I DEVELOPMENT AND
APPLICATIONS OF DECISION TREES

HUSSEIN ALMUALLIM

Information and Computer Science Department, King Fahd University of Petroleum & Minerals,

Dhahran 31261, Saudi Arabia

SHIGEO KANEDA

Graduate School of Policy and Management, Doshisha University, Imadegawa-Karasuma-Higashi-iru,
Kamigyou-ku, Kyoto 602-8580, Japan

YASUHIRO AKIBA

NTT Communication Science Laboratories, 2-4 Hikari-dai, Seika-cho, Souraku-gun, Kyoto 619-0237,
Japan

VL.

VIL.
VIIL.
. PRACTICAL APPLICATIONS

. INTRODUCTION
. CONSTRUCTING DECISION TREES FROM EXAMPLES

A. A Basic Tree Construction Procedure

B. Which Test to Select

EVALUATION OF A LEARNED DECISION TREE
OVERFITTING AVOIDANCE

EXTENSIONS TO THE BASIC PROCEDURE
A. Handling Various Attribute Types

B. Incorporating More Complex Tests

C. Attributes with Missing Values

VOTING OVER MULTIPLE DECISION TREES
A. Bagging

B. Boosting

INCREMENTAL TREE CONSTRUCTION
EXISTING IMPLEMENTATIONS

A. Predicting Library Book Use

B. Exploring the Relationship Between the Research Octane
Number and Molecular Substructures

C. Characterization of Leiomyomatous Tumors

D. Star/Cosmic-Ray Classification in Hubble Space
Telescope Images

. FURTHER READINGS

ACKNOWLEDGMENTS
REFERENCES

Expert Systems, Vol. 1
Copyright © 2002 by Academic Press. All rights of reproduction in any form reserved.

53

54 ALMUALLIM ET AL
I. INTRODUCTION

A critical issue in artificial intelligence research is to overcome the so-called
“knowledge-acquisition bottleneck™ in the construction of knowledge-based sys-
tems. Experience in typical real-world domains has shown that the conventional
approach of extracting knowledge directly from human experts is associated with
many problems and shortcomings. Interviews with experts are usually slow, inef-
ficient, and frustrating for experts and knowledge engineers alike [1]. This is par-
ticularly true in those application domains in which decisions made by experts are
“intuitive” ones, guided by imprecise and imperfect knowledge. In such domains,
different experts may make substantially different judgments, and even the same
expert may not give the same solution when confronted with the same problem
twice over a period of time. These problems become more acute when dealing with
large knowledge-based systems in which upgrading the knowledge base, fixing pre-
vious erroneous knowledge, and maintaining integrity are extremely challenging
tasks.

A promising approach to ease the knowledge-acquisition bottleneck is to
employ some learning mechanism to extract the desired knowledge automatically
or semiautomatically from actual cases or examples that have been previously han-
dled by the domain experts. This machine learning approach enjoys several advan-
tages: (i) In problems for which knowledge is expert-dependent, one can simply
learn from examples handled by different experts, with the hope that this will aver-
age the differences among different experts. (ii) Being able to construct knowledge
automatically makes the upgrading task easier because one can rerun the learning
system as more examples accumulate. Some learning methods are indeed “incre-
mental” in nature. (iii) Machine learning can be applied to problems for which no
experts exist. This is the case in data mining and knowledge discovery in databases,
for which machine learning techniques are employed to automatically discover new
knowledge.

Considerable attention has been devoted by the machine learning research
community to the task of acquiring “classification knowledge” for which, among a
predeclared set of available classes, the objective is to choose the most appropriate
class for a given case. The goal in such research is to develop methods that induce
the desired classification knowledge from a given set of preclassified examples.
Significant progress has been made in the last decade toward this goal, and various
methods for automatically inducing classifiers from data are now available. In
particular, constructing classifiers in the form of decision trees has been quite
popular, and a number of successful real-world applications that employ decision
tree construction methods has been reported.

For knowledge-based systems, decision trees have the advantage of being com-
prehensible by human experts and of being directly convertible into production
rules. Moreover, when used to handle a given case, a decision tree not only pro-
vides the solution for that case, but also states the reasons behind its choice. These
features are very important in typical application domains in which human experts
seek tools to aid in conducting their job while remaining “in the driver’s seat.”
Another advantage of using decision trees is the ease and efficiency of their con-
struction compared to that of other classifiers such as neural networks.

DEVELOPMENT AND APPLICATIONS OF DECISION TREES 55

w
=
I~
=
=}
7]

sun/ §
<}

sruden® "Ployee

[

Age >=21 5, Income >= 30,000
o2 5 S 1% &,
& S 8 5 ‘o
don’t
don’t invit
don't GPA>=3.0 on e
2, %,
& e
don’t invite

- FIGURE | A decision tree that determines whether or not to offer a credit card invitation.

In this chapter, we first present a basic method for automatically constructing
decision trees from examples and review various extensions of this basic proce-
dure. We then give a sample of real-world applications for which the decision tree
learning approach has been reported to be successful.

Il. CONSTRUCTING DECISION TREES FROM EXAMPLES

A decision tree is used as a classifier for determining an appropriate action (among
a predetermined set of actions) for a given case. Consider, for example, the task of
targeting good candidates to be sent an invitation to apply for a credit card: given
certain information about an individual, we need to determine whether or not he or
she can be a candidate. In this example, information about an individual is given as
a vector of attributes that may include sex (male or female), age, status (student,
employee, or unemployed), college grade point average (GPA), annual income,
social security number, etc. The allowed actions are viewed as classes, which are
in this case to offer or not to offer an invitation. A decision tree that performs this
task is sketched in Fig. 1. As the figure shows, each internal node in the tree is
labeled with a “test” defined in terms of the attributes and has a branch for each
possible outcome for that test, and each leaf in the tree is labeled with a class.

Attributes used for describing cases can be nominal (taking one of a prespeci-
fied set of values) or continuous. In the above example, Sex and Status are nominal
attributes, whereas Age and GPA are continuous ones. Typically, a test defined on
a nominal attribute has one outcome for each value of the attribute, whereas a test
defined on a continuous attribute is based on a fixed threshold and has two out-
comes, one for each interval as imposed by this threshold.! The decision tree in
Fig. 1 illustrates these tests.

To find the appropriate class for a given case (individual), we start with the
test at the root of the tree and keep following the branches as determined by the
values of the attributes of the case at hand, until a leaf is reached. For example,
suppose the attribute values for a given case are as follows:

Name = Andrew; Social Security No. = 199199; Age =22; Sex = Male;
Status = Student; Annual Income =2,000; College GPA = 3.39.

" Other kinds of attributes and tests also exist as will be explained later.

56

A. A Basic

ALMUALLIM ET AL

To classify this case, we start at the root of the tree of Fig. 1, which is labeled
Status, and follow the branch labeled Student from there. Then at the test node
Age > 21, we follow the true branch, and at the test node GPA > 3.0, we again
follow the “true” branch. This leads finally to a leaf labeled “invite”, indicating
that this person is to be invited according to this decision tree.

Decision tree learning is the task of constructing a decision tree classifier, such
as the one in Fig. 1, from a collection of historical cases. These are individuals
who are already marked by experts as being good candidates or not. Each historical
case is called a training example, or simply an example, and the collection of
such examples from which a decision tree is to be constructed is called a training
sample. A training example is assumed to be represented as a pair (X, c¢), where
X is a vector of attribute values describing some case, and c¢ is the appropriate
class for that case. A collection of examples for the credit card task is shown in
Fig. 2. The following subsections describe how a decision tree can be constructed
from such a collection of training examples.

Tree Construction Procedure

Let S = {{X,,c,),{X5,¢3),...,{(X,,c,)} be a training sample. Constructing a
decision tree form S can be done in a divide-and-conquer fashion as follows:

Step 1: If all the examples in S are labeled with the same class, return a leaf
labeled with that class.

Step 2: Choose some test ¢ (according to some criterion) that has two or
more mutually exclusive outcomes {o,, 0, ..., 0,}.

Step 3: Partition S into disjoint subsets S|, S,, ..., S,, such that S; consists of
those examples having outcome o; for the test ¢, for i=1,2, ..., r.

Step 4: Call this tree-construction procedure recursively on each of the
subsets S, S,, ..., S,, and let the decision trees returned by these
recursive calls be 7\, T5, ..., T,.

Step 5: Return a decision tree 7 with a node labeled ¢ as the root and the
trees T, T,, ..., T, as subtrees below that node.

For illustration, let us apply the above procedure on the set of examples of
Fig. 2. We will use the Case IDs 1-15 (listed in the first column) to refer to each
of these examples.

e §={1,2,3,...,15} has a mixture of classes, so we proceed to Step 2.

e Suppose we use the attribute Status for our test. This test has three
outcomes, “Student”, “Unemployed”, and “Employee”. It partitions
S into the subsets S, ={1,4,6,7,9,10, 11}, S, = {5, 8,12, 13}, and
S, = {2, 3, 14, 15}, respectively, for these outcomes.

e Note that S, has a mixture of classes. Suppose we choose the test
Age > 21?. This test partitions S, into S;; = {6, 10} for the false outcomes
and S, =1{1,4,7,9, 11} for the true outcome.

e §;, = {6, 10} has just one class “don’t”, so a leaf labeled with this class is
returned for the call on ;.

e For the set S},, which has a mixture of classes, if we choose GPA > 3.07?,
then the set will be partitioned into S,,; = {7,9} and S,,, = {1, 4, 11}.

DEVELOPMENT AND APPLICATIONS OF DECISION TREES

57

Case Social
ID Name Security No. Age Sex Status Income GPA Class
1 John 123321 22 Male Student 3,000 3.22 Invite
2 Mary 343422 38 Female Employee 32,000 2.00 Invite
3 Al 876345 46 Male Employee 69,000 2.90 Invite
4 Lee 673245 23 Male Student 3,500 3.1 Invite
5 Ted 451087 45 Male Unemployed 5,000 3.1 Don’t
6 Nick 239847 19 Male Student 1,300 3.8 Don’t
7 Liz 229951 23 Female Student 12,000 2.8 Don’t
8 Debby 234819 33 Female Unemployed 5,000 0.00 Don’t
9 Pat 258199 32 Male Student 1,000 2.1 Don’t
10 Peter 813672 20 Male Student 32,000 3.9 Don’t
11 Dona 501184 23 Female Student 6,600 3.3 Invite
12 Jim 619458 40 Male Unemployed 35,000 3.3 Don’t
13 Kim 654397 31 Female Unemployed 14,000 3.0 Don’t
14 Pan 350932 59 Male Employee 29,000 2.8 Don’t
15 Mike 357922 33 Male Employee 19,000 2.6 Don’t

- FIGURE 2 Examples for the credit card task.

e The calls on the sets S;,; and S,,, will return leaves labeled “don’t” and
“invite”, respectively, and thus, the call on the set S}, will return the subtree

of Fig. 3a.

e Now that we are done with the recursive calls on §;; and §,, the call on
the set S, will return the subtree of Fig. 3b.
e The call on the set S, will return a leaf labeled “don’t”.
e For S5, which contains a mixture of classes, suppose we choose the test
Income > 30, 000?. This will partition S; into Sy, = {14, 15} for the false
outcome and S;, = {2, 3} for the true outcome.
e The recursive calls on S;; and S;, will return leaves labeled “don’t” and
“invite”, respectively, and thus, the call on S; will return the subtree of

Fig. 3c.

o Finally, the call on the entire training sample S will return the tree of Fig. 1.

Obviously, the quality of the tree produced by the above top-down construction
procedure of decision trees depends mainly on how tests are chosen in Step 2.

GPA>=3.0

@ ¢,

don’t invite

(a)

Age>=21

(2
) ¢

don’t

(b)

GPA>=3.0

@ &

don’t

invite

Income >= 30,000

(2
S %,
A

don’t

(c)

invite

- FIGURE 3 Subtrees returned by recursive calls on subsets of the training examples for credit card

invitations.

58

ALMUALLIM ET AL

Moreover, the stopping criterion of Step 1 (which requires that the passed set of
training examples have a single class) may not be the strategy to quit recursion and
stop growing the tree. We will elaborate on these points in the following subsection
and in Section IV.

B. Which Test to Select?

Regardless of the test selection criterion adopted in Step 2 of the above tree-
construction procedure, the procedure would eventually lead to a decision tree that
is consistent with the training examples. That is, for any training example (X, c¢) €
S, the learned tree gives c as the class for X. Nevertheless, the tree-building process
is not intended to merely do well for the training examples themselves. Rather,
the goal is to build (among many possible consistent trees) a tree that reveals the
underlying structure of the domain, so that it can be used to “predict” the class of
new examples not included in the training sample and can also be used by human
experts to gain useful insight about the application domain. Therefore, some careful
criterion should be employed for test selection in Step 2 so that important tests
(such as Income and Status in our credit card example) are preferred and irrelevant
ones (such as Name and Sex) are ignored. Ideally, one would like the final tree
to be as compact as possible, because this is an indication that attention has been
focused on the most relevant tests.

Unfortunately, finding the most compact decision tree is an intractable problem
(as shown in [2]), so one has to resort to heuristics that help in finding a “reasonably
small” one. The basic idea is to measure the importance of a test by estimating
how much influence it has on the classification of the examples. In this way, correct
classification is obtained using a small number of tests, meaning that all paths in
the tree will be short and the tree as a whole will be small.

Note that, at any stage, the absolutely best test would be a test that partitions
the passed training sample S into subsets S, S,, ..., S, such that each subset S;
contains examples that are all of the same class (such subsets are called “pure”).
Choosing such a test would immediately lead us to stop further recursive parti-
tioning. The goodness of a test can thus be estimated on the basis of how close it
is to this “perfect” behavior. In other words, the higher the purity of the subsets
S.,S,, ..., S, resulting from a test ¢, the better that test is.

A popular practice in applying this idea is to measure the expected amount
of information provided by the test based on information theory. Given a sample
S, the average amount of information needed to find the class of a case in S is
estimated by the function

N S|

info(S) = —) — xlog, — bits,
i B

where S’ C S is the set of examples S of class i and k is the number of classes. For
example, when k =2 and when S has equal numbers of examples of each class,
the above quantity evaluates to 1, indicating that knowing the class of a case in § is
“worth” one bit. On the other hand, if all the examples is S are of the same class,
then the quantity evaluates to 0, because knowing the class of a case in S provides
no information. In general, the above non-negative quantity (known as the entropy

DEVELOPMENT AND APPLICATIONS OF DECISION TREES 59

of the set §) is maximized when all the classes are of the same frequency and is
equal to 0 when S is pure, that is, when all the examples is S are of the same class.

Suppoe that ¢ is a test that partitions S into S, S,, ..., S,; then the weighted
average entropy over these subsets is computed by

re

r S.
> ||S_l|| x info(S,).

i=1

Evaluation of the test ¢ can then be based on the quantity
o s
gain(7) = info(S)—)_ Gl x info(S;)
i=1

which measures the reduction in entropy obtained if test ¢ is applied. This quantity,
called the information gain of t, is widely used as the basis for test selection during
the construction of a decision tree.

For illustration, let us compute the gain of the test on the nominal attribute
Status in the set of training examples of Fig. 2. In this set of examples, there are
5 and 10 examples of the classes “invite” and “don’t”, respectively. Therefore, the
entropy of the set is computed as

5 5 10 10 .

T log, 515 log, 5= 0.918 bits.
The test on Status partitions the set into three subsets, S, = {1,4,6,7,9, 10, 11},
S, =1{5,8,12,13}, and S; = {2, 3, 14, 15}. In S, there are 3 and 4 examples of the
classes “invite” and “don’t”, respectively. Therefore, the entropy of S, is computed
as
3 3 4 4 .

—5 log, 777 log, 7= 0.985 bits.
All the examples of S, are of one class “don’t”, and thus the entropy of this set
is 0. Finally in S;, there are 2 examples of each of the classes “invite” and “don’t”.
Therefore, the entropy of S; is

2 2

2 2 .
—é—Llog2 i é—llog2 i 1 bit.

Thus, the weighted average entropy after applying the test “status” becomes

! 0985+4 0+4 1 =0.726 bit
15><. 15><]5>< =0. its,

and the gain of this test is
0.918 — 0.726 = 0.192 bits.

To select the most informative test, the above computation is repeated for all the
available tests and the test with the maximum information gain is then selected.
Although the information gain test selection criterion has been experimentally
shown to lead to good decision trees in many cases, it was found to be biased in
favor of tests that induce finer partitions [3]. As an extreme example, consider the
(meaningless) tests defined on attributes Name and Social Security Number in our

60

ALMUALLIM ET AL

w
=
1~
=
=}
17}

w
a
e
%
B
7 |

E’”plo},ee

>
ag
«
\%
]
=)
(it

B, Income >= 29,000
S S i & e
don’t
domt GPA>=2.9 don’t invite
don’t invite

FIGURE 4 Decision tree learned from the credit card training examples using information gain as
the test selection criterion.

credit card application. These tests would partition the training sample into a large
number of subsets, each containing just one example. Because these subsets do not
have a mixture of examples, their entropy is just 0, and so the information gain of
using these trivial tests is maximal.

This bias in the gain criterion can be rectified by dividing the information gain
of a test by the entropy of the test outcomes themselves, which measures the extent
of splitting done by the test [3]

: SIS 1S
split(t) = — > ——log —,
; S| IS]
giving the gain-ratio measure
gain(r)

gain-ratio(t) = Split(r)’
Note that split(¢) is higher for tests that partition the examples into a large number
of small subsets. Therefore, although the tests on the Name and Social Security
Number attributes have high gain, dividing by split(¢) in the above manner inflicts
a high “penalty” on their scores, not allowing them to be selected.

Applying the basic tree-construction procedure to the set of examples of Fig. 2,
using the gain-ratio as the criterion for test selection, leads to the decision tree
given in Fig. 4.2

11l. EVALUATION OF A LEARNED DECISION TREE

In evaluating a decision tree, it is necessary to distinguish between the training
error of a decision tree, which is the percentage of training examples that are
misclassified by the tree, and the generalization error, which is the probability
that a randomly selected new case is misclassified by that tree. This latter quantity
measures the tree’s prediction power, and thus, it is a reasonable measure of how
well the learning process was able to capture the underlying regularities of the
application domain.

2 Although the gain-ratio test selection criterion is the most widely used in decision tree learning,
many other criteria are found in the literature. For experimental comparisons of various criteria see
[4-6].

DEVELOPMENT AND APPLICATIONS OF DECISION TREES 61

The generalization error is usually estimated by cross-validation where the
available set of preclassified examples is randomly divided into training and fest
sets. Only the training set is used during tree construction. For each example in
the test set, the class predicted by the learned tree is compared to the actual class
as given in the test set. The percentage of misclassified examples is then used as
an approximation of the generalization error.

Note that in the above procedure, different partitions of the examples into
training and test sets may lead to different error estimates. A common practice to
avoid this sensitivity to partitioning is to perform m-fold cross-validation. Here, the
data are partitioned into m disjoint subsets of sizes that are as equal as possible.
Then, one of these subsets is kept aside as a test set, and the remaining examples are
used as a training set. This is repeated m times, each time using a different subset
as a test set, so that each of the m subsets is used exactly once as a test set. The
resulting errors are then averaged over the m runs to get the final approximation
of the generalization error.

Usually, m is chosen to be about 10. A special case of m-fold cross-validation
is when m is equal to the number of examples, in which case, the test set each time
will have exactly one example. This is usually called the leave-one-out method.

IV. OVERFITTING AVOIDANCE

A major concern in decision tree construction is the risk of “overfitting” the train-
ing data. In most practical applications, the training cases are usually expected to
have some level of noise, that is, some incorrect attribute measurements and/or
class labels. In such situations, taking the training examples “too seriously” by
attempting to completely eliminate the training error eventually leads to a deci-
sion tree that deviates from the actual underlying regularities of the application
domain by the modeling the noise present in the training examples. Consequently,
this overfitting of the training examples would hurt the generalization performance
as well as the intelligibility of the learned tree.

By assuming no conflicts in the training examples (no two identical training
cases are labeled with different classes), Step 1 of the tree construction procedure
ensures that the tree classifies all the training cases correctly; that is, zero training
error is guaranteed. However, splitting of the training examples eventually makes
the number of examples available at lower nodes too small to evaluate the available
test reasonably. If we insist on growing the tree all the way until pure leaves are
reached, this will result in an overly complex decision tree that (although it fits the
training examples well) is expected to have a high generalization error.

Experience in decision tree learning has shown that it is often the case that
smaller trees that are less consistent with the training examples can outperform (in
terms of generalization error) more complex trees that fit the training examples per-
fectly. Simplifying decision trees to avoid overfitting of the data is usually achieved
by the process of pruning, which is the removal of those lower parts of the tree
where tests are chosen based on an inadequately small number of examples. Prun-
ing can take place during the construction of the tree or by modifying an already
constructed complex tree. These approaches are sometimes called prepruning and
postpruning, respectively.

62

ALMUALLIM ET AL

In the prepruning approach, splitting of the sample is stopped as soon as we
reach a conclusion that further growing of the tree is not useful. This is done by
changing Step 1 of the tree-construction procedure to be as follows:

Step 1: If one stopping conditions is satisfied, return a leaf labeled with the
most frequent class in S.

For example, early stopping of the recursive splitting process may be forced in the
following situations:

e When the information gain score for all the available tests falls below a
certain threshold, and so, further error reduction is not expected using these
tests.

e When all the available tests are statistically found to be irrelevant. Based
on the y? test, the procedure neglects any test whose irrelevance cannot be
rejected with high confidence.

In practice, however, it is usually hard to design good stopping rules with
perfect thresholds so that splitting is terminated at just the right time. This fact
makes the other approach, postpruning, more popular. In this approach, the tree-
construction procedure is allowed initially to keep growing the tree, leading even-
tually to an overly complex decision tree. This tree is then simplified by explicitly
substituting some of its subtrees by leaves.

When plenty of training examples are available, one can divide these into two
sets: one used as a training sample for the actual construction of the tree and the
other used as a test sample for assessing the performance of the tree, that is, its
generalization error on unseen cases. Replacement of subtrees by leaves can then
be carried out such that this estimated generalization error is minimized. This can
be done using the OPT-2 algorithm introduced in [7], which for any given error
level finds the smallest tree whose error is within that level.

Constructing the decision tree based only on a subset of the available training
examples, however, is not an attractive approach when the number of available
examples is not large (which is usually the case in practice). There are two well-
known approaches to get around this problem.

e Cost-complexity pruning with cross-validation [8]: Under this approach,
a score for a given decision tree is computed as a weighted sum of its
complexity (number of leaves) and its training error. Note that for any fixed
weighting, lower complexity means higher training error and vice versa.
The goal of this approach is to strike a good balance between the tree
size and its training error, that is, to minimize the weighted sum of these
quantities for some appropriate weighting. Such weighting is determined
through cross-validation over the set of the training examples: the training
examples are randomly divided into, say, m equally sized subsets (usually
m = 10). The examples of m — 1 subsets of these are used to construct a
decision tree, and the mth subset is used to estimate the generalization
error of various pruned trees generated from the learned decision tree.
This is repeated m times, using each of the m subsets exactly once for the
evaluation of the pruned trees. The appropriate weighting is then taken
as the weighting that minimizes the average error over the m runs. Then,

DEVELOPMENT AND APPLICATIONS OF DECISION TREES 63

once this appropriate weighting is determined, a decision tree is learned
from the entire training sample (all the m subsets), and by using that
appropriate weighting, the pruned tree that minimizes the weighted sum of
the complexity and training error is returned.

e Reduced-error pruning [3]: Quinlan introduced the idea of computing at
each leaf an amount U such that the probability that the generalization
error rate at the leaf exceeds U is very small (with respect to some preset
confidence factor). The amount U is then used as an estimate of the
generalization error at that leaf, and pruning is based on this estimate. That
is, a subtree is replaced by a leaf if the estimated error is reduced by such
an action.

V. EXTENSIONS TO THE BASIC PROCEDURE

A. Handling Various Attribute Types

In Section II.LB we explained how scores are computed for the available tests in
Step 2 of the tree-construction procedure to choose the most significant test for the
current node in the decision tree. The actual computation of a test score depends
on the type of the attribute used in that test. The computation is straightforward for
a test defined on a nominal attribute having a reasonably small number of values.
All that is needed is to partition the training sample according to this attribute, to
compute the class frequency in each of the resulting subsets, and then to apply the
gain-ratio formula directly, Score computation for other attribute types, however,
may be more involved as discussed below.

I. Continuous Attributes

At a first glance, it may seem that continuous attributes are difficult to handle
because arbitrary thresholds lead to an infinite number of tests to be considered.
This is not true, however. For a given attribute x, suppose that we sort the train-
ing examples according to the values of x in each example. For two consecutive
examples e, and e,, using any threshold 6 that lies between the values of x in e,
and e, would obviously lead to the same partitioning of the training examples. All
these thresholds are, thus, equivalent as far as the training examples are concerned
because they lead to exactly the same tree. Therefore, one has to consider only
one “representative” threshold from each interval (usually, the midpoint) between
each two consecutive examples, and so the number of thresholds to be considered
is not more than the number of training examples themselves.

In fact, the process can be made even more efficient based on results of Fayyad
and Trani [9], in which they show that the threshold that gives the best gain-ratio
score must be in some interval lying between two consecutive training examples
labeled with different classes. This means that one can safely ignore any interval
between two examples of the same class.

Another approach for handling continuous attributes is to discretize them.
Based on the training examples, a sequence of “break points” is determined, and
the continuous attribute is treated as a nominal one with each interval between the
break points considered as one value for this attribute. Techniques for discretiza-
tion of continuous attributes can be found in [9, 10].

64

ALMUALLIM ET AL

2. Set-Valued Attributes

Unlike a nominal attribute, a set-valued attribute is one whose value is a set
of strings (rather than a single string). For example:

The Hobby attribute for a person who likes soccer, volleyball, and skiing
would have the value {Soccer, Volleyball, Skiing}.
The value of the Color attribute for a “white and black” dog is {White, Black}.

The sets of elements (hobbies and colors in the above examples) are not assumed to
be taken from some small, predetermined set, because otherwise one could simply
use a boolean attribute for each possible element (for example, an attribute Soccer,
which indicates whether or not a person likes soccer) to replace the original set-
valued attribute.

Tests for this kind of attribute take the form s € x? where x is a set-valued
attribute and s is a string. The outcome of this test is true for objects in which
the string s appears in their set-value of x and false otherwise. For instance, in
the above hobby example, a possible test is Soccer € Hobby?, which is true if and
only if Soccer is included in the set of hobbies of a person.

A procedure for finding the best test defined on a set-valued attribute x is given
in [11]. The procedure computes the class frequency in the subsets that results
from partitioning the training sample using a test of the form s € x for every string
s that appears in the training examples within the set-values for the attribute x.
These class frequencies are then used to evaluate the possible tests and return the
best one.

3. Tree-Structured Attributes

In some domains, discrete attributes may be associated with hierarchical struc-
tures such as the Shape and Color hierarchies shown in Fig. 5. Such attributes are
called tree-structured attributes. Only the values at the leaves of the hierarchy are
observed in the training examples. That is, only values such as Triangle, Square,
and Star, would appear in the training examples as values for Shape. These low-
level values, however, may be too specific to concisely describe the underlying
regularities in the domain. Consider, for example, a situation in which “colored
polygons” constitute one class, and all other objects constitute another class. Sup-
pose our goal is to construct from a given training sample a decision tree that
discriminates between these two classes. If we are to use only those low-level val-
ues of the hierarchies shown in Fig. 5, that is, the values observable in the training
examples, then the resulting tree would be overly complex and not at all compre-
hensible. Allowing tests in the tree that are defined using higher level categories
from the given hierarchies (such as Chromatic and Polygon in this case) would
greatly simplify the tree.

In general, tests defined using categories from hierarchies could by binary tests
or have multiple outcomes. A binary test checks whether an object is an instance
of a specific category. For example, the test Shape = Polygon? is a binary test that
gives true for objects of shape Triangle, Hexagon, or Square and false otherwise.
An algorithm for finding the best binary test for a given tree-structured attribute
can be found in [12].

A multiple-split test corresponds to a cut or a partition in the hierarchy. For
example, for the attribute Shape we may have a test with three outcomes {Polygon,

DEVELOPMENT AND APPLICATIONS OF DECISION TREES 65

Any Shape
Convex Non—convex
/ \ . Straight-lines Curvy
Polygon Ellipse non—convex non—convex
Triangle Hexagon Square Proper Circle Cross Star Kidney Crescent
ellipse shape
Any Color
Chromatic \
/ \ Achromatic

Primary Non—primary / \
Red Gri.en Blue Yellow Violet Orange Pink Black White Gray
- FIGURE 5 Hierarchies for Shape and Color.

Ellipse, Nonconvex}. In this case, objects that are Triangle, Hexagon, or Square
give the first outcome, those that are Proper Ellipse or Circle give the second
outcome, and all other objects give the third one. Note that the set of categories
constituting a cut should be chosen such that any object would give exactly one
outcome for the resulting test.

Finding the cut that gives the test with the best gain-ratio score for a given tree-
structured attribute is a rather complicated task because the number of all possible
cuts grows exponentially in the number of leaves of the associated hierarchy. An
algorithm that solves this optimization problem is given in [13].

B. Incorporating More Complex Tests

In our discussion so far, we have mentioned only simple tests that are defined on
a single attribute. Although the restriction to such simple tests may be justified
for computational efficiency reasons, more complex tests are sometimes needed
to construct decision trees with improved performance. Examples of such more
complex tests are discussed here.

lI. Linear Combination Tests

In some domains, the underlying regularities of the domain are best described
using some linear combination of numerical attributes. A linear combination test
is a test of the form

wi X, Fwyx, + - w,x, > 07,

where x, through x, are numerical attributes and w;, w,, ..., w,0 are real-valued
constants. This is a binary test which may be viewed as a hyperplane that partitions
the space of objects into two halves. Under this view, a test on a single numerical

66

ALMUALLIM ET AL

attribute is an “axis-parallel” hyperplane. In domains that involve oblique (non-
axis-parallel) hyperplanes, the standard tree-construction procedure would generate
large trees that perform poorly, because the procedure attempts to approximate the
needed oblique hyperplanes using axis-parallel ones.

Abandoning the restriction to axis-parallel hyperplanes makes the task of find-
ing the best test considerably harder. In [14], it is shown that this task is nonde-
terministic polynomial-hard; that is, it probably has no polynomial time algorithm.
A heuristic is introduced in [8] in which attributes are considered one at a time.
For each attribute x;, the current hyperplane is perturbed to find w; and 6 (with
all other coefficients fixed) that give the best result. This is a hill-climbing heuris-
tic, and as such, it may get trapped at local maxima. Randomized approaches are
proposed in [14] and [15] to avoid this problem.

2. Boolean Combination Tests

Boolean combination tests are binary tests defined by applying logic operators,
such as and, or, and not, on simpler binary tests. Boolean combination tests are
important in domains in which one has to check several attributes simultaneously to
proceed to the final decision. For example, in medical diagnosis, a useful test may
look like “Is either symptom A or B present and is the result of test C negative?”

In such domains, the basic tree-construction procedure can still generate a tree
using only single-attribute tests that simulate tests of the above form. However, the
cost will be too many splits that eventually lead to an overly complex tree in which
the lower level subtrees may be based on inadequately small numbers of examples.

Given the fact that the number of all Boolean combinations is extremely large,
Breiman et al. [8] restrict their attention to only those “conjunctive” combinations;
that is, tests that look like

test, and test, and - - - test,

where each test; is a binary test on a single attribute (for example, Status = Student?
or Age > 237). Note that and is the only operator used.

Even with such a restriction to conjunctive combinations, finding the best pos-
sible test remains computationally hard. An iterative heuristic is given by Breiman
et al. [8], in which the combined test is constructed by adding one single-attribute
test to the current conjunct each time. Starting with the single-attribute test that
gives the best possible score, they add each time the single-attribute test that leads
to the best improvement in the score, and so on, stopping when the improvement
in the score, and so on, stopping when the improvement in the score falls below a
certain threshold.

A different approach is followed in the FRINGE family of algorithms [16, 17].
In this approach, a decision tree is initially constructed as usual using only single-
attribute tests. Then, by examining this tree, new attributes are defined by combin-
ing tests that appear at the fringe of the tree. These combined attributes are then
added to the description of the training examples.

For example, let us consider again the decision tree of Fig. 4 which was
constructed from the examples of Fig. 2. Among the new combined attributes
that would be defined from this tree by the FRINGE family of algorithms is the
attribute “Age > 20 and GPA > 2.9”. The set of training examples of Fig. 2 is then

DEVELOPMENT AND APPLICATIONS OF DECISION TREES 67

modified by adding a new column for each newly defined attribute. The column of
the attribute “Age > 20 and GPA > 2.9” would have the value true for the examples
{1,4,5,6,10, 11, 12, 13} and false for the rest of the examples.

A new decision tree is then constructed from the training examples with the
new combined attributes included. This new tree may include tests defined on
these combined attributes if such attributes score well during the tree-construction
process. A new set of attributes is then defined again from this new tree, and a
new tree is constructed after adding these attributes to the training examples. This
process is iterated several times until the tree becomes stable or until a maximum
number of iterations is reached.

Note that because new attributes may be defined in terms of previously intro-
duced combined attributes and so on, arbitrary Boolean combinations of attributes
can be generated in this approach. Unlike the work of Breiman et al. [8] which
restricts attention to pure conjuctive tests, the FRINGE approach allows the intro-
duction of candidate arbitrarily combined attributes, which are then filtered by the
test selection criterion based on the training examples.

3. Grouping Attribute Values

In this discussion so far, we have assumed that a test defined on a nominal
attribute has one branch for each value of that attribute. In some applications, how-
ever, it may be advantageous to group some of the values together in one branch.
For example, consider an attribute Day with the 7 days of the week as its values.
Imagine that, for the task at hand, the only concern is whether the day is a weekend
day or not. Thus, the same conclusion is reached whether Day = Saturday or Day =
Sunday, and similarly, the conclusion for all working days is the same. In this
case, having seven branches for the test on the attribute Day is not desirable since
it imposes unnecessary fragmentation of the training examples over these many
branches. The generalization performance and the intelligibility of the decision tree
would improve if the tree construction procedure introduces only two branches for
the attribute Day, one for Saturday and Sunday, and the other for the rest of the days.

Of course, if we know in advance that such grouping of the values is more
suitable for the application at hand, preprocessing can be done so that the attribute
Day is turned into a binary attribute. The discussion here, however, is meant for sit-
uations in which “background knowledge” about which values should be grouped
together is not available, and the goal is to let the tree-construction procedure “dis-
cover” the most appropriate grouping that improves the final tree.

Considering all possible groupings of values is computationally infeasible. In
[3], a hill-climbing heuristic is introduced that iteratively mergers values together
in the best way that improves the gain-ratio measure. The initial value groups are
just the individual values of the attribute under consideration and, at each cycle,
the procedure evaluates the consequences of merging every pair of groups. This is
repeated in a hill-climbing manner until no improvement in the gain-ratio score is
observed. Alternatively, if so desired, this may be forced to continue until only two
groups remain, leading eventually to a binary test (just like the Day example above).

In the GID3x* algorithm [18], an alternative approach is introduced which
allows one branch per value for certain values, while grouping the rest of the values
in one ‘“default” branch. For example, for our Day attribute, it may be that Monday
and Friday are of special interest (say, being the first and last working days of the

68

ALMUALLIM ET AL

week), whereas the rest of the days are all indistinguishable for the application
at hand. In this case, the test on Day is to have three branches, one for Monday,
another for Friday, and more for the remaining 5 days. For an attribute A with
values {a,, a,, ...,a,}, a decision has to be made for each value a; whether to
have a separate branch or to let the value be part of the default branch. To handle
this task, Fayyad [18] introduced a measure called Tear(a;). This quantity measures
the degree to which the partition induced by the test A = a;? avoids separating
training examples of the same class (see [18] for details). Because it is preferred
to have examples of the same class go to the same branch as much as possible,
large values for Tear(a;) make the attribute value a; more “qualified” to have its
own branch.

In GID3x, the gain-ratio score is first computed for each binary test of the
form A =gq,?, for 1 <i <r, and the value, say a s that scores best will have its own
branch. Then, Tear(a;) for each value a; other than a; is compared to Tear(a,),
and any value a; with Tear(a;) > Tear(a;) will also have its own branch. The rest
of the values constitute the default branch.

C. Attributes with Missing Values

In real-world applications, it is usually unrealistic to expect that all the attribute
values are specified for each case seen. Quite often cases with incomplete descrip-
tions are encountered in which one or more of the values are missing. This may
occur, for example, because these values could not be measured or because they
were believed to be irrelevant during the data collection stage. For example, in
our previous credit card application example, the GPA attribute may be missing in
some of the cases either because such information is not available or because GPA
becomes not relevant once we know that the person is employed.

The problem of missing values has to be dealt with both when processing
the training examples during the decision tree construction and when we wish to
classify a new case using a learned tree. We describe here one solution to this
problem that was introduced in [3].

I. Handling Missing Values During Tree Construction

To handle missing values in the training examples, the basic tree-construction
procedure is modified as follows:

e A real-valued weight is assigned to each training example. This weight is
initially set to 1.0 for every example and may decrease later during the
construction of the tree. Counting the number of examples in a given set S
(i.e., quantities of the form |S| that appear in the gain-ratio computation) is
then replaced by summing the weight of all the examples in S, that is, by
3,5 Weight(e).

e To evaluate the gain-ratio for a given test ¢, we first exclude those training
examples for which the outcome of ¢ cannot be computed due to missing
attribute values. We next initially compute the gain of ¢ using the rest of
the training examples and call this the initial-gain. The actual gain is then
computed as

gain(t) = F x initial — gain(¢),

DEVELOPMENT AND APPLICATIONS OF DECISION TREES 69

where F is the fraction of the excluded examples (those with missing
values). For computing the split of t, we consider ¢ as having one more
outcome that covers those examples with missing values. So, if ¢ has n
outcomes, its split information will be computed as if it divides the cases
into n+ 1 subsets.

e The remaining issue now is how to partition the training sample into
subsets in Step 3 of the tree-construction procedure, after the best test
t has been chosen. That is, suppose ¢ has the outcomes {0, 0,, ..., 0,}
that will partition the training examples S into the corresponding subsets
S, S5, ..., S,. The question is to which subset should we send a training
example for which the outcome of ¢ cannot by specified due to missing
features?

Let S’ be the subset of S with known outcomes on the test 7. We partition
S’ into the disjoint subsets S;, S,, ..., S,, where, as usual, each S; contains
the examples in S" with outcome o,. For each outcome o;, we then estimate
the probability of that outcome as

_ The sum of the weights of the examples in S,

P= The sum of the weights of the examples in S’

Then, for each training example e € § — §’, we create r copies e, €;,...,¢€
and set the weight for each copy to be

r

weight(e;) = weight(e) X p;.

Each copy e, is the included in the subset S; with the above weight.

Note that under this approach, the sets S,,S,, ..., S, are no longer
disjoint. However, for any example with weight w in S, if we sum up the
weights of all the copies of that example in all these subsets, the result
would obviously be w.

e Step 1 of the tree-construction procedure is modified so that each leaf
stores the “class probability” information, which is estimated by counting
the number of training examples of each class that reach that leaf. This
information is stored for later use when a case with missing attribute
value(s) is classified as explained below.

2. Classifying a New Case with Missing Values

As usual, a new case is classified by starting at the root of the decision tree and
following the branches as determined by the attribute values for the case. However,
when a test ¢ is encountered for which the outcome cannot be determined because
of missing values, all the outcomes of ¢ are considered. The classification results
for all these outcomes are then combined by considering the probability of each
outcome. More precisely, to classify a case e using a decision tree T, we run the
following recursive procedure ClassProb(e, T') which eventually returns a vector of
class probabilities:

e If T is a leaf return the class probability vector associated with the leaf.
e Let 7 be the test at the root, where ¢ has the outcomes o, 0,, ...,0,,
leading to subtrees T, 75, ..., T,. If the outcome of ¢ for e is o;, then

70 ALMUALLIM ET AL

return ClassProt(e, T;). Otherwise, if the outcome of # cannot be determined
due to missing value(s), then return

> x ClassProb(e, T}),

i=1
where p; is the estimated probability of outcome o, as explained above.

Finally, the class probability vector returned by ClassProb(e, T') is scanned and the
class with the highest probability is returned as the classification result for e.

VI. VOTING OVER MULTIPLE DECISION TREES

Significant reduction in the generalization error can be obtained by learning mul-
tiple trees from the training examples and then letting these trees vote when clas-
sifying a new case. Bagging (short for bootstrap aggregating) [19] and boosting
[20, 21] are two techniques that follow this approach, which has recently been
shown to provide excellent improvement [22] in the final generalization perfor-
mance. Note that this improvement is, however, bought by a significant increase
in computation as well as by degradation of the intelligibility of the final classifier
for human experts.

In the following, we will denote by T* the decision tree generated in the kth
iteration and by 7 the final composite classifier obtained by voting. For a case
e, T*(e) and T (e) are the classes returned by T* and T, respectively.

A. Bagging

In this approach, in each iteration k = 1,2,...,K (where K is a prespecified
constant), a training set S is sampled (with replacement) from the original training
examples S, such that |S*| = |S|. From each S*, a decision tree T* is learned, and
a final classifier T is formed by aggregating the trees T', T2, ..., TX. To classify
a case e, a vote is given for the class T*(e), for k=1,2, ..., K, and T(e) is then
the class with the maximum number of votes.

B. Boosting

Boosting was experimentally found to be superior to bagging in terms of the gen-
eralization performance [22]. In boosting, each training example is assigned a real-
valued weight, quantifying its influence during tree construction. A decision tree is
learned from these weighted examples, and at each iteration, the weight of those
examples that are misclassified in the previous iteration is increased. This means
that such examples will have more influence when the next tree is constructed.
Finally, after generation of several decision trees, weighted voting is conducted,
for which the weight of each tree in the voting process is a function of its training
eITOr.

More precisely, let w* denote the weight of case e at iteration k, where for
every e, w! = 1/|S|. The following is repeated for k =1,2,3, ...:

1. A tree T* is constructed, taking into account the weights of the training
example. That is, during the computation of gain-ratio, the size |S| of a set
S is replaced by the total weight of the examples in S; that is, Y ,.q wk.

DEVELOPMENT AND APPLICATIONS OF DECISION TREES 71

2. The training error € of T* is then measured as the sum of the weights of

the training example that are misclassified by T*.

Let 8% = € /(1 — €X). Note that 8% < 1 because € < 0.5.

4. For each example e that is correctly classified by TX, the weight of e is
decreased to become w't! = wt! x Bk,

5. Renormalize the weights of all the examples so that }_, ¢ w**' = 1.

b

The preceding loop is terminated whenever one of the following cases holds:

e k=K.

e € =0 (that is, T* commits no errors on S). In this case K becomes the
current value of k.

e €£>0.5 (that is, T* is of a very bad quality). In this case T* is discarded
and K becomes k — 1.

When classifying a new case e, we first find T*(e) for all the generated trees
T*. Voting is then conducted such that the vote of T* is worth log (1/8) units,
where B* is as defined previously. Thus, unlike the bagging approach, the contri-
bution of each tree in the voting processing is dependent on its training error.

Note that the above vote weight of log(1/8¥) is fixed for each tree regardless
of the case being classified. An alternative is proposed by Quinlan [22] in which
the vote weight depends on the leaf of the tree that is used to classify the new
case: Let £, be the leaf used by T* to classify a new case e as belonging to class
j=T(e), and let S(¢,) denote the set of training examples at that leaf. The subset
of these examples that belongs to class j = T*(e) is denoted S(¢,)’. In the work
of Quinlan [22], the vote weight of tree T* is then set to be

S| X 2 eese,ywe +1
S| X e, wk+27

where S is the entire set of training examples. Using this quantity was experimen-
tally reported to yield better generalization performance compared to the fixed vote
weight of log(1/8%) [22].

VII. INCREMENTAL TREE CONSTRUCTION

In our discussion so far, we have assumed that all the training examples are avail-
able prior to tree construction. This kind of “batch” learning, however, is not suit-
able in real-time applications in which new training examples keep arriving over
time. Upon the availability of new data, one may consider discarding the current
tree and learning a completely new decision tree by including the newly avail-
able data in the training sample. To reduce the computational costs, however, it is
more attractive to attempt to modify the current decision tree in the light of the
new examples, rather than to start from scratch each time an example arrives. The
objective here is to produce a tree by incorporating the new data that is the same
as the tree that would have been generated by batch learning using all the available
examples. This “incremental” approach has been studied by Utgoff in his IDSR
algorithm [23] and then more recently in his ITI algorithm [24].

72 ALMUALLIM ET AL

In the ITI algorithm, to permit later modification, counts used for test evalua-
tion are stored at the nodes of the tree, and the training examples are stored at the
leaves. When a new example arrives, the branches of the tree are followed accord-
ing to the values in the example until a leaf is reached. If the example has the same
class as the leaf, the example is simply added to the set of examples saved at that
leaf. Otherwise, if the example has a different class from the leaf, the algorithm
attempts to replace the leaf by a subtree generated by running the tree-construction
procedure on the examples of the leaf.

After the example has been incorporated into the tree, the tree is traversed from
the root recursively, ensuring that the best test possible each node (according to
the test evaluation criterion) is the test actually conducted at that node. Otherwise,
when a different test should replace the current one, tree revision operators (see
[24] for details) are used to restructure the tree as necessary.

VIII. EXISTING IMPLEMENTATIONS

A number of packages are now available that can be used for decision tree gen-
eration. The most well-known and widely used package is Quinlan’s C4.5 [3].
This package is capable of handling nominal as well as numerical attributes and
is equipped with several features such as pruning, handling missing values, and
grouping attribute values. It also includes routines for running cross-validation
experiments and for converting learned decision trees to production rules that are
more suitable for expert system development. The source code of the package
(in C) is distributed with Quinlan’s book, which makes it possible to experiment
with variants of the original tree-construction procedures.

An alternative package is MLC++ reported in [25]. This package implements
in C++ a variety of learning algorithms including decision tree learning algorithms.
It is meant to aid in the development and comparison of learning algorithms, but
can also be utilized by end users. This package can be retrieved using the URL
http://robotics.stanford.edu://users/ronnyk/mlc.html.

IX. PRACTICAL APPLICATIONS

In this section, we present some recent successes in applying decision tree learning
to solve real-world problems. This sample is not comprehensive by any means but
is only meant to demonstrate the usefulness of the decision tree learning approach
in practical applications.

A. Predicting Library Book Use

In [26], decision trees are developed that predict the future use of books in a library.
Forecasting book usage helps librarians to select low-usage titles and move them
to relatively distant and less expensive off-site locations that use efficient compact
storage techniques. For this task, it is important to adopt a book choice strategy
that minimizes the expected frequency of requesting removed titles. For any choice
policy, this frequency depends, of course, on the percentage of titles that have to

DEVELOPMENT AND APPLICATIONS OF DECISION TREES 73

be removed for off-site storage (as dictated by the capacity of the main library);
the higher this percentage is, the higher this frequency is expected to be. Taking
the random choice policy as the benchmark, the quality of a given choice policy
is evaluated using a measure called the “expected advantage over random” (EAR).
This evaluation measure for choice policy is calculated given no assumptions about
how many titles to store off-site.

For the Harvard College Library, where the work of Silverstein and Shieber
[26] was conducted, an ideal clairvoyant policy can achieve an EAR of 90.51%
at best, whereas a choice policy that is based on books’ checkout history alone
achieves an EAR of 58.86%.

In simulation experiments, book usage records for 80,000 titles during the
period July 1975 to June 1984 were used to prepare examples, where each exam-
ple is described using six attributes (checkout history, last use, publication date,
language, country, and alphabetic prefix of the Library of Congress classification).
These examples are then labeled by classes, indicating how often they are checked
out in the “future,” where the future information is simulated using records of the
period July 1984 to June 1993. It is shown that a choice policy based on a deci-
sion tree learned from these examples gives an EAR as high as 73.12%. This is a
considerable achievement given that, in the same setting, a choice that is based on
books’ checkout history alone gives an EAR of 58.86% and a choice policy that
is based on last use alone (which is what is recommended to be best by experts)
gives an EAR of 60.02%.

Furthermore, Silverstein and Shieber [26] show that the improvement is par-
ticularly striking if the percentage of titles to be moved off-site is between 20 and
40%. For example, if the Harvard College Library had implemented the last-use
choice policy to choose which 20% of its collection to move to the depository in
1985, they would have had to retrieve volumes from the depository about 34,000
times per year. If they had, instead, used the decision tree constructed from exam-
ples, there would have been less than one-fifth as many retrievals—only 6,200.

B. Exploring the Relationship Between the Research Octane Number and
Molecular Substructures

Figuring out what molecule information one needs to predict the research octane
number (RON) is a nontrivial problem of particular interest to chemists. In the
work of Blurock [27], substructure presence—absence information is used for RON
prediction, not only because this is believed to give good prediction results, but also
because asking directly about the presence or absence of substructures in molecules
is easily interpretable by chemists, and hence, valuable intuitive information can
be gained by studying the substructure—RON relationship.

The 230 hydrocarbons for which RON is known in the literature were used
in the study of Blurock [27]. The attributes used are predicates about whether a
particular substructure (e.g., hexane) is a member of the molecule being analyzed.
Given these attributes, the goal is to predict whether RON is less than a given
threshold «. Thus, there are two classes in this task: RON < « and RON > a.
Different decision trees are learned for different values of «, and these are then
used to predict a range in which RON falls, that is, @, and «, such that o) <
RON < a,, in which case, the predicted RON is taken as («;, + a,)/2.

74

ALMUALLIM ET AL

Of the 230 hydrocarbons, 48 were used as a test set and the rest were used for
generating decision trees. The overall RON range was between 40 and 105. For this
wide range, the predicted RON was within 10, 5, and 3 RON units for 65, 58, and
44% of the test cases, respectively. The greatest accuracy was achieved for a RON
range of 90 to 105 units, which is also the range with the greatest concentration
of cases. For this range, the predicted RON was within 10, 5, and 3 RON units for
85, 93, and 98% of the test cases, respectively. These results show that decision
tree learning achieves reasonable results in this application domain given enough
data points of good quality.

In addition to demonstrating the predictive power of the learned decision trees,
analyzing these trees was useful in providing insight about the significance of
different substructures for RON prediction. It was reported that among a total of
230 substructures, only 31 were actually needed to make the prediction. Moreover,
within this subset, conclusions were drawn based on the decision trees on which
substructures are important to which RON range. These findings are viewed as
a contribution to better understanding of the underlying principles that determine
RON of molecules.

C. Characterization of Leiomyomatous Tumors

This application was reported in [28], in which the goal was to generate hypotheses
about tumor diagnosis/prognosis problems when confronted with a large number
of features. For a given tumor, it is desired to know to which group this tumor
belongs and why.

Traditionally, tumor characterization is made on the basis of features (such as
tumor differentiation, cellularity, mitotic count, age, location, and cell types) that
are difficult for a pathologist to evaluate. The task is, thus, carried out subjectively,
and the quality of the results is determined by the pathologist’s experience with the
group of tumors concerned. To achieve a higher level of objectivity, many more
quantitative measurements (related to DNA content, morphonuclear characteristics,
and immunohistochemical specificities) need to be considered. Furthermore, useful
information can result from interactions between several of these features that
cannot be detected using traditional univariate statistical analysis.

In the work of Decaestecker et al. [28], decision tree learning was applied to
the difficult problem of leiomyomatous (or soft muscle) tumor diagnosis. In this
application, there are 31 features and 2 classes (benign leiomyomas and malignant
leiomyosarcomas). The C4.5 package was run on a collection of 23 cases, each
of which was preclassified independently by three pathologists. Because of the
limited number of available cases, the leave-one-method was used to estimate the
generalization error.

In the reported experiments, the goal of the authors was first to determine
the subset of features that are most relevant to the task. Using the leave-one-
out method, inclusion and exclusion of features were conducted while the authors
watched the estimated generalization error, and the subset of features that gave
the best results was isolated. Only those features eventually selected were given to
C4.5 as the actual attributes. Decaestecker et al. [28] reported that the decision tree
learning approach was superior (in terms of the generalization accuracy) to other

DEVELOPMENT AND APPLICATIONS OF DECISION TREES 75

classifiers (logistic regression and neural networks) for the studied task. Further-
more, the authors note that the decision tree approach is more suitable for this task
because it led to explicit logical rules that can be interpreted by human experts,
which meet the exploratory nature of their job.

D. Star/Cosmic-Ray Classification in Hubble Space Telescope Images

Salzberg et al. [29] applied decision tree learning to the task of distinguishing
between stars and cosmic rays in images collected by the Hubble Space Telescope.
In addition to high accuracy, a classifier for this task must be fast due to the
large number of classifications and to the need for online classification. In their
experiments, a set of 2211 preclassified images was used as a training sample for
decision tree construction, and a separate set of 2282 preclassified images was used
to measure the generalization performance of the learned decision tree. Each of
these images was described using 20 numerical features and labeled as either a star
or a cosmic ray. The reported experiments show that quite compact decision trees
(no more than 9 nodes) achieve generalization accuracy of over 95%. Moreover,
the experiments suggest that this accuracy will get even higher when methods for
eliminating background noise are employed.

X. FURTHER READINGS

Although we have attempted to summarize in this chapter the most central issues
in learning decision trees from examples, many important details and extensions
have not been discussed. For the interested reader, we give in this last section
information on where some of the related literature can be found.

Extended explanations of the basic tree-construction procedure and many of
the extensions presented in this chapter can be found in books by Breiman et al.
[8] and Quinlan [3] devoted to decision tree learning.

Studies that compare the information gain and the gain-ratio criteria to other
test selection criteria can be found in Mingers [4], Buntine and Niblett [5], and
Liu and White [6]. An interesting experimental work on improving the gain-ratio
criterion is presented by Dietterich et al. [30], which is based on the theoretical
work of Kearns and Mansour [31].

Construction of fuzzy decision trees in domains with fuzzy attributes is studied
in Umano et al. [32], Yuan and Shaw [33], and Ichihashi et al. [34].

A larger variety of applications of decision tree learning in real-world applica-
tions can be found in the literature, for example, for electrical power systems [35],
air defense [36], and monitoring of manufacturing processes [37].

ACKNOWLEDGMENTS

The first author acknowledges partial support from NTT Communications Science Laboratory, Japan,
through a research grant. He also thanks King Fahd University of Petroleum & Minerals for their
support.

76

REFERENCES

1.

w

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.
24.

25.

26.

ALMUALLIM ET AL

Buchanan, B. G. and Wilkins, D. C. (Eds.). Readings in Knowledge Acquisition and Learning.
Morgan Kauffman, San Mateo, CA, 1993.

. Hyafil, L. and Rivest, R. L. Constructing optimal binary decision trees is NP-complete. Inform.

Process. Lett. 5(1):15-17, 1976.

. Quinlan, J. R. C4.5: Programs for Machine Learning. Morgan Kauffmann, San Mateo, CA, 1993.
. Mingers, J. An empirical comparison of selection measures for decision tree induction. Mach.

Learn. 3:319-342, 1989.

. Buntine, W. and Niblett, T. A further comparison of splitting rules for decision-tree induction.

Mach. Learn. 8:75-86, 1992.

. Liu, W. Z. and White, A. P. The importance of attribute selection measures in decision tree induc-

tion. Mach. Learn. 15:25-41, 1994.

. Almuallim, H. An efficient algorithm for optimal pruning of decision trees. Artif. Intell. 83:347—

362, 1996.

. Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. Classification and Regression Trees.

Wadsworth, Belmont, CA, 1984.

. Fayyad, U. M. and Irani, K. B. Multi-interval discretization of continuous valued attributes for

classification learning. In Proceedings of the 13th International Joint Conference on Artificial
Intelligence, 1993, pp. 1022-1027.

. Kohavi, R. and Sahami, M. Error-based and entropy-based discretization of continuous features.

In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining,
1996, pp. 114-119.

Cohen, W. Learning trees and rules with set-valued features. In Proceedings of the 13th National
Conference on Artificial Intelligence (AAAI96), 1996, pp. 709-716.

Almuallim, H., Akiba, Y., and Kaneda, S. On handling tree-structured attributes in decision tree learn-
ing. In Proceedings of the 12th International Conference on Machine Learning, 1995, pp. 12-20.
Almuallim, H., Akiba, Y., and Kaneda, S. An efficient algorithm for finding optimal gain-ratio
multiple-split tests on hierarchical attributes in decision tree learning. In Proceedings of the 13th
National Conference on Artificial Intelligence (AAA196), 1996, pp. 703-708.

Heath, D., Kasif, S., and Salzberg, S. Induction of oblique decision trees. In Proceedings of the
13th International Joint Conference on Artificial Intelligence, 1993, pp. 1002-1007.

Murthy, S., Kasif, S., Salzberg, S., and Beigel, R. OC1: Randomized induction of oblique decision
trees. In Proceedings of the 11th National Conference on Artificial Intelligence, 1993, pp. 322-327.
Pagallo, G. and Haussler, D. Boolean feature discovery in empirical learning. Mach. Learn. 5:71—
99, 1990.

Yang, D., Rendell, L., and Blix, G. A scheme for feature construction and a comparison of empirical
methods. In Proceedings of the 12th International Joint Conference on Artificial Intelligence, 1991,
pp. 699-704.

Fayyad, U. M. Branching on attribute values in decision tree generation. In Proceedings of the
12th National Conference on Artificial Intelligence (AAAI94), 1994, pp. 601-606.

Breiman, L. Bagging predictors. Mach. Learn. 24:123-140, 1996.

Fruend, Y. and Schapire, R. E. A decision theoretic generalization of online learning and an appli-
cation to boosting. Journal of Computers and System Sciences, 55(1):119-139, 1997.

Fruend, Y. and Schapire, R. E. Experiments with a new boosting algorithm. In Proceedings of the
13th International Conference on Machine Learning, 1996, pp. 148-156.

Quinlan, J. R. Bagging, boosting and C4.5. In Proceedings of the 13th National Conference on
Artificial Intelligence (AAAI96), 1996, pp. 725-730.

Utgoff, P. E. Incremental induction of decision trees. Mach. Learn. 4:161-186, 1989.

Utgoff, P. E. An improved algorithm for incremental induction of decision trees. In Proceedings
of the 11th International Conference on Machine Learning, 1994, pp. 318-325.

Kohavi, R., Sommerfield, D., and Dougherty J. MLC++: A machine learning library in C4++4.
In Proceedings of the Sth International Conference on Tools with Artificial Intelligence, 1996,
pp. 234-245.

Silverstein, C. and Shieber, S. M. Predicting individual book use for off-site storage using decision
trees. Lib. Q. 66(3):266-293, 1996.

DEVELOPMENT AND APPLICATIONS OF DECISION TREES 77

27.

28.

29.

30.

31.

32.

33.
34.

35.

36.

37.

Blurock, E. S. Automatic learning of chemical concepts: Research octane number and molecular
substructures. Comput. Chem. 19(2):91-99, 1995.

Decaestecker, C., Remmelink, M., Salmon, I., Camby, 1., Goldschmidt, D., Petein, M., Van Ham, P.,
and Pasteels, J. Methodological aspects of using decision trees to characterize leiomyomatous
tumors. Cytometry 24:83-92, 1995.

Salzberg, S., Chandar, R., Ford, H., Murthy, S. K., and White, R. Decision trees for automated
identification of cosmic-ray hits in Hubble Space Telescope images. Publ. Astron. Soc. Pacific
107:279-288, 1995.

Dietterich, T. G., Kearns, M., and Mansour, Y. Applying the weak learning framework to understand
and improve C4.5. In Proceedings of the 13th International Conference on Machine Learning,
1996, pp. 96-104.

Kearns, M. and Mansour, Y. On the boosting ability of top-down decision tree learning algorithms.
In Proceedings of the 28th ACM Symposium on the Theory of Computing, 1996.

Umano, M., Okamoto, H., Hatono, I., Tamura, H., Kawachi, F., Umedzu, S., and Kinoshita, J. Fuzzy
decision trees by Fuzzy ID3 algorithm and its application to diagnosis systems. In Proceedings of
the IEEE International Conference on Fuzzy Systems, 1994, pp. 2113-2118.

Yuan, Y. and Shaw, M. J. Induction of fuzzy decision trees. Fuzzy Sets Syst. 69:125-139, 1995.
Ichihashi, H., Shirai, T., Nagasaka, K., and Miyoshi, T. Neuro-fuzzy ID3: A method of inducing
fuzzy decision trees with linear programming for maximizing entropy and an algebraic method for
incremental learning. Fuzzy Sets Syst. 81:157-167, 1996.

Hatziargyriou, N. D., Papathanassiou, S. A., and Papadopoulos, M. P. Decision trees for fast secu-
rity assessment of autonomous power systems with a large penetration from renewables. IEEE
Trans. Energy Conversion 10(2):315-325, 1995.

Lee, Y. and Lo, C. Optimizing an air defense evaluation model using inductive learning. Appl.
Artif. Intell. 8:645-661, 1994.

Du, R., Elbestawi, M. A., and Wu, S. M. Automated monitoring of manufacturing processes. Part
1. Monitoring methods. J. Eng. Ind. 117:121-132, 1995.

