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Spectral methods are of fundamental importance in statistics and
machine learning, because they underlie algorithms from classi-
cal principal components analysis to more recent approaches that
exploit manifold structure. In most cases, the core technical prob-
lem can be reduced to computing a low-rank approximation to a
positive-definite kernel. For the growing number of applications
dealing with very large or high-dimensional datasets, however, the
optimal approximation afforded by an exact spectral decomposi-
tion is too costly, because its complexity scales as the cube of either
the number of training examples or their dimensionality. Moti-
vated by such applications, we present here 2 new algorithms for
the approximation of positive-semidefinite kernels, together with
error bounds that improve on results in the literature. We approach
this problem by seeking to determine, in an efficient manner, the
most informative subset of our data relative to the kernel approxi-
mation task at hand. This leads to two new strategies based on the
Nyström method that are directly applicable to massive datasets.
The first of these—based on sampling—leads to a randomized
algorithm whereupon the kernel induces a probability distribu-
tion on its set of partitions, whereas the latter approach—based
on sorting—provides for the selection of a partition in a determin-
istic way. We detail their numerical implementation and provide
simulation results for a variety of representative problems in sta-
tistical data analysis, each of which demonstrates the improved
performance of our approach relative to existing methods.

statistical data analysis | kernel methods | low-rank approximation

S pectral methods hold a central place in statistical data analy-
sis. Indeed, the spectral decomposition of a positive-definite

kernel underlies a variety of classical approaches such as principal
components analysis (PCA), in which a low-dimensional subspace
that explains most of the variance in the data is sought; Fisher
discriminant analysis, which aims to determine a separating hyper-
plane for data classification; and multidimensional scaling (MDS),
used to realize metric embeddings of the data. Moreover, the
importance of spectral methods in modern statistical learning has
been reinforced by the recent development of several algorithms
designed to treat nonlinear structure in data—a case where clas-
sical methods fail. Popular examples include isomap (1), spectral
clustering (2), Laplacian (3) and Hessian (4) eigenmaps, and dif-
fusion maps (5). Though these algorithms have different origins,
each requires the computation of the principal eigenvectors and
eigenvalues of a positive-definite kernel.

Although the computational cost (in both space and time) of
spectral methods is but an inconvenience for moderately sized
datasets, it becomes a genuine barrier as data sizes increase and
new application areas appear. A variety of techniques, spanning
fields from classical linear algebra to theoretical computer science
(6), have been proposed to trade off analysis precision against
computational resources; however, it remains the case that the
methods above do not yet “scale up” effectively to modern-day
problem sizes on the order of tens of thousands. Practitioners
must often resort to ad hoc techniques such as setting small kernel
elements to zero, even when the effects of such schemes on the
resulting analysis may not be clear (3, 4).

The goal of this article is twofold. First, we aim to demon-
strate quantifiable performance-complexity trade-offs for spectral

methods in machine learning, by exploiting the distinction
between the amount of data to be analyzed and the amount of
information those data represent relative to the kernel approxi-
mation task at hand. Second, and equally important, we seek to
provide practitioners with new strategies for very large datasets
that perform well in practice. Our approach depends on the Nys-
tröm extension, a kernel approximation technique for integral
equations whose potential as a heuristic for machine learning
problems has been previously noted (7, 8). We make this notion
precise by revealing the power of the Nyström method and giving
quantitative bounds on its performance.

Our main results yield two efficient algorithms—one random-
ized, the other deterministic—that determine a way of sampling a
dataset prior to application of the Nyström method. The former
computes a simple rank statistic of the data, and the latter involves
sampling from an induced probability distribution. Each of these
approaches yields easily implementable numerical schemes, for
which we provide empirical evidence of improved performance
in simulation relative to existing methods for low-rank kernel
approximation.

Spectral Methods in Machine Learning
Before describing our main results, we briefly survey the differ-
ent spectral methods used in machine learning, and show how our
results can be applied to a variety of classical and more contempo-
rary algorithms. Let {x1, . . . , xn} be a collection of data points in
R

m. Spectral methods can be classified according to whether they
rely on:

Outer characteristics of the point cloud. These are methods such
as PCA or Fisher discriminant analysis. They require the spectral
analysis of a positive-definite kernel of dimension m, the extrinsic
dimensionality of the data.

Inner characteristics of the point cloud. These are methods such as
MDS, along with recent extensions that rely on it (more or less) to
perform an embedding of the data points. They require the spec-
tral analysis of a kernel of dimension n, the cardinality of the point
cloud.

In turn, the requisite spectral analysis task becomes prohibitive
as the (intrinsic or extrinsic) size of the dataset becomes large.
For methods such as PCA and MDS, the analysis task consists
of finding the best rank-k approximation to a symmetric, positive-
semidefinite (SPSD) matrix—a problem whose efficient solution is
the main focus of our article. Many other methods (e.g., refs. 1–5)
are reduced by only a few adjustments to this same core problem
of kernel approximation.

In particular, techniques such as Fisher discriminant analysis
or Laplacian eigenmaps require the solution of a generalized

Author contributions: M.-A.B. and P.J.W. designed research, performed research, and
wrote the paper.

The authors declare no conflict of interest.
1To whom correspondence should be addressed. E-mail: patrick@seas.harvard.edu.

© 2009 by The National Academy of Sciences of the USA

www.pnas.org / cgi / doi / 10.1073 / pnas.0810600105 PNAS January 13 , 2009 vol. 106 no. 2 369–374

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

Ju
ly

 8
, 2

02
0 



eigenvalue problem of the form Av = λBv, where B is an SPSD
matrix. It is well known that the solution to this problem is related
to the eigendecomposition of the kernel B−1/2AB−1/2 according to

Av = λBv ⇒ B−1/2AB−1/2B1/2v = λB1/2v.
Notice that if A is also SPSD, the case for the methods mentioned
above, then so is B−1/2AB−1/2. In the case of Laplacian eigenmaps,
B is diagonal, and translating the original problem into one of
low-rank approximation can be done efficiently. As another exam-
ple, both Laplacian and Hessian eigenmaps require eigenvectors
corresponding to the k smallest eigenvalues of an SPSD matrix
H . These may be obtained from a rank-k approximation to Ĥ =
tr(H)I −H , as Ĥ is positive definite and admits the same eigenvec-
tors as H , but with the order of associated eigenvalues reversed.

Low-Rank Approximation and the Nyström Extension
Let G be a real, n × n, positive quadratic form. We may express
it in spectral coordinates as G = U�UT , where U is an orthog-
onal matrix whose columns are the eigenvectors of G, and � =
diag(λ1, λ2, . . . , λn) is a diagonal matrix containing the ordered
eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0 of G. Owing to this represen-
tation, the optimal rank-k approximation to G, for any choice of
unitarily invariant∗ norm ‖·‖, is simply

Gk := Udiag(λ1, . . . , λk, 0, . . . , 0)UT .
In other words, among all matrices of rank k, Gk minimizes
‖G − Gk‖. We adopt in this article the Frobenius norm ‖G‖2 :=∑

ij G2
ij, but the results we present are easily transposed to other

unitarily invariant norms. Under the Frobenius norm, the squared
error incurred by optimal approximant Gk is ‖G − Gk‖2 =∑n

i=k+1 λ2
i , the sum of squares of the n − k smallest eigenval-

ues of G.
The price to be paid for this optimal approximation is the expres-

sion of G in spectral coordinates—the standard complexity of
which is O(n3). Although a polynomial complexity class is appeal-
ing by theoretical standards, this cubic scaling is often prohibitive
for the sizes of modern datasets typically seen in practice. With this
impetus, a number of heuristic approaches to obtaining alterna-
tive low-rank decompositions have been applied in the statistical
machine-learning literature, many of them relying on the Nyström
method to approximate a positive-definite kernel (7, 8), which we
now describe.

Historically, the Nyström extension was introduced to obtain
numerical solutions to integral equations. Let g : [0, 1] × [0, 1] →
R be an SPSD kernel and (ui, λu

i ), i ∈ N, denote its pairs of
eigenfunctions and eigenvalues as follows:∫ 1

0
g(x, y)ui(y)dy = λu

i ui(x), i ∈ N.

The Nyström extension provides a means of approximating k
eigenvectors of g(x, y) based on an evaluation of the kernel at k2

distinct points {(xm, xn)}k
m, n=1 in the interval [0, 1] × [0, 1]. Defin-

ing a kernel matrix G(m, n) ≡ Gmn := g(xm, xn) composed of
these evaluations leads to the m coupled eigenvalue problems

1
k

k∑
n=1

G(m, n)vi(n) = λv
i vi(m), i = 1, 2, . . . , k,

where (vi, λv
i ) represent the k eigenvector-eigenvalues pairs

associated with G. These pairs may then be used to form an
approximation ũi � ui to the eigenfunctions of g as follows:

ũi(x) = 1
λv

i k

k∑
m=1

g(x, xm)vi(m).

∗A matrix norm ‖·‖ is said to be unitarily invariant if ‖A‖ = ‖UT AV‖ for any matrix A and
unitary transformations U and V .

The essence of the method is hence to use only partial infor-
mation about the kernel to first solve a simpler eigenvalue prob-
lem, and then to extend the eigenvectors obtained therewith by
using complete knowledge of the kernel. The same idea may
in turn be applied to extend the solution of a reduced matrix
eigenvalue problem to approximate the eigenvectors of an SPSD
matrix G (8).

Specifically, one may approximate k eigenvectors of G by
decomposing and then extending a k × k principal submatrix of
G. First, let G be partitioned as

G =
[

A BT

B C

]
, [1]

with A ∈ R
k×k; we say that this partition corresponds to the multi-

index I = {1, 2, . . . , k}. Now define spectral decompositions
G = U�UT and A = UA�AUT

A ; the Nyström extension then
provides an approximation for k eigenvectors in U as

Ũ :=
[

UA

BUA�−1
A

]
; A = UA�AUT

A . [2]

In turn, the approximations Ũ � U and �A � � may be composed
to yield an approximation G̃ � G according to

G̃ := Ũ�AŨT =
[

A BT

B BA−1BT

]
. [3]

We call G̃ the Nyström approximation to G corresponding to I =
{1, 2, . . . , k}; the extension of this definition to arbitrary multi-
index I will be made formal below. We see from Eq. 2 that the main
computational burden now takes place on a principal submatrix
A of dimension k < n, and hence the Nyström extension pro-
vides a practical means of scaling up spectral methods in machine
learning to very large kernels. From Eqs. 1 and 3 we deduce the
resultant approximation error to be

‖G − G̃‖ = ‖C − BA−1BT‖, [4]

where SC(A) := C − BA−1BT is known as the Schur complement
of A in G (9). The characterization of Eq. 4 ties the quality of the
Nyström approximation explicitly to the partitioning of G; intu-
itively, this error reflects the loss of information that results from
discarding submatrix C while retaining A and B.

Main Results
The Nyström method yields a means of approximating G condi-
tioned on a particular choice of partition, hence shifting the compu-
tational load to determining that partition. To this end, we provide
two algorithms for efficiently selecting from among all

(n
k

)
possible

partitions of G while controlling the approximation error of Eq. 4.
We first generalize the partitioning introduced above as follows.
Let I, J ⊂ {1, 2, . . . , n} be multi-indices of respective cardinalities
k and l that contain pairwise distinct elements in {1, 2, . . . , n}.
We write I = {i1, . . . , ik}, J = {j1, . . . , jl}, and denote by Ī the
complement of I in {1, . . . , n}. In order to characterize the Nys-
tröm approximation error induced by an arbitrary partition, we
write GI×J for the k × l matrix whose (p, q)-th entry is given by
(GI×J )pq = Gipjq , and abbreviate GI for GI×I .

Determining an optimal partition of G is thus seen to be
equivalent to selecting a multi-index I such that the error

‖G − G̃‖ = ∥∥GĪ − GĪ×I G−1
I GI×Ī

∥∥ = ‖SC(GI )‖ [5]

induced by the Nyström approximation G̃ corresponding to I is
minimized. This naturally leads us to the algorithmic question of
how to select the multi-index I in an efficient yet effective manner.
In the sequel we propose both a randomized and a deterministic
algorithm for accomplishing this task, and derive the resultant
average or worst-case approximation error. To understand the
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power of this approach, however, it is helpful to first consider con-
ditions under which the Nyström method is capable of providing
perfect reconstruction of G.

Of course, if we take for I the entire set {1, 2, . . . , n}, then the
Nyström extension yields G̃ = G trivially. However, note that if G
is of rank k < n, then there exist multi-indices I of cardinality k
such that the Nyström method provides an exact reconstruction:
exactly those such that rank(GI ) = rank(G) = k, since this implies

SC(GI ) = GĪ − GĪ×I G−1
I GI×Ī = 0. [6]

We verify Eq. 6 presently, but the intuition behind it is as follows.
If G is SPSD and of rank k, then it can be expressed as a Gram
matrix whose entries comprise the inner products of a set of n vec-
tors in R

k. Knowing the correlation of these n vectors with a subset
of k linearly independent vectors in turn allows us to reconstruct
them exactly. Hence, in this case, the information contained in GI
is sufficient to reconstruct G, and the Nyström method performs
the reconstruction.

Before introducing our two algorithms for efficient partition
selection and bounding their performance, we require the follow-
ing result, which gives an explicit characterization of the Schur
complement in terms of ratios of determinants.

Lemma 1 [Crabtree–Haynsworth (10)]. Let GI be a nonsingular prin-
cipal submatrix of some SPSD matrix G. Then the Schur complement
of GI in G is given element-wise by

(SC(GI ))ij = det(GI∪{i}×I∪{j})
det(GI )

. [7]

We may use the Crabtree–Haynsworth characterization of
Lemma 1 to deduce Eq. 6 as follows. First, notice that if rank(G) =
k = |I|, then Eq. 7 implies that the diagonal of SC(GI ) is zero. To
wit, we have SC(GI )ii = det(GI∪{i})/ det(GI ), with the numerator
the determinant of a (k + 1)-dimensional principal submatrix of a
positive-definite matrix of rank k, and hence zero. However, it is
known that positive definiteness of G implies positive definiteness
of SC(GI ) for any multi-index I (9), allowing us to conclude that
SC(GI ) is identically zero if rank(GI ) = rank(G) = k.

Randomized Multi-index Selection by Weighted Sampling. Our first algo-
rithm for selecting a multi-index I rests on the observation that
since G is positive definite, it induces a probability distribution on
the set of all I : |I| = k as follows:

pG,k(I) := Z−1 det(GI ), [8]

where Z = ∑
I,|I|=k det(GI ) is a normalizing constant.

Our corresponding randomized algorithm for low-rank kernel
approximation consists of first selecting I by sampling I ∼ pG,k(I)
according to Eq. 8, and then implementing the Nyström extension
to obtain G̃ from GI and GĪ×I in analogy to Eqs. 2 and 3. This algo-
rithm is well behaved in the sense that if G is of rank k and we seek
a rank-k approximant G̃, then G̃ = G and we realize the poten-
tial for perfect reconstruction afforded by the Nyström extension.
Indeed, det(GI ) �= 0 implies that rank(GI ) = k, and so Eq. 6 in
turn implies that ‖GĪ − GĪ×I G−1

I GI×Ī‖ = 0 when rank(G) = k.
For the general case whereupon rank(G) ≥ k, we have the

following error bound in expectation:

Theorem 1. Let G be a real, n×n, positive quadratic form with eigen-
values λ1 ≥ . . . ≥ λn. Let G̃ be the Nyström approximation to G
corresponding to I, with I ∼ pG,k(I). Then

E‖G − G̃‖ ≤ (k + 1)
n∑

l=k+1

λl . [9]

Proof: By Eq. 5, we seek to bound

E‖G − G̃‖ = 1∑
I ,|I|=k det(GI )

∑
I ,|I|=k

det(GI )‖SC(GI )‖.

Denote the eigenvalues of SC(GI ) as {λ̄j}n−k
j=1 ; positive definiteness

and subadditivity of the square root imply that

‖SC(GI )‖ =
√∑

j

λ̄2
j ≤

∑
j

λ̄j = tr(SC(GI )). [10]

The Crabtree–Haynsworth characterization of Lemma 1 yields

tr(SC(GI )) =
∑
i/∈I

det(GI∪{i})
det(GI )

,

and thus

E‖G − G̃‖ ≤ 1
Z

∑
I ,|I|=k

∑
i/∈I

det(GI∪{i}), [11]

where we recall that Z = ∑
I ,|I|=k det(GI ).

Every multi-index of cardinality k+1 appears exactly k+1 times
in the double sum of 11, whence

E‖G − G̃‖ ≤ (k + 1)
Z

∑
I ,|I|=k+1

det(GI ). [12]

As G is an SPSD matrix, the Cauchy–Binet Theorem tells us that
the sum of its principal (k+1)-minors can be expressed as the sum
of (k + 1)-fold products of its ordered eigenvalues:∑

I ,|I|=k+1

det(GI ) =
∑

1≤j1<j2<...

<jk+1≤n

λj1λj2 · · · λjk+1 .

It thus follows that∑
I ,|I|=k+1

det(GI ) ≤
∑

1≤j1<j2<...

<jk≤n

λj1λj2 · · · λjk

n∑
l=k+1

λl

=
∑

I ,|I|=k

det(GI )
n∑

l=k+1

λl .

Combining the above relation with 12, we obtain

E‖G − G̃‖ ≤ (k + 1)
Z

∑
I ,|I|=k

det(GI )
n∑

l=k+1

λl = (k + 1)
n∑

l=k+1

λl ,

which concludes the proof.

Deterministic Multi-index Selection by Sorting. Theorem 1 provides for
an SPSD approximant G̃ such that E‖G − G̃‖ ≤ (k + 1)

∑n
i=k+1 λi

in the Frobenius norm, compared with the optimal determinis-
tic result ‖G − Gk‖ = (

∑n
i=k+1 λ2

i )1/2 afforded by the full spectral
decomposition. However, this probabilistic bound raises two prac-
tical algorithmic issues. First of all, sampling from the probability
distribution pG,k(I) ∝ det(GI ), whose support has cardinality(n

k

)
, does not necessarily offer any computational savings over

an exact spectral decomposition—a consideration we address in
detail later, through the introduction of approximate sampling
methods.

Moreover, in certain situations, practitioners may require a
greater level of confidence in the approximation than is given by
a bound in expectation. Although we cannot necessarily hope to
preserve the quality of the bound of Theorem 1, we may sacrifice its
power to obtain corresponding gains in the deterministic nature of
the result and in computational efficiency. To this end, our deter-
ministic algorithm for low-rank kernel approximation consists of
letting I contain the indices of the k largest diagonal elements
of G and then implementing the Nyström extension analogously
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Fig. 1. Relative approximation error of the randomized algorithms of
Theorem 1 and (12) as a function of approximant rank, shown relative
to a baseline Nyström reconstruction obtained by sampling multi-indices
uniformly at random.

to Eqs. 2 and 3. The following theorem bounds the corresponding
worst-case error:

Theorem 2. Let G be a real positive-definite kernel, let I contain
the indices of its k largest diagonal elements, and let G̃ be the
corresponding Nyström approximation. Then

‖G − G̃‖ ≤
∑
i/∈I

Gii. [13]

The proof of Theorem 2 is straightforward, once we have the
following generalization of the Hadamard inequality (9):

Lemma 2 [Fischer’s Lemma]. If G is a positive-definite matrix and
GI a nonsingular principal submatrix then

det(GI∪{i}) < det(GI )Gii.

Proof of Theorem 2: We have from Eq. 10 that ‖G − G̃‖ ≤
tr(SC(GI )); applying Lemma 1 in turn gives

‖G − G̃‖ ≤ 1
det(GI )

∑
i/∈I

det(GI∪{i}),

after which Lemma 2 yields the final result.

While yielding only a worst-case error bound, this algorithm
is easily implemented and appears promising in the context of
array signal processing (11). Beginning with the case k = 1, it may
be seen through repeated application of Theorem 2 to constitute
a simple stepwise-greedy approximation to optimal multi-index
selection.

Remarks and Discussion. The Nyström extension, in conjunction with
efficient techniques for multi-index selection, hence provides a
means of approximate spectral analysis in situations where the
exact eigendecomposition of a positive-definite kernel is pro-
hibitively expensive. As a strategy for dealing with very large,
high-dimensional datasets in the context of both the classical and
contemporary statistical analysis techniques described earlier, this
approach lends itself easily to a straightforward implementation in
practical settings, and also carries with it the accompanying perfor-
mance guarantees of Theorems 1 and 2 through the two algorithms
presented above.

In considering the performance and complexity of these 2 algo-
rithms, we first compare them with the only other result known to
us for explicitly quantifying the approximation error of an SPSD

Fig. 2. Diffusion maps kernel approximation error as a function of approx-
imant rank, shown for the 3 randomized algorithms of Fig. 1, along with the
minimum approximation error attained by exact spectral decomposition.

matrix using the Nyström extension (12). This algorithm consists
of choosing row/column subsets by sampling, independently and
with replacement, indices in proportion to elements of {G2

ii}n
i=1, the

squares of the main diagonal entries of G. The resultant probabilis-
tic bound is written to include the possibility of sampling c ≥ k
indices to obtain a rank-k approximation obeying (in Frobenius
norm)

E‖G − G̃‖ ≤ ‖G − Gk‖ + 2
√

2
4
√

c/k

n∑
i=1

G2
ii, [14]

an additive error bound relative to that of the optimal rank-k
approximation Gk obtained via exact spectral decomposition.

Two important points follow from a comparison of the bounds
of our Theorems 1 and 2 with that of 14. First, inspection of 13
(Theorem 2) and 14 reveals that a conservative sufficient condi-
tion for the former to improve upon the latter when c = k is
that tr(G) ≥ n (also bearing in mind that the 13 is deterministic,
whereas 14 holds only in expectation). A comparison of 9 (Theo-
rem 1) and Eq. 14 reveals the more desirable relative form of the
former, which involves only the (n − k) smallest eigenvalues of G
and avoids an additive error term. Recall that Eq. 9 also guarantees
zero error for an approximation whose rank k equals the rank of G.

A direct implementation of Theorem 1, however, requires sam-
pling from pG,k(I), which may be computationally infeasible. In the
sequel we demonstrate that an approximate sampling is sufficient
to outperform other algorithms for SPSD kernel approximation.
Moreover, a sharp decrease in error is observed in simulations
when k meets or exceeds the effective rank of G. This feature is
especially desirable for modern spectral methods such as those
described in the introduction, which yield very large matrices of
low effective rank: whereas the number of data points n deter-
mines the dimensionality of the kernel matrix G, its effective rank
is given by the number of components of the manifold M from
which the data are sampled plus dim(M), a sum typically much
smaller than n.

We also remark on similarities and differences between our
strategies and ongoing work in the theoretical computer science
community to derive complexity-class results for randomized low-
rank approximation of arbitrary m × n matrices. Though our
goals and corresponding algorithms are quite different in their
approach and scope of application, it is of interest to note that our
Theorem 1 can in fact be viewed as a kernel-level version of a the-
orem of ref. 13, where a related notion termed volume sampling
is employed for column selection. However, in ref. 13, as in the
seminal work of ref. 6 and others building upon it, approximations
are obtained by applying linear projections to the approximand;
although different algorithms define different projections, they do
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Fig. 3. Worst-case approximation error over 10 realizations of the ran-
dom sampling schemes of Fig. 2, along with the deterministic algorithm of
Theorem 2.

not in general guarantee the return of an SPSD approximant when
applied to an SPSD matrix. The same holds true for approaches
motivated by numerical analysis; in recent work, the authors of
ref. 14 apply the method of ref. 15 to obtain a low-rank approxima-
tion termed an interpolative decomposition, and focus on its use in
obtaining accurate and stable approximations to matrices with low
numerical rank.

With reference to these various lines of work, we remark that a
projection method applied to a matrix A can naturally be related to
the Nyström extension applied to AAT , though in our application
setting it is of specific interest to work directly with the kernel
in question. In particular, our results indicate how, by restricting
to quadratic forms, one is able to exploit more specialized results
from linear algebra than in the case of arbitrary rectangular matri-
ces. We refer the reader to ref. 12 for an extended discussion of
the various differences between projection-based approaches and
the Nyström extension.

We conclude these remarks with a discussion of the computa-
tional complexity of the above algorithms for spectral decomposi-
tion. Recall that an exact spectral decomposition requires O(n3)
operations, with algorithms specialized for sparse matrices run-
ning in time O(n2) (4). The deterministic algorithm of Theorem 2
requires finding the k largest diagonal elements of G, which can be
done in O(n log k) steps. In analogy to Eq. 2, the subsequent spec-
tral decomposition of GI = UI�I UT

I can be done in O(k3), and the
final step of calculating GĪ×I UI�

−1
I requires timeO((n−k)k2+k2),

as �I is diagonal. The total running time of this deterministic algo-
rithm is henceO(n log k+k3+(n−k)k2), which compares favorably
with previously known methods when k is small. The algorithm of
Theorem 1 selects multi-index I at random, and thus the sorting
complexity O(n log k) is replaced by the complexity of sampling
from pG,k(I) ∝ det(GI ). Below we describe an approximate sam-
pling technique based on stochastic simulation whose complexity
is O(k3), owing to the computation of determinants, with a mul-
tiplicative constant depending on the precise simulation method
employed.

Numerical Implementation and Simulation Results
We now detail the implementation of our algorithms, and present
simulation results for cases of practical interest that are represen-
tative of recent and more classical methods in spectral machine
learning. Though simulations imply the adoption of a measure on
the input space of SPSD matrices, our results hold for every SPSD
matrix.

We first describe an approximate sampling technique adopted as
an alternative to sampling directly from pG,k(I) according to Eq. 8.
Among several standard approaches (16), we chose to employ the

Fig. 4. Recovery via Laplacian eigenmaps of a low-dimensional embedding
from a 100,000-point realization of the “fishbowl” data set (Top), imple-
mented using approximate spectral decompositions based on sampling multi-
indices uniformly at random (Bottom Left) and according to the algorithm of
Theorem 1 (Bottom Right).

Metropolis algorithm to simulate an ergodic Markov chain that
admits pG,k(I) as its equilibrium distribution, via a traversal of the
state space {I : |I| = k} according to a straightforward uniform
proposal step that seeks to exchange one element of I with one of
Ī at each iteration. We made no attempt to optimize this choice,
as its performance in practice was observed to be satisfactory,
with distance to pG,k(·) in total variation norm typically observed

Input: X = {x1, x2, . . . , xn} ∈ R
m // input dataset

k < m // desired dimension of the approximation
T > 0 // number of iterations for approximate sampling

Output: Ũ = {̃u1, ũ2, . . . , ũk} ∈ R
n // approximant eigenvectors

�̃ = {̃λ1, λ̃2, . . . , λ̃k} // approximant eigenvalues

// Initialization: select a multi-index at random and build kernel
N ⇐ {1, 2, . . . , n}
pick I(0) = {i1, i2, . . . , ik} ⊂ N uniformly at random
GI ⇐ EvaluateKernel(X , I(0), I(0))

// Sampling: attempt to swap a randomly selected pair of indices
for t = 1 to T do

pick s ∈ {1, 2, . . . , k} uniformly at random
pick i′s ∈ N \ I(t−1) uniformly at random
I ′ ⇐ {i′s} ∪ I(t−1) \ {is}
GI′ ⇐ EvaluateKernel(X , I ′, I ′)
with probability min

(
1, det(GI′)/ det(GI )

)
do

I(t) ⇐ I ′
GI ⇐ GI′

otherwise
I(t) ⇐ I(t−1)

end do
end for

// Nyström approximation: obtain the eigenvectors and extend
them
I ⇐ I(T)

Ī ⇐ N \ I
GĪ×I ⇐ EvaluateKernel(X , Ī, I)
[UI , �I ] ⇐ EigenDecomposition(GI )
Ũ ⇐ ConcatenateColumns(UI , GĪ×I UI�

−1
I )

Ũ ⇐ PermuteRows(Ũ , I, Ī)
�̃ ⇐ diag(�I )
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to be small after on the order of 50|I| iterations of the chain.
This approximate sampling technique yields a complete algorithm
for low-complexity spectral analysis, as described in the algorithm
above and implemented in subsequent experiments.†

Our first experiment was designed to evaluate the relative
approximation error 20 log10 ‖G − G̃‖/‖G‖ incurred by the Nys-
tröm extension for the randomized algorithms of Theorem 1 and
ref. 12. To do so we simulated G from the ensemble of Wishart
matrices‡ according to G = G1+5×10−7G2, where G1 ∼ Wk(I, n)
and G2 ∼ Wn(I , n); all generated matrices G were thus SPSD and
of full rank, but with their k principal eigenvalues significantly
larger than the remainder. We set n = 500 and k = 50, and aver-
aged over 10,000 matrices drawn at random, with outputs averaged
over 100 trials for each realization of G. A third algorithm indicat-
ing the Nyström extension’s baseline performance was provided by
selecting a multi-index of cardinality k uniformly at random. Fig. 1
shows the comparative results of these three algorithms, with that
of Theorem 1 (implemented using the algorithm described above)
outperforming that of (12), whose sampling in proportion to G2

ii
fails to yield an improvement over the baseline method of sam-
pling uniformly over the set of all multi-indices. Additionally, for
approximants of rank 50 or higher, we observe a marked decline in
approximation error for the algorithm of Theorem 1, as expected
according to Eq. 6.

In a second experiment, we compared the performance of these
3 algorithms in the context of nonlinear embeddings. To do so we
sampled 500 points uniformly at random from the unit circle, and
then computed the approximate spectral decomposition of the
500-dimensional matrix required by the diffusion maps algorithm
of ref. 5. Corresponding kernel approximation errors in the Frobe-
nius norm were measured for each of the randomized algorithms
described in the preceding paragraph, as well as for the optimal
rank-k approximant obtained by exact spectral decomposition. We
replicated this experiment over 1,000 different sets of points and
averaged the resultant errors over 100 trials for each replication.
As indicated by Fig. 2, the algorithm of Theorem 1 yields the low-
est error relative to the optimal approximation obtained by exact
spectral decomposition.

We also tested the performance of the deterministic algorithm
implied by Theorem 2 in a worst-case construction of nonlinear
embeddings. We proceeded by simulating positive-definite ker-
nels for use with diffusion maps exactly as in the scenario shown
in Fig. 2, but with 10,000 experimental replications in total. Then,

†To define the transition kernel of the algorithm, let d(I, I′) = 1/2(|I ∪ I′ | − |I ∩ I′ |), a mea-
sure of the distance between two subsets I, I′ ⊂ {1, . . . , n} such that if |I| = |I′ |, then d(I, I′)
is the number of elements that differ between I and I′. Given a set I with |I| = k, our
proposal distribution is p(I′ |I) = 1/k(n − k) if d(I, I′) = 1, and zero otherwise.

‡The Wishart ensemble Wk (V , n) is the set of random matrices of the form G = XXT ,
where X is a n×k matrix whose rows are independent and identically distributed accord-
ing to a zero-mean multivariate normal with covariance described by the k × k SPSD
matrix V .

rather than averaging over 100 trials for each replication, we
instead took the worst of 10 different kernel approximation real-
izations for each randomized algorithm. As shown in Fig. 3, our
deterministic algorithm consistently outperforms both the ran-
domized algorithm of ref. 12 and the baseline method of uniform
sampling in this worst-case scenario.

As a final example, we applied our randomized algorithm to
realize a low-dimensional embedding via Laplacian eigenmaps (3)
of a synthetic dataset containing 105 points. The nearly 5×109 dis-
tinct entries of the corresponding kernel matrix make it too large
to store in the memory of a typical desktop computer, and hence
preclude its direct spectral decomposition. As shown in the top
portion of Fig. 4, the input “fishbowl” dataset—widely used as a
benchmark—comprises a sphere embedded in R

3 whose top cap
has been removed. The correct realization of a low-dimensional
embedding will “unfold” this dataset and recover its 2-dimensional
structure; to this end, Fig. 4 shows representative results obtained
by choosing a multi-index I of cardinality 30 uniformly at random
(Bottom Left) and in proportion to det(GI ) (Bottom Right). We
see that the former realization fails to recover the 2-dimensional
structure of this dataset, as indicated by the folding observed on the
left-hand side of the resultant projection. The latter embedding
is seen to yield a representation more faithful to the underlying
structure of the data, indicating the efficacy of our method for
kernel approximation in this context.

Summary
In this article we have introduced two alternative strategies for
the approximate spectral decomposition of large kernels, and
demonstrated their applicability to machine learning tasks. We
used the Nyström extension to transfer the main computational
burden from one of kernel eigen-analysis to a combinatorial task
of partition selection, thereby rendering the overall approxima-
tion problem more amenable to quantifiable complexity-precision
trade-offs. We then presented 2 new algorithms to determine a
partition of the kernel prior to Nyström approximation, with one
employing a randomized approach to multi-index selection and
the other a rank statistic. For the former, we gave a relative error
bound in expectation for positive-definite kernel approximation;
for the latter, we bounded its deterministic worst-case error. We
also detailed a practical implementation of our algorithms and
verified via simulations the improvements in performance yielded
by our approach. In cases where optimal approaches rely on an
exact spectral decomposition, our results yield strategies for very
large datasets, and come with accompanying performance guar-
antees. In this way they provide practitioners with direct access to
spectral methods for large-scale machine learning and statistical
data analysis tasks.
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