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Abstract

This paper uses wavelet theory to propose a frequency domain nonparametric and tuning
parameter free family of unit root tests indexed by the fractional parameter d. The
proposed test exploits the wavelet power spectrum of the observed series and its fractional
partial sum to construct a test of the unit root based on the ratio of the resulting scaling
energies. The construction takes its inspiration from the variance ratio (VR) unit root
test of Nielsen (2009) and Fan and Gençay (2010) (FG). The result is a statistic whose
power properties virtually mimic that of the VR statistics but which drastically reduces
the severe size distortions suffered by both the VR and FG test in the presence of serially
correlated MA(1) errors when the MA parameter is close to negative unity. Moreover,
the test is visibly more robust to size distortions arising from lowering d than its VR
counterpart and unlike the FG test, requires no estimation for construction.

Keywords: Wavelets, Wavelet energy ratio, Time series, Fractional integration,
Fractional Brownian motion, Variance ratio statistic, Unit root, Hypothesis test, Size
distortion, Statistical power

1. Introduction

Testing for the presence of a unit root is an important empirical problem and has a
long-established history in the econometric literature. Early theoretical developments
include the seminal works of Dickey and Fuller (1979), Phillips (1987), and Phillips and
Perron (1988). In fact, the literature has not suffered a shortage of contributions since.
In this regard, some other prominent examples include Chan and Wei (1987), Sims et al.
(1990), and Park and Fuller (1995). Unfortunately, whereas many contributions focus
on constructing unit root tests for models of wider generality, fewer address the issues
which seem to underlie the lot of them: low statistical power, poor size properties, and
tuning parameter (eg. lag length, bandwidth, kernel choice, etc.) selection. The latter
is a particularly salient problem in the presence of serial correlation which gives rise to
test statistics which require tuning parameter specification (thereby rendering the test’s
performance highly dependent on values specified) although the latter are not reflected
in the limiting distributions of the test statistics.
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Recently, there have been significant efforts to improve on the shortcomings of classical
unit root tests. In this regard, the Elliott et al. (1996) contribution addresses both size
and power issues through point optimal tests, power envelopes, and generalized least
squares (GLS) detrending of augmented Dickey-Fuller (ADF) tests. Moreover, Ng and
Perron (2001) and Perron and Qu (2007) address low power properties through opti-
mized truncation lag selection. On the other hand, issues concerning tuning parameter
selection prompted the development of tuning parameter free unit root tests as in Park
and Choi (1988), Park (1990), Breitung (2002), and Nielsen (2009), the latter two having
the additional advantage of being non-parametric.

It is interesting to note however that, apart from a handful of exceptions, unit root tests
in the literature, and in fact all those mentioned above, are constructed directly in the
time domain. This of course is not surprising considering that the pioneering unit root
test of Dickey and Fuller (1979) (DF) was constructed similarly. On the other hand,
some 13 years before the DF unit root test, Granger (1966) had observed that the vast
majority of economic series are characterized by power spectra the most noticeable char-
acteristic of which is the “overpowering importance of the low frequency components”
which are amplified by the presence of trends in mean. Yet, intriguingly, the literature
has produced little in the way of frequency domain unit root tests. Nevertheless, there
are two important exceptions: Choi and Phillips (1993) and Fan and Gençay (2010).

It is important to remark that, although both Choi and Phillips (1993) and Fan and
Gençay (2010) construct unit root tests directly in the frequency domain, they do so us-
ing two succeeding technologies. While the former relies on Fourier spectral analysis to
demonstrate finite sample superiority over various time-domain counterparts, the latter
relies on wavelet theory to do the same. This distinction is an important one as Fourier
transforms are localized only in frequency whereas wavelet transforms are localized in
both frequency and space. This makes Fourier analysis an excellent tool for studying sta-
tionary time series and wavelet analysis ideally adapted for the study of non-stationary
series, thereby rendering wavelet transforms a de facto natural platform for the construc-
tion of unit root tests in the frequency domain. The present paper therefore continues
this tradition and contributes unit root tests constructed using wavelet theory.

Motivated by developments in Nielsen (2009) and Fan and Gençay (2010), this article
constructs a general family of non-parametric tuning parameter free wavelet based tests
for the unit root hypothesis. These tests are indexed by the fractional parameter d and
tend in distribution to the distribution of the variance ratio statistic of Nielsen (2009).
Consequently, they have good asymptotic power properties, and as pointed out by Müller
(2008), can consistently discriminate between a null and alternative hypothesis of sta-
tionarity. However, where the proposed tests truly shine is in their ability to improve
upon various shortcomings of existing unit root tests.

The wavelet energy ratio (WER) unit root tests in this paper are a direct improvement
over the wavelet unit root tests in Fan and Gençay (2010). The latter, although asymp-
totically nuisance parameter free, are only so after a transformation involving the Newey
and West (1987) estimator with a Bartlett kernel correction of the long term variance
of the errors. Even still, these tests are not tuning parameter free as they depend on a
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suitably chosen kernel bandwidth parameter q. The WER tests require no such estima-
tion steps and are tuning parameter free by design. On the other hand, like many unit
root tests in the literature, the tests of Nielsen (2009) and Fan and Gençay (2010) suffer
from severe size distortions, particularly when the errors follow a moving average process
with a highly negative MA parameter. Whereas Nielsen (2009) achieves substantial size
distortion reductions through the sieve bootstrap algorithm of Chang and Park (2003),
Fan and Gençay (2010) do not even consider size distortions arising from MA errors.
This is rather strange since simulations in this paper clearly show that their test have
unpalatable size distortions. In contrast, the WER tests suffers from size distortions
which are impressively smaller than those of Nielsen (2009). Moreover, the WER test is
more robust to size distortions arising from specifying very small d values than its vari-
ance ratio test counterpart. In terms of local asymptotic power however, the WER tests
virtually mimic the variance ratio tests, although the power of both is visibly smaller
than that of Fan and Gençay (2010).

The remainder of the article proceeds as follows. Section 2 presents an overview of the
essential aspects of wavelet theory necessary for the development of the article. Section 3
reviews fractionally integrated process and the variance ratio statistic of Nielsen (2009).
Section 4 presents the wavelet energy ratio tests, while Section 5 presents simulation
evidence for the power and size distortion performance of the proposed tests. All proofs
are contained in the Appendix.

2. Wavelet Power Spectrum

What distinguishes wavelet techniques from more classical spectral tools such as Fourier
methods is that the latter can only extract frequency information form an input sig-
nal. The former on the other hand offers both frequency and temporal information. It
is precisely this feature which makes wavelets an ideal tool for multiresolution analysis
(MRA) - the ability to analyze a signal at different frequencies with varying resolutions.
Essentially, moving along the time domain, MRA allows one to zoom to a desired level
of detail. In fact, at high (low) frequencies, MRA by design yields good (poor) time
resolutions and poor (good) frequency resolutions. Since economic (financial) time se-
ries often exhibit multiscale features, wavelet techniques are a powerful mechanism for
decomposing a series into constituent processes associated with different time scales. In
particular, since non-stationary series exhibit summary statistics which change with time,
consequently amplifying their lower frequency components relative to stationary series,
exploiting this distinction yields a platform for distinguishing a series as I(1) or I(0). It
was precisely this feature which was exploited in Fan and Gençay (2010) and which will
be exploited in the sections to follow.

2.1. Wavelets

A wavelet, as the diminutive form suggests, is a small wave. Unlike its augmentative
counterpart, a wavelet oscillates in a strict subset of the infinite time domain. Formally,
a wavelet is a real valued function ψ (·) satisfying two basic properties:
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∫ ∞

−∞
ψ (t) dt = 0

∫ ∞

−∞
ψ2 (t) dt = 1

The first of the two properties says that the wavelet integrates to zero and consequently,
any oscillations above zero must be counterbalanced by oscillations below zero. The
second property says that the wavelet has unit energy. This implies that any nonzero
activity of the wavelet is limited to a strict subset of the time domain, the length of
which is vanishingly small relative to the entire time domain (−∞,∞). Finally, if y(t) is
a signal (a time series in this case), the continuous wavelet transform (CWT) (or filter)
of y(t) is given by:

W (a, b) =

∫ ∞

−∞
y (t)ψ∗a,b (t) dt

where ψa,b = 1√
a
ψa,b

(
t−b
a

)
, and ∗ denotes the complex conjugate. See Percival and

Walden (2006) for a detailed exposition.

2.2. Discrete Wavelet Transform

The CWT is not appropriate when dealing with empirical data however as time series
are rarely given as continuous functions. Fortunately, the fundamental properties of the
CWT also have discrete analogues. In this case, denote by h = (h0, . . . , hL−1) a discrete
wavelet (or high pass) filter of length L − 1. Similarly, let g = (g0, . . . , gL−1) denote a
discrete scaling (or low pass) filter of equal length. In this case, integration to zero and
unit energy are satisfied by:

L−1∑

l=0

hl = 0

L−1∑

l=0

h2
l = 1

The discrete wavelet transform (DWT) is an orthonormal transform. Thus, in addition to
the two properties above, the wavelet filter satisfies the following orthogonality condition:

L−1∑

l=0

hlhl+2n =

∞∑

l=−∞
hlhl+2n = 0 ∀n ∈ Z+

In other words, the high pass filter is orthogonal to its even shifts. In fact, a similar set
of conditions hold for the scaling filter g as well, namely:

L−1∑

l=0

glgl+2n =

∞∑

l=−∞
glgl+2n = 0,

L−1∑

l=0

gl =
√

2

L−1∑

l=0

glhl+2n =

∞∑

l=−∞
glhl+2n = 0,

∞∑

l=−∞
g2
l = 1

4



for all positive integers n. Thus, the low pass filter is orthogonal to its even shifts, is
orthogonal to even shifts in h, and has unit every. Furthermore, the relationship between
the coefficients of the scaling and wavelet filters are determined through the quadrature
mirror relationship which establishes that:

hl = (−1)lgL−1−l gl = (−1)l+1hL−1−l l = 0, . . . , L− 1

Filtering an observed series {yt}Tt=1 with the high pass filter h and the low pass filter g,
yields a DWT of the original data. In turn, this transform yields two series - the first
capturing the high frequency behaviour of yt, the second capturing its low frequency
behaviour. In fact, the entire process can be represented neatly in vector notation.

Assume that T = 2M and consider a series y = {yt}Tt=1.1Then, denote by W =

[W1, . . . ,WM ,VM ]
>

the matrix of DWT coefficients. Here, Wj is a vector of wavelet
coefficients of length T/2j and is associated with changes on a scale of length λj = 2j−1.
Moreover, VM is a vector of scaling coefficients of length T/2j and is associated with
averages on a scale of length λM = 2M−1. Then, W can be obtained by W =Wy where
W is an T × T orthonormal matrix which generates the DWT coefficients.

2.3. Pyramid Algorithm

In practice, DWT coefficients are derived through the pyramid algorithm of Mallat

(1989). Formally, if Wj =
(
W1,1 . . .WT/2j ,j

)>
and Vj =

(
V1,1 . . . VT/2j ,j

)>
, the jth it-

eration of the algorithm then convolves an input signal with filters h and g respectively to
derive the jth level DWT matrix [W1, . . .Wj ,Vj ]

>
. Explicitly, the convolution process

takes the following form:

Wt,1 =

L−1∑

l=0

hly2t−l mod T Vt,1 =

L−1∑

l=0

gly2t−l mod T j = 1

Wt,j =

L−1∑

l=0

hlV2t−l mod T,j−1 Vt,j =

L−1∑

l=0

glV2t−l mod T,j−1 j = 2, . . . ,M

where t = 1, . . . , T/2j . In other words, the first iteration of the algorithm convolves the
data series yt with both the high pass and the low pass filters respectively. Each sub-
sequent iteration however takes the scaling coefficients from the preceding step, namely
Vt,j−1 as it’s input signal, and convolves them with h and g respectively. The entire al-

gorithm continues until the M th iteration although it can be stopped at any earlier point.

2.4. Energy Decomposition

The orthonormality of the DWT generating matrix W has some important implications;
the first is thatW×W = IT , where IT is an identity matrix of dimension T . A much more

1Requiring series to have dyadic length is certainly restrictive. Luckily, methods such as the discrete
wavelet packet transform (DWPT) and the lifting scheme are designed to overcome this shortcoming.
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important implication is that ‖y‖2 = ‖W‖2. To see this, recall that y =W>W and that
‖y‖2 = y>y. In other words, the DWT is an energy (variance) preserving transformation.
Furthermore, coupled with this preservation of energy is the decomposition of energy on
a scale by scale basis. This is another consequence of the orthonormality of the DWT
and is formalized as follows:

‖y‖2 =

M∑

j=1

‖Wj‖2 + ‖VM‖2 (1)

where ‖Wj‖2 =
∑T/2j

t=t W 2
t,j and ‖VM‖2 =

∑T/2M

t=t V 2
t,M . Thus, ‖Wj‖2 represents the

amount of energy of yt accounted for at scale λj . Moreover, ‖Wj‖2/T is the contribution
to the sample variance of yt associated with scale λj . This decomposition is often referred
to as the wavelet power spectrum, and is arguably the most insightful of the properties
of the DWT for the exposition in Section 4.

3. Variance Ratio Tests

This section formalizes the variance ratio statistic of Nielsen (2009). Since the latter
is constructed as ratio of a series and it’s fractional partial sum, it is useful to briefly
overview fractional processes first.

3.1. Fractional Processes

Recall that a general fractional process xt of order d is defined as

(1− L)dxt = ut, ut =

∞∑

j=0

ψjεt−j , t = 1, 2, . . .

where d > −1/2, εt are zero-mean, finite variance, IID random variables, and (1−L)d is
defined by the Maclaurin series:

(1− L)d =

∞∑

j=0

Γ(−d+ j)

Γ(−d)Γ(j + 1)
Lj

In empirical work however, one does not observe the values of a series for t ≤ 0. Thus,
the theory to follow assumes that only terms with a positive time index are of interest. It
can be shown (see Appendix 2 of Wang et al. (2002)) that when t is restricted to positive
integers, xt above reduces to:

xt = (1− L)−d+ ut ≡ ∆−d+ ut =

t−1∑

k=0

c
(d)
k ut−k

where
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c
(0)
0 = 1, c

(0)
k = 0, k ≥ 1, c

(d)
k =

Γ(d+ k)

Γ(d)Γ(k + 1)
, k ≥ 0

As usual let W (t) denote a standard Wiener process, denote by B(t) the standard Brow-
nian motion, and recall that a type II2 fractional Brownian motion Bd(t) for d > −1/2
is defined as:

Bd(t) =

∫ t

0

(t− s)d−1dW (s), Bd(0) = 0, 0 ≤ t ≤ 1 (2)

3.2. Fractional Variance Ratio Tests

Consider an univariate time series yt and assume its DGP is the familiar autoregressive
AR(1) model yt = φyt−1 + ut, y0 = 0. The classical unit root hypothesis for yt then
posits that:

H0 : φ = 1, H1 : |φ| < 1 (3)

The Nielsen (2009) variance ratio (VR) statistic for testing H0 vs. H1 is a non-parametric
test formed by generating an ancillary fractionally differenced series ỹt = ∆−dyt and
constructing the following scaled ratio of sample variances:

ρ(d) = T 2d

∑T
t=1 y

2
t∑T

t=1 ỹ
2
t

The statistic ρ(d) above is a generalization of the classical VR test statistics, is indexed
by d and has the very desirable property of neither requiring the estimation of the long-
run variance of yt nor the short term serial correlation parameters in case the ut exhibits
autocorrelation (formalizations will be introduced in Section 4). Furthermore, if ⇒
denotes weak convergence in D [0, 1], the asymptotic distribution of ρ(d) is summarized
below:

ρ(d)⇒
∫ 1

0
B2(s)ds

1
Γ2(d+1)

∫ 1

0
B2
d+1(s)ds

Note that like the statistic itself, the asymptotic distribution is indexed by d and therefore
this indexing parameter is not considered to be a tuning parameter. More importantly,
as argued in Müller (2008), statistics akin the one considered above consistently discrimi-
nate between a null hypothesis of a unit root and an alternative hypothesis of stationarity.
For further a detailed discussion on the performance of these statistics see Nielsen (2009).

2For a good reference on the differences between type I and type II fractional Brownian motions, see
Davidson and Hashimzade (2009).
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4. Wavelet Energy Ratio Tests

This section introduces a powerful new (spectral) test of the classical unit root hypothe-
sis. Like Fan and Gençay (2010), the new approach exploits the wavelet power spectrum
to construct a family of powerful, non-parametric unit root tests. Where these tests
diverge however is in the mechanism by which power against H1 is gained. Whereas the
old test achieves power by relativizing the energy of the scaling coefficients to that of
total energy, the new test derives its inspiration from the VR unit root test of Nielsen
(2009) in that it gains power by exploiting the relative energy of the scaling coefficients
of the original series to that of its fractionally differenced transform. The result is a new
family of tuning parameter free, non-parametric unit root tests indexed by the fractional
parameter d, which shall be referred to as wavelet energy ratio (WER) unit root tests.

4.1. Model Outline

Consider again the univariate AR(1) model:

yt = φyt−1 + ut (4)

ut = Ψ(L)εt, Ψ(z) ≡
∞∑

j=0

ψjz
j (5)

equations (4) and (5) describe a very general model capable of generating stationary and
non-stationary series both with and without serial correlation. Because of this generality,
in order to make the theory manageable, the following assumptions will be imposed.

Assumptions.

(a) {εt,Ft} is a MDS with respect to some filtration Ft.

(b) E{ε2t} = σ2 <∞ and E{|ε0|2/(2d+1)} <∞ for d > −1/2.

(c)
∑∞
j=0 |ψj | <∞,

∑∞
j=0 j|ψj | <∞, and bψ =

∑∞
j=0 ψj 6= 0.

Assumptions (a) through (c) establish regularity conditions for the error terms. Apart
from convenience, some are required to invoke (fractional) functional central limit theo-
rems when establishing limiting distributions. Particularly important here is the second
condition in Assumption (b). This condition is necessitated by the FCLT for fractional
processes and has been a standard requirement in the literature on limiting results for
fractionally integrated processes since Gourieroux and Akonom (1988).

Finally, consider the fractionally differenced series:

ỹt = (1− L)−d+ ≡ ∆−d+ yt (6)
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and recall that under Assumptions (a) through (c) the following (fractional) FCLT results
hold as T →∞:

T−1/2ybTrc ⇒ bψσW (r)

T−(d+1/2)ỹbTrc ⇒
bψσ

Γ(d+ 1)
Bd+1(r)

where b·c denotes the floor function, 0 ≤ r ≤ 1, (bψσ)
2

is the long-term variance of yt,
and d > 1/2. For a detailed exposition on this and several other limiting results for
general fractionally integrated processes, see Wang et al. (2002).

4.2. New Spectral Unit Root Tests

To motivate the derivation of the new spectral unit root test, recall that the wavelet
power spectrum isolates contributions to the sample variance of {y}Tt=1 associated with
scales λj . This implies that the proportion of total energy generated on a particular scal-
ing level J is ‖VJ‖2/‖y‖2. To see just why this is so insightful, let T = 210 = 1024 and
consider in Figure 1 the plots of the level 6 DWT energy decomposition of four series:
a standard Gaussian white noise process zt, an AR(1) unit root process yt = yt−1 + zt,
the fractionally differenced series z̃t = ∆−d+ zt, and the fractionally differenced series

ỹ = ∆−d+ yt .

Consider now the scaling energy ratio ‖V6‖2/‖Ṽ6‖2. If the model in equations (4)

and (5) contains a unit root, then φ = 1, both ‖V6‖2 and ‖Ṽ6‖2 are close to one, but

‖Ṽ6‖2 < ‖V6‖2. On the other extreme, if the model in question is white noise, then

‖V6‖2 ≈ ‖Ṽ6‖2 ≈ 0. In the example above, this implies that ‖V6‖2/‖Ṽ6‖2
∣∣∣
H0

> 1

whereas ‖V6‖2/‖Ṽ6‖2
∣∣∣
H1

≈ 1. In other words, the test has power. The following sub-

section formalizes this intuition in the case of a Haar wavelet filter. The one immediately
following it does the same for a Daubechies (1992) compactly supported wavelet filter.

4.3. WER: Haar Wavelet Filter

Recall that the wavelet and scaling coefficients of the unit scale Haar DWT transform of
a series {yt}Tt=1 (where T is of dyadic length), are defined respectively as:

Wt,1 =
1√
2

(
y2t − y2t−1

)
, t = 1, 2, . . . , T/2 (7)

Vt,1 =
1√
2

(
y2t + y2t−1

)
, t = 1, 2, . . . , T/2 (8)
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Figure 1: Haar wavelet filter Level 6 DWT energy decomposition of zt, yt = yt−1 + zt, z̃t = ∆−d
+ zt, and

ỹ = ∆−d
+ yt. Following the conclusions in Nielsen (2009), the fractional parameter in the exposition is

d = 0.10 although any d > −1/2 is valid. Moreover, to allow for easy comparison with Fan and Gençay
(2010), J = 6, although the sample size allows for any J ≤ 10. Finally, note that each point represents
the proportion of total energy accounted for by wavelet and scaling parameters on scales λ1 through λ6,
where Data represents the total energy of the input signal.

Similarly, define the Haar DWT coefficients for the fractionally differenced series {ỹt}
T
t=1

as follows:

W̃t,1 =
1√
2

(
ỹ2t − ỹ2t−1

)
, t = 1, 2, . . . , T/2 (9)

Ṽt,1 =
1√
2

(
ỹ2t + ỹ2t−1

)
, t = 1, 2, . . . , T/2 (10)

Above, the wavelet coefficients Wt,1 and W̃t,1 extract the behaviour of yt and ỹt respec-
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tively, in the high frequency band [1/2, 1], whereas the scaling coefficients Vt,1 and Ṽt,1 do
the same for the low-frequency band [0, 1/2]. Section 4.2 heuristically argued that a ratio
of energies of scaling coefficients of the original series and it’s fractional transform has
power to distinguish whether a series possesses a unit root. Nevertheless, using a naive
ratio of the proposed energies is not appropriate unless it is suitably scaled. Lemma 1
formalizes this observation and establishes that the appropriate scaling factor is in fact
T−2d. This of course should not be too surprising considering that this paper in part
derives its inspiration from the variance ratio statistic of Nielsen (2009).

Lemma 1. Under the null hypothesis in equation (3) and Assumptions (a) through (c),
for any d > −1/2 the following holds:

1. V 2
t,1 is Op

(
T 2
)

2. Ṽ 2
t,1 is Op

(
T 2(1+d)

)
.

It follows from Lemma 1 that the presence of a unit root can therefore be tested using
the statistic defined below:

ρ̂HV (d) = T 2d ‖V1‖2

‖Ṽ1‖2
= T 2d

∑T/2
t=1 V

2
t,1∑T/2

t=1 Ṽ
2
t,1

(11)

The superscript H in ρ̂HV (d) stands as a reminder that the wavelets used in the con-
struction above are those based on the Haar DWT filter and to distinguish it from other
constructions to be considered later on.

The primary result of this section is the limiting distribution of the WER statistic which,
as is to be expected is a ratio of functionals of the standard and fractional Brownian
motions, respectively. Theorem 1 formalizes this result.

Theorem 1. Provided Assumptions (a) through (c) hold, under H0, ρ̂HV (d) is character-
ized by the following limiting distribution result.

ρ̂HV (d)⇒ ρHV (d) =

∫ 1

0
W 2(r)dr

1
Γ2(d+1)

∫ 1

0
B2
d+1(r)dr

(12)

Theorem 1 makes it clear that ρHV (d) generates a family of limiting distributions of ρ̂dV (d)
indexed by the fractional parameter d. In other words, the family of tests described by
ρ̂HV (d) are tuning parameter free. Here it is of importance to note that this is an inherent
property of the nature of the statistic. Contrast this with Fan and Gençay (2010) who

propose the statistic F̂G1 = T
λ̂2
v

γ̂0

[
ŜT,1 − 1

]
where ŜT,1 = ‖V1‖2

‖W1‖2+‖V1‖2 , λ̂2
v = 4ω̂2, ω̂2 is

a consistent estimate of the long-run variance, ω2, of {u}Tt=1, and γ̂2
0 is a consistent esti-

mate of γ0 = E
{
u2

2t

}
. Since neither ω2 nor γ2

0 are reflected in the limiting distribution

of F̂G1, the latter cannot be tuning parameter free.
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4.4. WER: Daubechies Compactly Supported Wavelet Filter

The Daubechies wavelet filters define DWTs indexed by the maximal number of vanishing
moment conditions for a given support. Using the notation in this paper, such wavelet
filters are often denoted as DL, where L denotes the number of coefficients (length of the
wavelet filter) and L1 = L/2 is the number of vanishing moment conditions. The latter
represents the maximal order of the polynomial behaviour which can be extracted from
an input signal. For example, the Haar wavelet filter is in fact the D2 filter and can only
capture constant signal components. Clearly, if richer component behaviour is desired, a
more general approach is necessary. To this end, recall that the boundary-independent
(BI) unit scale wavelet and scaling coefficients of the Daubechies compactly supported
wavelet filter are defined as:

Wt,1 =

L−1∑

l=0

hly2t−l Vt,1 =

L−1∑

l=0

gly2t−l, t = L1, L1 + 1, . . . , T/2 (13)

Similarly, define the above for the fractionally differenced series {ỹt}
T
t=1 as follows:

W̃t,1 =

L−1∑

l=0

hlỹ2t−l Ṽt,1 =

L−1∑

l=0

glỹ2t−l, t = L1, L1 + 1, . . . , T/2 (14)

As before, first level wavelet coefficients extract behaviour of an input in the high fre-
quency band, whereas first level scaling coefficients do so for the low-frequency band.
Since the Haar DWT is a special case of the Daubechies DWT, the intuition from Sec-
tions 4.2 and 4.3 carry over. Adapting equation (11) to the general Daubechies frame-
work, the following form of the WER statistic emerges:

ρ̂LV (d) = T 2d ‖V1‖2

‖Ṽ1‖2
= T 2d

∑T/2
t=L1

V 2
t,1∑T/2

t=L1
Ṽ 2
t,1

(15)

The following theorem justifies the scaling factor T 2d in equation (15) and establishes
the limiting distribution of the WER statistic.

Theorem 2. Under the null hypothesis equation (3), Assumptions (a) through (c), and
any d > −1/2

V 2
t,1

Ṽ 2
t,1

= Op
(
T 2d

)

and

ρ̂LV (d)⇒ ρLV (d) =

∫ 1

0
W 2(r)dr

1
Γ2(d+1)

∫ 1

0
B2
d+1(r)dr

(16)
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There a few things to note here. First, as in the case of the Haar wavelet filter, inherent in
the construction of the ρ̂LV (d) is the fact that the statistic is tuning parameter free. This

should again be contrasted with Fan and Gençay (2010) whose proposed statistic F̂G
L

1 is
not tuning parameter free as it requires consistent estimates of the long-run variance of
{u}Tt=1 and E

{
u2

2t

}
, although these parameters are not reflected in the asymptotic dis-

tribution. Second, Fan and Gençay (2010) argue in favour of power gains as L increases
since the approximation of the Daubechies wavelet filter approaches the ideal high-pass
filter as L grows. Since the ρ̂LV (d) statistics proposed in this paper depend only indirectly
on the high-pass wavelet coefficients, increasing L should produce only slight power gains.

4.5. Detrended WER Tests

Thus far the discussion has been limited to a simple zero mean AR(1) DGP with no
trend. Clearly this can be very restrictive in practical work and a richer model is needed.
This section therefore adapts the WER test to a general non-zero mean AR(1) DGP
with a linear trend. As is the norm with unit root tests in the time domain, the simplest
way to deal with such models is to introduce some sort of detrending procedure. Here
the focus will be on the simplest such procedure, namely ordinary least squares (OLS)
detrending, although more advanced techniques such as GLS detrending are possible as
well. Moreover, since the Haar wavelet filter is a special case of the Daubechies wavelet
filter, the latter more general setup will be considered here.

The model under consideration here is of the following form:

y
(i)
t = δ

(i)
t γ(i) + qt, i = 0, 1, 2 (17)

qt = φqt−1 + ut (18)

where ut = Ψ(L)εt, Ψ(z) ≡
∑∞
j=0 ψjz

j , δ
(0)
t = γ(0) = 0 when i = 0, δ

(1)
t = 1 and

γ(1) = γ0 when i = 1, and when i = 2, define δ
(2)
t as the 1 × 2 vector [1, t] and γ(2) as

the 2× 1 vector [γ0, γ1]>. Thus, when i = 0 the above model reduces to that looked at
in Section 4.1.

For i = 1, 2, let γ̂(i) denote the OLS estimator of γ(i) from regression equation (17) or

its fractional transform ỹ
(i)
t = δ

(i)
t γ(i) + q̃t. The residuals from said regressions can then

be expressed as:

ŷ
(i)
t = y

(i)
t − δ

(i)
t γ̂(i) (19)

ˆ̃y
(i)
t = ỹ

(i))
t − δ(i)

t γ̂(i) (20)

Equations (19) and (20) above say that ŷ
(i)
t and ˆ̃y

(i)
t are in fact the detrended versions

of y
(i)
t and ỹ

(i)
t respectively. Thus, in accounting for detrending, introduce a modified

WER statistic presented below:
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ρ̂
L,(i)
V (d) = T 2d ‖V̂

(i)
1 ‖2

‖ ̂̃V
(i)

1 ‖2
= T 2d

∑T/2
t=L1

V̂
(i)2

t,1

∑T/2
t=L1

̂̃
V

(i)2

t,1

(21)

where i = 0, 1, 2 and

Ŵ
(i)
t,1 =

L−1∑

l=0

hlŷ
(i)
2t−l V̂

(i)
t,1 =

L−1∑

l=0

glŷ
(i)
2t−l

̂̃
W

(i)

t,1 =

L−1∑

l=0

hl ˆ̃y
(i)
2t−l

̂̃
V

(i)

t,1 =

L−1∑

l=0

gl ˆ̃y
(i)
2t−l

The following theorem is the main result of this section and establishes the limiting dis-

tribution of ρ̂
L,(i)
V (d).

Theorem 3. Let yt be generated as in equations (17) and (18). Suppose Assumption
(a) through (c) hold and the null hypothesis in equation (3) is in effect. Then, for any
d > −1/2 and i = 0, 1, 2

ρ̂
L,(i)
V (d)⇒ ρ

L,(i)
V (d) =

∫ 1

0
B(i)(t)2dt

1
Γ2(d+1)

∫ 1

0
B

(i)
d+1(t)2dt

(22)

where

B(i)(t) = B(t)2 − δ(i)(t)

(∫ 1

0

δ(i)(s)
>
δ(i)(s)ds

)−1(∫ 1

0

δ(i)(s)
>
B(s)ds

)

B
(i)
d+1(t) = Bd+1(t)2 − δ(i)(t)

(∫ 1

0

δ(i)(s)
>
δ(i)(s)ds

)−1(∫ 1

0

δ(i)(s)
>
Bd+1(s)ds

)

and

δ(1)(s) = 1 and δ(2)(s) = [1, s]
>

4.6. Asymptotic Local Power Analysis

Since the parameter which indexes the WER family of statistics is d, it is natural to
ask whether there exists such a d which maximizes power for said family? Simulation
analysis in Nielsen (2009) addresses the same question and suggests that the family-wise
“power maximizing” choice of d for the variance ratio test should be d = 0.1. Although
the maximizing value here is not a maximum in the theoretical sense as choices of d < 0.1
yield uniformly (in c) higher asymptotic local power, this choice is guided by the fact that
choosing d too small can result in size distortions. Figure 2 paints a similar conclusion
in the case of the WER statistic.
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Figure 2: Local Asymptotic Power for ρ̂HV (d), ρ̂ (d) and FG1. Each power curve is derived for a sample
of size T = 1, 000 over 50, 000 Monte Carlo replications. The critical values were computed for the same
sample size but over 100, 000 MC replications.

To formalize matters, note first that the variance ratio test rejects for large values of
ρ̂ (d) and recall that Theorem 2 in Nielsen (2009) establishes the rejection region and
consistency of this test. Lemma 2 derives the same in the case of the WER statistic.

Lemma 2. Under the assumptions of Theorem 3, if α denotes the significance level,

ρ
L,(i)
V (d) then rejects H0 in equation (3) whenever ρ

L,(i)
V (d) > ξi,α, where ξi,α is the

critical value obtained from

P
{
ρ
L,(i)
V (d) > ξi,α

}
= α

Moreover, ρ
L,(i)
V (d) has asymptotic size α and is consistent against the alternative H1.

Turning now to the power, in order to avoid the computation of exact power functions,
the asymptotic local power is dealt with using local-to-unity asymptotics. This implies
that the DGP considered in equation (17) is modified to be of the form:

yt = φT yt−1 + qt and φT = 1− c

T
(23)

for some c ≥ 0. In other words, as T →∞, φT → 1 and the unit root DGP obtains. On
the other hand, for any fixed T , the values of c/T ∈ (0, 2) imply that yt is stationary.

It is well known that under nearly integrated alternatives, the limiting distribution of
the rescaled sample variance statistics used above follow an Ornstein-Uhlenbeck (O-U)
process. In the context of this paper however, such processes need to be interpreted in
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the context of wavelet scaling coefficients and the fact that some series are fractionally
integrated. This leads then to the standard and fractional O-U process below:

J (i)
c (t) = B(i)(t)− c

∫ t

0

e−c(t−r)B(i)(r)dr

J
(i)
d+1,c(t) = B

(i)
d+1(t)− c

∫ t

0

e−c(t−r)B(i)
d+1(r)dr

Given that the results in Theorem 1 and 2 indicate that the WER statistic has the same
limiting distribution as the variance ratio statistic of Nielsen (2009), it shouldn’t be too
difficult to see that the limiting distribution of the WER statistic under nearly-integrated
dynamics ought to follow a ratio of two O-U processes as is summarized in the following
theorem.

Theorem 4. Let yt be generated by equation (23) and let ỹt be the fractionally differenced
version of yt. Define the detrended versions of yt and ỹt by equations (19) and (20)
respectively. Then, for any d > −1/2 and i = 0, 1, 2, as T →∞,

ρ̂
L,(i)
V (d)⇒

∫ 1

0
J

(i)
c (t)2dt

1
Γ2(d+1)

∫ 1

0
J

(i)
d+1,c(t)

2dt

where

J (i)
c (t) = J (i)

c (t)2 − δ(i)(t)

(∫ 1

0

δ(i)(s)
>
δ(i)(s)ds

)−1(∫ 1

0

δ(i)(s)
>
J (i)
c (s)ds

)

J
(i)
d+1,c(t) = J

(i)
d+1,c(t)

2 − δ(i)(t)

(∫ 1

0

δ(i)(s)
>
δ(i)(s)ds

)−1(∫ 1

0

δ(i)(s)
>
J

(i)
d+1,c(s)ds

)

and

Π1,r = 1 and Π2,r = [1, r]
>

5. Simulation Analysis

Whereas asymptotic results provide a nice overview of a test’s properties, the ultimate
performance benchmark of any test is it’s finite sample behaviour. As mentioned in the
introduction, where the WER test shines is in it’s ability to significantly reduce size
distortions of the original variance ratio test. Furthermore, the WER test suffers from
smaller size distortions due to lower d values than its variance ratio counterpart. Thus,
the simulations which follow focus on these performance benchmarks for various config-
urations.
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The DGP of choice for the simulations considered in this section is given by

qt = φqt−1 + ut

ut = εt + θεt−1, εy ∼ N(0, 1)

yt = δ
(i)
t γ(i) + qt, i = 0, 1, 2 and y0 = 0

where as before, δ
(0)
t = γ(0) = 0 when i = 0, δ

(1)
t = 1 and γ(1) = γ0 when i = 1,

and when i = 2, define δ
(2)
t as the 1 × 2 vector [1, t] and γ(2) as the 2 × 1 vector

[γ0, γ1]>. In other words, when φ = 1, the data is generated from an AR(1) model with
a unit root and serially correlated MA(1) errors. Choosing to study the MA model is
only natural considering that it arises in many economic time series configurations in
addition to generating a platform where many unit root tests are known to be severely
size distorted, particularly when the MA parameter is close to negative unity, see Ng
and Perron (2001) and Nielsen (2008) for further discussion. Throughout, the nominal
significance level is α = 0.05, sample sizes considered are T = 100 and T = 250, and all
experiments, except for the generation of critical values, are performed over 50, 000 Monte
Carlo replications. Each simulation compares the WER statistic to the corresponding
variance ratio statistic of Nielsen (2009) and the wavelet unit root test of Fan and Gençay
(2010). All simulations were performed in R, R Core Team (2012).

Table 1: Critical Values
Deterministics d = 0.025 d = 0.05 d = 0.010 FG

δ
(0)
t γ(0) 1.13305 1.27977 1.61864 -17.62483

δ
(1)
t γ(1) 1.16587 1.35526 1.81603 −26.30335?

δ
(2)
t γ(2) 1.19071 1.41379 1.97824 −174.09772?

Values are derived for T = 1, 000 over 100, 000 MC replications. Since
ρHV (d) has the same limiting distribution as ρ (d), the values for the latter
statistic are those reported.
?These values are very different from those reported in Fan and Gençay
(2010). Simulations in this paper indicate that the correct values are
those reported above. The code used is directly replicated from Ramazan
Gençay’s website: http://www.sfu.ca/~rgencay/wunit.html.

Since finite sample size distortion and power depend on asymptotic critical values of
tests, it is necessary to obtain the latter first. Table 1 summarizes these numbers for
various configurations. Although critical values are tabulated in both Nielsen (2009) and
Fan and Gençay (2010), the configurations considered in this paper are slightly different
and so it is appropriate to list them for reference.

Consider now the small sample size distortions for the base model without a mean or
linear trend. Figures 3 and 4 display the size distortion for samples of size T = 100 and
T = 250 respectively. Notice first the very poor performance of the Fan and Gençay
(2010) (FG) statistic. Negative MA parameters are particularly problematic for this
statistic as the size distortion is quite violent for these configurations. In fact, the problem
is even amplified as the sample size increases. Although size distortions are much better
as one moves toward positive MA parameters, the problem is still very much persistent.
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Figure 3: Size Distortion for T=100 and δ
(0)
t γ(0)

On the other hand, notice the very impressive performance of the WER tests. Although
the limiting distribution of these statistics is the same as limiting distribution of the
corresponding variance ratio statistic, (and in this sense the performance of these two
statistics is indistinguishable asymptotically), in finite samples, the WER test has a sig-
nificant edge over its counterpart. Another interesting feature of the WER statistic is its
ability to damp the impact on size distortions arising from lowering d. As mentioned in
Nielsen (2009), although lowering d can produce significant power gains, it should not be
lowered too much as it then behaves as it is proportional to increasing sample size and
thereby creates size distortions. Both Figures 3 and 4 demonstrate that the impact of
doing this is diminished in the case of the WER statistic. This suggests that by choosing,
say d = 0.05 instead of the recommended d = 0.10 in Nielsen (2009), in finite samples
one can both increase power over the corresponding variance ratio test, in addition to
have a significant reduction in size distortions. In other words, it seems that in the case
of the WER statistic one can have a cake and eat it too.
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Figure 4: Size Distortion for T = 250 and δ
(0)
t γ(0)

A similar story holds when one includes a mean and/or a linear trend, although in the
case of these configurations, size distortions are quite severe for all three statistics when
the MA parameter approaches the negative unit root. For sake of brevity, only the model
with both a mean and a linear trend is considered. Figures 5 and 6 plot the size distortion
in the case of this configuration.

0.0

0.2

0.4

0.6

0.8

1.0

-0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

θ

S
iz
e
D
is
to
rt
io
n

ρ̂HV (0.025)

ρ̂HV (0.05)

ρ̂HV (0.10)

ρ̂(0.025)

ρ̂(0.05)

ρ̂(0.10)

FG1

Figure 5: Size Distortion for T=100 and δ
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Figure 6: Size Distortion for T = 250 and δ
(2)
t γ(2)

The general conclusion remains the same throughout all the experiments presented above:
the WER statistics are considerably less size distorted. Moreover, although size distor-
tions instigated through very small choices of d tend to diminish as one considers models
with a constant mean and a mean and trend, the WER statistic continues to be more
robust to this effect than its variance ratio counterpart. An interesting observation is
that in very small samples, the variance ratio statistic suffers from size distortions which
are as bad as those of the FG statistic. As the sample size increases however, the variance
ratio statistic becomes considerably less size distorted than the FG statistic. In either
case, it is clear that the WER can offer non trivial size distortion reductions.

6. Conclusion

The wavelet energy ratio (WER) unit root test presented in this paper is a contribution
to the rather sparse literature on unit root testing using wavelet theory. The WER draws
its inspiration from the variance ratio unit root test of Nielsen (2009) by exploiting the
wavelet power spectrum of the observed series and its fractional partial sum to construct
a unit root test based on the ratio of the norms of the scaling energies obtained from a
unit scale DWT. The result is a family of non-parametric, completely tuning parameter
free, unit root tests indexed by the fractional parameter d and constructed entirely in
the spectral domain. In this sense, this is a direct improvement over the existing unit
root test of Fan and Gençay (2010) which, although nuisance parameter free (albeit after
a transformation), is still not tuning parameter free. In fact, the latter test requires
the estimation of the long-term variance of the error terms using the Newey and West
(1987) estimator using a Bartlett kernel with a bandwidth tuning parameter. No such
estimation procedure is necessary in the case of the WER statistic and insofar as this is
concerned, the test is easier to implement.
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Results established in this paper demonstrate that the WER statistics have the same
limiting distributions as the limiting distributions of the corresponding variance ratio
statistics of Nielsen (2009). Furthermore, these results also establish the limiting dis-
tribution of the WER statistics in the presence of a mean and linear trend after OLS
detrending has been applied. In this sense, asymptotically, the WER tests exhibit the
same performance gains and flaws as their variance ratio counterparts. In particular,
using local-to-unity asymptotics, simulations demonstrate that in terms of power, the
WER test virtually mimic the corresponding variance ratio unit root tests, although the
power of both is visibly weaker than that exhibited by the Fan and Gençay (2010) test.
However, where the WER tests truly shine is in their finite sample performance.

Simulation experiments in this paper clearly show that the WER tests exhibit non trivial
size distortion reductions, particularly when the MA parameters are close to the nega-
tive unit root. In this regard, the WER tests are shown to cut size distortions of the
traditional variance ratio unit root test anywhere from 25% - 50%. On the other hand,
the Fan and Gençay (2010) tests are severely size distorted to the point where for certain
configurations, size distortions can easily reach levels of 95% for extreme negative MA
parameters. Just why this test behaves so poorly in this sense is not really clear and
some type of investigative analysis might be useful.

It is also interesting to note that size distortions of the WER statistic are less impacted
by lowering d than in the case of the corresponding variance ratio test. This problem was
mentioned in Nielsen (2009) and simulations conducted here confirm this. Nevertheless,
since the WER is less sensitive to these changes than the variance ratio test, one can
afford to lower d beyond the suggested d = 0.10 mark with little sacrifice in terms of size
distortion but with a noticeable gain in power. In this regard, it should be safe to choose
d = 0.05.

It should also be noted that Nielsen (2009) suggested the use of the sieve bootstrap to
reduce size distortions. No such procedure was considered here as the topic is being
investigated by the author. However, it is safe to say that, given the success of the
bootstrapping procedure in the case of the variance ratio unit root test, some sort of
bootstrapping procedure in the case of the WER can very well reduce size distortions
to zero. Finally, it is not difficult to see the potential of the WER test in tests for the
cointegration rank in fractionally integrated systems as considered in Nielsen (2010).
This too is being researched by the author.
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Y. Fan and R. Gençay. Unit root tests with wavelets. Econometric Theory, 26(05):1305–1331, 2010.
C.S. Gourieroux and J. Akonom. Functional limit theorem for fractional processes (a). CEPREMAP

Working Papers (Couverture Orange), 1988.
C.W.J. Granger. The typical spectral shape of an economic variable. Econometrica: Journal of the

Econometric Society, pages 150–161, 1966.
J.D. Hamilton. Time series analysis, volume 2. Cambridge Univ Press, 1994.
S.G. Mallat. A theory for multiresolution signal decomposition: The wavelet representation. Pattern

Analysis and Machine Intelligence, IEEE Transactions on, 11(7):674–693, 1989.
U.K. Müller. The impossibility of consistent discrimination between i (0) and i (1) processes. Econometric

Theory, 24(03):616–630, 2008.
W. Newey and K. West. A simple positive semidefinite heteroscedasticity and autocorrelation consistent

covariance matrix. Econometrica, pages 55,150–161, 1987.
S. Ng and P. Perron. Lag length selection and the construction of unit root tests with good size and

power. Econometrica, 69(6):1519–1554, 2001.
M.Ø. Nielsen. A powerful tuning parameter free test of the autoregressive unit root hypothesis. Working

Papers, 2008.
M.Ø. Nielsen. A powerful test of the autoregressive unit root hypothesis based on a tuning parameter

free statistic. Econometric Theory, 25(06):1515–1544, 2009.
M.O. Nielsen. Nonparametric cointegration analysis of fractional systems with unknown integration

orders. Journal of Econometrics, 155(2):170–187, 2010.
H.J. Park and W.A. Fuller. Alternative estimators and unit root tests for the autoregressive process.

Journal of Time Series Analysis, 16(4):415–429, 1995.
J.Y. Park. Testing for unit roots and cointegration by variable addition. Advances in Econometrics, 8

(2):107–133, 1990.
J.Y. Park and B. Choi. A new approach to testing for a unit root. Center for Analytic Economics,

Cornell University, Working Paper, 88:23, 1988.
D.B. Percival and A.T. Walden. Wavelet methods for time series analysis, volume 4. Cambridge Univ

Pr, 2006.
P. Perron and Z. Qu. A simple modification to improve the finite sample properties of ng and perron’s

unit root tests. Economics Letters, 94(1):12–19, 2007.
P.C.B. Phillips. Time series regression with a unit root. Econometrica: Journal of the Econometric

Society, pages 277–301, 1987.
P.C.B. Phillips and P. Perron. Testing for a unit root in time series regression. Biometrika, 75(2):

335–346, 1988.
R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical

Computing, Vienna, Austria, 2012. URL http://www.R-project.org. ISBN 3-900051-07-0.
C.A. Sims, J.H. Stock, and M.W. Watson. Inference in linear time series models with some unit roots.

Econometrica: Journal of the Econometric Society, pages 113–144, 1990.
Q. Wang, Y.X. Lin, and C. Gulati. Asymptotics for general nonstationary fractionally integrated pro-

cesses without prehistoric influence. Journal of Applied Mathematics and Decision Sciences, 6(4):
255–269, 2002.

22



Appendix

Proof of Lemma 1. The first part of the lemma was proven in Fan and Gençay (2010).

To prove the second statement, note that if {y}Tt=1 is a simple unit root process, then
yt = yt−1 + ut and therefore ỹt = ỹt−1 + ũt. This implies that under the null hypothesis

H0, Ṽt,1 is given by:

Ṽt,1 =
1√
2

(
2ỹ2t−1 + ũ2t

)

Following Fan and Gençay (2010), argue that

T/2∑

t=1

Ṽ 2
t,1 =

1

2



4

T/2∑

t=1

ỹ2
2t−1 + 4

T/2∑

t=1

ũ2tỹ2t−1 +

T/2∑

t=1

ũ2
2t





≡ 2ÃT + 2B̃T +
1

2
C̃T

where

ÃT =

T/2∑

t=1

x̃2
t B̃T =

T/2∑

t=1

ũ2tx̃t C̃T =

T/2∑

t=1

ũ2
t

and x̃t = ỹ2t−1 for t = 1, 2, . . . , T/2. Assume next that Assumptions (a) through (c)
hold. Then, using Proposition 17.2 in Hamilton (1994), obtain the following expansion:

x̃t = x̃0 +

t∑

j=1

ṽj = x̃0 +

2t−1∑

j=0

ũj = x̃0



ũ0 + bψ

2t−1∑

j=1

ũj + η̃2t−1 − η̃0





Next, let T1 = T/2 and define the partial sum processes associated with ṽt as follows:

X̃T1
(r) =

1

T1

bT1rc∑

t=1

ṽt 0 ≤ r ≤ 1

Now, let
L
= denote equality in law and note that the above partial sum satisfies the

following relation:

X̃T1
(r)

L
= bψ

1

T1

2bT1rc−1∑

t=1

ε̃j = 2bψ
1

T

bTrc−1∑

t=1

ε̃j

The functional central limit theorem (FCLT) for fractional process without prehistoric
influence, see Wang et al. (2002), then ensures the following convergence result:
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T 1/2−dX̃T1
(·)⇒ 2

bψσ

Γ(d+ 1)
Bd+1(·)

where ⇒ denotes weak convergence. Note however that

T1∑

t=1

x̃2
t =

T 2
1

2

∫ 1

0

TX̃2
T1

(r)dr

Invoking the continuous mapping theorem (CMT) to the construction above, a little
algebra demonstrates that:

T−2d 1

T 2
1

T1∑

t=1

x2
t =

1

2
T−2(d+1)

T1∑

t=1

x2
t

⇒ 2
b2ψσ

2

Γ2(d+ 1)

∫ 1

0

B2
d+1(r)dr

In other words, ÃT is Op
(
T 2(1+d)

)
.

Next, note that Corollary 1 in Wang et al. (2002) implies that:

T−2dC̃T ⇒ 2
b2ψσ

2

Γ2(d)

∫ r

0

B2
d(s)ds

Thus, C̃T is Op
(
T 2d

)
. Finally, arguing along similar lines as Fan and Gençay (2010)

and invoking Theorem 2 in Wang et al. (2002), it is not too difficult to show that B̃T is

Op
(
T 2d

)
as well. Conclude therefore that Ṽ 2

t,1 is Op
(
T 2(1+d)

)
.

Proof of Theorem 1. Suppose Assumptions (a) through (c) hold. Then if H0 is in
effect, note that ρ̂HV (d) can be rewritten as follows:

ρ̂HV (d) =
T−2

∑T/2
t=1 V

2
t,1

T−2(d+1)
∑T/2
t=1 Ṽ

2
t,1

The limiting form of the denominator follows immediately from Lemma 1. It was estab-

lished there that
∑T/2
t=1 Ṽ

2
t,1 = 2ÃT+2B̃T+ 1

2 C̃T and that ÃT is Op
(
T 2(d+1)

)
whereas both

B̃T and C̃T are Op
(
T 2d

)
. The result follows by noting that ÃT ⇒ 1

2

b2ψσ
2

Γ2(d+1)

∫ 1

0
B2
d+1(r)dr.

Similarly, the limiting form of the numerator flows from Lemma 1 in Fan and Gençay

(2010). The latter established that
∑T/2
t=1 V

2
t,1 = 2AT + 2BT + 1

2CT and that AT is

Op
(
T 2
)

whereas both BT and CT are Op (T ). The result follows by recalling that
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T−2AT ⇒ 2b2ψσ
2
∫ 1

0
W 2(r)dr.

The desired result is evident after cancelling factors of 2 from the ratio.

Proof of Theorem 2. Suppose Assumptions (a) through (c) hold and H0 is in ef-

fect. Theorem 2 in Fan and Gençay (2010) shows that
∑T/2
t=L1

V 2
t,1 is Op

(
T 2
)

and that

T−2
∑T/2
t=L1

V 2
t,1 ⇒ b2ψσ

2
∫ 1

0
W 2(r)dr. The rest of the proof focuses on establishing similar

results for the fractional counterpart Ṽt,1.

Consider first
∑T/2
t=L1

Ṽ 2
t,1, and note that:

Ṽt,1 = ỹ2t+1−L

L−1∑

l=0

gl +

L−2∑

l=0

gl



L−2−l∑

j=0

ũ2t−j−l




=
√

2ỹ2t+1−L +

L−2∑

l=0

gl



L−2−l∑

j=0

ũ2t−j−l




Then the following expansion holds:

T−2d 1

T 2
1

T1∑

t=L1

Ṽ 2
t,1 = T−2d 1

T 2
1

T1∑

t=L1


√2ỹ2t+1−L +

L−2∑

l=0

gl



L−2−l∑

j=0

ũ2t−j−l






2

= 8T−2(1+d)
T1∑

t=L1

ỹ2
2t+1−L

+8
√

2T−2(1+d)
T1∑

t=L1

ỹ2t+1−L



L−2∑

l=0

gl



L−2−l∑

j=0

ũ2t−j−l






+4T−2(1+d)
T1∑

t=L1



L−2∑

l=0

gl



L−2−l∑

j=0

ũ2t−j−l






2

= 8ÃL1

T + 8
√

2B̃L1

T + 4C̃L1

T

where
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ÃL1

T =

T1∑

t=L1

ỹ2
2t+1−L

B̃L1

T =

T1∑

t=L1

ỹ2t+1−L



L−2∑

l=0

gl



L−2−l∑

j=0

ũ2t−j−l






C̃L1

T =

T1∑

t=L1



L−2∑

l=0

gl



L−2−l∑

j=0

ũ2t−j−l






2

A similar derivation to the one used in Lemma 1 demonstrates that ÃL1

T is Op
(
T 2(1+d)

)
.

Moreover, an argument analogous to the one made in Theorem 1 demonstrates that:

T−2(1+d)ÃL1

T ⇒
1

2

b2ψσ
2

Γ2(d+ 1)

∫ 1

0

B2
d+1(r)dr

On the other hand, since B̃L1

T and C̃L1

T are weighted linear combination of B̃T and C̃T ,

respectively, and since both B̃T and C̃T are Op
(
T 2d

)
, this implies that both T−2(1+d)B̃L1

T

and T−2(1+d)C̃L1

T are op (1). Both results of the theorem follow immediately.

Proof of Theorem 3. Begin with the non-fractional case and consider the D[0, 1] ap-

proximation of the residuals regression of y
(i)
t on δ

(i)
t γ(i) for t = 1 . . . T , by noting the

following for s ∈ [0, 1]:

ŷ
(i)
bTsc = y

(i)
bTsc − δ

(i)
bTscγ̂

(i)

= qbTsc − δ
(i)
bTsc

(
γ̂(i) − γ(i)

)

Define N (1)(T ) = 1 and N (1)(T ) =
[

1 0
0 T−1

]
and note the following:

(
bψσT

1/2
)−1

δ
(i)
bTsc

(
γ̂(i) − γ(i)

)

= N (i)(T )δ
(i)
bTsc

(
N (i)(T )

(
b2ψσ

2
)−1

T−1/2
(
γ̂(i) − γ(i)

))

= N (i)(T )δ
(i)
bTsc

(
T−1

T∑

t=1

N (i)(T )δ
(i)
t

>
N (i)(T )δ

(i)
t

)−1(
T−1

T∑

t=1

N (i)(T )δ
(i)
t

> (
b2ψσ

2
)−1

T−1/2qbTsc

)

= N (i)(T )δ
(i)
bTsc

(
T−1

T∑

t=1

δ
(i)
t/T

>
δ

(i)
t/T

)−1(
T−1

T∑

t=1

δ
(i)
t/T

> (
b2ψσ

2
)−1

T−1/2qbTsc

)

⇒ δ(i)(s)

(∫ 1

0

δ(i)(s)
>
δ(i)(s)ds

)−1(∫ 1

0

δ(i)(s)
>
B(s)ds

)
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The above follows from Theorem 2, the continuous mapping theorem, and from the fact

that as T →∞, t/T → r and therefore N (i)(T )δ
(i)
bTsc → δ(i)(s). Thus, conclude that

(
bψσT

1/2
)−1

ŷ
(i)
bTsc ⇒ B(s)− δ(i)(s)

(∫ 1

0

δ(i)(r)
>
δ(i)(r)dr

)−1(∫ 1

0

δ(i)(r)
>
B(r)dr

)

(24)

A similar argument can be used for the fractional case. Consider therefore the following:

ˆ̃y
(i)
bTsc = ỹbTsc − δ

(i)
bTsc

(
γ̂(i) − γ(i)

)

and note that

(
bψσ

Γ(d+ 1)
T (1/2+d)

)−1

δ
(i)
bTsc

(
γ̂(i) − γ(i)

)

= N (i)(T )δ
(i)
bTsc

(
N (i)(T )

(
κ2(d)T 2(d+1/2)

)−1/2 (
γ̂(i) − γ(i)

))

= N (i)(T )δ
(i)
bTsc

(
T−1

T∑

t=1

N (i)(T )δ
(i)
t

>
N (i)(T )δ

(i)
t

)−1(
T−1

T∑

t=1

N (i)(T )δ
(i)
t

> (
κ2(d)T 2(d+1/2)

)−1/2

q̃bTsc

)

= N (i)(T )δ
(i)
bTsc

(
T−1

T∑

t=1

δ
(i)
t/T

>
δ

(i)
t/T

)−1(
T−1

T∑

t=1

δ
(i)
t/T

> (
κ2(d)T 2(d+1/2)

)−1/2

q̃bTsc

)

⇒ δ(i)(s)

(∫ 1

0

δ(i)(s)
>
δ(i)(s)ds

)−1(∫ 1

0

δ(i)(s)
>
Bd+1(s)ds

)

The above of course follows from a standard application of the fractional CLT on q̃bTsc
and the continuous mapping theorem. Thus, conclude that:

(
bψσ

Γ(d+ 1)
T (1/2+d)

)−1

ˆ̃y
(i)
bTsc ⇒ Bd+1(s)− δ(i)(s)

(∫ 1

0

δ(i)(r)
>
δ(i)(r)dr

)−1(∫ 1

0

δ(i)(r)
>
Bd+1(r)dr

)

(25)

The results of the theorem follow immediately from the proof of Theorem 2 by adapting
AL1

T and ÃL1

T to equations (24) and (25) respectively, and by noting that the appropriate
orders which derive the results of Theorem 2, continue to hold here as well.

Proof of Lemma 2. Since the limiting distribution the ρ
L,(i)
V (d) tends to the limiting

distribution ρ (d), the methods of proof in Theorem 3 can be analogously adapted to the
proof of Theorem 2 in Nielsen (2009) to derive the stated result.

Proof of Theorem 4. Note first that Theorem 3 of Nielsen (2009) shows that
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(
bψσT

1/2
)−1

ŷ
(i)
bTsc ⇒ J (i)

c (t) (26)

(
bψσ

Γ(d+ 1)
T (1/2+d)

)−1

ˆ̃y
(i)
bTsc ⇒ J

(i)
d+1,c(t) (27)

First the limiting distribution of AL1

T and ÃL1

T is established. This is essentially identical
to the proof outlined in Theorem 2 whereby the (fractional) FCLT and the CMT is
applied to equations (26) and (27) to yield:

T−2AL1

T ⇒
1

2
b2ψσ

2

∫ 1

0

J (i)
c (t)2dr

T−2(1+d)ÃL1

T ⇒
1

2

b2ψσ
2

Γ2(d+ 1)

∫ 1

0

J
(i)
d+1,c(t)

2dr

The results of the theorem then follow by noting that the order of AL1

T and ÃL1

T are

Op
(
T 2
)

and Op
(
T 2(1+d)

)
respectively, whereas BL1

T and CL1

T are Op
(
T 2
)

and B̃L1

T and

C̃L1

T are Op
(
T 2d

)
.
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