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Node position information is one of the important issues in many wireless sensor networks’ usages. In this paper, based on path
planning, a location predictingmethod (PPLP) for indoormobile target localization is proposed.Wefirst establish the path planning
model to constrain the movement trajectory of the mobile target in indoor environment according to indoor architectural pattern.
Then, one certain localization result can be obtained usingMLE algorithm. After that, based on the path-planning model and some
previous localization results, the most likely position of the target in the next time interval can be predicted with the proposed
predicting approach. Finally, the MLE result and prediction result are weighted to obtain the final position. The simulation results
demonstrate the effectiveness of the proposed algorithm.

1. Introduction

Wireless sensor networks (WSNs) are widely applied inmon-
itoring, sensing, and collecting the information of interest
in the environment [1]. Localization of target nodes is a
fundamental problem in wireless sensor networks [2]. Up to
now, the most existing localization algorithms of WSNs can
be classified into two categories: range-based [3, 4] and range-
free [5, 6]. Range-based algorithms use distance or angle
estimates in their location estimations. Range-free algorithms
use connectivity information between unknown nodes and
anchor nodes. Range-based localization algorithms need to
measure the actual distances or orientation between adjacent
nodes, and then use the measured data to locate unknown
nodes. Some ranging methods have been used for distance
or orientation estimation, such as RSSI [7, 8], ToA [7, 9],
TDOA [7, 10], and AoA [7, 11].Whatever the rangingmethod
is, there will be measurement errors in practical localization
systems that result in noisy range estimations.Thus, accuracy
in the position estimation phase is highly sensitive to range
measurements [12]. Without improving range estimation or
adding some other information related to localization, the
accuracy of the current range-based algorithms cannot be
improved obviously.

Indoor localization of WSNs has been a hot research
topic for the last several years. Due to the randomness of
targets moving and the complicated indoor environment,
it is very different to locate indoor mobile target. In this
paper, we proposed a location predicting method (PPLP)
for indoor mobile target localization in WSNs based on
path planning. We first establish the path-planning model
to constrain the movement trajectory of the mobile target
in indoor environment according to indoor architectural
pattern. Then, we use MLE approach to get one certain
location result of the target. After that, based on the path-
planning model and some previous localization results of the
target, the best possible position of the target in the next
time interval can be predicted with the proposed predicting
approach. Finally, the MLE result and prediction result are
weighted to obtain the final position. In simulation process,
we define three metrics to evaluate the performance of the
proposed algorithm and compared with the MLE algorithm
and PSO algorithm. Simulation results demonstrate that the
proposed algorithm performed better than the other two
algorithms.

The rest of this paper is organized as follows: in the next
section, some related work is briefly introduced. Section 3
presents a detailed description of the main contribution of
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this paper, the proposed algorithm PPLP. The simulation
results on localization performance and error analysis are
discussed in Section 4. Section 5 concludes.

2. Related Work

2.1. Maximum Likelihood Estimation. Maximum likelihood
estimation (MLE) is widely used in many localization appli-
cations inwireless sensor networks [13–15]. In the localization
process, the number of multiple measurement equations is
usually more than the number of variables. Set 𝑟

𝑖
(𝑖 =

1, 2, . . . , 𝑛) is the estimated distance from anchor sensor
node (𝑥

𝑖
, 𝑦
𝑖
) to the target node, the target’s position can be

calculated as [16]:
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2.2. Particle Swarm Optimization for Localization. Particle
swarm optimization (PSO) [17, 18] is a swarm bionic opti-
mization algorithm, which models the behavior of flocks of
birds and fish. This method converges to the most optimal
solution in a larger probability. Its process does not depend
upon the quality of the objective function. So, it is commonly
used to solve the optimization problems.

Let 𝑥
𝑖
= (𝑥
𝑖1
, 𝑥
𝑖2
) be the 2-dimensional vector represent-

ing the position of the 𝑖th particle in the swarm, 𝑔 = [𝑔
1
, 𝑔
2
]

the position of the best particle in the swarm, 𝑝 = [𝑝
𝑖1
, 𝑝
𝑖2
]

the current best optimal solution of the 𝑖th particle itself and
V
𝑖
= [V
𝑖1
, V
𝑖2
] is the velocity of the 𝑖th particle. The particles

evolve according to the following equations:
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(3)

where 𝑑 = 1, 2; 𝑖 = 1, 2, . . . , 𝐾; 𝐾 is the size of the
swarm population; 𝜔 is the inertial weight; 𝑐

1
determines

how much a particle is influenced by the memory of its best
solution; and 𝑐

2
is an indication of the impact of rest of the

swarm on the particle. 𝑐
1
and 𝑐
2
are termed cognitive and

social scaling parameters, respectively. 𝑟
1
and 𝑟
2
are uniform

random numbers in the interval [0, 1].
Reference [18] proposed an improvedPSOalgorithmwith

RSSI self-correcting localization algorithm forwireless sensor
networks. Based on the RSSI ranging, the author combined

Mobile anchor trajectory

Mobile anchor

Unknown nodes

Figure 1: A mobile anchor assisting in the localization.

Previous location

Predicted location

Initial location

Figure 2: Prediction method for WSNs localization.

the proposed RSSI self-correction mechanism and improved
PSO algorithm to optimize the nodes’ localization for WSNs.
Reference [12] proposed two novel and computationally
efficient metaheuristic algorithms based on tabu search
(TS) and particle swarm optimization (PSO) principles for
locating the sensor nodes in a distributed wireless sensor
network (WSN) environment. The author compared the
performance of the proposed algorithms with each other
and also against simulated annealing. The effects of range
measurement error, anchor node density, and uncertainty in
the anchor node position on localization performance are
also studied through various simulations.

2.3. Path-PlanningMethod forWSNs Localization. Path plan-
ning is usually used for mobile anchor node in WSNs local-
ization, where usually requires complex hardware support
[19]. A mobile anchor node could be a small mobile robot
equipped with a GPS and transmit its coordinate to the rest
of the sensors to help them localize themselves. Figure 1
depicts a sensor network deployed over a geographical area.
After the deployment, a mobile anchor traverses the sensor
network while broadcasting its location packet. The packet
contains the coordinates of the anchor, the current time, and
some other information such as RSSI. Any node receiving the
packet will be able to infer its location with several mobile
anchors or one mobile anchor at different times.

2.4. Prediction Method for WSNs Localization. Prediction
method is usually used to predict the possible locations of
target in the next time interval based on the existing time
series data [20] as Figure 2 shows.
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Salamah and Doukhnitch [9] proposed a new efficient
algorithm based on time of arrival (ToA) to determine the
position of a mobile object (MO) in a wireless environment.
However, it is not suitable for indoor mobile target localiza-
tion because of the non-line-of-sight (NLOS) propagation in
indoor environment.

3. Proposed Algorithm

3.1. Assumptions. We assume that the whole network con-
sists of some stationary anchor nodes (ANs) and a mobile
target. The anchor nodes whose coordinates are known are
randomly or artificially deployed in a 2-dimensional indoor
flat environment. All anchor nodes have the same radio
transmission range (𝑅). A mobile target may be a human, a
robot, or some object manipulated by some person. Turning
point (TP) is the intersection of two subpaths. The target
can move freely among various rooms. After encountering
some turning points, the target may change or not change
its motion path. The position of the target can be calculated
periodical with the proposed algorithm.The trajectory of the
target can be regarded as a series of discrete points called
target nodes (TNs). So, the localization problem changes into
solving the locations of the target nodes.

3.2. Path-Planning Model. Generally, the movement of the
mobile target (such as a person) is driving by its intention
with large randomness. But in indoor environment, the
motion trajectory of the target is relatively fixed because of the
spatial constraint. People often engage in some typicalmotion
patterns. For example, if a person wants to go to another
nonadjacent room, he/she must go out the door first, then
cross the corridors, and finally reach his/her destination. It is
impossible for him/her to go through walls directly to reach
the final position. Target’s indoor movement will be limited
by the indoor architecture pattern, such as walls and doors.
Suppose the location system knows the indoor architectural
pattern beforehand, and use it to assist positioning, we can
get a better localization accuracy and trajectory of the target.

As Figure 3 shows, any corridor/aisle or room can be
viewed as a path. Assume that each path can be described
using function 𝑓(𝑥, 𝑦), then all possible moving paths can be
described using path function as follows:
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𝑥 ∈ 𝑋; 𝑦 ∈ 𝑌, (4)

where 𝑋 and 𝑌 are the ranges of the 𝑥-coordinate and 𝑦-
coordinate, respectively, and 𝑓

𝑚
(𝑥, 𝑦) is the path function for

the𝑚th path, called subpath function. All subpath functions
form the total path function 𝐹(𝑥, 𝑦).

However, different buildings have different indoor archi-
tectural patterns. In order to make location computing more

The paths that target can move along

Figure 3: An indoor architectural pattern with some indoor paths.

effective, we use a straight line segment function to describe
each subpath as follows:
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where (𝑥
𝑎
, 𝑦
𝑎
) and (𝑥

𝑏
, 𝑦
𝑏
) are the jumping-off point (JOP)

and the end point (EP) of this staight line segment, respec-
tively. A straight line segments subpath can be obtained once
JOP and EP are determined. This function can completely
(if the real subpath is straight) or approximately (if the real
subpath is not straight) describe the real subpath. It will be
useful to improve localization accuracy.

3.3. Location Predicting Method. We assume that the maxi-
mum velocity of human moving is Vmax, and localization is
periodically with period being Δ𝑇. It is difficult to determine
TN’s position according to the previous localization results,
because the human moving is random and the localization
error exists. However, the localization results can track
target’s trajectory with high possibility. So our strategy is,
first, to compute localization results during a period of time
𝑇 using some certain localization method (such as MLE);
second, to predict the next possible positions according to
these localization results; last, the localization result and
prediction result are weighted to obtain the final position. In
this paper, we use MLE algorithm to finish the first step. We
only focused on step two and step three.

Let us use set𝐺 = {𝐺
1
, 𝐺
2
, . . . , 𝐺

𝑘
} to describe localization

results of the first step during time 𝑇, where 𝐺
𝑖
= (𝑥
(𝑖)
, 𝑦
(𝑖)
).

The prediction problem can be described as follows: how to
get the next position 𝐺̂

𝑘+1
according to set 𝐺 and the path-

planning model.
For any subpath 𝑓(𝑥, 𝑦), a set 𝑍 can be used to describe

all points on this subpath. Each element of set 𝑍 satisfied
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𝑆𝑘

Subpath
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Localization result 𝐺𝑖 and sequence 𝐺
Closest projection point 𝑆𝑖
The possible prediction results 𝑆𝑘+1

Figure 4: Predicting model in indoor environment.

function (5). We can also get that all elements of𝐺 are belong
to set𝐷 which can be described as follows:

𝐷 = {(𝑥
𝐷
, 𝑦
𝐷
) | {

𝑥min − Δ𝑥 ≤ 𝑥𝐷 ≤ 𝑥max + Δ𝑥
𝑦min − Δ𝑦 ≤ 𝑦𝐷 ≤ 𝑦max + Δ𝑦

} , (7)

where 𝑥min, 𝑦min, 𝑥max, and 𝑦max are the minimum
𝑥-coordinate, minimum 𝑦-coordinate, maximum 𝑥-
coordinate, and maximum 𝑦-coordinate among all elements
of 𝐺, respectively. Δ𝑥 and Δ𝑦 are threshold values which are
related to accuracy of MLE algorithm.

One key point for predicting target’s position is to
find which subpath the target may move at time k. Some
definitions are defined at first as follows:

Definition 1. Optional subpath that target may move on: for
any subpath 𝑓(𝑥, 𝑦) described with set 𝑍, if it is satisfied that
𝑍 ∩ 𝐷 ̸= 0, then this subpath is one optional subpath.

Definition 2. Closest projection point 𝑆
𝑖
and set 𝑆: 𝑆

𝑖
is the

closest projection point of 𝐺
𝑖
which satisfies the following

function (8), 𝑆 is the set of {𝑆
1
, 𝑆
2
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} whose element

number is equal to 𝐺’s as
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where 𝑆
𝑥
= (𝑥
𝑠
, 𝑦
𝑠
) is any point on subpath 𝑓

𝑖
(𝑥, 𝑦). 𝑓

𝑖
(𝑥, 𝑦)

is one of all optional subpaths.

The prediction model can be showed as in Figure 4.
Usually, the subpath 𝑓

𝑘
(𝑥, 𝑦) in which 𝑆

𝑘
is on is the most

possible subpath that targetmaymove on. In order to increase
the predicting probability, we choose the subpathmost of S

𝑘−𝑝

to 𝑆
𝑘
are on as the 𝑘th subpath that targets moves on. Here

𝑝 is constant which is determined by experiment. 𝑝 should
be satisfied during time 𝑘 − 𝑝 to 𝑘; the distance of target’s
moving is small. Then, we use the closet projection points

on 𝑓
𝑘
(𝑥, 𝑦) to form a new set 𝑆󸀠 = {𝑆(1), 𝑆(2), . . . , 𝑆(𝑘)}. And

the prediction problem based on the previous model can be
written as follows:

𝑆̂
𝑘+1
= 𝑆
(𝑘)
+ V
𝑘
⋅ Δ𝑇, (9)

where 𝑆̂
𝑘+1

is the position to be predicted, and V
𝑘
is the

velocity at time 𝑘. For the randomness of target moving, the
direction of vector V

𝑘
is hard to be determined. So, we rewrite

it as follows:
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where �⋅, ⋅� denotes the shortest distance from one point
to anther along some certain subpath. So, �𝑆̂

𝑘+1
, 𝑆
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the shortest distance from 𝑆
(𝑘) to 𝑆̂
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subpath.
Obviously, the optional subpath targets are on at time

𝑘 + 1 is very likely more than one. So, 𝑆̂
𝑘+1

may have one or
multiple solutions. At time 𝑘+1, targetmay still be on subpath
𝑓
𝑘
(𝑥, 𝑦) or turn to another adjacent subpath. Without loss of

generality, we assume that 𝑓
𝑘+1
(𝑥, 𝑦) is the possible subpath

at time 𝑘+1.The key point to judge whether𝑓
𝑘+1
(𝑥, 𝑦) exist is

to find out whether there is a TP when target is moving ahead
during time Δ𝑇.

Let 𝐶 be the set of all possible TPs that target may
encounter, if there is a point 𝐶
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Then the set of all possible predicting positions at time
𝑘 + 1 can be written as follows:
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Set 𝑀
𝑘+1

contains all possible predicting positions. But
the possibility of each element in 𝑀

𝑘+1
to become the final

localization result is different. Let ̂U
𝑘+1

be the localization
result using MLE algorithm at time 𝑘 + 1. Generally, ̂U

𝑘+1
is

close to real position with high possibility.Themore accurate
theMLE is, the higher the possibility will be. And the element
in𝑀
𝑘+1

nearby Û
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has a higher possibility than the other
elements. Predicting result in𝑀
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On the other hand, for the randomness of humanmoving,
different movement patterns may lead to different prediction
possibilities. We can infer the next possible positions accord-
ing to previous locations.

Definition 3. Direction value of 𝑆(𝑖): for the 𝑖th point 𝑆(𝑖) in
𝑆
󸀠, we use 𝛿orien(𝑆

(𝑖)
| 𝑆
(𝑖−1)
) to describe the target’s moving
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where 𝑓 = 𝑓
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(𝑥, 𝑦), 𝑖 ≥ 2.

So the possibility the target moving forward at time k can
be described as follows:
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where Num 𝛿
(+1)is the amount of points whose direction

value is 1;𝑚 is the amount of elements in 𝑆󸀠.
From the previous description, we know that a TP may

be encountered when target is moving forward or backward
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the prediction results that target moving forward; we use
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(forward) to denote the number of these elements. Othersmay

reflect the prediction results that target moving backward; we
use 𝑛(backward) to denote the number of these elements. So, we
can get another prediction result:

𝑆̂

(𝑏)

𝑘+1
=

𝑛
(forward)

∑

𝑖=1

(

𝑝
(forward)
(𝑘+1|𝑘)

𝑛
(forward) ⋅ 𝑄̂

(𝑖)

𝑘+1
)

+

𝑛
(backward)

∑

𝑗=1

(

1 − 𝑝
(forward)
(𝑘+1|𝑘)

𝑛
(backward) ⋅ 𝑄̂

(𝑗)

𝑘+1
) ,

(17)

where 𝑄̂(𝑖)
𝑘+1

is the 𝑖th prediction result in set𝑀
𝑘+1

when target
ismoving forward, 𝑄̂(𝑗)

𝑘+1
is the jth prediction result in set𝑀

𝑘+1

when backward.
Then the final predication result can be written as follows:

𝑆̂
𝑘+1
= 𝛼 ⋅ 𝑆̂

(𝑎)

𝑘+1
+ (1 − 𝛼) ⋅ 𝑆̂

(𝑏)

𝑘+1
, (18)

where 𝛼 is the weight of each predicting result. It can be
obtained with some learning methods [20] when doing long-
term prediction [21] applications. Generally, the long-term
motion trajectory of the target usually comply with limited
movement patterns, which is shown as a repetitive motion
along one or several paths. In this paper, we only consider
short-term predicting, and the value of 𝛼 is set to 0.5.

3.4. Final Location Computing. The final localization result
can be obtained as follows:

𝐺
𝑘+1
= 𝑤 ⋅ Û

𝑘+1
+ 𝑤
󸀠
⋅ 𝑆̂
𝑘+1
. (19)

Here we defined 𝑤 as follows:

𝑤 =

{
{
{
{
{

{
{
{
{
{

{

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
Vmax

󵄨
󵄨
󵄨
󵄨
⋅ Δ𝑇 −

�
𝑆
(𝑘)
, 𝑆̂
𝑘+1

�
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑆̂
𝑘+1
− Û
𝑘+1

󵄨
󵄨
󵄨
󵄨
󵄨

,

if 󵄨󵄨󵄨󵄨
󵄨

̂U
𝑘+1
− 𝑆
(𝑘)󵄨󵄨
󵄨
󵄨
󵄨
≥
󵄨
󵄨
󵄨
󵄨
Vmax

󵄨
󵄨
󵄨
󵄨
⋅ Δ𝑇,

1, else.

(20)

3.5. Updating Rules. After getting the localization result at
time 𝑘 + 1, some updating rules are proposed for the next
location predicting and computing. The updating rule for
|V
𝑘+1
| can be written as follows:

󵄨
󵄨
󵄨
󵄨
V
𝑘+1

󵄨
󵄨
󵄨
󵄨
=

�𝑆
𝑘+1
, 𝑆
𝑘
�(𝑓𝑘(𝑥,𝑦))
Δ𝑇

, if (󵄨󵄨󵄨
󵄨
V
𝑘+1

󵄨
󵄨
󵄨
󵄨
<
󵄨
󵄨
󵄨
󵄨
Vmax

󵄨
󵄨
󵄨
󵄨
) ,

󵄨
󵄨
󵄨
󵄨
V
𝑘+1

󵄨
󵄨
󵄨
󵄨
=
󵄨
󵄨
󵄨
󵄨
Vmax

󵄨
󵄨
󵄨
󵄨
, else,

(21)

where �𝑆
𝑘+1
, 𝑆
𝑘
�(𝑓𝑘(𝑥,𝑦)) is the distance from 𝑆

𝑘
to 𝑆
𝑘+1

along
the subpath 𝑓

𝑘
(𝑥, 𝑦); 𝑆

𝑘+1
is the closest projection point of

𝐺
𝑘+1

which can be obtained by Definition 2. 𝑓
𝑘+1
(𝑥, 𝑦) is the

subpath that 𝑆
𝑘+1

is on at time 𝑘 + 1.
The update rule for set 𝑆 is to keep the length of 𝑆

unchanged, remove the first element, and insert the new
element 𝑆

𝑘+1
into the last of 𝑆.

3.6. Pseudoprocedure of PPLP Algorithm. Target’s final loca-
tion at time 𝑘 + 1 can be obtained with the following pseudo
procedure of PPLP algorithm.

Procedure begin:
//Path-planning begin:

(1) input JOP and EP of each subpath according to actual
indoor environment;

(2) determine each subpath with function (5);
(3) determine the total path with function (4);

complete path-planning modeling.
//Path-planning end.

(4) calculate the target’s location ̂U
𝑘+1

at time 𝑘 + 1 using
MLE algorithm;
//Predicting begin:

(5) initialize 𝐺, |V
𝑘
|, |Vmax|, 𝑝, Δ𝑥, Δ𝑦;

(6) calculate set 𝑆 with the path-planning model and
functions (7) and (8);

(7) calculate𝑀
𝑘+1

with functions (9)–(13);

(8) calculated 𝑆̂(𝑎)
𝑘+1

with function (14);

(9) calculated 𝑆̂(𝑏)
𝑘+1

with function (15)–(17);

(10) calculated 𝑆̂
𝑘+1

with function (18);
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Figure 5: The nodes deployment and environment set up.

(11) calculated the final position 𝐺
𝑘+1

with function (19)
and (20).
//Predicting end.
//Updating begin:

(12) update some with updating rules in Section 3.5.
//Updating end.

Procedure end.

4. Simulation and Analysis

In this section, we will evaluate the performance of the pro-
posed localization algorithm through extensive simulations
carried out using MATLAB.

4.1. Simulation Scenario and Settings. We set simulation
scenario and some key parameters as follows.

All ANs are randomly deployed in a 50∗50m2 area for the
simulation.The total number of ANs is initially 100 and every
AN is known its position. All members of 𝐺 are initialized
to (0, 15). Some other parameters are shown in Table 1.The
nodes deployment and the environment setup are shown in
Figure 5.

In Figure 5, we use 4 dotted-line segments to represent 4
subpaths, respectively.The path width is set to be 2m.We use
some random discrete TNs (as shown in Figure 5 with blue
dots) to simulate the randomness of human movement. In
the proposed algorithm, we did not consider any particular
ranging technique. In the simulation process, we use the
following formula (22) [12, 22] to describe the measured
distances between TNs and ANs with some certain ranging
technique:

̂
𝑑
𝑖𝑗
= 𝑑
𝑖𝑗
+ 𝑁
𝑖𝑗
, (22)

where ̂𝑑
𝑖𝑗
and 𝑑

𝑖𝑗
are the measured and real distance between

the AN
𝑖
and the TN

𝑗
, respectively, and 𝑁

𝑖𝑗
is assumed to

Table 1: Simulation parameters.

Type Value
𝑝 5
󵄨
󵄨
󵄨
󵄨
v
𝑘

󵄨
󵄨
󵄨
󵄨

0.5
󵄨
󵄨
󵄨
󵄨
vmax

󵄨
󵄨
󵄨
󵄨

5m/s
T 2 s
Δ𝑇 100ms
Δ𝑥 3m
Δ𝑦 3m
𝑅 10m

be blurred by additive Gaussian random variables with zero
mean and known variance 𝜎2

𝑑
.

4.2. Evaluation Metrics. To analyze the simulation results, in
this paper, we defined the following two metrics to evaluate
the performance of the proposed algorithm.

(a) Average localization error:

err aver = 1

NUM

NUM
∑

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑋
𝑖
− 𝜎
𝑖

󵄩
󵄩
󵄩
󵄩
, (23)

where err aver is the error mean of localization result
which reflects the accuracy of the algorithm. 𝑋

𝑖
is

the real coordinate of the TN
𝑖
; 𝜎 is the calculated

coordinate of the TN
𝑖
using the proposed localization

algorithm. ‖𝑋
𝑖
− 𝜎
𝑖
‖ represents the localization error

of TN
𝑖
. NUM is the number of TNs.

(b) Standard variance of localization error:

Loc ver = √ 1

NUM

NUM
∑

𝑖=1

(
󵄩
󵄩
󵄩
󵄩
𝑋
𝑖
− 𝜎
𝑖

󵄩
󵄩
󵄩
󵄩
− err aver)2, (24)

where Loc var is the standard variance of localization
results which can describe the degree of spread of
the localization results. Other variables have the same
meanings as metric (a).

(c) Average distance to the correct subpath:

deviate value aver = 1

NUM

NUM
∑

𝑗=1

󵄩
󵄩
󵄩
󵄩
󵄩
𝜒
𝑗
− 𝜎
𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
, (25)

where deviate value aver is the average distance that the
location results of the targets deviated from the correct
subpath. 𝜒

𝑗
is the closest projection point of the TN

𝑗
, 𝜎
𝑗
is

the calculate coordinate of TN
𝑗
using proposed algorithm

localization algorithm. ‖𝜒
𝑗
− 𝜎
𝑗
‖ represents the distance that

TN
𝑖
departed from the correct subpath.

4.3. Simulation Results and Analysis. We firstly simulate 100
ANs to evaluate the performance of the proposed algorithm
and the classical MLE algorithm [13–16]. The simulation
results are shown in Figures 6 and 7.



International Journal of Distributed Sensor Networks 7

0 5 10 15 20 25 30 35 40 45 50

0
5

10
15
20
25
30
35
40
45
50

Target nodes
Anchor nodes
Localization results

𝑥

𝑦

Figure 6: The simulation result of the proposed algorithm.
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Figure 7: The simulation result of MLE algorithm.

Figures 6 and 7 show the simulation results of the
proposed algorithm and MLE algorithm when the number
of anchor nodes is 100 and transmission range (𝑅) is 10m.
We can see that the performance of the proposed algorithm
is better than MLE algorithm. To ease the understanding
and analyzing of simulation results, we use average local-
ization error (err aver), standard variance of localization
error (Loc var), and average distance to the correct subpath
(deviate value aver) as the evaluation metrics to evaluate the
performance of these two algorithms. Finally, we get the
following comparison results.

Figure 8 provides an intuitive comparison of the accuracy
of the proposed localization algorithm and the MLE. The
average localization error can be obtained using formula (23).

The result shows that the average localization error of MLE is
2.5621m while the proposed algorithm is only 1.7624m. We
can see that the proposed localization algorithm has a better
accuracy than MLE algorithm. Figure 9 shows the distance
that localization results of TNs deviated from the correct
trajectory when the target moves along the correct subpath
as shown in Figure 5. The average distance to the correct
subpath can be obtained using formula (25). The simulation
result shows that the average distance to the correct subpath
of the proposed algorithm is 0.5175m, which is much smaller
thanMLE algorithm.We also calculate the standard variance
of localization error with formula (24). The Loc var of MLE
is 1.4318, and the proposed algorithm’s is 1.0972. Figure 10
gives the comparison results of these two algorithms with
respect to the proposed three metrics. The result shows that
the proposed algorithm (PPLP) has better performance in
all evaluation metrics than MLE algorithm. The accuracy
is high, the localization result is stable and concentrated,
and it can always find the right way that the target moves
on. This is very useful in some practical applications such
as elders/children guarding, hospital patients care, indoor
searching, and rescuing for trapped.

In order to further verify the effectiveness of the proposed
algorithm, we also did some extensive simulations and
compared it with the PSO algorithm [12, 17, 18]. By changing
the transmission radius (𝑅) and anchor nodes ratio, we get
the following simulation results.

Figure 11 provides a comparison of the accuracy of the
proposed localization approach, the MLE algorithm, and
the PSO algorithm with respect to anchor nodes’ ratio and
average connectivity. We run the simulation with 90 TNs.
The number of anchor nodes varied from 30 to 100 (as a
result the average connectivity increased from 3.99 to 11.73).
The simulation results show that the proposed algorithm has
a higher accuracy than the other two algorithms. Figure 12
shows the results of these three algorithms with respect to
the standard variance of localization error when the number
of anchor nodes was changed from 30 to 100. The results
show that the standard variance of localization error of the
proposed algorithm is lower than the other two algorithms.
Figure 13 gives the simulation results of average distance to
the correct subpath when the simulation setting is the same
as Figure 11. After running at least 100 times simulations, the
average distance to the correct subpath can be obtained. As
can be seen from Figure 13, it is obvious that the average
distance to the correct subpath decreases when anchor
nodes’ ratio increase. But simulation result of the proposed
algorithm changed within a narrow range from 0.51m to
0.86m, while the other two algorithms changed obviously.
That is to say, the proposed algorithm is more stable than the
other two algorithms in indoor environment.

Some more simulation results about the discussed three
metrics of these three algorithms can be observed in Figures
14, 15, and 16. We run the simulation with 90 TNs and 100
ANs. The transmission range was increased from 5m to 15m
(as a result, the average connectivity increased from 3.15 to
16.27). The transmission range of a sensor node varies with
its transmission power. A better localization performance
is expected with higher transmission range as the number
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of one-hop ANs increases [14]. With the increase in trans-
mission range, the average localization error, the standard
variance of localization error, and the average distance to the
correct subpath decrease. But the decrease scopes of these
three metrics are not all obvious when transmission range
is larger than 10m (here the connectivity value is 11.60).
That is because the connectivity is an essential factor that
affects these algorithms’ performance. When connectivity
is greater than a certain value (such as 11.60 showed in
Figures 14–16), the accuracy of the algorithm is changed
little. Before that, connectivity can greatly affect algorithm’s
performance. However, the proposed algorithm can have an
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Figure 13: Average distance to the correct subpath versus anchor
nodes’ ratio/average connectivity.

excellent performance even with low connectivity as showed
in Figures 14–16.

All simulation results proved that PPLP algorithm is
performed well in indoor environment. Furthermore, PPLP
algorithm is a centralized computing method. The location
calculation of the target can be done in some certain device
with strong processing capacity such as personal computer.
The proposed algorithm does not need to calculate large
matrix; there is no iteration in localization computing,
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Figure 15: Standard variance of localization error versus transmis-
sion range/average connectivity.

the localization program is executed sequentially with high
efficiency and low complexity.

5. Conclusion
Localization is one of the substantial issues in wireless
sensor networks. In this paper, we presented a location
predicting method (PPLP) for indoor mobile target localiza-
tion in WSNs based on path-planning. We first analyzed the
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Figure 16: Average distance to the correct subpath versus transmis-
sion range/average connectivity.

common feature of indoor environment for most buildings
and the motion pattern of most targets and established the
path-planning model to constrain the movement trajectory
of themobile target according to indoor architectural pattern.
Then, we used MLE algorithm to obtain one certain kind of
location result of the target. After that, based on the path-
planning model and some previous localization results of the
target, the best possible position of the target in the next
time interval was predicted with the proposed predicting
approach. Finally, the MLE result and prediction result were
weighted to obtain the final position. In simulation process,
we defined three metrics to evaluate the performance of
the proposed algorithm and compared it with the MLE
algorithm and PSO algorithm. Simulation results showed
that the proposed algorithm has a better performance in all
these three evaluation indicators and can be very useful for
some practical applications such as elders/children guarding,
hospital patients care, indoor search, and rescue for trapped.
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