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Abstract. Anomaly detection is an important technique for remotely sensed hyperspectral data
exploitation. In the last decades, several algorithms have been developed for detecting anomalies
in hyperspectral images. The Reed-Xiaoli detector (RXD) is one of the most widely used
approaches for this purpose. Since the RXD assumes that the distribution of the background is
Gaussian, it generally suffers from a high false alarm rate. In order to address this issue, we
introduce an unsupervised probabilistic anomaly detector (PAD) based on estimating the differ-
ence between the probabilities of the anomalies and the background. The proposed PAD takes
advantage of the results provided by the RXD to estimate statistical information for the targets
and background, respectively, and then uses an automatic strategy to find the most suitable
threshold for the separation of targets from the background. The proposed technique is validated
using a synthetic data set and two real hyperspectral data sets with ground-truth information. Our
experimental results indicate that the proposed method achieves good detection ratios with
adequate computational complexity as compared with other widely used anomaly detectors.
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1 Introduction

Target detection is concerned with the identification of targets with interest that appear with low
probabilities in a given scene.! Based on the availability of a priori information, we can roughly
categorize available techniques into two main classes: (1) unsupervised techniques>’ and
(2) supervised techniques, among which we can distinguish between signature matching-
based techniques, in which the target of interest is defined by a reference spectrum,* and
subspace matching-based techniques, in which the target of interest is represented by a set of
basis vectors that account for the target signal variation.®’

A representative of signature matching-based methods is constrained energy minimization,*
a powerful method to address signature matching-based detection problems. Another example is
the adaptive cosine estimate,® an adaptable filter specifically designed to preserve the target sig-
nal based on a generalized likelihood ratio test. The target-constrained interference minimized
filter can be used for situations in which several target spectra are known a priori.” This algo-
rithm designs a finite impulse response filter w to minimize the output energy while retaining
target information.
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As opposed to supervised methods, the Reed-Xiaoli detector (RXD)’™'! is a widely used
method for unsupervised target detection. It relies on two main assumptions: (1) anomalies
are the pixels whose signatures are spectrally distinct from their surroundings and (2) anomalies
occur with low probabilities in the scene.’ Based on these characteristics, the RXD adopts a
multivariate normal distribution model to represent the hyperspectral data and treats anomalies
as outliers in probabilistic sense. This model enables us to calculate the probability of a pixel
under test (PUT) as belonging to the background, with the resulting value providing an idea
about the degree of anomaly at the pixel. This algorithm is also a constant false-alarm rate
(FAR) adaptive anomaly detector.'> However, the algorithm may suffer from a high FAR.
This is due to several reasons. First and foremost, the assumption that the background follows
a multivariate normal distribution is sometimes impractical since in many scenarios, the scene
contains a variety of objects that are too complex.'? This assumption increases the difficulty in
separating targets from background due to shadows, illumination effects, atmospheric inter-
ferers, or spectral similarity between different classes.'* In addition, some anomalous targets
may be subpixel in nature,* and these targets tend to be less distinctive from the background
in spectral space, which complicates their detection. Last but not least, hyperspectral images
exhibit spectral correlation which leads to ill-conditioned covariance matrices, and the calcu-
lation of the inverse may suffer from large accumulated rounding errors that ultimately result
in inaccuracies in the RXD algorithm. All of these factors complicate anomaly detection and
increase the possibility of detecting background and outlier pixels as targets, thus increasing
false alarms. Since these false alarms negatively impact the efficiency of detectors, how to reduce
them becomes a critical issue in anomaly detection.

Several strategies have been proposed to improve the performance of the RXD. Some avail-
able approaches have focused on increasing the separability between targets and background
through feature selection or feature extraction, including subspace RXD (SSRXD),!>!® kernel
RXD (KRXD),">!""!? and random projection RXD.?* SSRXD is suitable under the assumption
that the spectral characteristics of the target are well represented in a subspace. KRXD uses a
strategy based on mapping the original data to a high-dimensional space by means of a kernel
function. Random projection RXD is deployed on orthogonally projected data.”’ Another strat-
egy for improving the RXD has been focused on exploiting a priori information directly
obtained from the scene. This is the case of the segment-RXD (SRXD),?! which uses clustering
techniques to calculate the covariance matrix and the mean vector, with the ultimate goal of
obtaining refined information for the background. Other methods seek to refine the background
by removing anomalies, with the ultimate goal of obtaining a more accurate estimation of
the background. Examples include the locally adaptable iterative RX (LAIRX) in Ref. 22
and the local-RXD (LRXD) in Ref. 21. LAIRX allows the RXD to iteratively refine background
estimation using first- and second-order statistics. In turn, LRXD estimates the statistics for
the background by using a sliding window around each PUT. The window size is normally
determined by the size of the anomalies of interest. Finally, other algorithms for improvement
include the blocked adaptive computationally efficient outlier nominators (BACON)> or the
random selection-based anomaly detector (RSAD),** which both use iterative approaches in
order to refine background samples and obtain a more accurate estimation of the background
information.

In this paper, we develop a new probabilistic anomaly detection (PAD) algorithm which
characterizes the target and background by segmenting the image into a target set and a back-
ground set. These sets are then used as a priori information in order to calculate the probabilities
of a given PUT to be declared as target (anomaly) or background. This additional information is
used to overcome the lack of knowledge about the target and background signals, thus making
the method fully automatic. Once the targets signals are removed from the background by means
of the proposed PAD, the background is much closer to a multivariate normal distribution. This
property allows us to reduce the FAR without decreasing the probability of detection when
applying the RXD algorithm.

The reminder of this paper is organized as follows. Section 2 provides an overview of the
classic RXD algorithm and its variations. Section 3 introduces the proposed PAD method for
suppressing the false alarms. In Sec. 4, we evaluate the proposed method by using a synthetic
data set. Section 5 presents extensive experiments with real hyperspectral data sets and
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comparisons with other methods. Section 6 draws some conclusions and provides hints at plau-
sible future research lines.

2 Multivariate Normal Model and the RXD Algorithm

Anomaly detection is one of the problems encountered without prior target information. "> Thus,
the target signal is unknown which is a main barrier for the detection. However, two features of
targets can help targets be detected. The spectra of targets are supposed to be significantly differ-
ent from the spectra of the background. Besides, targets occur in the image with relatively low
probabilities.” The RXD algorithm takes advantage of these two features to detect the anomalies.
This method is based on the multivariate normal model, which can be simply described as fol-
lows. Let H, denote the target signal and H denote the background signal. With these notations
in mind, the detection problem can be written as

Hy:x=b, (1)

Hi:x=s+b, 2

where x is a sample pixel vector, s is the target signal, and b is the background clutter for which
we assume a multivariate normal distribution with mean vector g and covariance matrix X,
i.e., b~ N(u,X). Therefore, we have x|Hy ~ N(u, X) and x|H| ~ N(p + s, X). With these def-
initions in mind, we can obtain the probability density function of the background and target,
respectively, as

1 —Lx—p)TZ (x—
p(X|HO):W6 2lx=k) 2 k) (3)

and

1 —3(x—p—8)"E! (x—p—s) )

P(X\H1)1W92 .

where K is the number of bands of the original hyperspectral image. Since an anomaly X;
is expected to be significantly different from the background, p(x,|H,) should be very
small for an anomalous pixel. Therefore, for a given background, as 1/[(27)%/2|Z|'/?] is fixed,
(x, —p)T=7!(x, — ) should be larger for an anomalous pixel than for a background pixel.
Based on this observation, RXD implements a filter specified by

Dgxp(x) = (x —p) =7 (x — pp). )

The result of the RX detector in Eq. (5) can be thresholded to perform anomaly detection.
Such a procedure is actually equivalent to thresholding the background probability density
function.

There are several ways to obtain background samples for estimating X and u. The global-
RXD (GRXD) and LRXD use different strategies. GRXD is given by

Derxp(X) = (x —pg) 25 (x — pg). (6)

where p; and X; are the mean vector and covariance matrix of all pixels in the image. For a
given pixel, let g be the mean value of its eight surrounding neighbors. Then, LRXD is given by

Dirxp(x) = (x — pg) "2 (x — pg). (7N

It is noticeable that LRXD generally uses X as the covariance matrix instead of Xg. This is
because, in hyperspectral data, the number of spectral bands is much higher than 8 and, in this
case, Xg is a singular matrix and could not be inversed.”! Although RXD is very popular for
solving anomaly detection problems, it could suffer from a high FAR which may hinder the
detection of real targets as outliers. Improved RXD algorithms, such as SRXD, KRXD and
LAIRX, can reduce the FAR. SRXD requires the number of pixels in the cluster to be equal
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to or greater than the number of spectral bands in order to be able to invert the covariance matrix,
which may not be possible in some scenarios.”® LAIRX requires an empirical threshold value
that is quite critical for its performance as it is defined using a manual procedure. KRXD suffers
from computational complexity and is sensitive to target interference. In the following section,
we develop a new improved version of the RXD that follows a different optimization strategy.

3 PAD Algorithm

As mentioned in previous sections, the main obstacle for detecting anomalies by using RXD and
other algorithms is the lack of a priori knowledge of the targets or background. On the other
hand, the fundamental assumption of many anomaly detectors is that the distribution of the back-
ground is Gaussian.”*?” This assumption is a very common model applied for anomaly detection
problems so that the background can be described in a statistical model. In practice, this
assumption cannot be met in many scenarios, which leads to a high FAR.?” One point that vio-
lates the assumption is that the background samples often contain target information as they are
intrinsically mixed. In this section, we develop a new unsupervised PAD which is based on
estimating the difference between the probabilities of the anomalies and the background.
The proposed PAD takes advantage of the results provided by the RXD to estimate statistical
information for the targets and background, respectively, and then uses an automatic strategy to
find the most suitable threshold for the separation of targets from the background. The algorithm
can be summarized by the following steps:

Step 1. In the first step, we apply the classic RXD algorithm and obtain the initial probabilities
associated with each PUT.

Step 2. In the second step, we segment the image into targets and background by means of
an automatic thresholding method, which is calculated by seeking a specific feature
point of the histogram curve.

Step 3. In the third step, we calculate the probabilities of the PUT to be declared as targets or as
the background. Then we subtract the probability of the PUT to be declared as the back-
ground from the probability of the PUT being part of the target set.

At this point, it is important to emphasize that, in the second step, a threshold is calculated to
separate targets from the background. This is a crucial process in our anomaly detection scheme.
Specifically, we aim at setting a confidence coefficient y in order to determine a rejection prob-
ability P(ap) =y so that, if Sgxp(X) > ag, then the PUT (say, x) will be categorized as an
anomaly.’ However, in previous works, y was generally set in supervised manner. We emphasize
that, in most cases, it is expected that the number of anomalies will be low compared with the
number of background pixels. As a result, a peak in the histogram distribution of RXD values
can generally be found in the vicinity of the boundary between targets and background. The peak
generally appears as a feature point in the histogram curve, that is, the change ratio of the feature
point will be a minimum in the interval. Based on this principle, we automatically obtain the
threshold value as follows:

1. First, we set two confidence coefficients yioyer and yypper. Based on P(ag) =y, we
obtain the interval [TH gyer» THypper] S0 that the threshold will be located in this interval.
2. Then, we divide this section into N equal-length small sections. The number of RXD
values in section i—[TH;, TH; ] is defined as T;. Then, the threshold is selected as

TH = TH;, ,

where i = arg min{T;1/T;}.

At this point, it is important to emphasize that, opposite to other conventional strategies that
set a threshold by considering a rejection probability that is decided manually, our approach
expands the point into an interval instead and then seeks for a possible threshold in that interval.
As a result, the way to calculate the threshold is more realistic and adaptive to different image
data sets than the threshold decided by a single point.

For illustrative purposes, Fig. 1 presents an example of the histogram of RXD values in the
ideal situation, in which targets and the background are chi-square distributed. The threshold TH
is calculated by the proposed method. From Fig. 1, we can see that the proposed threshold is very
close to the point in which the background and target curves cross, and therefore appears to
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Fig. 1 (a) An example of the interval of values and threshold selected by the proposed PAD
method when determining the threshold for a real hyperspectral scene. In this example, we
set the ratio of the number of target pixels to the number of background pixels to 1:50.
(b) Magnified version in which the specific threshold selected and its relation to the target and
background distributions is displayed.

represent a good compromise. If the number of anomalies is too small, the peak in the histogram
will not be very obvious. However, the feature point whose change ratio is a minimum can still be
found in the interval if it is set appropriately. Compared with other conventional thresholding
methods, our presented thresholding approach intends to be more adaptive and feasible in differ-
ent scenarios. In fact, thresholding RXD results are tricky for at least two reasons. One is because
the number of anomalies is uncertain, so their probability distribution function is not reliable.
Another reason is the signals of anomalies are variable; they cannot be described by one
Gaussian distribution. These facts will reduce the accuracy of separating anomalies from back-
ground. Thus, if the number of anomalies is too small or there are several kinds of targets in the
image, the anomalies cannot be totally distinguished from the image by a thresholding method.
However, the preprocessing of thresholding can still refine the estimation of the background and
provide samples for the estimation of targets, which are the main advantages of our proposed
method.

The proposed PAD has a similar theoretical foundation to RXD. In the RXD model, the signals
of the target and the background are represented as indicated in Egs. (1) and (2). As mentioned
previously, in many scenarios, the background data contain anomalous signals to violate the
Gaussian assumption. The proposed method which is based on the Gaussian assumption separates
potential targets from background for a more accurate estimation. Specifically, the RXD algorithm
assumes that the target signal is a constant vector s. Therefore, the covariance matrices of the
background and targets are the same. Unfortunately, in most images, we have many different
types of targets, which results in the fact that the assumption of a constant vector s as the repre-
sentation of the target signal is inappropriate. Different from RXD method, in our interpretation, it
is more reasonable that the target signals s are expressed as variable vectors and have independent
covariance matrices, which are different from the matrix of the background. We noted
s ~ N (us, Xq). As target signals have much more energy than those of background,’ X is dominant
to X. x| H, can be considered as a multivariate normal distribution whose covariance matrix is very
close to Xg. We noted that x|H| ~ N(p, Z;). Thus, in PAD, p(x|H,) is the same as the corre-
sponding expression in RXD, and p(x|H,) is given by

1
r)R P2z, 172

p(X‘Hl) = —3(x—p1 )2 (xp1) ®)

As indicated earlier, the proposed method estimates the covariance matrix and the mean vec-
tor of the target and background sets by using different samples. We noted the target set as V| and
the background set as V. The number of pixels in V| and V, are denoted as N, and N, respec-
tively. The background set V|, contains purer background information and the samples of target
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set V| are very different from the background. Thus, the covariance matrix X, and the mean
vector u,, will be more accurate if evaluated by V,,, (m = 0,1). The proposed method assumes
that the background and target signals follow a multivariate normal distribution, therefore, the
posterior probabilities p(x,,|x) are obtained as follows:

1

p(x|H,,) = We_%(x—ﬂmﬁz;l (X—H) (m=0,1), )
N

H)=—"— 10

p(Hpy) No+ N, (10)

p(Hy|x) = p(x|H,,) X p(H,)/p(x). (11)

In this case, we can use the log-likelihood ratio:

telp(Hiu )] = =3 (% = )25 (5 = ) = 5 18 (2m) = S e[ ) + 1l (Hl)] = Ielp(x)]

2
12)
and then subtracting 1g[p(H,|x)] from Ig[p(H,|x)], we obtain PAD(x) as follows:
PAD(x) = (x —po) Z5" (x — o) — (x =) I (x — 1)
+12(1Zo]) + lg[p(H1)] = 1g(|Z1]) - lg[p(Ho)]- (13)

Aslg(|Zy]) + Ig[p(Hy)] —1g(|X,]) — 1g[p(H,)] is constant for a considered image, PAD(x)
can be simplified as

PAD(x) = (x — o) Z5" (x — ptg) — (x — 1)) "E7" (x — pty) = RXDy(x) — RXD; (x).  (14)

Resulting from the previous expression, RXDy(x) is the distance between the PUT x and the
background, and RXD; (x) represents the distance from x to the target set. In this context, the
different value of these two probabilities is used as a criterion by the proposed PAD method to
evaluate the feasibility of a pixel being considered as an anomaly, while the RXD just adopts the
background probability. This is a significant difference of our newly proposed PAD with regards
to the RXD. An important reason why the proposed PAD exhibits good anomaly detection
capability is that it highlights the anomaly twice, i.e., by the distance from the background
set and by the distance from the target set. In Eq. (14), the factor RXD(x) withholds the back-
ground signals and highlights the anomalies as outliers. The function RXD, (x) underscores the
targets which appear with higher probability in the targets set. As a result, some minor signals
(which are probably detected as targets by RXD, including noise and some background pixels)
are withheld by the proposed PAD. As a result, the presented method is expected to improve its
anomaly detection accuracy by reducing false alarms caused by noise and background.

There are several other algorithms applying the idea of refining the estimation of background
for anomaly detection, i.e., LAIRX, BACON, and RSAD. The following parts will introduce
these methods with detailed descriptions.

3.1 LAIRX

The LAIRX algorithm is an unsupervised anomaly detector for hyperspectral imagery based on
data characteristics in the image.”> The RXD algorithm is prone to a high FAR because the
Gaussian assumption is inaccurate.?® The background estimation of RXD contains target signals
and noise which contaminate the homogeneity of the background. Although there is lack of prior
knowledge about targets and background for anomaly detection problems, LAIRX is used to
refine the estimation of the background by analyzing data characteristics. The goal of LAIRX
is reducing target signals and noise from the estimation of the background. The steps of LAIRX
are as follows:
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Step 1. Apply the classic RXD algorithm and obtain the RXD scores associated with each PUT.

Step 2. Threshold anomalous pixels from background. Those RX scores that exceed y2  will
be referred to as anomalies.

Step 3. Iterate Step 2. If the anomalous set in Step 2 is identical to the set in the previous
iteration, then go to Step 4; otherwise, return to Step 2.

Step 4. Nominate the pixels in the final set as anomalies.

3.2 BACON

BACON is a very popular algorithm to identify outliers in multivariate and regression data.
Although many anomaly detectors customarily assume that one given hyperspectral imagery is
homogeneous, in fact, it often contains outliers such as targets or noisy pixels. On the other hand,
all multiple outlier detectors in the past have suffered from a computational cost that increased
rapidly with the sample size. BACON can be computed quickly, and often requires less than five
evaluations of the model to fit the data, regardless of the sample size. The BACON algorithm
consists of the following steps:

Step 1. Compute the RXD score for each PUT. Select m smallest values of RXD scores as the
background subset. The condition of m > K should be met, where K is the number of
bands.

Step 2. Obtain the square root of RXD scores based on the new background subset.

Step 3. Those pixels whose square root values of RXD scores are smaller than ¢,g, vk , Will be
selected as the new background set. ¢k, can be computed as follows:

Cnkr = Cnk + Cprs (15)

e =max{0, (h—=r)/(h+r)}y,  h=[(n+K+1)/2], (16)
h=(n+K+1)/2, (17)

ek =1+ (K+1)/(n=K)+1/(n—h—K), (18)

where n is the total number of pixels and r is the number of pixels in the current background
subset.

Step 4. Iterate Step 2 and Step 3 until the size of the basic subset no longer changes.

Step 5. Map anomalies to the image space.

3.3 RSAD

The RSAD algorithm randomly selects representative background samples from the image
each time to estimate background statistical information, identifies anomalies by statistical
differences, and finally fuses all the detection results. The steps of RSAD are described as
follows:

Step 1. Randomly select background pixels as the initial basic subset of the observed pixels
from the hyperspectral imagery.

Step 2. Compute the square root of RXD value of each pixel vector based on the initial basic
subset.

Step 3. Those pixels whose square root values of RXD scores are smaller than ¢, g,k , Will be
selected as the new background set. The procedures to compute c,g, are same as those
of BACON.

Step 4. Iterate Step 2 and Step 3 until the basic subset no longer changes.

Step 5. Nominate the pixels excluded by the final basic subset as anomalies.

All of these three methods threshold target pixels from the background for a more accurate
estimation of the background. Similar to these methods, the presented algorithm keeps the
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background more homogeneous by analyzing data characteristics. In the following section, we
evaluate the performance of the PAD method using synthetic data.

4 Synthetic Data Experiments

This section performs experiments with a synthetically generated data set that was used to evalu-
ate the performance of the proposed PAD method. The anomalies in this simulated data set
were generated following a simple target implantation strategy.”>=' The performance metrics
are based on the receiver operating characteristic (ROC);"** specifically, we analyze the area
under the curve (AUC)* as a baseline metric for analyzing the performance of different detec-
tors. In the following, we first describe the procedure used for synthetic data generation and then
present the experiments that were conducted.

4.1 Synthetic Data

The synthetic data were generated from the target detection blind-test scenes provided by
Rochester Institute of Technology (RIT).* These data were collected by a HyMap instrument
over Cook City in Montana, on July 2006. The selected portion (illustrated in Fig. 2) has 280 x
800 pixels in size and 126 spectral bands. The spatial resolution of the data is ~3 m.

In this work, we use a target implantation method to simulate a set of anomalous targets in
the considered hyperspectral data set over Cook City in Montana. The advantage of using a target
implantation method is that we can evaluate the performance of the detectors in a totally con-
trolled environment.?’ Specifically, our method generates the anomalous targets using a synthetic
spectral signature z with a specified abundance fraction f from a desired target t, contaminated
by a background signature b, in the spatial position in which the target of interest is simu-
lated.’**! This means that the implanted targets are all sub-pixel in nature. For the simulations,
we use a simple linear mixture model as follows:

z=f-t+(1—-f)-b. (19)

Figure 3 shows the spectral signatures of the six targets (corresponding to different man-
made materials present in different locations of the scene, as provided by the target detection
blind-test scenes provided by RIT) that have been implanted in the hyperspectral scene, together
with two considered background signatures. The image portion in which the targets have been
implanted is denoted as ROI-1 (see Fig. 2). This portion corresponds to an open vegetation
region with dimensions 100 X 100 x 126 containing few anomalous pixels. Vegetation can be
considered as the main homogeneous background in this region. In order to evaluate the pre-
sented method, we use six kinds of targets that have been implanted into ROI-1 using Eq. (19),
where the characteristics of the targets are summarized in Table 1. We have synthetically
generated six different test images, where each image contains only one type of target

Fig. 2 HyMap hyperspectral image over Cook City, Montana, with 20 embedded targets in
a region called ROI-1.
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Fig. 3 Spectral signatures of the six targets implanted in the image and two types of backgrounds.

Table 1 Characteristics of the implanted target spectra in our synthetic data experiments.

Name Type

\"Al 1993 Chevy Blazer
V2 1997 Toyota T100
V3 1985 Subaru GL Wagon
F5 Maroon Nylon Target
F6 Gray Nylon Target
F7 Green Cotton Target

with different fractions. In each test image, 4 X 5 targets have been implanted, where the abun-
dance fractions f follow an arithmetic progression with a difference of 0.02 from left to right
and top to bottom, and where the maximum value is 0.4 on the top-left target, and the minimum
value is 0.02 on the bottom-rightmost target. The main reason why we set 0.4 as the maximum
value of f is that, when f is higher than 0.4, there are no false alarms when the target is detected.
We decided to set the common difference as 0.02 since we would like to make a complete
evaluation of the capability of the detectors with a sufficiently small difference of the target
abundance f.

4.2 Preliminary Evaluation

This subsection describes the results obtained by the proposed PAD method using the synthetic
data set described in the previous subsection. Specifically, we use global [denoted as PAD
(Global)] and local [denoted as PAD(Local)] models to estimate the background information.
PAD(Global) uses the GRXD results to perform the segmentation, and PAD(Local) uses the
LRXD results. The window size of the local methods was empirically set to 3 X 3 since it
was experimentally observed that this parameter leads to the best results in our experiments.
This section also provides a detailed comparison between our proposed methods and other
widely used methods such as LAIRX2, BACON, and RSAD. Our main reason for using
LAIRX?2 instead of LAIRX is that our proposed PAD calculates the RX after one segmentation,
and LAIRX2 performs two RX-type iterations.”? Therefore, a comparison of PAD to LAIRX2 is
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more natural. Similarly, we refer to BACON2 and RSAD?2 in our experiments to indicate that
these methods are also configured to perform two iterations in the experiments.

Figure 4 presents the binary images (separating targets and background) obtained by the
considered algorithms after using an optimally selected threshold. As shown in Fig. 4, PAD
and LAIRX?2 can detect more implanted targets than the classic RXD, regardless of whether
a local or global model is used. Specifically, both PAD(Global) and LAIRX2(Global) can detect
at least 17 out of 20 targets, whereas GRXD can only detect 12. For instance, if we consider only
the simulated targets of the F7 type, PAD(Global), PAD(Local), and LAIRX2(Local) can all
detect the targets with f equal or higher than 0.04. LAIRX2(Global) can detect the targets
with an f equal or higher than 0.06. However, both GRXD and LRXD can only detect the targets
whose f is not <0.18. This implies that the proposed method can detect subpixel anomalies of
less abundance from the target signal. Further, BACON and RSAD can detect more implanted
targets than other algorithms in the considered experiments with synthetic data. These two meth-
ods are iterative and generally more time consuming than the proposed method, as indicated by
their processing times measured on a desktop PC equipped with two Intel(R) Core(TM) Duo
processors at 3.00 GHz with 2 GB of RAM memory.

4.3 ROC Analysis

ROC curves provide a widely used strategy to evaluate anomaly detectors. It establishes the
correspondence between the detection probability and the FAR. Figure 5 presents the ROC
curves obtained for the different methods considered in this experiment with synthetic data.
As Fig. 5 shows, compared with the conventional RXD, our proposed methods, PAD(Global)
and PAD(Local), increase the probability of detection while reducing the FAR. Table 2 reports
the AUC scores, which were used for quantitative evaluation of the detection performance (the
larger the AUC, the better the detection results). It is noticeable that PAD results in a lower FAR
than LAIRX2 with the same probability of detection, regardless of whether a global or local
model is considered. On the other hand, local-based detectors such as LRXD, PAD(Local) and
LAIRX2(Local) outperformed the corresponding global-based detectors GRXD, PAD(Global),
and LAIRX?2(Global). The main reason is that all targets in the synthetic image are subpixel in
size, hence the local context around each pixel provides a better estimation for background infor-
mation. Although BACON and RSAD achieve the best performance in terms of AUC for the
synthetic image, they are also more computationally expensive than the presented methods. If we
take F7-type targets again, we can see that PAD(Global) provides slightly lower AUC scores than
BACON and RSAD. However, the execution time of BACON is 2.79 times higher than the one
measured for PAD(Global) and the time of RSAD is 2.15 times higher than the one measured for
PAD(Global). With these issues in mind, we can generally conclude that the proposed methods
provide a better balance between detection performance and time consumption than other algo-
rithms considered in our experiments.

4.4 Performances of PAD with Various Thresholds

Admittedly, PAD seeks a threshold from an interval, which is set experientially. It is necessary
to present the performances of PAD with various thresholds. In this additional experiment,
we demonstrate whether or not a fluctuation of the threshold has a great influence on the
detection results. In the thresholding process, except for the threshold application in PAD,
the three other thresholds have been set to y = 0.97, y = 0.95, and y = 0.90, respectively.
We apply each threshold on PAD(Global) and get ROC curves and AUC for all six target
implanted images.

From Fig. 6 and Table 3, although we can observe that the thresholds that we set fluctuate in a
given range, the detecting performances of PAD(Global) still remain on a very high level. The
improvements in GRXD from PAD are obvious with various thresholds. The results of this
experiment give powerful support to the adaptive nature of our presented algorithm.
Moreover, PAD (in combination with the presented thresholding method) obtains the highest
AUC value in four out of six images. This fact indicates that our thresholding method could
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Fig. 4 Detection results obtained by the different methods with synthetic data generated using
different targets. In all cases, the rejection probability y was set to 99.5%. (a) V1, (b) V2, (c) V3,
(d) F5, (e) F6, and (f) F7.
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Fig. 5 Receiver operating characteristic (ROC) curves corresponding to the detection results
reported in Fig. 4. (a) V1, (b) V2, (c) V3, (d) F5, (e) F6, and (f) F7.

assist PAD(Global) to get the best detecting performance in most scenarios, as compared with
other thresholds that were applied in PAD(Global).

5 Real Image Experiments

In this section, two real hyperspectral data have been used to evaluate the performance of the
proposed anomaly detectors. In the following, we describe the data sets used and the results
obtained by different anomaly detectors when applied to these two widely used data sets.

5.1 Hyperspectral Data Sets

5.1.1 World Trade Center

This data set was collected by the Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS),
operated by NASA’s Jet Propulsion Laboratory, over the World Trade Center (WTC) area in
New York, on September 16, 2001 (just 5 days after the terrorist attacks that collapsed the two
main towers in the WTC complex).>* A portion of 200 x 200 pixels (with 224 spectral bands
between 0.4 and 2.5 ym) was selected for the experiments. This area covered the hot spots cor-
responding to latent fires at the WTC, which can be considered as anomalies. Figure 7(a) shows
a false color representation of the portion selected for experiments, whereas Fig. 7(b) displays
a ground-truth data set, which comprises the spatial location of the hot spots provided by the
United States Geological Survey (USGS).
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Table 2 Area under the curve (AUC) and processing times (s) for the detectors reported on
Figs. 4 and 5.

Target Algorithm AUC Times (s) Algorithm AUC Times (s) Algorithm AUC Times (s)

V1 GRXD 0.9079 0.706 PAD(Global) 0.9983 1.673 LAIRX2(Global) 0.9952  1.092
LRXD 0.9422 0.883 PAD(Local) 0.9992 1.800 LAIRX2(Local) 0.9987 1.769
BACON 0.9994 5.708 RSAD 0.9994  3.079
BACON2 0.9943 1.280 RASD2 0.9538 0.826

V2 GRXD 0.9098 0.592 PAD(Global) 0.9983 1.568 LAIRX2(Global) 0.9960 1.102
LRXD 0.9420 0.918 PAD(Local) 0.9990 1.816  LAIRX2(Local) 0.9989 1.772
BACON 0.9998 4.546 RSAD 0.9998  1.939
BACON2 0.9976 1.284 RASD2 0.9356 0.842

V3 GRXD 0.9114 0.899 PAD(Global) 0.9987 1.883 LAIRX2(Global) 0.9968 1.123
LRXD 0.9455 0.896 PAD(Local) 0.9998 1.808 LAIRX2(Local) 0.9993 1.769
BACON 1.0000 4.112 RSAD 1.0000 2.546
BACON2 0.9979  1.300 RASD2 0.9458 0.833

F5 GRXD 0.9100 0.594 PAD(Global) 0.9987 1.534 LAIRX2(Global) 0.9967 1.129
LRXD 0.9446 0.891 PAD(Local) 0.9993 1.804  LAIRX2(Local) 0.9991 1.789
BACON 0.9999 4.140 RSAD 0.9999 2.020
BACON2 0.9957 1.322 RASD2 0.9613 0.880

F6 GRXD 0.9105 0.580 PAD(Global) 0.9983 1.516 LAIRX2(Global) 0.9960 1.104
LRXD 0.9446 0.905 PAD(Local) 0.9991 1.801 LAIRX2(Local) 0.9990 1.769
BACON 0.9999 4.153 RSAD 0.9999 2.596
BACON2 0.9930 1.314 RASD2  0.9358 0.860

F7 GRXD 0.9127 0.569 PAD(Global) 0.9990 1.473 LAIRX2(Global) 0.9972 1.143
LRXD 09438 0.896 PAD(Local) 0.9995 1.854  LAIRX2(Local) 0.9993 1.788
BACON 1.0000 4.111 RSAD 1.0000 3.161

BACON2 0.9989  1.300 RASD2 09734 0.854

5.1.2 SpecTIR data

These data were collected in the framework of the SpecTIR Hyperspectral Airborne Rochester
Experiment (SHARE).* The data set was collected on July 29, 2010 by the ProSpecTIR-VS2
sensor containing 360 bands from 390 to 2450 nm with a 5-nm spectral resolution. The ground
resolution is ~1 m. In the image, road and vegetation are the main backgrounds and red and
blue fabrics (sized 9, 4, and 0.25 m?) were purposely placed as targets. We selected an area of
180 x 180 pixels that contains fabric targets, as displayed in Fig. 8(a), for the experiments.
Figure 8(b) displays the ground-truth location of the targets in the considered experiment.

5.2 Experimental Results

This section reports the experimental comparison conducted using different detectors and the
considered real hyperspectral scenes. As the size of the targets in these two real images is usually
more than one pixel, the local methods in the experiments have been implemented using a dual
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Fig. 6 ROC curves of different thresholds on image (a) V1, (b) V2, (c) V3, (d) F5, (e) F6, and (f) F7.

window approach™ to better estimate the background information. In our experiments, the inner
and outer window sizes for the dual windows were set to 5 X 5 and 15 X 15 pixels, respectively,
after considering the size of the targets.

5.2.1 World Trade Center

The detection results provided by the proposed methods for the WTC scene are presented in
Fig. 9. These results indicate that the proposed PAD methods can highlight the targets more
effectively than the conventional RXD, regardless of whether a global or local method is

Table 3 AUC for PAD with various thresholds reported on Fig. 6.

Target PAD y=0.97 y=0.95 y=0.90
\"Al 0.9983 0.9951 0.9980 0.9972
V2 0.9983 0.9962 0.9983 0.9977
V3 0.9987 0.9982 0.9987 0.9981
F5 0.9987 0.9989 0.9981 0.9987
F6 0.9983 0.9987 0.9984 0.9976
F7 0.9990 0.9990 0.9989 0.9984
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(b}

Fig. 7 (a) AVIRIS image over the World Trade Center in New York City. (b) Ground-truth map
indicating the spatial location of hot spot fires, available from the United States Geological Survey.

(a) (b)

Fig. 8 (a) SpecTIR hyperspectral image with the targets highlighted by black ellipses. (b) Ground-
truth information.

GRXD PAD(Local) LAIRX2(Global)

b

PAD(Global)

4

Fig. 9 Detection results obtained by different algorithms for the AVIRIS World Trade Center data.

used. The corresponding ROC curves and AUC are presented in Fig. 10 and Table 4, which
indicate that the proposed methods exhibit better detection results than the classic RXD. It
is remarkable that BACON outperforms other algorithms for this data set, however, it is
more computationally expensive than LAIRX2 and RSAD. On the other hand, BACON2
and RSAD?2 obtain a lower probability of detection than BACON and RSAD, although they
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Fig. 10 ROC curves corresponding to the detection results described in Fig. 9.

Table 4 AUC and processing times (s) for the detectors reported on Figs. 9 and 10.

Algorithm  AUC  Times (s) Algorithm AUC  Times (s) Algorithm AUC  Times (s)

GRXD 0.9689 6.917 PAD(Global) 0.9886 20.914  LAIRX2(Global) 0.9905 13.526
LRXD 0.9638 57.469 PAD(Local) 0.9878  70.604 LAIRX2(Local) 0.9888 100.571
BACON  0.9947 87.835 BACON2  0.9861 14.005

RSAD 0.9946  52.384 RSAD2 0.9722 9.800

are less time-consuming. From the results in Fig. 10, we can also conclude that the global detec-
tors perform better than the corresponding local detectors. This is due to the fact that the real
targets are bigger than one pixel in size. As a result, the local estimation is expected to contain
more target signals.

5.2.2 SpecTIR data

The detection results obtained in our experiments for the SpecTIR image are reported on Fig. 11.
The binary images obtained after thresholding the detection results with empirically selected
optimal thresholds are reported in Fig. 12. The binary images indicate that PAD(Global) and
PAD(Local) can detect a higher number of targets than the classic RXD-based algorithms
(GRXD and LRXD), particularly when the targets are subpixel in nature. More specifically,
PAD(Global) and PAD(Local) can detect five subpixel targets (0.25 m?) out of six and
LAIRX2(Global) can detect four subpixel targets, whereas GRXD and LRXD cannot detect

GRXD LRXD PAD(Global) PAD(Local) LAIRX2(Global)

Fig. 11 Detection results obtained by different algorithms for the SpecTIR data.
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Fig. 12 Binary images obtained after thresholding the results in Fig. 11 using empirically selected
optimal thresholds. The ratio of anomaly was set as 1%.
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Fig. 13 ROC curves obtained for different methods on the SpecTIR data.

any of them. BACON and RSAD also perform similarly in terms of detection accuracy when
compared with PAD. On the other hand, the proposed methods resulted in a lower number of
false alarms, as indicated by Fig. 12. This demonstrates that the proposed methods achieved a
generally good performance in the task of suppressing background and noise information.
On the other hand, the ROC curves obtained for different detectors for the SpecTIR data are
reported in Fig. 13. From these curves and the corresponding AUC scores reported in Table 5, we
can conclude that PAD(Global) and PAD(Local) obtained the best performances for the consid-
ered data set. Specifically, PAD(Global) and PAD(Local) obtained significant improvements
when compared with GRXD and LRXD and also obtained a slight performance increase in
terms of AUC when compared to BACON, RSAD, and LAIRX2. A general observation is
that local methods are more computationally expensive than their corresponding global methods,
mainly due to the fact that we are using a dual window-based strategy in order to enhance their
detection results. It is also noticeable from Table 5 that the execution time of PAD(Global) is

Table 5 AUC and processing times (seconds) for the detectors reported on Figs. 11-13.

Algorithm  AUC  Times (s)  Algorithm AUC Times (s) Algorithm AUC  Times (s)

GRXD 0.9683 12.283 PAD(Global) 0.9993 31.508 LAIRX2(Global) 0.9990 23.425
LRXD 0.9651  67.802 PAD(Local) 0.9993  87.006 LAIRX2(Local) 0.9991 131.820
BACON  0.9988  77.982 BACON2  0.9985 27.963

RSAD 0.9987  54.584 RSAD2 0.9987  17.598
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lower than the execution times of BACON and RSAD. In fact, BACON and RSAD can detect
more targets than BACON2 and RSAD?2, although they are more computationally expensive due
to their iterative nature. Since PAD considers the probability of the PUT to be considered as
targets, it can withhold noise and underscore major targets (fabrics have at least 72 pixels)
in the image. This also explains why PAD achieved the best performance in the task of detecting
the fabrics while reducing noise and background for the SpecTIR data.

Summarizing, the experiments conducted using both synthetic and real data sets indicate the
satisfactory performance of all the detectors presented in this paper. Although LAIRX?2 slightly
outperformed PAD in the WTC data set, our proposed methods are superior to LAIRX2 on the
synthetic and SpecTIR data sets. On the other hand, our methods provide an automatic threshold as
opposed to LAIRX?2 in which the optimal threshold value should be empirically selected. As a
result, the threshold selection method implemented in PAD is quite flexible and adaptive to various
scenarios. Our results also revealed that PAD(Global) outperformed BACON and RSAD for the
SpecTIR data set. For the WTC image, however, their performances are reversed. As BACON and
RSAD are iterative methods, they are more time-consuming than PAD(Global). This is particularly
the case for large hyperspectral images. In addition, PAD has the capacity to exploit its adaptive
threshold strategy in order to obtain a more accurate estimation of the background.

6 Conclusion and Future Lines

Anomaly detection is a very active topic of research in hyperspectral imagery. In anomaly detec-
tion scenarios, generally no prior information is available. Although some classic detectors (like
RXD and its variations) have been very popular in the literature, they generally suffer from a high
FAR. In order to mitigate this issue, this paper has presented a new method for anomaly detection
called PAD, which aims at decreasing the FAR without sacrificing the anomaly detection accu-
racy. A key aspect of PAD is that it mines knowledge from RXD results by separating the infor-
mation from the target and background sets for improved estimation purposes. In particular, the
segmentation can refine the estimation of the background statistics, leading to a background
estimation that is closer to a multivariate normal distribution. Our experimental results, con-
ducted with both synthetic and real hyperspectral data sets, indicate that PAD has a good per-
formance in the task of underscoring the major targets in the scene and reducing noise-induced
false alarms. The proposed method also incorporates an automatic procedure for adaptively esti-
mating a threshold value. Although the proposed approach is shown to be quite effective in
computational terms, our future research work will be focused on accelerating the performance
of the method even more by resorting to high performance computing architectures such as
multicore processors and commodity graphics processing units.
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