal co-variation since they are produced by the same
underlying process, i.e., the crop growth.

To exploit this structure in the output data, we use a multi-output regression algorithm that
considers this interdependence of the individual outputs before making predictions. In this context,
multitask learning (MTL) has been used in several applications precisely with this objective [40,41].

It is expected that not only the accuracy of a single multi-task learner increases compared to
individual single-task learners (i.e., fitting an individual model for each output), but also since the
model captures the structure of the data, it is able to generalize or interpolate better when the model is
presented with unseen data [40,41].

In the remote sensing community multitask learning has been previously implemented using
different machine learning algorithms [42,43]. Specifically for the case of SAR, in [42] the authors show
how a multitask learner is able to make more accurately predictions of soil moisture and plant water
content than individual learners.



Remote Sens. 2020, 12, 1993 13 of 24

2.7.1. Model Development

We chose initially a multi-task Random Forest Regressor [44] from the available MTL algorithms
due to its power for capturing both the non-linear relationships and the correlation between
multiple outputs.

A Random Forest Regressor [45] is known as an ensemble algorithm in which several individual
decision regression trees (n-estimator trees) are built from individual bootstrapped datasets (datasets in
which the samples are randomly selected from the original training dataset) [46]. Each regression tree
uses a random subset of the input feature variables (m-features) from the original number of input
features, and from this subset an optimal feature with an associated threshold is selected for each
node [47]. In the single output case of a regression decision tree, both the optimal feature and the node
threshold (i.e., the threshold that decides whether to go to the left or right child node) are found by
minimizing a split function (also known as node cost) based on a euclidean distance error measure [47].
In the case of a multiple-output regression decision tree, an additional term is added to the node cost
to account for the correlations in the output data. Specifically, in the framework proposed by [44],
a Mahalanobis distance [48] is added to the split function to consider the multiple dimensions in the
output data in the minimization cost function to select the corresponding thresholds. Please note that
other split functions have been developed [49] but the in this paper the framework proposed in [44] is
used. A final estimation is obtained from the multi-task Random Forest Regressor by averaging the
estimations provided by the leaf nodes in each individual tree in the forest.

In this paper, the objective is to estimate the number asparagus stems in each of five possible
stages. Each of these five estimations corresponds to an output predicted by the multi-output random
forest regression. On the other hand, the algorithm uses historical SAR, temperature and ground truth
data to learn the corresponding mapping functions. For this purpose, the scenarios in Table 2 have
been considered in this paper.

Table 2. Scenarios considered for asparagus growth estimation. Please note that each of the scenarios
in B and C categories is tested using one image as well as sequence of multiple images.

Category Scenario Input Description

A A1 DaS Only number of days after cultivation started

A A2 DaS, DoY
Days after cultivation started, Day of year when
cultivation started

A A3 DaS, DoY, AGDD
Days after cultivation started, Day of year when
cultivation started, accumulated temperature

B B1 VH Only VH polarisation
B B2 VH, VV, VH/VV VH, VV polarisations and the VH/VV ratio

C C1 VH, VV, VH/VV, DaS VH, VV, Ratio, Days after cultivation started

C C2 VH, VV, VH/VV, DaS, DoY
VH, VV, Ratio, Days after cultivation started,
Day of year when cultivation started

C C3 VH, VV, VH/VV, DaS, DoY, AGDD All previous features

2.7.2. Inputs

An initial category identified as category A, does not use remote sensing as input for the multi-task
regression but only uses ground data. In the scenario A1 the number of days after the cultivation
started (DaS) is used to estimate the number of asparagus stems present in each phenological stage at
every image (Table 2), similar to how farmers traditionally execute their planning in the test site and in
general for farms with low adoption of technology. Considering that multiple production cycles per
year occur and grow under different climatological conditions, as shown in Figures 8 and 9, the day
of the year (DoY) when the cultivation season starts impacts the canopy development. We tested the
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value of using this information as input for the algorithm, given that for instance, 20 days of cultivation
in summer may differ from 20 days of cultivation in winter. This corresponds to the scenario (A2).

A more robust scenario, the scenario A3, uses additionally the accumulated temperature during
the cultivation period (from cultivation start to the SAR acquisition date) or accumulated growing
degree-days (AGDD), since as it was shown in Section 2.6.2, the temperature drives the growth rate
and canopy volume. Several other methodologies have used AGDD to account for the impact of
climatic conditions in the crop growth [22,50,51]. Please note that using these input data sources the
model learns the mapping function to give a theoretical estimation of the number of asparagus stems
in each growth stage. This estimation may be accurate only if no external abnormal conditions affect
the crop, such as extreme weather events including droughts, hail, etc., plant diseases, pests or changes
in the management practices. Similarly, it does not provide any spatial information of crop status but a
single prediction for the entire field. Although this information may be valuable for planning, it is not
sufficient for operational crop monitoring.

A remote sensing-based approach that uses SAR images was considered to be the second
category (B), where the Sentinel-1 backscatter including VH and VV polarisation channels with
their corresponding ratio was used. This was tested using a single image and a sequence of images,
from two to five. In this case, the near-real time data acquired by the satellite provides the capabilities
for operational monitoring. In this scenario the VH polarisation was tested individually as well as
together with the VH and VV ratio (scenarios B1 and B2). This scenario only uses SAR data as input
for the multi-output regression.

A third category (C), includes each of the previous data sources SAR, DaS, DoY, and AGDD as
input for the algorithm hoping to integrate their individual advantages (scenarios C1 to C3). Please
note that the scenario C1 is included with the aim of quantifying the usefulness of the DaS feature
when using multi-temporal SAR data and the scenario C2 quantifies the usefulness of the DoY feature.

2.7.3. Outputs

In all the scenarios, the aim is to produce estimates of the number of asparagus stems present in
each of the following phenological stages: Emergence, ramification, aperture, flowering and maturation
at any given SAR acquisition (same stages shown in Figure 1). Because in this case we require to
simulatenoulsy predict the multiple outputs, we chose the model described in Section 2.7.1. On the
other hand, as described in Section 2.4, these values would correspond to measurements taken in a
randomly selected linear meter within the parcel. Here we assume that the ground data collected in
this way is representative of the entire parcel.

2.7.4. Training and Testing Data

The ground truth described in Section 2.4 collected between January and August 2019, Sentinel-1
data and temperature measurements from the same periods are used to create the datasets. The dataset
D takes the form D = (X, y) where X is a matrix of dimension mxn, m is the number of ground truth
measurements available, n is defined by the features being used according to each scenario of Table 2
and y is the matrix of ground truth data with dimension mx5, where the number 5 corresponds to the
number of asparagus stems in each stage of Figure 1 recorded in the ground truth surveys.

In order to separate training and testing data, we randomly select plots based on the ID to
complete approximately 70% of them in a training dataset and 30% in a testing dataset so that we
guarantee the unseen data required for the testing phase. In total, from the 442 plots (of 2 Ha on
average) with available ground truth, approximately 309 plots randomly selected are used for training
and the remaining 133 plots for testing.

Given that several ground truth measurement dates do not coincide with the Sentinel-1.
acquisition dates, a three order spline interpolation was used to interpolate daily the ground truth so
that an associated ground truth measurement can be obtained for every SAR observation. In total,
there exist 4023 training data-points and 1739 testing data-points.
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2.7.5. Model Hyper Parameters

Tuning of the optimal model hyper-parameters was done using 5-fold cross-validation with grid
search. Table 3 presents the selected hyperparameters for the scenario C3.

Table 3. Selected model hyperparameters

Hyperparameter Selected

Bootstrap True

The number of trees in the forest 800 (a)

Split funciton Mahalanobis Distance

max-depth 30 (a)

(a): Tunned hyper-parameter.

2.7.6. Accuracy Metrics

The coefficient of determination R2 computed with Equation (1) was used to measure the model
performance, both for the individual outputs and for the model as a whole, by averaging the scores of
the five outputs.

R2 = 1 −
Σn

i=1

(
yi − ŷi

)2

Σn
i=1

(
yi − ŷ

)2 (1)

where yi corresponds to the i − th ground truth test sample, ŷi a prediction made with the model for
this sample after training, and ŷ the mean value of the n-ground truth test samples.

Similarly, the root mean squared error RMSE calculated with Equation (2), was computed between
predicted and testing values.

RMSE =

√
1
n

Σn
i=1

(
yi − ŷi

)2
(2)

where yi corresponds to the i − th ground truth test sample, ŷi a prediction made with the model for
this sample after training.

3. Results

3.1. Single-Sar Image Results

The obtained results when using a single SAR image as input for the model are reported in
Tables 4 and 5.

Table 4. Summary of coefficients of determination R2 for the predicted number of stems in each crop
stage when using a single SAR image.

Stage A1 A2 A3 B1 B2 C1 C2 C3

Emergence 0.72 0.83 0.88 0.54 0.68 0.78 0.83 0.84
Aperture 0.65 0.9 0.92 0.04 0.27 0.71 0.87 0.9

Ramification 0.74 0.9 0.9 −0.22 0.11 0.81 0.9 0.9
Flowering 0.41 0.79 0.82 −0.36 −0.06 0.49 0.7 0.76
Maturation 0.79 0.91 0.94 0.36 0.52 0.82 0.89 0.9

Overall 0.66 0.87 0.89 0.07 0.3 0.72 0.84 0.86
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Table 5. Summary of root mean square error RMSE for the predicted number of stems in each crop
stage when using a single SAR image.

Stage A1 A2 A3 B1 B2 C1 C2 C3

Emergence 4.16 3.23 2.72 5.36 4.42 3.69 3.25 3.13
Aperture 3.18 1.67 1.54 5.26 4.61 2.87 1.96 1.66

Ramification 2.2 1.34 1.34 4.78 4.09 1.87 1.36 1.35
Flowering 2.91 1.74 1.61 4.43 3.92 2.71 2.08 1.85
Maturation 6.48 4.34 3.48 11.39 9.88 6.08 4.63 4.36

Overall 4.07 2.72 2.3 6.77 5.84 3.73 2.9 2.72

When using one SAR image (see Table 4), particularly the scenarios A2, A3, C2 and C3 achieve
satisfactory predictive capabilities with overall coefficients of determination R2 between 0.84 and 0.89.
This is confirmed with the RMSE’s that are also the lowest for these scenarios.

Regarding individual outputs of the multi-task regression for these same scenarios, the maturation
phase has the best performance achieving an R2 of more than 0.9 in almost all of them and flowering
the lowest accuracy between 0.70 and 0.8. Note from Figure 4 that comparing flowering to any other
stage the temporal shape described in the ground truth by this measurement is more irregular and
reaches on average fewer stems than the other stages. This could be due to an agronomic reason that
requires further analysis or due to a systematic error affecting flowering when surveying the fields.
This is also possibly the reason causing the predictions of asparagus stems in flowering less accurate
than in the other stages.

On the other hand, the results of scenario C1 are substantially higher than the scenarios in category
B. By providing to the regressor the number of days after the season started (DaS) as in scenario C1,
the algorithm improves the retrieval with respect to category B potentially since it would be possible
to disentangle similar backscatters at different dates.

An additional increase in R2 (from 0.72 to 0.84) and reduction of RMSE (from 3.73 to 2.9) is
achieved in the scenario C2 only by specifying the day of the year when the agricultural season
starts. This feature indirectly provides information about the seasonality present in the test site
and shown in Figures 7 and 8. The R2 and RMSE are further improved and decreased respectively
in the scenario C3 after the addition of the AGDD feature, although not significantly. This low
increase may be explained by considering that providing DoY (as in scenario C2) we already provide
information about seasonality and given that as mentioned in Section 2.6.2, the impact of higher
and lower accumulated temperature in the canopy is perceived by the VH backscatter as shown in
Figures 7 and 8. Consequently, the algorithm indirectly receives information about the accumulated
temperature through the use of VH and DoY. This is an important result given that it implies that not
using the AGDD feature (as in scenario C2), the temperature data from a ground station is not needed,
without sacrificing substantially the model performance.

Figure 10 summarises the model performance for the scenario C3. For this same scenario, Figure 11
shows the test and predicted data-points as a function of the days after the season started (using
the cultivation days associated with the test data-points as x-axis). It can be seen that in general the
predicted values (in red) follow the timing and the expected number of stems of the testing data-points
(in blue). It is also possible to see however, that they are not exactly the same, indicating that although
the model is accurately making predictions, it is not over-fitting to produce identical values as the
testing points nor predicting extreme values that may correspond to outliers.
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Figure 10. Observed vs. Predicted number of asparagus stems per stage, with the corresponding
overall coefficient of determination and root mean squared error, using features of scenario C3 to train
the model .

Figure 11. Predicted (red) vs. test (blue) number of asparagus stems per stage, using the cultivation
days associated with the testing data-points as x-axis.

3.2. Multi-Temporal Sar Results

In order to quantify the performance of all the scenarios considered when using multiple Sentinel-1
images, we tested increasing the number of images to create the training time series, e.g., from only
using the latest SAR image to using the 5 latest available images. In this case, the dataset takes the
form D = ([Xt, Xt−1, Xt−2, Xt−3, Xt−4], yt) where t represents the index of the date when the ground
truth was collected or in a prediction setting, when the prediction is desired. Figure 12 show the
corresponding overall, R2 scores and RMSE for each scenario of Table 2 when using from one to five
Sentinel-1 images to estimate the number of asparagus stems in each phenological stage. Please note
that since the scenarios of the category A do not use Sentinel-1 data, we only consider the categories B
and C for this part of the analysis.
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(a) Coefficient of determination ((R2))

(b) Root mean square error (RMSE)

Figure 12. Multi-task regression performance metrics as a function of the number of images used to
train the model for each of the scenarios of Table 2.

In this case, the scenarios that use the VH, VV and ratio as features (B1 and B2), increase their
performance when more images are used, with the scenario B2 achieving an R2 of 0.66. This is not
surprising since by using the sequence of the backscatter evolution provides additional information for
the algorithm to disentangle similar backscatter present at different time of the season. An additional
significant result obtained here is that no substantial improvement is achieved when more than 4
images are used.

However, all the other scenarios considered in this paper do not increase the performance when
increasing the number of images used as it would be expected, but rather maintain the same accuracy
achieved when using a single SAR image, temperature and the start of the season information as
input features. This may be due to the fact that the information provided by DaS, DoY and AGDD is
sufficient for helping to disentangle the backscatter of a single image and thus no further images are
required for this purpose.
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3.3. Growth Stage Estimation Maps

Figure 13 shows for all the parcels in the test site, the estimation of asparagus stems present in
each phenological stage, obtained using the trained multi-task random forest of the scenario C3, for the
Sentinel-1 image acquired the 2018/10/12. This is the same acquisition date as in Figure 2 and the
intermediate subplot of Figure 14, which in turn shows an RGB composite of the same information
using the predicted asparagus stems in emergence in the blue channel, the predicted asparagus stems
in maturation in the green channel and the sum of the predicted asparagus stems in ramification,
aperture and flowering in the red channel ( given their short duration).

Figure 14 shows additionally the RGB composites of 4 other Sentinel-1 acquisitions in order to
visualise the change in time of the predicted crop stages due to crop development. This composite
reveals the crop stage of each parcel in an intuitive and fast way while the number of asparagus stems
predictions map of Figure 13 shows more detailed information for every individual crop stage.

Figure 13. Number of asparagus stems estimated for each of the crop stages for the 2018/10/12
Sentinel-1 image (Same as Figure 2 and intermediate plot of Figure 14).

Figure 14. RGB composites of the estimated crop stage. Red: (Ramification+Aperture+flowering),
Green: Maturation, Blue: Emergence.
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4. Discussion

We have provided the analysis of the SAR backscatter response to asparagus growth development
and canopy formation as shown in Figure 4. Similarly, Figure 7 presents the seasonality effect both
in the sensor response and the ground truth due to consecutive production cycles that grow under
different meteorological conditions.

Figure 8 shows how the VH polarisation is used for crop monitoring in order to visualise the
canopy growth rate, revealing that it is faster in summer than in winter, but with less canopy volume
(biomass). It also shows that although the production cycles in winter are longer, those cycles
accumulate less temperature measured in GDD compared to the summer campaigns. Based on
this information, the season length varies depending on the cycle starting month as shown in Figure 9.
The backscatter response is sensitive to all these events as shown in Section 2.6.2.

With respect to the algorithm to retrieve the crop stage algorithm, several scenarios were
considered in the analysis to understand the relevance of each data source and input feature and to
determine the best way to combine the available information.

The scenarios of category A, which do not include remote sensing data, show that using
accumulated growing degree days improves the predicting capabilities of an algorithm given that
temperature is an important factor driving the crop evolution. In fact, the scenario A3 provides the
highest R2-scores as well as the lowest RMSE’s of the scenarios tested (0.89 and 2.3 respectively).
This is aligned with the well known techniques to estimate the timing of phenological events using
thermal calendars [52,53]. However, this estimation may be accurate only if no external anomalous
conditions affect the crop, such as extreme weather events, diseases or changes in the management
practices. Similarly, it does not provide spatial information of crop status but a single prediction for the
entire field. In consequence, although this information may be valuable for planning, it is not sufficient
for operational crop monitoring.

With regard to the scenarios of category B (SAR only), although using multiple images as input for
a model the predictive capabilities improve significantly, it achieves poorer results than the categories
A and C. The scenarios in category C which use all available input sources, achieve similar accuracy
retrieving the number of asparagus stems in each phenological stage than the scenarios of category A,
according to the results of Tables 4 and 5, but additionally providing spatial resolution and the ability
to determine growth anomalies. Focusing particularly in scenarios C2 and C3, the difference in their
performance is not significant thus the scenario C2 which do not use temperature may be preferred.

To summarise the scenarios considered and based on the results obtained, we grouped four
users cases that may benefit differently for each scenario depending on their specific needs and data
availability as shown in Table 6. Depending on the farm size a scenario evaluated in this paper can
be adopted, considering additionally the availability of temperature data and whether a larger scale
monitoring system is required.

With regards to the current literature available, although previous studies have considered the
possibility of identifying asparagus from other crops using radar remote sensing data [23–27], they did
not focus on analysing the backscatter response relative the crop evolution due to the transition
between phenological stages as was presented in Sections 2.6.1 and 2.6.2. Similarly, no previous study
evaluated the possibility to retrieve the crop stage. In this context, the present study contributes to
the literature with a more detailed analysis of asparagus providing an interpretation of backscatter
evolution that may offer tools for better crop classification (since so far low accuracy have been
reported [23,24,27]), through a better understanding of the temporal crop signature.

The VV backscatter throughout the agricultural season does not have significant changes relative
to the VH polarisation channel. This has been previously reported in [27] and it differs from what
was presented in [26] using TerraSAR-X. This suggest that X-band is able to capture events in the crop
development not visible in C-band as happens for instance in rice fields [6].

It is important to highlight that the current methodology is limited in part by the availability
of the season starting date information as input, being used for calculating the AGDD as well as
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input for the multitemporal regressor (DaS). A potential solution to this is the estimation of starting
dates from remote sensing as it has been previously investigated with satisfactory results in [54–59].
A further limitation in the current analysis is the lower accuracy of retrieving the number of asparagus
stems in flowering, with respect to other stages such as emergence and maturation (Tables 4 and 5),
which as mentioned in Section 3.1 might be caused by the unclear ground truth samples used to train
the model. Statistical tests to better understand the characteristics of the training data and variations
between measurements in each stage may be used to make decisions about better strategies to use the
same data.

Future research will focus on the automatic detection of starting date from SAR and the use
of quad-polarimetric data to better understand the scattering mechanisms throughout the season.
Additionally, the use of better ways to deal with the sequential nature of data generated from
agricultural fields and multitemporal remote sensing data will be considered including dynamical
modelling [20,22] and more advanced machine learning models .

Table 6. User cases and scenarios considered.

User Case Season Start Date Temperature Data Scenario

Small farm interested in estimating
occurrence of key dates for planning

known from ground
truth

known from ground
station A *

Medium or large size farms
known from ground

truth
known from ground

station C2 and C3 **

Large scale monitoring (regional or
national level) without temperature

Automatically
detected - B2 and C2 ***

Large scale monitoring (regional
or national level) and satellite
measurements of land surface

temperature

Automatically
detected

known from satellite
measurements
of land surface

temperature

C3 ****

* It is assumed that the spatial resolution is not critical since anomalies can be identified by inexpensive field
surveys. ** Spatial resolution is important since growth anomalies cannot be identified by simple visual
inspection or the field surveys are expensive. *** The scenario C2 is the same as B2 by adding information
about season start date. The lost of accuracy for not using temperature is not signicant based on the findings
of Section 3. **** The accuracy results may decrease since automatically detecting start date and using low
spatial resolution LST measurements introduce uncertainty.

5. Conclusions

In this paper, we provided an interpretation of the SAR backscatter response to asparagus crop
growth and analysed the impact that temperature has on the canopy volume, its development rate,
and the cultivation length. It was shown how the VH backscatter is sensitive to all these effects. We also
presented a multi-output machine learning regression algorithm trained to retrieve the number of
asparagus stems present in each of five possible phenological stages. We tested several operational
scenarios finding that using the VH, VV, VH/VV, and information about season start date (scenario C2),
the model is able to retrieve the number of asparagus stems with an overall R2 of 0.84 and RMSE of 2.9.
Adding the accumulated temperature (AGDD) as in the scenario C3, improved slightly the accuracy
resulting in overall R2 of 0.86 and RMSE of 2.7. However, given that this increase is not substantial,
the scenario C2 might be preferred since the temperature feature is not required and therefore this
additional data source could be removed without losing significant model performance.

Additionally, as shown in Figure 12, for the conditions evaluated in this paper, the use of
multitemporal SAR data is not critical when using information about the season start date and
temperature as crop stage predictors to complement the backscatter, since these features provide
similar information for the algorithm to disentangle events in the temporal dimension.
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