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Abstract—We consider a waveform-agile sensing algorithm for
designing transmitted waveforms in rapidly-varying radar scenes
to improve target detection performance. Specifically, we first
track the scattering function of rapidly-varying sea clutter in
low signal-to-clutter ratios (SCRs) at each burst by estimating
the clutter’s space-time covariance matrix. Simultaneously, we
schedule the waveform to be transmitted in the next burst by
minimizing the sea clutter influence based on the estimated
clutter statistics. The effectiveness of our waveform-agile sensing
approach is demonstrated by detecting a moving target in heavy
sea clutter using configured waveforms, and then comparing the
resulting performance to that of detecting the target using fixed-
parameter linear frequency-modulated waveforms.

I. INTRODUCTION

Waveform diversity and design has recently been success-

fully used in radar applications, such as target detection

and tracking, to improve radar performance. Increasing the

accuracy of target detection and tracking can be of great

importance in secure navigation, military and coastal security

operations, and maritime rescue. As a result, waveform-agility

can be pursued in real applications, especially with new

developments in radar hardware and technologies that make it

possible to design the transmitted waveform on-the-fly. When

detecting or tracking a moving target in low SCR, waveform

design becomes a challenging problem, especially for fast

varying radar scenes. Although approaches to this problem

under slowly-varying conditions have been proposed [1], [2],

situations in which the radar scene varies quickly present

significant additional difficulties.

In this work, we propose a waveform design method that

adaptively chooses the parameters of the phase-modulated

(PM) signal to be transmitted at the next time instant in

order to minimize the effects of low SCR clutter in rapid-

varying radar scenes. The method exploits a formulation

of the space-time representation of the clutter scene in the

scattering function domain. This formulation is vectorized to

obtain a dynamic system characterization for detecting a target

in heavy sea clutter. Our method first estimates the space-

time covariance matrix of the sea clutter using the multiple

particle filter sequential Monte Carlo method [3]. This method

is chosen in order to overcome an inherent dimensionality

problem. Then, an optimization procedure is used to find

the PM waveform parameters that minimize the effect of the

clutter and improve detection. The effectiveness of this method

is demonstrated by detecting a moving target in a high sea

clutter scenario.

The paper is organized as follows. In Section II, we describe

the rapidly-varying radar scene and radar returns, and Section

III provides the estimation method of the clutter space-time

covariance matrix. In Section IV, we propose the waveform-

agile algorithm for target detection in rapidly-varying clutter,

and we provide simulations illustrating the performance of the

algorithm in Section V.

II. RAPIDLY-VARYING RADAR SCENE CHARACTERIZATION

In a rapidly-varying radar scene, we consider a radar oper-

ating at fs Hz pulse repetition frequency (PRF) that transmits

a burst of K pulses in each dwell, as shown in Figure 1. The
length Ns pulse sn[i], i = 0, 1, . . . , Ns − 1, is transmitted
repeatedly K times throughout the nth dwell.
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Fig. 1. Rapidly-varying radar scene transmitting K pulses in each dwell.

A. Scattering matrix

We consider the kth pulse, k = 1, . . . ,K, and the mth
range bin, m = m0,m1, . . . ,mMn−1 at the nth dwell. Then,
the corresponding complex reflectivity coefficients of the ag-
gregate scatterers on the sea surface are denoted by xn[m, k].
The coefficients form the reflectivity matrix Bn that is given
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where m0 is the lowest range bin in the validation gate at

dwell n, and the validation gate at dwell n hasMn range bins.

The reflectivity matrix has dimensions Nv ×K, where Nv =
Mn +Ns − 1. The range (fast time or delay) increases down
the columns, and the transmitted pulses (slow time) increase

across the rows of Bn.

The scattering matrix An is defined with elements that are

obtained by taking the short-time Fourier transform of the

elements of Bn in the slow-time direction,

An[m, l] =
1√
K

K
∑

k=1

Bn[m, k]e−j2πkl/K

where l ∈ [−K−1
2 , · · · , K−1

2 ]. Then,

An = BnD (1)

where D is the discrete Fourier transform matrix. Thus,

An contains the range-Doppler description of the complex

reflectivities in Bn.

The scattering matrix An provides the range-Doppler de-

scription of the scatterer complex reflectivities in matrix Bn.

This is demonstrated in Figure 2. Each element in An de-

scribes the states of the scatterers. In each range bin, along

the slow-time, static scatterers are represented in the middle

column; the first (K − 1)/2 elements represent the negative
Doppler shifts and are related to the scatterers moving away

from the sensor with different velocities; the last (K − 1)/2
elements represent the positive Doppler shifts and are related

to the scatterers moving toward the sensor with different

velocities. According to the characteristics of sea clutter, most

scatterers reside around the middle of each row (corresponding

to zero Doppler).

B. Observation and dynamic models

In Figure 1, the return from each dwell is sampled at fb

Hz to yield yn[k,m] = yn(k,mTb), k = 1, . . . ,K, m =
m0,m1, . . . ,mMn−1, where Tb = 1/fb is the fast sampling

interval. Then, the radar return at the nth dwell is given by:

yn[k,m] =

Ns−1
∑

i=0

xn[k,m− i]sn[i] + vn[k,m] (2)

where vn[k,m] is additive white Gaussian noise. Note that we
have assumed that an identical pulse sn[i], i = 0, 1, · · · , Ns−1
is transmitted throughout each dwell.
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Fig. 2. Scattering matrix of sea clutter and the evolution of the scatterers.

The transmitted signal matrix Pn can be expressed as an

Mn ×Nv matrix given by

Pn =











sn[0] sn[1] · · · sn[Ns − 1] · · · 0
0 sn[0] sn[1] · · · sn[Ns − 1] · · ·
...

...
...

... · · ·
...

0 0 · · · · · · sn[Ns − 2] sn[Ns − 1]











.

Then, using the transmitted signal matrix and the radar returns

in (2), we can form the Mn ×K observation matrix Yn as

Yn = PnBn + Vn . (3)

Here, Vn is theMn×K noise matrix at dwell n with elements
vn[m, k].
We assume that the scatterers and the target move with

constant velocity. As the scatterers move, some of them that

do not stay in the middle columns of An will move out

of the validation gate, and some range-Doppler cells will

become empty. As shown in Figure 2, the solid parallelogram

represents the scattering matrix at the (n − 1)th dwell, and
the dashed-dotted rectangular represents the scattering matrix

at the nthe dwell. The cells moving out of the matrix will
be populated according to the adjacent elements in the same

column (same Doppler shifts), which have constant velocity.

To better describe the evolution of the scattering matrix, an

evolution matrix F is introduced, that describes the movement
of the scatterers and the population of the empty cells. The

new scatterer cells that are populated into the scattering matrix

are described using exponential weighted summations of the

complex reflectivities in the immediate neighborhood of these

cells, as illustrated in Figure 2. This procedure will continue

along each column until all empty cells are populated. We

vectorize the matrix An to form an = vec(An) by stacking
the columns of An from left to right to form a length KNv

vector. The evolution of the vectorized scattering matrix is

given by

an = Fan−1 + wn . (4)
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The zero-mean, complex Gaussian noise wn has covariance

Qn, and F incorporates the scatterer movements between
dwells and populates the range-Doppler cells that move

into the validation gate. The matrix F is a KNv × KNv

block-diagonal matrix. When l = −(K − 1)/2, . . . ,−1, the
block matrix is given by

Fl =



























2|l|−1e−|l|α . . . (2|l|−1 − |l| + 1)e−(Nv+|l|−1)α

...
...

...

e−α . . . e−Nvα

1 . . . 0

0
...

...

... . . . 0



























.

When l = 1, . . . , (K − 1)/2, the block matrix is

Fl =































0 . . .
...

...
... 0

0 . . . 1

e−Nvα . . . e−α

...
...

...

(2l−1 − l + 1)e−(Nv+l−1)α . . . 2l−1e−lα































,

and when l = 0, the scatterers are not moving, and the block
matrix is an Nv ×Nv identity matrix INv

.

Based on the relationship between the reflectivity matrix Bn

and the scattering matrix An in (1), the observation matrix Yn

in (3) can also be written as Yn = PnAnD
−1 + Vn. Using

the matrix property vec(GZL) = (LH ⊗ G) z, where G, Z,
and L are three arbitrary matrices, z = vec(Z), and ⊗ denotes
the Kronecker product [4], the vectorized observation is then

given by

yn = (D−H ⊗ Pn)an + vn

= P̌nan + vn (5)

where yn = vec(Yn), P̌n = D ⊗ Pn, and H denotes the
Hermitian operator.

Thus, Equations (4) and (5) represent the dynamic state and

observation equations in a state space representation where

an is the unknown state. And, an, the vectorized scattering

matrix An, is related to the original reflectivity matrix Bn of

the clutter using (1).

III. ESTIMATION OF SEA CLUTTER STATISTICS

As we will see in Section IV, the waveform-agile detection

algorithm highly depends on the accurate estimation of sea

clutter statistics. In this section, we discuss the clutter estima-

tion algorithm introduced in [5].

LetΣan
be the covariance matrix of an. The dynamic model

in (4) can also be described as:

Σan
= E[anaH

n ] = FΣan−1
FH +Qn, (6)

where Qn is the covariance matrix of wn. Similarly, the

covariance matrix of the vectorized observations in (5) can

be extended to:

Σyn
= P̌nΣan

P̌H
n +Rn, (7)

where Rn is the covariance matrix of vn. Using (7), we can

obtain p(yn|Σan
) to update the filter. Note that Qn in (6) and

Rn in (7) are assumed to be Wishart distributed; this follows

from the covariance of the multinormal samples wn and vn.

Also, as An and Bn are related, once we estimate Σan
, we

can also obtain Σbn
= (D ⊗ INv

)Σan
(DH ⊗ INv

).
Particle filtering (PF) is a sequential Monte Carlo method

that uses sampling to approximate probability density func-

tions. It provides a good approximation to Kalman filtering

when the system models are nonlinear or non-Gaussian [6],

[7]. However, when the dimensionality of the state space is

large, as in our case, a huge set of particles is needed to

provide sufficient support and the computational complexity

becomes prohibitive. As discussed in [3], multiple particle

filtering (MPF) can be used to overcome this dimensionality

problem as follows. If the dynamic and measurement equations

of a system can be written as αn = fn(αn−1,ωn−1) and
βn = hn(αn,γn), where αn is a high-dimensional system

state vector at time step n, fn and hn are (possibly nonlinear)

functions, and ωn and γn are random vectors. Using the MPF

approach in [3], αn is divided into L subvectors, given by
αn = [αT

1,n α
T
2,n . . . αT

L,n]T . Each αl,n, l = 1, 2, . . . , L,
is estimated using a different PF. As a result, L PFs are
running simultaneously, and the state vector αn is put together

accordingly at each time n.
In order to take advantage of Bayesian techniques to solve

the system equations, we vectorize the dynamic and observa-

tion models in (6) and (7). Specifically, we obtain

Σ̃an
= (F ⊗ F )Σ̃an−1

+ Q̃n (8)

Σ̃yn
= (P̌n ⊗ P̌n)Σ̃an

+ R̃n,

where Σ̃an
= vec(Σan

), Σ̃yn
= vec(Σyn

), Q̃n = vec(Qn)
and R̃n = vec(Rn). After vectorization, the dimensionality
of Σ̃an

is given by Ξ = (KNv)2. The value of Ξ can be
quite large, even if we consider a small number of pulses.

For example, if we use K = 9 pulses and Mn = 10 range
bins, then even if we reduce the signal length to Ns = 6,
we obtain Nv = Mn + Ns − 1 = 15 and thus Ξ = 18, 225.
This implies that we need to estimate an unknown dynamic

state whose dimensionality is 18,225; this high dimensionality

prevents direct implementation of particle filtering or Kalman

filtering, even if the transformations are linear. We therefore

apply the MPF approach discussed above [3].

In (8), the evolution matrix F ⊗ F is block diagonal,

F ⊗ F =









F1 ⊗ F 0 · · · 0
0 F2 ⊗ F · · · 0

· · ·
0 0 · · · FK ⊗ F









and Fk is defined in Section II. The structure of F ⊗F leads
to a natural decomposition of the dynamics of the state vector
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into K independent subsystems,

Σ̃an
=

[

ΛT
1,n ΛT

2,n . . . ΛT
K,n

]T

where each vector Λk,n, k = 1, . . . ,K, has dimension KN 2
v .

As a result, we can use the MPF with L = K PFs applied
simultaneously, one for each of the K subsystems. For the kth
subsystem, the estimation of this segment of the current state

can be obtained using the dynamic and measurement models

Λk,n = (Fk ⊗ F )Λk,n−1 + Vk,n

Σ̃yn
= (P̌n ⊗ P̌n)Σ̃an

+ R̃n .

For the kth PF, the weight of the ith particle, i = 1, . . . ,Ms

can be updated according to

w
(i)
k,n ∝ w

(i)
k,n−1

p(Σyn
|Λi

k,nΛ̃
(i)

−k,n)p(Λ
(i)
k,n|Λ

(i)
k,n−1Λ̂−k,n−1)

πk(Λ
(i)
k,n|Λ

(i)
k,n−1, Λ̂−k,n−1, Σ̃yn

)

where Λ̃−k,n = [Λ̂
T

1,n · · · Λ̂
T

k−1,n Λ̂
T

k+1,n · · · Λ̂
T

k,n]T ,

Λ̂
T

j,n =
∑Ms

i=1 w
(i)
j,n−1Λ

(i)
j,n, j 6= k, and πk(·) is the

importance density that is chosen here to be the prior density

[6]. The observation used in the kth PF has a complex
Gaussian distribution with zero-mean and covariance matrix

Σyn
.

IV. WAVEFORM DESIGN ALGORITHM

In order to improve the target detection performance in

rapidly-varying radar scenes, we propose to design the transmit

waveforms at each time instant. Specifically, instead of trans-

mitting the same type of pulse at all dwells, the transmitted

waveform is designed at each dwell to minimize a cost

function in terms of the estimated clutter covariance matrix.

Figure 3 demonstrates the proposed waveform design al-

gorithm. At the beginning of the algorithm, K pulses of a
linear frequency-modulated (LFM) chirp with fixed parameters

is transmitted at the first (n = 1) dwell. Using the observations
and the method described in Section III, the covariance matrix

(Σ̂an
) of the fast-varying sea clutter is estimated. Using this

estimate, we predict the covariance matrix for the next time

step using (6). That is, we obtain Σ̄an
= F Σ̂an

FH . We then

design the next waveform to transmit by minimizing a cost

function that is aimed to reduce the effect of the clutter. This

waveform is then transmitted at the next time step, and the

observations are used to estimate the clutter statistics at this

new time step. The waveform design algorithm steps are also

summarized in Table I.

The waveform we use in the design algorithm at each time

step n is a unimodular PM waveform given by

sn(t;PM) = exp (jψ(t)), 0 ≤ t ≤ Td,

where the phase modulation can be expanded in terms of an

orthogonal set of basis functions as ψ(t) =
∑N

i=1 θiψi(t),
where

ψi(t) =

{

1, (i− 1)∆T ≤ t ≤ i∆T
0, otherwise

.
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Fig. 3. Depiction of waveform design algorithm.

Here, Td and ∆T are the pulse duration and sampling interval,
respectively.

In order to mitigate the effect of the clutter, we choose

the waveform at time step n that minimizes the cost function
given by the trace of P̌nΣ̄an

P̌H
n [2], [8]. Recall that P̌n is

related to the transmitted waveform matrix Pn in (3) and thus

to the transmitted signal. Also, the covariance matrix Σyn
of

the vectorized observations in (5) is related to P̌nΣan
P̌H

n in

(7), where an is the vectorized scattering matrix of the clutter.

Thus, minimizing this covariance matrix results in minimizing

the effect of the clutter on the target detection.

The waveform selection algorithm is thus given by

s∗n(t;PM) = arg min
sn(t;PM)

trace(P̌nΣ̄an
P̌H

n ) (9)

where . Once the optimal waveform is transmitted, the target

is detected using the generalized likelihood ratio test (GLRT)

[9]. With respect to range bin j, let H0 denote the hypothesis

that only clutter is present, and let H1 denote the presence of

both clutter and target. The GLRT detector decides H1 if

ΛGLRT
j = ln

p(yn,j |H1, Σ̄an
)

p(yn,j |H0, Σ̄an
)
> γ, (10)

where γ is a threshold that achieves a desired false alarm
probability and can be calculated using (7).

V. SIMULATIONS

In our simulations, we compared the detection performance

of a moving target in heavy sea clutter by transmitting fixed

LFM chirps and designed PM waveforms under different SCR

scenarios. We used K = 9 pulses to transmit in each dwell,
and the validation gate size was Mn = 11. The length of the
transmitted waveform transmitted was Ns = 6. For the MPF,
we used L = 9 PFs, and each PF used 50 particles. The sim-
ulated sea clutter was generated using a compound-Gaussian

model [10]; at each time step, 200 Monte Carlo simulations

were used to obtain the space-time covariance matrix of the
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TABLE I

WAVEFORM DESIGN ALGORITHM DESCRIPTION.

At time step n = 1,

• At the beginning of the dwell:

– transmit K LFM chirp pulses with fixed parameters

• At the end of the dwell:

– Estimate the sea clutter covariance matrix, Σ̂an

for n = 2 : ND ,

• Calculate the predicted covariance matrix, Σ̄an
, based on the

previous estimate using (6)
• Design the transmitted waveform by:

s
∗

n(t; PM) = arg min
sn(t;PM)

trace(P̌nΣ̄an
P̌

H

n )

• At the beginning of the dwell:

– Transmit the designed waveform s
∗

n(t; PM)

• At the end of the dwell:

– GLRT detection
– Estimate the covariance matrix at this time step.

reflectivity vector. The range bin size and Doppler resolution

were chosen such that, from one dwell to another, the scatterer

in the lth column, l = −(K − 1)/2, · · · , 0, · · · , (K − 1)/2,
of the scattering function moved by l bins. The target was
assumed to move with a known constant velocity of 20 m/s.

Target returns from all pulses and range bins were combined

to form the observation vector. The amplitudes of the target

returns were sampled from a zero-mean, complex Gaussian

process with known variance.

Based on the estimated space-time covariance matrix of

the sea clutter using the MPF method, the GLRT detector

was used to detect the range bin location of the target,

utilizing each pulse of each burst. The PM waveforms

transmitted at each dwell were designed by minimizing the

cost function in (9) following Section IV. The receiver-

operating characteristict (ROC) curves are shown in Figure 4

for 57 dB, -65 dB, and -70 dB SCR values. For comparison,

the detection performance of fixed LFM chirp waveforms is

also shown in Figure 4. These waveforms used a chirp rate

of 1,000 GHz/s and time duration 1.2 × 10−12 s. As we can

see, the waveform design approach increased the detection

performance by about 5 dB.

VI. CONCLUSION

We proposed a waveform-agile target detection algorithm

for the difficult scenarios of rapidly-varying radar scenes.

We first estimated the space-time covariance matrix of the

sea clutter using multiple particle filtering, and then we dis-

cussed the waveform design algorithm to adaptively design the

transmitted signal at each time step. The proposed technique

minimizes a cost function to reduce the influence of the

clutter on detecting a moving target. We demonstrated the

increased performance of our new approach using simulations
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Fig. 4. Detection performances of the waveform design approach compared
with using fixed waveforms under different SCR values.

and compared it with using fixed linear frequency-modulated

waveforms.
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