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&e ranking of influential nodes in networks is of great significance. Influential nodes play an enormous role during the evolution
process of information dissemination, viral marketing, and public opinion control. &e sorting method of multiple attributes is an
effective way to identify the influential nodes. However, these methods offer a limited improvement in algorithm performance
because diversity between different attributes is not properly considered. On the basis of the k-shell method, we propose an
improved multiattribute k-shell method by using the iterative information in the decomposition process. Our work combines
sigmod function and iteration information to obtain the position index. &e position attribute is obtained by combining the shell
value and the location index. &e local information of the node is adopted to obtain the neighbor property. Finally, the position
attribute and neighbor attribute are weighted by the method of information entropy weighting. &e experimental simulations in
six real networks combined with the SIR model and other evaluation measure fully verify the correctness and effectiveness of the
proposed method.

1. Introduction

Multidimensional information flows rapidly on the network,
while different nodes have different effects on information
transmission [1], viral marketing [2], public opinion guid-
ance [3], and social recommendation [4, 5] due to their
different influences. From the perspective of information
transmission, different social networks have different modes
of information transmission because of the diversity of
functional focuses and user structures. From the perspective
of marketing, by providing influential user rankings for
different hobbies and groups, it can help new users quickly
and effectively obtain relevant information sources of in-
terest so as to achieve a smooth cold start. From the per-
spective of public opinion guidance and control, the event
evolution process of hot public opinions often includes the
forwarding and comments of users with different influences
on different platforms. &ese simple operations often lead to
an enormous development of public opinions in different
directions.

&e influence of nodes is evaluated from global structure
information, such as betweenness centrality [6], closeness
centrality [7], and Katz centrality [8]. &ese methods show
good performance in node sorting. However, because of
O(n2) or even higher computational complexity, these
methods are not suitable for large-scale networks. &e in-
fluence of nodes is quantified by local information, such as
degree centrality [9], semilocal centrality [10], hybrid degree
centrality [11], average shortest path centrality [12], and h
index [13]. Local measures are less efficient because they only
consider local neighborhood information. &ere are many
heuristic algorithms [14, 15] combined with local neigh-
borhood information. Research based on random walk
evaluates the influence of nodes through multiple iterative
operations with high-computational complexity such as
feature vector centrality [16], PageRank [17], LeaderRank
[18], and Hits [19].

Kitsak et al. [20] argues that the most influential nodes
are those located at the core of the network. Each node is
assigned a fixed shell value after k-shell decomposition.
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However, k-shell decomposition tends to assign the same
shell value tomany nodes so that the influence of these nodes
with same shell value cannot be further distinguished. On
this basis, plenty of methods have been proposed to further
improve the performance of k-shell method. Zeng and
Zhang [21] propose a mixed degree decomposition method,
which combines the residual degree and depletion degree to
update the nodes. In each step of decomposition, the nodes
are removed and decomposed based on the mixed degree.
However, the λ parameter is difficult to optimize. Liu et al.
[22] proposes an improved ranking method to generate a
more differentiated ranking list. &is method is realized by
calculating the shortest distance between the target node and
the core node of the network. &e core nodes of the network
are in a node set with the highest shell value in k-shell
decomposition. &e computational cost of this method is
relatively expensive by calculating the shortest distances to
the core nodes. Bae and Kim [23] propose a new mea-
surement of neighborhood coreness centrality, which cal-
culates the diffusion influence of nodes in the network by
summing all neighborhood shell values. &e influence of
nodes with the same ks value can be further distinguished by
using the iterative information of removal nodes to identify
the position difference of nodes in the network. &e degree
decomposition method based on iteration factor [24] is to
improve the performance of the traditional method by using
the iteration information and node degree in the decom-
position. In addition, some other node-sorting algorithms
were introduced to improve the sorting performance.

On the basis of the k-shell method, our work makes full
use of the iterative information in the decomposition
process and proposes an improved multiattribute k-shell
method. First, the iteration information is processed by
sigmod function to obtain the position index. &en, the
position attribute is captured by combining the shell value
and the position index. &e local information of the node is
adapted to obtain the neighbor property. Finally, the po-
sition attribute and neighbor attribute are weighted by the
method of information entropy weighting. In the experi-
ment, the SIR model, Kendall coefficient, and imprecision
function are used to, respectively, evaluate the propagation
capability of different probabilities of propagation, the
imprecision of ranking and the correlation coefficient of
different probability of propagation. Furthermore, we
evaluate ranking results of the proposed method by
selecting seeds in influence maximization problem and
measuring the ranking uniqueness and distribution. &e
experimental results prove that the proposed method can
effectively distinguish the differences of different attributes
and significantly promote the performance of identifying
the influence of nodes.

&e following parts are organized as follows. We briefly
review the definition of related algorithms used for com-
parison in Section 2. In Section 3, our improved multi-
attribute k-shell method is proposed and a meaningful
example is illustrated to show how the proposed measure
works. In Section 4, we present the details of the data, the
spreading model, and the evaluation measure that are used
to evaluate the performance of our measure. &e

experimental results are presented in Section 5. Finally, we
expose the conclusion of the work in Section 6.

2. Related Work

Kitsak et al. proposed the k-shell method to determine the
influence of nodes in the network. &is method considers
that the closer the node is to the center of the network, the
higher the influence of the node will be. &is method uses
node degree to rank the importance of nodes. &e following
details show the decomposition principle of the k-shell
method.

First, we need to remove the nodes and edges with a
medium degree as 1 in the network. At this time, nodes with
a degree as 1 still exist in the remaining network. We should
continue to remove them until no nodes with a degree as 1
exist in the network. At this point, the removed nodes form a
layer and its ks value is assigned to 1. According to the
abovementioned method, continue to remove nodes with a
degree value as 2 in the network and repeat this operation
until there are no nodes in the network. As can be seen in
Figure 1, the ks value allocated for nodes 8, 9, 10, 11, 12, 13,
14, 15, and 16 is 1.&e value allocated for nodes 5, 6, and 7 is
2. &e ks value allocated for nodes 1, 2, 3, and 4 is 3.

K-shell decomposition method is suitable for large
networks because of low-computational complexity. Of
course, the disadvantages of this method are obvious. First,
most nodes are assigned the same ks value so that the
importance of these nodes cannot be further distinguished.
For example, from the perspective of degree, the degree of
node 8 is 3 and the degree of node 11 is 1. &e influence of
node 8 is obviously greater than 11, but they have the same
ks value. Second, in the process of removing nodes, the edges
that have been removed are not considered and the influence
of residue is only concerned about. In this way, it is con-
sidered that nodes with the same ks have the same number of
edges in the outer layer, which is obviously not consistent
with common sense. For example, node 1 and node 2 have
abundant first-order and second-order neighbors in the
outer layer, while node 1 has no neighbors in the outer layer.
&e same ks value assigned to them does not reflect the
difference between them. &ird, in the regular network, the
ks value of most nodes is 1, which is obviously not suitable
for this background.

&e traditional K-shell decomposition method only
updates the nodes according to the residual degree of the
remaining nodes and completely ignores the depletion de-
gree of the removed nodes. In the mixed degree decom-
position method, the decomposition process is based on the
residual degree of the remaining nodes and the depletion
degree of the removed nodes. For node i, its residual degree
and depletion degree are represented by kr

i and ke
i , re-

spectively. In each step of the mixing degree decomposition
method, the node removal is determined by the mixing
degree km

i :

k
m
i � k

r
i + λk

e
i , (1)

where λ is the adjustable parameter between 0 and 1.When λ
is 0, the mixing degree decomposition method is consistent
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as the K-shell decomposition method. When λ is 1, the
mixed degree decomposition method is equivalent to the
degree centrality method. Different from the traditional
K-shell decomposition method, in the mixed degree de-
composition method, the value of ks of all nodes can be
decimal. &e parameter λ is usually set to 0.7.

&e traditional K-shell decomposition method is im-
proved by using the shortest distance from the source node
to the core node of the network. &e propagation capability
of nodes with the same ks value can be further distinguished
by the following methods:

θ(i) � ksmax − ksi + 1( 􏼁 􏽘
j∈Sc

dij, (2)

where ksmax is the maximum ks value in K-shell de-
composition, ksi is the ks value of node i, and Sc is the set
of nodes whose ks value is maximum. Although this
nonparametric method can identify nodes with the same
ks value, the computational complexity is high because of
calculation of the shortest path distance to the core. More
seriously, if the network is not fully connected, the
shortest path distance between partial node pairs cannot
be obtained.

If the iterative information is used to identify the po-
sition difference of nodes in the network, the propagation
ability of nodes with the same ks value can be further
distinguished. Degree decomposition method based on the
iteration factor is proposed to improve the performance of
the traditional method by using iteration information and
node degree in decomposition. It is worth noting that the
degree is a local variable and the iteration factor is a global
variable. &is method fully combines local and global factors
to identify influential nodes more effectively. &e iterative
factor δi of node i is

δi � ksi ∗ 1 +
iter(i)

m
􏼠 􏼡, (3)

where m is the total number of iterations in K-shell de-
composition and iter(i) is the number of times that node i

has been removed from the decomposition. &e influence of
node i in the degree decomposition method based on it-
erative factor is

ICi � δi ∗di + 􏽘
j∈Γ(i)

δj ∗dj. (4)

&e influence of node will be great if a node has many
neighbors at the core of the network. Based on this as-
sumption, the neighbor core of the node is

Cnc(i) � 􏽘
j∈Γ(i)

ks(j),
(5)

where Γ(i) is the neighbor of node i. Recursively, the ex-
tended neighbor kernel is defined as

Cnc+(i) � 􏽘
j∈Γ(i)

Cnc(j).
(6)

3. Materials and Methods

Practice has proved that the combination of multiple at-
tributes can further improve the sorting effect. In recent
years, researchers have combined different attributes and
strategies tomine the influence of nodes.&e performance of
these methods proves that considering multiple attributes is
an effective strategy to evaluate the impact capability of
nodes. At present, there are many attribute weighting
methods, such as least squares weighting method and
principal component analysis method. Among the many
attributes of nodes, location attributes play a significant role
in the sorting process of nodes. At the same time, the
influencing ability of nodes depends largely on the neighbor
attributes. Combining these two attributes, it is an effective
strategy to use the attribute weighting method to further
identify the influence of nodes.

In the K-shell decomposition process, the number of
iterations reveals very important location information,
and it can further distinguish the location differences of
the removed nodes. A node with a higher number of
iterations is closer to the core of the network, or it is
closer to the edge of the network. &e number of itera-
tions here refers to the number of global iterations
decomposed from K-shell to the end. In this paper,
sigmod function is used to further process the number of
iterations when the node is deleted, so as to define the
node position index p(i):

p(i) �
3
4

1

1 + e−
����
iter(i)

√ . (7)

&e relationship between the position index and the
number of iterations is shown in Figure 2. As the number of
iterations increases, the position index increases in a
downward slope with a critical value of 0.75.

11

12
10

9
8

5

2

1

3

4
6

13

14

7

15

16

ks = 3
ks = 2

ks = 1

Figure 1: &e schematic diagram of basic principles of the k-shell
method.

Complexity 3



&e position attribute of the node is represented by
PNp(i), which is composed of the ks value of the node
and the sum of the location index of the neighbor of the
node:

PNp(i) � ksi + 􏽘
j∈Γ(i)

p(j),
(8)

where ksi is the ks value of the node in the K-shell
decomposition.

&e position attribute of a node cannot effectively dis-
tinguish the influence of a node in the same position. For
example, all nodes on the edge of a network have the same
position information, so their influence should be the same.
In fact, due to the difference of local structure, the influence
of edge nodes in the same position will vary greatly.&e local
attributes of nodes should be further used to distinguish the
influence differences of nodes with the same location at-
tributes. If a node has more neighbors, it can have a greater
impact on the network. Furthermore, the influence of a
node’s neighbor is also impacted by its neighbors. Consider
the second-order neighbor can improve the capability of
measuring the influence of a node.

&e neighbor attribute of a node is represented by
PNn(i), and it is represented by the second-order neighbor
number of the node:

PNn(i) � 􏽘
j∈Γ(i)

􏽘
l∈Γ(j)

kl, (9)

where kl represents the degree of node l.
Both position attribute and local attribute play a sig-

nificant role in identifying the influence of nodes. Com-
bining these two key attributes, the influence of nodes can be
accurately calculated and the performance of node influence
ranking can be further improved. Many traditional multi-
attribute sorting methods treat all attribute weights to be
consistent. At the same time, there are many weighting
methods, such as analytic hierarchy process, multiobjective
programming, principal component analysis, and weighted
least square method. Information entropy weightingmethod
is an excellent weighting method, which has been verified by

many examples. Our method adapts the method of infor-
mation entropy weighting to avoid the defects of the tra-
ditional weighting method:

PN(i) � w1∗PNp(i) + w2∗ PNn(i), (10)

where w1 represents the weight of the location attribute and
w2 represents the weight of the neighbor attribute.

&e calculation process of information entropy
weighting method is as follows. First, the entropy value of
each attribute is calculated:

Hi � −
1

ln n
􏽘

n

j�1
rij ln rij, i � 1, 2, (11)

where Hi represents the entropy of the ith attribute, and rij

represents the normalized value of the ith attribute of the jth
node. Because this method has only location and neighbor
attributes, i is set as 1 and 2:

r1j �
PNp(j)

􏽐
n
j�1 PNp(j)

, r2j �
PNn(j)

􏽐
n
j�1 PNn(j)

. (12)

&en, the information entropy is combined to calculate
the weight of the two attributes:

wi �
1 − Hi

2 − 􏽐iHi

, i � 1, 2. (13)

Whether the multiattribute-improved K-shell algorithm
proposed in this section is feasible, the feasibility can be
explained with the help of diagrams. &e graph is an un-
directed graph with 16 nodes and 20 edges. &e PN value of
each node is calculated according to the algorithm. &e
values in the calculation process are shown in Table 1. As we
can see from the table, the importance of all nodes can be
sorted in the descending order according to the PN value.
&e PN values of node 11 and node 12 are the same and their
importance cannot be distinguished.&e PN values of nodes
1, 2, 3, and 4 are in the first gradient, and the PN value of
node 2 is the largest. Its importance can be seen in Figure 1 in
the network. PN values of nodes 5, 6, 7, and 8 are located in
the second gradient. &ese nodes are not outer edge nodes.

&e PN value of node 14 is larger than that of edge nodes
9, 11, 12, 13, and 16. It can be seen from the figure that since
it is directly connected to core node 4, its influence has been
enhanced. From the calculation results shown in Table 1, it
can be preliminarily concluded that the improved K-shell
method based on multiple attributes is feasible to some
extent.

4. Experimental Setup

4.1. Data Description. We conduct several experiments on
six different real networks to evaluate the performance of
our proposed centrality measure. &e real networks are
drawn from disparate fields. CA-Hep& [25] is a collabo-
ration network of Arxiv High Energy Physics &eory.
Netscience [25] is the network of co-authorship of scientists
in network theory and experiments. Cond-Mat [25] is from
the e-print arXiv and covers scientific collaborations
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Figure 2: &e diagram of the relationship between iteration
number and position index.
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between authors papers submitted to Condense Matter
category. DNC Email [26] is the network of emails in the
2016 Democratic National Committee email leak. Nodes in
the network correspond to persons in the dataset and the
edge is the mail exchange between users. Ego-Twitter [27]
contains Twitter user-user following information. A node
represents a user and an edge indicates that the user follows
the other user. Route Views [28] is the network of auton-
omous systems of the Internet connected with each other.
Nodes are autonomous systems (AS), and edges denote
communication. A brief overview of the networks is shown
in Table 2.

4.2. Spreading Model. To evaluate the lists ranked by all the
centrality measures, we need to know the list ranked by the
real spreading process of the nodes. In the spreading process,
the probability of accepting a message from another user
depends on the user’s influence [31]. So, the spreading ef-
ficiency of nodes is used to measure the ranking result of
influential nodes. &ere are many information diffusion
models, such as SIR model, Independent Cascade model,
and Linear &reshold model, and some information diffu-
sion models independent of network topology [32, 33]. In
this paper, we employ the standard SIR model [34] to
simulate the spreading process on networks and record the
spreading efficiency for every node. In the SIR model, every
node belongs to one of the susceptible states, the infected
state or the recovered state. In detail, we set one node as an
infected node and the other nodes are susceptible nodes. At
each step, for every infected node, it can infect its susceptible
neighbors with infection probability β and then can be
removed with probability λ. Generally, we set λ � 1.0. &e
appropriate propagation probabilities are needed to be
chosen, in case too small or too large propagation probability
makes the propagation effect not ideal and leads to the
failure to distinguish the influence of nodes. According to
the heterogenous mean-field method, the epidemic
threshold of network is βth � < k> /(< k2 > − < k> ). k and
k2 are degree and second-order degree of node. &e

propagation probabilities are set just larger than the epi-
demic threshold. In the experiment, this dynamical process
of infection and recovering will repeat until there are no
infected nodes. &e sum of infected and recovered nodes at
time t, denoted by F(t), can be considered as an indicator to
evaluate the influence of the initially infected node at time t.
Obviously, F(t) increases with the increasing of t and will
reach stable state at time tc, denoted by F(tc), where tc

represents the final time and F(tc) represents the eventual
influence of the initially infected node. To guarantee the
reliability of the results, all of them are averaged over a large
number of realizations.

4.3. Evaluation. In order to evaluate the performance of the
centrality measures, we use Kendall’s coefficient τ [35] to
measure the correlation between one topology-based
ranking list and the one generated by the SIRmodel, which is
approached by a large number of simulations. Let (xi, yi)

and (xj, yj) be a randomly selected pair of joint from two
ranking list, X and Y, respectively. If both (xi >xj) and

Table 1: Example verification results of K-shell-improved algorithm based on multiple or inner core nodes.

Node ks Iter (i) PNp (i) PNn (i) PN (i)

1 3 5 5.032744485944649 50 36.79944673550679
2 3 5 6.353940102911473 66 48.490348105799676
3 3 5 5.693342294428061 59 43.35133818263464
4 3 5 6.241636228400565 64 47.04449874200889
5 2 4 3.9754352186156736 34 25.186011640937103
6 2 4 3.8864732377707982 32 23.747014505664833
7 2 4 3.958485252509983 36 26.593917345765504
8 1 3 2.812214004336133 19 14.247925877904956
9 1 1 1.6372559148173789 7 5.425716932665104
10 1 2 2.7338437827623867 13 9.986275003487945
11 1 1 1.6033222618802176 5 4.002873871402858
12 1 1 1.6033222618802176 5 4.002873871402858
13 1 1 1.6605978084834119 9 6.8454506851464405
14 1 1 1.6775814953148829 16 11.795521737181323
15 1 2 2.208891742455916 13 9.832170482539274
16 1 1 1.6033222618802176 4 3.2964331094214456

Table 2: &e basic topological features of four real network
datasets.

Network N M K Kmax C r βth β

CA-
Hep& 9877 51971 5.26 65 0.47 0.268 0.087 0.12

Netscience 379 914 4.82 43 0.74 −0.082 0.142 0.25
Cond-Mat 16264 47595 5.85 107 0.62 0.185 0.084 0.14
DNC
Email 2029 5598 4.72 404 8.9 −0.307 0.014 0.08

Ego-
Twitter 23370 33101 2.83 239 2.15 −0.478 0.027 0.08

Route
Views 6474 13895 4.3 1459 0.96 −0.182 0.007 0.06

N and M are the numbers of nodes and edges, respectively. K and Kmax
denote the average degree and the maximum degree. C and r are the
clustering coefficient [29] and assortative coefficient [30]. βth and β are the
epidemic threshold of network and the infection probability used in our
experiment.
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(yi >yj) or if both (xi <xj) and (yi <yj), they are said to be
concordant. If (xi >xj) and (yi <yj) or (xi < xj) and
(yi >yj), they are said to be discordant. If (xi � xj) or
(yi � yj), the pair is neither concordant nor discordant.
Kendall’s coefficient τ is defined as

τ �
nc − nd

0.5n(n − 1)
, (14)

where nc and nd denote the number of concordant and
discordant pairs, respectively. &e value τ lies between +1
and −1. &e higher the τ value indicates, the more accurate
ranked list a centrality measure could generate. &e most
ideal case is τ � 1, where the ranked list generated by the
centrality measure is exactly the same as the ranked list
generated by the real spreading process.

To measure the imprecision [17] of methods in ranking
influential nodes, we compare propagation capability of
influential nodes obtained by ranking result with nodes
which have largest propagation capability and the propa-
gation capability of nodes generated from the SIR model.
Kendall’s correlation coefficient considers the correlation
between the ranking order of all nodes in the network and
the order of propagation capability of all nodes. However,
the imprecision function is used to evaluate the cumulative
propagation capability of top-ranked nodes in different
proportions. &e imprecision function ε(p) is defined as

ε(p) � 1 −
􏽐i∈ϕm(p)Fi tc( 􏼁

􏽐j∈ϕs(p)Fj tc( 􏼁
, (15)

where p is the proportion of top-ranked nodes and ϕm(p)

and ϕs(p) denote the set of nodes at the top when pro-
portion is p. Fi(tc) is propagation capability of node i. &e
value of ε lies between 0 and 1. &e lower ε value indicates,
the more precise the centrality measure is in ranking
propagation capability of node.

5. Results and Discussion

In this chapter, SIR model, Kendall coefficient, and im-
precision function are used to verify the performance of the
proposed method. Degree, Ks (K-shell), MDD (Mixed
Degree Decomposition), ksIF (K-shell iteration factor
method), and Cnc+ (Extended Neighborhood coreness
centrality measure) were compared with the proposed
multiattribute PN method.

5.1. Evaluate the Spreading Capability of Nodes. &is section
verifies that different propagation probabilities are selected
under the fixed proportion of transmission sources to cal-
culate the propagation capability of the influence node set.
By comparing the propagation capability of different algo-
rithms under the same propagation probability, the per-
formance of different methods can be compared. &e
simulation set the propagation source ratio as 0.1. &e max
time step of infection process is set as 100, but the infection
will stop when there is no user in the infection state. &e
results were based on an average of 500 independent ex-
periments. &e simulation results are shown in Figure 3. &e

abscissa is the propagation probability and the ordinate is
the propagation capability, which is expressed as a
percentage.

Firstly, with the increasement of the propagation
probability, the node propagation ability of the six methods
is improved.&e performance of the six methods is relatively
close when the propagation probability is small and obvi-
ously different when the propagation probability is large.
Specifically, in the CA-Hep&, DNC Email, and Cond-Mat,
the performance of PN maintained the best under various
propagation probabilities. In the Ego-Twitter dataset, the
performance of PN and Cnc+ is significantly higher than
that of the other four methods. Moreover, when the
transmission probability is 0.03, the node transmission
ability of Cnc+ is higher, and in other cases, the node
transmission ability of PN method is higher. In the Nets-
cience and Route Views dataset, the performance of PN is
relatively better than the other method, but Cnc + outper-
forms the PN method when the transmission probability is
less than 0.1 in the Netscience. PN is not the best in several
points in Route Views, but it had highest propagation ability
in most cases, as shown in Figure 3(f). In general, the
proposed PN in this chapter has better performance. &e
difference in performance is related to the specific network
structure.

5.2. Evaluate the Imprecision of Ranking. &is section
verifies that different proportions of top-ranked nodes are
selected under the fixed propagation probability to calculate
the imprecision of ranking the influence of nodes. By
comparing the imprecision of different algorithms under the
same proportion of top-ranked, the performance of different
methods in ranking the influence of nodes can be distin-
guished. &e simulation set the propagation probability of
node, as shown in Table 2, and the proportion top-ranked
nodes varies from 0.01 to 0.2. &e max time step of infection
process set as 100 and the results were based on an average of
500 independent experiments. Simulation results in six
networks are shown in Figure 4. &e abscissa is the pro-
portion of top-ranked nodes that are considered and the
ordinate is the imprecision of ranking.

In Figure 4(a), the method PN, KsIF, and Cnc + have low
imprecision when p is higher than 0.02 and they have poor
performance in identifying the 2% top-ranked nodes.
However, the imprecision of PN is much lower than the
other two in CA-Hep& dataset. &e imprecision of Degree
to rank top 1% nodes is low about 0.07 than the method PN.
However, Degree has highest ε when p is greater than 0.04.
In Netscience and Cond-Mat, Degree, K-shell, and MDD
have higher value, and PN is lowest in most p except that p is
in the range of 0.02 to 0.04, KsIF outperforms PN in
Netscience. When p is larger than 0.04 and smaller than
0.06, Cnc + outperforms PN in Cond-Mat. In the dataset,
DNC Email, K-shell, and PN are better compared with other
method, and K-shell has a slight edge when p between 0.04
and 0.1 or 0.13 and 0.15. However, K-shell performs poor in
3% top-ranked nodes. In the dataset, Ego-Twitter and Route
Views, it is obvious that the method we proposed performs
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Figure 3:&e propagation capability graph of the five methods under different propagation probabilities.&e experiments are simulated on
six different datasets: CA-Hep& (a), Netscience (b), Cond-Mat (c), DNC Email (d), Ego-Twitter (e), and Route Views (f).&e green vertical
line is the epidemic threshold of the corresponding network.
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Figure 4: &e imprecision of six ranking methods with different proportion of top-ranked nodes. &e experiments are simulated on six
different datasets: CA-Hep& (a), Netscience (b), Cond-Mat (c), DNC Email (d), Ego-Twitter (e), and Route Views (f).
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well and is more stable in all cases. From the simulation
results of the abovementioned six datasets, it can be seen that
the method PN can not only precisely identify most of the
top 1% to 4% nodes but also rank the following nodes by
their influence stably.

5.3. Evaluate the Correlation Coefficients of Method. &is
section verifies the correlation between the influence value
and propagation ability of nodes under different propaga-
tion probabilities by Kendall’s coefficient τ. &e value range
of propagation probability in this simulation is 0.02 to 0.2 in
the datasets CA-Hep&, Cond-Mat, DNC Email, Ego-
Twitter, and Route Views, and extended to 0.3 in the dataset
Netscience because of higher epidemic threshold of it. In the
DNC Email and Route Views, we also put the simulation
result when the value of propagation probability is equal to
their epidemic threshold. &e max time step of infection
process is 100. &e results were based on an average of 500
independent experiments. &e simulation results are shown
in Figure 5. &e abscissa is the propagation probability and
the ordinate is the correlation coefficient. &e epidemic
threshold of each network is also drawn into the figure as a
vertical line.

&e correlation of ranking result of different methods
and real propagation abilities obtained by the SIR model has
different manifestations in different datasets, but the general
trend is the same.When the propagation probability is small,
the ranking correlation of Degree, K-shell, and MDD with
real propagation ability is higher than the other three
methods and the thresholds are roughly the same as the
epidemic threshold βth of network. It can be seen in Figure 5
that the Degree has high Kendall’s coefficient τ when β is less
than 0.06 in the CA-Hep& andCond-Mat and less than 0.07
in the Netscience, and it is not obvious in other three
networks because of the small epidemic threshold. However,
in the cases where β is higher than βth, these methods that
have considered both degree and other aspects such as the
influence of neighbors to the spreading ability of nodes
perform better than the method that mainly take degree into
account. &is is because the very small propagation prob-
ability will make the infection behaviour in a small range
near the initial infected node, unable to spread over a large
area, so the degree is the decisive factor. As the probability of
propagation increases, the act of infection becomes easier, so
the extent of infection depends not only on the number of
neighbors of a node but also on the ability of its neighbors to
propagate, or even the neighbors’ neighbors. On the con-
trary, when the propagation probability increases to a point
much larger than βth of network, infection becomes too easy
so that the nodes in the core of the network or with high
degree had largest scope of infection. It is clearly shown in
the networks with small epidemic threshold such as DNC
Email and Route Views in the figure. When β> βth, the
method PN has the highest Kendall’s coefficient t in CA-
Hep&, Netscience, and Cond-Mat. Our proposed method
also performs best when β is between 0.06 to 0.14 in DNC
Email and between 0.06 to 0.18 in Route Views. In short,
compared with the other five methods, the PN method

proposed in this chapter has good performance under the
appropriate propagation probability value range.

5.4. Evaluate the Performance of Selecting Seeds in Influence
MaximizationProblem. &is section verifies the reliability of
PN when it is applied in the influence maximization
problem. Maximization of influence is widely used in real
life. For example, viral marketing is a typical application that
can promote new products or ideas for merchants or
publicity departments. It aims to select a group of nodes in
the network called seed node set as initial propagation nodes
and spread in the network as widely as possible according to
a certain diffusion mode.&ere are many related studies. We
use the selection of top from the ranking to specify seed
nodes to measure the propagation range of seed nodes se-
lected by several ranking methods. We examine the
spreading efficiency of different seed node set with six real
networks: CA-Hep&, Netscience, Cond-Mat, DNC Email,
Ego-Twitter, and Route Views.

In the experiment, we set P as the proportion of seed
nodes in the whole network, ranging from 0.01 to 0.05. We
also used the SIR Model to simulate the propagation process
and calculated the influence range by using the number of
users who were finally infected. &e propagation probability
in the simulation is determined according to the epidemic
threshold and is shown in Table 2. &e max time step of
infection process is set as 100 and the results were based on
an average of 500 independent experiments. &e simulation
results are shown in Figure 6. &e abscissa is the ratio of the
seed set in all users, and the ordinate is the propagation
scope of initial seed nodes and expressed as a percentage.

&e results manifest that the PN method performs best
in the datasets Cond-Mat, DNC Email, Ego-Twitter, and
Route Views. In the CA-Hep& dataset, the seed set selected
by the method PN when P is greater than 0.02 can infect
wilder than others. When P is 0.02 and below, degree is most
effective and the PN is better than KsIF an Cnc+. In the
Netscience network, KsIF is best when P is 0.03 and 0.04,
and the infected rate of seeds selected by PN is almost same
as KsIF in other cases.

5.5. Measure the Ranking Uniqueness and Distribution.
&is section verifies the monotonicity of the new method on
the sorting by using Bae and Kim’s ranking monotonicity
method [23]. Since the K-shell method will calculate the
K-shell value of many nodes into the same value, it is difficult
to distinguish their differences in influence. In this respect,
the method we proposed can do better. According to the
definition of Bae and Kim, the monotonicity of the ranking
result is expressed as follows:

M(R) � 1 −
􏽐r∈Rnr nr − 1( 􏼁

n(n − 1)
􏼢 􏼣

2

. (16)

In (16), R represents the ranking list and n is the size of
it, every element of the ranking list is a set of nodes that
have the same ranking value, and nr is the number of
nodes in R that have the same ranking position r. &e
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Figure 5: &e correlation coefficient variation diagram of the six methods under different propagation probabilities. &e experiments are
simulated on six different datasets: CA-Hep& (a), Netscience (b), Cond-Mat (c), DNC Email (d), Ego-Twitter (e), and Route Views (f). &e
green vertical line is the epidemic threshold of the corresponding network.
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Figure 6: &e performance of selecting seeds of the six methods in influence maximization problem. &e experiments are simulated on six
different datasets: CA-Hep& (a), Netscience (b), Cond-Mat (c), DNC Email (d), Ego-Twitter (e), and Route Views (f).
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Figure 7: Continued.

Table 3: &e monotonicity M (R) of six real networks, R is representing the ranking vector of different methods.

Network M (Degree) M (Ks) M (M DD) M (KsIF) M(Cnc+) M (PN)
CA-Hep& 0.762683 0.674237 0.81057 0.992416 0.988876 0.993566
Netscience 0.764206 0.642083 0.821527 0.994702 0.989307 0.995036
Cond-Mat 0.809054 0.740879 0.86048 0.994138 0.991407 0.994788
DNC Email 0.339762 0.32344 0.344565 0.936082 0.936028 0.936465
Ego-Twitter 0.131463 0.122307 0.131656 0.995574 0.991322 0.996321
Route Views 0.587174 0.549622 0.608671 0.993285 0.992548 0.993893

12 Complexity



value of M(R) fluctuates between [0, 1] and the higher the
value, the stronger the uniqueness. In extreme cases, 1
means that each node is assigned a different sort value,
whereas 0 is the opposite and all nodes are in the same
rank.

We examine the monotonicity of different methods
with the same six datasets as above. &e calculation results
are shown in Table 3. It can be seen from the table that the
monotonicity result of the PN is apparently higher than
the degree, ks and MDD, and approximate to KsIF and
Cnc+.

In order to clarify the ranking distribution of the dif-
ferent measures more clearly, a complementary cumulative
distribution function (CCDF) is plotted. According to the
CCDF principle, if many nodes are in the same rank, the
CCDF plot will decrease rapidly; otherwise, the CCDF plot
will slow down. Figure 7 shows the ranking distribution in
six networks.

&e line representing Degree, ks, or MDD drop sharply,
as can be seen on the left side of each graph.&is is especially
true when the number of nodes in the dataset is large. For the
method PN, the ranking distribution is slightly improved
compared with Cnc+ and KsIF in datasets DNC Email and
Route Views. &e curves of KsIF and PN in the dataset
Netscience are basically overlapping and drop off more
slowly than that of Cnc+. In the dataset CA-Hep& and
Cond-Mat, the method Cnc+ also does not perform well
compared to the method KsIF and PN.&e KsIF and PN are
equally good at identifying the influential nodes, while in the
latter part of the ranking, the downward trend of KsIF curve
is more obvious than that of PN curve. It is indicated that the
ability of method PN to distinguish the nodes’ spreading
capability is better than Cnc+. It can be seen in the Ego-
Twitter that the performance of PN is better than the method
Cnc+. So, we can say that PN performs well in most
networks.

6. Conclusions

On the basis of the K-shell method, we proposed a new
multiattribute ranking method based on node position and
neighborhood. We made full use of the iterative information
in the decomposition process. First, the iteration informa-
tion is processed by sigmod function to obtain the position
index. &e position attribute is obtained by combining the
shell value and the position index. &en, the local infor-
mation of the node is adopted to obtain the neighbor
property. Furthermore, the position attribute and neighbor
attribute are weighted by the method of information entropy
weighting. Finally, we evaluated the propagation capability
of different propagation probabilities, the imprecision of
different proportions, the correlation coefficient of different
propagation probabilities, and the propagation capability of
selected seed nodes in influence maximization problem. At
the same time, we also verified the good performance of our
method in distinguishing influence of nodes. Compared
with other K-shell decomposition and its improved algo-
rithms, the method proposed in this paper had better
performance. &rough simulation experiments, it is found
that the PN method can make full use of the iterative in-
formation in the decomposition process and the influence of
neighbors to further distinguish the difference of nodes with
the same ks value. Experiments with SIR model, Kendall’s
coefficient, and imprecision function fully verified the
correctness and effectiveness of the proposed method. In a
word, the effectiveness of the proposed method in the
identification of influence nodes was verified by various
forms of experiments.

Data Availability

Previously reported network datasets were used to support
this study and are available at http://networkrepository.com
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Figure 7: &e complementary cumulative distribution (CCDF) of the six methods in six different datasets: CA-Hep& (a), Netscience (b),
Cond-Mat (c), DNC email (d), Ego-Twitter (e), and Route Views (f).
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and http://konect.uni-koblenz.de. &ese datasets are cited at
relevant places within the text as references [22–25].

Conflicts of Interest

&e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

&is work was supported by the Key Industry Projects in
Shaanxi Province (Grant no. 2019ZDLGY09-03), Natural
Science Foundation of Shaanxi Province (Grant nos.
2018JM6053 and 2018JZ6006), National Natural Science
Foundation of China (Grant nos. 61372076, 61301171, and
61771296), and 111 Project (Grant no. B08038).

References

[1] L. Gao, W. Wang, P. Shu, H. Gao, and L. A. Braunstein,
“Promoting information spreading by using contact mem-
ory,” EPL (Europhysics Letters), vol. 118, no. 1, p. 18001, 2017.

[2] V. P. T. Menta and P. K. Singh, “Efficient selection of in-
fluential nodes for viral marketing in social networks,” in
Proceedings of the IEEE International Conference on Inter-
national Conference on Current Trends in Advanced
Computing, Bangalore, India, March 2017.

[3] Y. Cho, J. Hwang, and D. Lee, “Identification of effective
opinion leaders in the diffusion of technological innovation: a
social network approach,” Technological Forecasting and So-
cial Change, vol. 79, no. 1, pp. 97–106, 2012.

[4] Z. Li, F. Xiong, X. Wang, H. Chen, and X. Xiong, “Topological
influence-aware recommendation on social networks,”
Complexity, vol. 2019, Article ID 6325654, 12 pages, 2019.

[5] F. Xiong, X. Wang, S. Pan, H. Yang, H. Wang, and C. Zhang,
“Social recommendation with evolutionary opinion dynam-
ics,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, pp. 1–13, 2018.

[6] L. C. Freeman, “A set of measures of centrality based on
betweenness,” Sociometry, vol. 40, no. 1, pp. 35–41, 1977.

[7] G. Sabidussi, “&e centrality index of a graph,” Psychometrika,
vol. 31, no. 4, pp. 581–603, 1966.

[8] L. Katz, “A new status index derived from sociometric
analysis,” Psychometrika, vol. 18, no. 1, pp. 39–43, 1953.

[9] L. C. Freeman, “Centrality in social networks’ conceptual
clarification,” Social Networks, vol. 1, no. 3, pp. 215–239, 1979.

[10] B. Tian, J. Hu, and Y. Deng, “Identifying influential nodes in
complex networks based on AHP,” Physica A: Statistical
Mechanics and Its Applications, vol. 391, no. 4, pp. 1777–1787,
2017.

[11] Q. Ma and J. Ma, “Identifying and ranking influential
spreaders in complex networks with consideration of
spreading probability,” Physica A: Statistical Mechanics and
Its Applications, vol. 465, pp. 312–330, 2017.

[12] Z. Lv, N. Zhao, F. Xiong, and N. Chen, “A novel measure of
identifying influential nodes in complex networks,” Physica A:
Statistical Mechanics and Its Applications, vol. 523, pp. 488–
497, 2019.
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