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bits of Q2 calculated by Calude and Dinneen in [4]. The downward
pointing arrows indicate whether or not each individual Turing machine
halts.



Preface

Human beings have a future if they deserve to have a future!
Gregory J. Chaitin

This book is offered with admiration and affection to Gregory J.
Chaitilﬂ on the occasion of his 60th birthday (25 June 2007).

Gregory J. Chaitin, together with Ray Solomonoff and Andrei N.
Kolmogorov, are the founding fathers of the subject called Algorithmic
Complexity, Kolmogorov Complexity, or Algorithmic Information Theory

(AIT)P|

R. Solomonoff and G. Chaitin at NKS2003 (photo by David Reiss)

1Greg for friends.
2Chaitin coined the name AIT; this name is becoming more and more popular.
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During its history of more than 40 years, AIT knew a significant vari-
ation in terminology. In particular, the main measures of complexity
studied in AIT were called Solomonoff-Kolmogorov-Chaitin complexity,
Kolmogorov-Chaitin complexity, Kolmogorov complexity, Chaitin complex-
ity, algorithmic complexity, program-size complexity, etc. Solovay’s hand-
written notes [22]E|, introduced and used the terms Chaitin complexity and
Chaitin machineﬂ The book [21] promoted the name Kolmogorov com-
plexity for both AIT and its main complexityEI

The main contribution shared by AIT founding fathers in the mid 1960s
was the new type of complexity—which is invariant up to an additive
constant—and, with it, a new way to reason about computation. Found-
ing fathers’ subsequent contributions varied considerably. Solomonoff’s
main interest and results are related to inductive inference, see [19]. Kol-
mogorov’s main contributions to AIT were mainly indirectEFthrough the
works of his students, P. Martin-Lo6f, L. Levin, V. UspenskijEI Chaitin’s
contributions—spanning over four decades—on plain and program-size
complexity, algorithmic randomness (finite and infinite sequences), appli-
cations to Godel incompleteness, and concrete versions of AIT (hands-on
programming), are central for the field. One can appreciate their lasting
impact by inspecting the forthcoming monograph [17] which also includes
the boom of results obtained in the last decade (due in part to the renais-
sance of Recursion Theory focussed on AIT).

While Chaitin’s main contributions are in AIT, he was engaged in other
research projects as well.

His first paper [5]—published when he was 18—was in automata the-
ory. It significantly improves a theorem by Moore, which later became very
important for modelling quantum phenomena with automata, see [24]. In
fact, Chaitin was interested in the relation between computation and quan-
tum physics since the early 1960s; he even wrote an APL2 course outline for

3During the research for my book [1] T was advised by Greg Chaitin to carefully read [22].
The problem was that the manuscript appeared to have vanished, certainly Chaitin and
Solovay didn’t have copies. Eventually, C. Bennett kindly sent me a copy in early 1993
and I circulated it in the community. It had the lasting effect predicted by Chaitin; see
for example [17].

4Solovay continued to use this terminology in his later paper [23]. T used this terminology
in [1].

5See more about the early history of AIT in [25].

6 As Shen explained in Dagsthul, by the mid 1960s Kolmogorov’s interests had more and
more focused on school mathematics education.

7See [20] for a complete list of publications.
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physics, [8]E| His paper [6] initially included a direct reference to Nature’s
impact on how a Turing machine operates, but that part was removed at
the referee’s request. Here is how he put it recently in [3]:

If Nature really lets us toss a coin, then, with extremely
high probability, you can actually compute algorithmically ir-
reducible strings of bits, but there’s no way to do that in a
deterministic world.

Chaitin has been employed by IBM for 40 yearsﬂ In the late 1970s and
early 1980s he was part of the group designing the RISC architecture. One
of his main contributionsm the Chaitin style graph colouring algorithm
for optimal global register allocation, featured as a key innovation in the
IBM 801 computer; a very influential paper [7, 9] describes this algorithm.
Chaitin’s intense interest in hands-on programming is also visible in his
pioneering work on concrete AIT.

Chaitin has a long-time interest in philosophy, in general, and in the

philosophy of mathematics, in particular. For Chaitin [11] (p. wiii), pro-
gramming is a reliable way to achieve mathematical understanding;:

To me, you understand something only if you can program it.
(You, not someone elsel!)

Why? Because [19] (p. 30):

... programming something forces you to understand it better,
it forces you to really understand it, since you are explaining it
to a machine.

He supports the view that mathematics is quasi—empiricaﬂ and ex-
perimental mathematics should be used more freely. In recent years his
attention was captured by Leibniz, the man and the philosopher, whom he
sees as precursor of the idea of descriptional complexity:

Mais quand une regle est fort composée, ce qui luy est conforme,
passe pour irrégulierE

One may be led to think that philosophical interests and a focus on big
ideas signal a lack of steam for technical mathematical problems. This is

8He is currently a member of the Physical Sciences Department at the IBM Thomas J.
Watson Research Center in Yorktown Heights, New York.

9 An all-day celebration will be organised by the IBM Research Division on 15 November.
10See also [10].

M Chaitin’s position is close to digital philosophy (E. Fredkin, S. Wolfram, and K. Zuse).
12But when a rule is extremely complex, that which conforms to it passes for irregular
(random).
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not the case as his most recent papers show [13, 14HE|

My first contact with Chaitin’s work was through Martin Davis’ paper
[16], which gives a beautiful presentation of one of Chaitin’s information-
theoretic forms of incompletenessE In the late 1970’s, I started a weekly
research seminar on AIT at the University of Bucharest which lasted till
my departure in 1992. In this seminar, we read many of Chaitin’s papers
and we presented some of our own; he was our main source of inspiration. I
first met Greg in January 1993—he was my first visitor in Auckland, where
my family relocated in December 1992. Since then, I have been very privi-
leged to continue meeting him regularly, to understand some of his results
not from papers, not from books, but from stimulating discussions, and to
cooperate on different projects (including a joint paper published in Na-
ture, [2], which inspired a poem [15]).

Chaitin is an unconventional person as well as an unconventional thinker
and scientist. Radically new ideas are not easily accepted and more often
than not generate strong opposition and resentment. One of the best “por-
traits” of “Chaitin in action” was painted by John Horgan in [18]:

Stout, bald, and boyish, he wore neobeatnik attire: baggy white
pants with an elastic waistband, black T-shirt adorned with a
Matisse sketch, sandals over socks. He was younger than I ex-
pected; I learned later that his first paper had been published
when he was only 18, in 1965. His hyperactivity made him seem
younger still. His speech was invariably either accelerating, as
he became carried away by his words, or decelerating, perhaps
as he realized he was approaching the limits of human compre-
hension and ought to slow down. Plots of velocity and volume
of his speech would form overlapping sine waves. Struggling to
articulate an idea, he squeezed his eyes shut, and, with an ago-
nized grimace, tipped his head forward, as if trying to dislodge
the words from his sticky brain.

It would be a fatal mistake to measure the huge impact of Chaitin’s
oeuvre with a classical yardstick. We cannot understand the information
compressed in a Chaitin Omega numbeIE one of his major discoveries, we

13Chaitin’s recent paper [14] was inspired by Davis’ paper [16], perhaps not a random
coincidence.

14This paper is reproduced in this book.

15In an article included in this book, J.-P. Delahaye observes that “the symbol € had
been used in mathematics for a variety of purposes. But increasingly it was reserved for
Chaitin’s number, just as 7 came exclusively to represent Archimedes’ constant at the
beginning of the 18th century.”
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can get a mer@ glimpse of it. How could we hope to understand Chaitin?

The contributions included in this book have been grouped into the fol-
lowing categories: technical contributions (AIT and related areas, Physics,
Algebra, Automata Theory, Computer Architecture), papers on Philosophy,
essays, and reminiscences. The book also includes Chaitin’s own recollec-
tions on AIT, and pictures from the Chaitin celebration at the New Kind
of Science Conference (Burlington, 15 July 2007).

I am grateful to Prof. Kok Khoo Phua, Chairman of World Scientific,
for supporting this project and to Kim Tan from World Scientific for being
such an efficient editor. I wish to thank Springer and the science magazine
Pour la Science for allowing me to reprint articles initially published by
them. I also thank Jeff Grote, Sally McCay, Jacquie Meyer, David Reiss,
and Karl Svozil for permission to reproduce their pictures. A big thank
you goes to all contributors to this volume as well as to Wolfram Research,
University of Vienna, the Godel Society and IBM Research for organising
meetings in which the book was or will be presented.

Finally, to the Omega Man, to use the Time magazine formula, from all
of us, a Very Happy Birthday!

Cristian S. Calude
Auckland, July 2007
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Chapter 1

On Random and Hard-to-Describe Numbers

Charles H. Bennettl]

IBM Watson Research Center, Yorktown Heights, NY 10598, USA;
bennetc@us.ibm.com

The first essay discusses, in nontechnical terms, the paradox implicit in
defining a random integer as one without remarkable properties, and
the resolution of that paradox at the cost of making randomness a prop-
erty which most integers have but can’t be proved to have. The second
essay briefly reviews the search for randomness in the digit sequences
of natural irrational numbers like 7w and artificial ones like Champer-
nowne’s C' = 0.12345678910111213. . ., and discusses at length Chaitin’s
definable-but-uncomputable number 2, whose digit sequence is so ran-
dom that no betting strategy could succeed against it. Other, Cabalistic
properties of € are pointed out for the first time.

1 Berry’s Paradox and the Unprovability of Randomness

The number 1,101,121 is unusual in that it is, or appears to be, the number
named by the expression the first number not nameable in under ten words.
However, since the italicized expression has only nine words, there is an
inconsistency in regarding it as a name for 1,101,121 or any other number.
This paradox, a variant of one due to Russell and Berry [1], shows that
the concept of nameability or definability is too vague and powerful to be
used without restriction. Because of it, the “function” N(x) = the number
of English words required to name the integer x must be regarded as ill-
defined for all but finitely many . Martin Gardner [2] has pointed out
that a similar paradox arises when one attempts to classify numbers as
“interesting” or “dull”: there can be no dull numbers, because, if there
were, the first of them would be interesting on that account.

1This paper was written and widely circulated in 1979, but is published here for the first
time in its original form.
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Berry’s paradox can be avoided and tamed by restricting nameability
to mean describability as output of an algorithm or computer program.
Consider the function C(x) = the number of bits in the smallest program to
compute the integer . A (binary) integer p is said to be a program to com-
pute x when some standard universal computer, given p as its sole input,
computes x as its sole output, afterward halting. In this case there can be
no doubt that p indeed describes z. Since every integer admits such a de-
scription, C(x) is well-defined for all z. However, to avoid Berry’s paradox,
it must be concluded that the function C(x) is itself uncomputable. For if
C(x) were computable, one could design a contradictory program ¢ to find
and print out the least number = for which C(z) exceeded the number of
bits in q.

Returning to the question of interesting and dull numbers, an interesting
number may without paradox be defined as one computable by a program
with fewer bits than the number itself. This short description would at-
test some special feature of the number, by which it could be distinguished
from the general run of numbers. A dull or “random” number, on the other
hand, would be one that is algorithmically incompressible. Obviously, most
numbers are random in this sense, since, for any n, there are more than
twice as many < n-bit numbers as (< n — 1)-bit numbers available to serve
as shorter descriptions. Using this definition of randomness, G. Chaitin [3]
demonstrated the following surprising fact, a form of Gédel’s incomplete-
ness theorem: although most numbers are random, only finitely many of
them can be proved random within a given consistent axiomatic system. In
particular, a system whose axioms and rules of inference require about n
bits to describe cannot prove the randomness of any number much longer
than n bits. If the system could prove randomness for a number much
longer than n bits, the first such proof (first, that is, in an unending enu-
meration of all proofs obtainable by repeated application of the axioms and
rules of inference) could be manipulated into a contradiction: an approx-
imately n-bit program to find and print out the specific random number
mentioned in this proof, a number whose smallest program is by definition
considerably longer than n bits.

2 The Search for a “Random” Real Number

It has been conjectured that the decimal expansions of irrational numbers
such as, 7, e, and v/2 are random in the sense of being “normal” [4] i.e.
that each digit 0 through 9, and indeed each block of digits of any length,
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occurs with equal asymptotic frequency. It is easy to show that no ratio-
nal number is normal to any base, and that almost all irrational numbers
are normal to every base; but the normality of these most famous irra-
tional numbers remains open. The question cannot be settled by any finite
amount of statistical evidence, since an ultimately normal number might
begin abnormally (e.g. e = 2.718281828...), or vice versa. Existing ev-
idence [5] shows no significant departures from randomness in 7. e also
appears to be normal, though there is some evidence for other statistical
irregularities [6].

In contrast to w, whose random-appearing digit sequence mocks the
attempt to prove it so, the following very non-random number:

C = 0.12345678910111213141516171819202122232425262728293031 . ..

is nevertheless provably normal, to base 10. This number, invented by D.
G. Champernowne [7], consists of the decimal integers written in increas-
ing order (Benoit Mandelbrot has pointed out another number of this sort,
whose base-2 normality is implicit in an earlier paper by N. Wiener [8]).
Departures from equidistribution are large in the initial portion of Cham-
pernowne’s or Wiener’s number, but approach zero as the count is extended
over more and more of the sequence. It is apparently not known whether
these numbers are normal to every base.

Although the digit sequence of m may be random in the sense of being
normal, it is definitely not random in the sense of being unpredictable: a
good gambler betting against it would eventually infer its rule and there-
after always win, and only a very inept gambler could lose many bets against
Champernowne’s number. Is there a sequence so random that no com-
putable betting strategy, betting against it at fair odds, can win an infinite
gain? Any number that is random in this strong sense is also normal to
every base. It is a basic result of probability theory that almost all real
numbers are random in this strong sense [9], but here again we are seeking
a specific random number.

There is, of course, a sense in which no specifically definable real num-
ber can be random. Since there are uncountably many real numbers but
only countably many definitions, the mere fact that a real number is de-
finable makes it atypical of real numbers in general. Here, however, we are
only seeking a number whose atypicality is unrecognizable by constructive
means. In particular, the number we are seeking must not be computable
from its definition; since if it were, that would already imply a perfect bet-
ting strategy. One may define an uncomputable real number K in terms
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of the halting problerrﬂ for programs on some standard universal computer
or programming language, setting the n’th binary digit of K to 1 or 0 ac-
cording to whether the n’th program halts. Although the resulting digit
sequence is indeed uncomputable, a gambler could nevertheless make infi-
nite profit betting against it, by betting only on solvable cases of the halting
problem, of which there are infinitely many. G. Chaitin [10] discovered a
real number which is uncomputable in the stronger sense needed:

Q = the halting probability of a universal computer whose program is
generated randomly, by tossing a fair coin whenever the computer requests
another bit of input.

Clearly, once the universal computer or programming language is spec-
ified, 2 is a well defined real number between zero and one. For typical
programming languages like Fortran, {2 will be nearer one than zero, since
a program generated at random is more likely to halt immediately (e.g. due
to a syntax error) then to loop. However, it can be shown that after the
first few digits €2 would look quite random, far more than Champernowne’s
number.

) has three related properties that make it unusual:

(1) It encodes the halting problem in a very compact form. Knowing its
first few thousand digits would in principle permit the solution of all
interesting finitely refutable mathematical conjectures.

(2) It is algorithmically incompressible: there exists a constant ¢ such that
the first n bits of ) are never expressible as the output of a program
smaller than n — ¢ bits.

(3) No computable gambling scheme can make infinite profit betting
against it.

) encodes the halting problem, but in a much more compact form than
K: knowing its first n bits is sufficient to solve the halting problem for any

2The halting problem, i.e. the problem of distinguishing programs that come to a spon-
taneous halt from those that run on indefinitely, is the classic unsolvable problem of
computability theory. At first sight the problem might seem solvable since, if a program
halts, that fact can certainly be demonstrated by running the program long enough.
Moreover there are many programs which can easily be proven to halt or not to halt
even without running the program. The difficulty comes not in solving particular cases,
but in solving the problem in general. It can be shown that there is no effective pre-
scription for deciding how long to run a program that waits long enough to reveal the
halting of all halting programs, nor any consistent system of axioms strong enough to
prove the non-halting of all non-halting ones. The unsolvability of the halting problem
can be derived from and indeed is equivalent to the fact that most random integers can’t
be proved random.



On Random and Hard-to-Describe Numbers 7

program up to n bits in length. Suppose one wishes to solve the halting
problem for a particular n-bit program p. The program p corresponds to a
particular sequence of n coin tosses having probability 27", and, if it halts,
contributes this amount of probability to the total halting probability 2.
Let €, represent the known first n bits of €2, so that

Q, < Q < Q,+2™"

In order to decide the halting of p, begin an unending but systematic search
for all programs that halt, of whatever length, running first one program
then another for longer and longer times (cf. Fig. 1) until enough halting
programs have been found to account for more than §2,, of the total halting
probabilityﬂ Then either p is among the programs that have halted so far,
or else it will never halt, since its subsequent halting would drive the total
halting probability above its known upper bound of §2,, + 27". Note that
there is apparently no way of using 2 to solve the halting problem for one
n-bit program without solving the halting problem for all other < n-bit
programs at the same time.

Most of the famous unproved conjectures of mathematics (Fermat’s con-
jecture, Goldbach’s conjecture, the extended Riemann hypothesis, and, un-
til recently, the four-color problem) are conjectures of the nonexistence of
something, and would be refuted by a single finite counterexample. Fer-
mat’s conjecture, for example, would be refuted by finding a solution to
the equation 2™ + y™ = 2" in positive integers with n > 2; Riemann’s
hypothesis by finding a misplaced zero of the zeta function. Such conjec-
tures are equivalent to the assertion that some program, which searches
systematically for the allegedly nonexistent object, will never halt.

Interesting conjectures of this sort are generally sufficiently simple to
describe that they can be encoded in the halting of small programs, a few
thousands or tens of thousands of bits long. Thus only the first few thou-
sand digits of 2 would be needed in principle to solve these outstanding
“finitely refutable” conjectures as well as any others of comparable simplic-
ity that might be thought of in the futureﬁ

3If Q were a terminating binary rational, the expansion ending in infinitely many ones
should be used, making 2, < Q = Q, +27". In fact, this problem never arises, since, as
will be proved presently, 2 is irrational, and so lies strictly between 2, and Q, 4+ 27".
4Some well-known conjectures, e.g. that 7 is normal, or that there are infinitely many
twin primes (consecutive odd primes like 3 and 5 or 17 and 19), or that there are only
finitely many primes of the form 2"+ 1, are not in principle decidable one way or the other
by any finite amount of direct evidence. Perhaps the most important conjecture of this
sort is the P # NP conjecture in computational complexity theory, which holds that there
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An important class of statements decidable by €2 are statements of the
form “proposition p is provable in axiomatic system A”. As indicated in
the first essay, given a description of the axioms and rules of inference of A,
it is possible to effectively enumerate all possible proofs within the system,
and hence all provable statements. Assuming that the proposition p and
system A together require n bits to describe, there is a certain program of
about n bits which will halt if and only if p is provable in A. Thus, for any
proposition p and axioms A simple enough to be “interesting”, the first
few thousand bits of € suffice to decide among the three possibilities: p is
provable in A, p is refutable in A, or p is independent of A. Another con-
sequence of the enumerability of proofs, as mentioned earlier, is Chaitin’s
form of Godel’s theorem: even though most integers are algorithmically
random, no axiomatic system describable in n bits can prove randomness
for integers much larger than n bits. ) provides a strong converse to this
theorem: its first n bits constitute a sufficient “axiom” to decide the ran-

are problems for which the validity of a guessed solution can be tested quickly, but for
which solutions cannot be found quickly. Logically, such higher level conjectures involve
multiple quantifiers such as V3 “for infinitely many”, while finitely refutable conjectures,
i.e. those equivalent to the statement that a certain program will not halt, involve only
a single quantifier V “for all”. Although higher level conjectures cannot be directly
decided by €2, there is good reason to believe that many of them, including most of the
interesting ones, could be decided indirectly, as logical consequences of stronger, finitely
refutable conjectures. For example, may twin primes are known, and empirical evidence
indicates that the spacing between them grows rather slowly. Thus the twin prime
conjecture may be viewed as an unnecessarily weak form of a stronger but still probably
true assertion about the spacing of twin primes, say that there is always at least one pair
of twin primes between 10" and 10"+!. This stronger conjecture would be decided by
the early digits of €2, since it is equivalent to the nonhalting of a simple program that
looks for an excessively large gap in the distribution of twin primes. Conversely, the
assertion that there are only finitely many primes of the form 2™ + 1 may be viewed as
an unnecessarily weak form of the assertion that there are fewer than, say, 10190 such
primes, or some other easily-named large number (in fact only six are known). Like
the strengthened form of the twin prime conjecture, this assertion is equivalent to the
non-halting of a simple program, one that looks for the 10199’th prime of the specified
form. Similarly, the normality of m and the inequality of P and NP would follow from
stronger, finitely refutable statements supported by the same evidence as the original
conjectures. In all these cases the finitely refutable statement is obtained by assuming a
generous but computable bound on one of the original statement’s existential quantifiers.
Aside from these conjectures, which probably follow from finitely refutable ones, there
are some mathematical statements that definitely cannot be reduced to halting problems.
Typical of these are some statements about 2 itself, e.g. “the j’th bit of Q is a 1”. By
virtue of the incompressibility of €2, the first n members of this family of two-quantifier
statements [10] cannot be decided by any algorithm smaller than about n bits. This
implies, incidentally, that no irrational number can efficiently encode the decision of all
higher level statements the way 2 encodes the decision of all finitely refutable ones.
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domness of all integers of n + 1 bits or less. The procedure for doing this
is essentially the same as that used to solve the halting problem: to find
whether a given n + 1 bit integer x is algorithmically random, use €2,, as
described earlier to find all < n-bit programs that halt. If none of these
has z as its output, then by definition x is algorithmically random.

Let us now return to the senses in which 2 itself is random: its incom-
pressibility and the impossibility of successfully gambling against it. It may
appear strange that  can contain so much information about the halting
problem and yet be computationally indistinguishable from a meaningless
random sequence generated by tossing a coin. In fact, € is a totally infor-
mative message, a message which appears random because all redundancy
has been squeezed out of it, a message which tells us only things we don’t
already know.

To show that 2 is incompressible, let p be a program that for some n
computes €2,,, the first n bits of 2. This program may be altered, increasing
its size by at most ¢ bits (c a constant independent of n), so that instead of
printing €2, it finds and prints out the first algorithmically random (n + 1)-
bit number, as explained above. This would be a contradiction unless the
original program p were at least n — ¢ bits long.

No finitely describable computable gambling scheme can win an infinite
profit betting against the bits of 2. Let G be a gambling scheme, describable
in ¢ bits, and able to multiply the gambler’s initial capital 2* fold by betting
on some number n of initial bits of 2. Without loss of generality we may
suppose that the scheme includes a specification of the desired gain 2*, and
that it quits as soon as this gain is achieved, making no further bets. One
may imagine the same gambling scheme applied to other inputs besides (2.
On most of them it would fail to achieve its goal, but on some it would
succeed. Indeed one may use G to enumerate all the finite inputs on which
G would quit successfully. This set has total probability 27 or less, of
which 27" is contributed by €2,,.

It can be shown [10] that about n — k bits suffice to locate ,, within
this enumeration of successful inputs. Therefore §2,, can be computed by
a program of approximately g + n — k bits. This means, in turn, that
k cannot be much greater than g without violating the incompressibility
of Q. Therefore no g-bit gambling scheme betting on Q can multiply the
initial capital by more than about 29, the amount one would win by simply
knowing ¢ bits of 2 and betting only on those bits.

Throughout history philosophers and mystics have sought a compact
key to universal wisdom, a finite formula or text which, when known and
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understood, would provide the answer to every question. The Bible, the
Koran, the mythical secret books of Hermes Trismegistus, and the me-
dieval Jewish Cabala have been so regarded. Sources of universal wisdom
are traditionally protected from casual use by being hard to find, hard to
understand when found, and dangerous to use, tending to answer more and
deeper questions than the user wishes to ask. Like God the esoteric book is
simple yet undescribable, omniscient, and transforms all who know It. The
use of classical texts to foretell mundane events is considered superstitious
nowadays, yet, in another sense, science is in quest of its own Cabala, a
concise set of natural laws which would explain all phenomena. In mathe-
matics, where no set of axioms can hope to prove all true statements, the
goal might be a concise axiomatization of all “interesting” true statements.

) is in many senses a Cabalistic number. It can be known of, but not
known, through human reason. To know it in detail, one would have to ac-
cept its uncomputable digit sequence on faith, like words of a sacred text. It
embodies an enormous amount of wisdom in a very small space, inasmuch
as its first few thousand digits, which could be written on a small piece
of paper, contain the answers to more mathematical questions than could
be written down in the entire universe, including all interesting finitely-
refutable conjectures. Its wisdom is useless precisely because it is universal:
the only known way of extracting from €2 the solution to one halting prob-
lem, say the Fermat conjecture, is by embarking on a vast computation that
would at the same time yield solutions to all other equally simply-stated
halting problems, a computation far too large to be carried out in practice.
Ironically, although € cannot be computed, it might accidentally be gener-
ated by a random process, e.g. a series of coin tosses, or an avalanche that
left its digits spelled out in the pattern of boulders on a mountainside. The
initial few digits of €2 are thus probably already recorded somewhere in the
universe. Unfortunately, no mortal discoverer of this treasure could verify
its authenticity or make practical use of it.

The author has received reliable information, from a Source who wishes
to remain anonymous, that the decimal expansion of 2 begins

Q = 0.9999998020554253273471801908. ..
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Fig. 1. Method of using 2 to solve the halting problem for all programs of
length n. Let the first n digits of €2 be known; call them 2,,. Place a weight
equal to €2, in the left pan of a balance. Meanwhile begin a systematic but
unending search for programs that halt, running one program then another
for greater and greater time in the manner of the song “The Twelve Days
of Christmas”. Every time a program of length & is found to halt, having
caused the computer to read neither more nor less than its full £ bits in the
course of the computation, add a weight 27 to the right pan of the balance,
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because 27% is this program’s probability of being chosen and executed by
a computer whose input bits are supplied by a coin tossing. Eventually
the balance must tip to the right, since the total weight of programs that
halt, i.e. the halting probability €2, is an irrational number between €,, and
Q, + 27", After the balance has tipped, no more programs of length < n
bits can halt, because, if one did, that would raise 2 above its known upper
bound of ©,, +27".
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This short note puts the fundamental work of G. Chaitin into an histori-
cal perspective about the multisecular evolution of the art of computing.
It recalls that each major step forward in the creation of new numbers
was met by strong opposition. It shows, by way of an example taken
from SVD computation in nonassociative Dickson algebras, why classical
logic cannot account for certain results which carry global information.

2.1. Introduction

The scientific ceuvre of Gregory Chaitin revolves around computation and
displays a remarkable unity of thought. More than 4 decades ago, Chaitin
began to explore the limits of computation within the paradigm of a Tur-
ing machine. This led him to the celebrated Omega number [1,2] which
expresses the ultimate in uncomputability a la Turing.

The Turing “thesis” about computability is an axiomatic definition of
what can be computed (by a machine) within the limits of classical logic, the
rational logic based on elementary arithmetic. This axiom is now accepted
by computer scientists and logicians as a universal rule for computation.
Therefore the work of Chaitin, which questions this claim to universality
from within, has aroused passionate and antagonistic reactions, positive
and negative.

One of the main reasons for the irrational passion stirred by his work is
that it is rooted at a most fundamental level. Few questions reach deeper
into human understanding than “What can rational computation achieve?”.

From the point of view of classical logicians, the theoretical findings
of Chaitin about computation are unacceptable. Not because the mathe-
matics are wrong—they are impeccable—, but because the conclusions are



14 Frangoise Chaitin-Chatelin

viewed as heretical. Some of these logicians have expressed their criticisms
in a forceful way [12]. However, the absolute faith that computer scien-
tists put in the universal validity of the axiom of Turing is not equally
shared by everyone in the scientific community. Highly successful books by
Penrose [10, 11] and Wolfram [13] testify to the necessity to explore other
computational routes. An extension of the classical logic based on quan-
tum coherence was already advocated by D. Deutsch in the 1980’s [9]. This
quantum logic led to the development of quantum computing. Experiments
have shown that such a computation is physically realizable at the atomic
level (Zeilinger).

There are converging indications that new kinds of logic are required to
understand the real world which extends around and inside us. This has
not, however, mellowed the criticisms raised by orthodox logicians against
the pioneering insights of Gregory Chaitin.

This is not at all surprising. There are many historical cases of the rejec-
tion, by the vast majority of mathematicians, of radically new ideas, which,
much later, were recognised as fundamental to the advance of mathematical
understanding [7, 8]. Among the best known examples, one finds new kinds
of numbers: 1) negative numbers (12th—15th Century), ii) complex numbers
(16th—19th Century), iii) quaternions (1843). Before being finally incorpo-
rated into the mathematical corpus, each new kind of numbers was met by
scepticism at best, and its significance was passionately debated [3, 4, 7, 8].

This is all too understandable: each new number contradicted a com-
monly shared opinion of the time, implicitly taken as a universal law of
computation. These opinions were respectively the following:

i) all equations have either positive solutions, or no solution (Middle
Ages),
ii) any nonzero number has a positive square (late Renaissance),
iii) the multiplication of numbers is commutative (early 19th Century).

The discovery of each of these new numbers was a major step forward in
the evolution of the art of computing in the western world. This advance,
which spanned over seven centuries, was instrumental in the axiomatic
clarification of the foundations of mathematics which occured at the dawn
of the 20th Century. Thereafter, even associativity became an optional
feature for multiplication.
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2.2. Nonassociativity of multiplication

The notion of associativity was invented by Hamilton in July 1844 when
he realised that the multiplication of two octonions was not associative.
The octonions had been discovered 6 months earlier by his classmate
J. T. Graves, a lawyer at the University of London, in an effort to derive an 8
squares theorem on the model of Hamilton’s quaternions. Such a discovery
was extremely ahead of its time. The non-commutative quaternions were
then hardly accepted by mathematicians. Their use was to be aggressively
questioned by eminent American physicists (Gibbs-Heaviside) [8].

Despite this opposition, the associative algebras of Clifford (1878), which
extend the quaternions, have been successful tools for the development of
algebraic geometry and theoretical physics until to-day [4].

Two kinds of nonassociative algebras participated in the success: the
algebras of Lie and of Pascual Jordan. This very success did cast a shadow
on the role of other nonassociative algebras, such as Graves’ octonions,
in the analysis of computation. The 8D-octonions are the smallest of the
nonassociative Dickson algebras.

2.3. Nonassociative Dickson algebras

2.3.1. Presentation of Dickson’s doubling process

The three associative Dickson algebras Ay, k = 0 to 2, define successively
the reals, Ap = R, the complexes A; = C, and the quaternions As = H.

The nonassociative algebras Ay extend, for k > 3, the quaternions in
a way different from Clifford’s. Multiplication and conjugation are induc-
tively defined so that

L1 = (15,0), Tgg1 = (0,15)

Apr = Ap X g1 @ A X 1gy1, k>0,

where 1j, is the real unit of Ay [4].

This inductive process defines, from Ay = R at the beginning, an endless
chain of complezified algebras Aj, of dimension 2%, k € N*.

The process was observed by Dickson around 1912, and presented for
k = 2 as a computational way to induce the multiplication table for the oc-
tonions, which had been given independently by Graves (1844) and Cayley
(1845), from Hamilton’s multiplication table for the quaternions (1843).
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It is conventional wisdom that the lack of associativity is a severe limi-
tation for computation in Ay, k > 3. Nothing could be further from reality,
as this was shown in [3, 4]. Nonassociativity creates computational oppor-
tunities which are well exemplified by the Singular Value Decomposition
(SVD) for the left multiplication map L, :  — a X x, x € Ay, (Section 4).

Let [z,y,z] = (x X y) X z — x X (y X z) denote the associator for x,y, z
in Ak, k > 3.

Remark. Vectors in Dickson algebras have been called hypercomplex
numbers in the 19tH Century. And computation on hypercomplex num-
bers is classically known as “hypercomputation” [3,4,7]. This mathemat-
ical notion should not be confused with a recent version of computation
designed by computer scientists to overcome some of Turing’s limitations
(see http://en.wikipedia.org/wiki/Hypercomputation.)

2.3.2. Alternative vectors in Ay, k > 4

An alternative vector a in Ay satisfies the weakened associativity condition:
—la,a,z] = ||a|]Pz+a x (axz) =0

for any x in Ag. The condition is identically satisfied for k¥ < 3, but not
for k > 4. All canonical basis vectors e;, i = 0 to 2¥ — 1, are alternative
for arbitrary k. Among them, the two vectors 1 = ey and 1 = eqs—1 have
stronger properties. They span the subalgebra C; = lin(1, 1) isomorphic to
C. Any pair of vectors (z,y) in Cj satisfies

[x,x,y] = [%y,y] =0.

The vectors in C; are fully alternative for k > 4 [3].

2.3.3. The splitting A, = C; & Dy, k > 2
Let a be in Ag. It can be represented as the sum
a=a+pl+c

where h = a + 1 € Cj is the fully alternative head and c is the tail: c
belongs to the subspace Dy = (C%- of vectors with zero component on 1
and on 1 = 1. These vectors are called “doubly pure”. Such a splitting
plays an important role in non classical SVD calculations in Ag, k& > 3

(Section 4).
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2.4. SVD computation in Dy and Ag, k > 3

The notion of singular values for a matrix (or a linear map) plays an essen-
tial role in matrix computations, in particular for backward analysis when
the data are uncertain [7]. It dates back to Camille Jordan (1873).

For a € A, the singular values of the map L, are the non-negative
square roots of the eigenvalues of the symmetric map LI L,. For k < 3,
@ x (a x x) = ||a||>x for any x: there is a unique singular value ||a|| for L,,
and ||a|| = 0 iff @ = 0. But this need not be true anymore for k& > 4, unless
a is alternative.

2.4.1. c € Dy is doubly pure, k > 4.

Let ¢ be in Dy, k > 4. There are between 1 and 2¢~2 distinct nonnegative
singular values for L. for £ > 5. For k = 4, the number reduces to 1 or
3. The multiplicities are multiples of 4. The euclidean norm ||c|| is always
one of the singular values, corresponding to the 4D-singular subspace H,
(isomorphic to H) spanned by 1,¢,é and 1, with & = ¢ x 1 [3].

cis a zero divisor iff Ker L, # {0}, that is iff 0 is one of the singular values
for L.. Tt can be proved [3] that a zero divisor is necessarily doubly pure.

When c is not a zero divisor, ¢~! is uniquely defined by ¢! = —¢]|c||72.
L

Therefore L # L,-1 = 7 |PLC, and ”H C”l = |l¢||||Le=1 || represents the
c c

largest normalized singular value.

2.4.2. Deriving the SVD of a in A, from that of the tail c
in Dy, for k> 4

Let ¢ be given in Dy, such that ||c|| = 1. The spectrum of —L? is denoted
0. = o(—L?), and X is any eigenvalue in 0., A > 0. Let A\ = 1% denote
the eigenvalue associated with the 4D-eigenspace H.. The notation A # 14
means that either A # 1, or, if A = 1, its multiplicity is > 8. We set
Ny =a?+ %+ A, for A € 0., thus Ny > ||h]|> > 0 for h # 0.

Theorem 2.1. Fora=a+(31+c, c € Dy, LIL, = (a®+3?)I — L2. The
eigenvalues of LT L, are Ny, for X\ € o, with the same multiplicities.

Proof. Direct computation of (a— 31 —c) x (ax+B1xx+cxa), x € Ay.
One checks that ¢ x (I x z) 4+ 1 x (¢ x ) = 0 for € H, and = € H:. The
conclusion follows. O
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The classical derivation of the SVD for L, from that for L. yields a
generalization of Pythagoras theorem to ||h|| # 0 and to the singular values
for L., ¢ # 0:

a=h+c= Ny=|h|>?+X>0for h#0.

We have discovered (2005) that the nonassociative nature of multipli-
cation in Dickson algebras for k > 3 enables us to perform a non classical
derivation, which is a computational artifact in Ay, k > 3 [3].

2.4.3. Nonclassical derivation from c to a, k > 3

The nonclassical mode of derivation is defined in [3,Section 9]. It uses
the block-diagonal form of LTL, (with blocks of order 4) written in the
eigenbasis for —L2. In this nonclassical approach, the order in which the
addition of & and 1 is performed matters. From an SVD point of view,
addition is not always associative in Ay, k > 3, as we shall see.

When af # 0, there are 3 different routes to go from ¢ to a in Cj,
as sketched on Figure 1: one can reach a either directly (diagonally) or
sideways through d = 1 + ¢, or through e = o + ¢. When af = 0, the
route is unique.

Figure 2.1. Three routes from c to a in C; for a8 # 0

Section 9 in [3] uses (implicitly) the direct route a = h+ ¢, which yields
the same results as the sided one through e : a = 31 + e. The two routes
through d and e give different results for a8 # 0.

We define € : (s,t) € Rx RT = £(s,t) = ((s — )2, (s + 1)) € (RT)?
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where t > 0, s € R.

Theorem 2.2. For a = a + 1 +c¢, ¢ € Dy, k > 3, the nonclassical SVD
derivation yields the nonnegative values listed below in two columns:

’ A H via d ‘ direct or via e ‘
14 N1:Oé2+ﬂ2+1 N1
0<% 1 Ny £ 26V Ny + 26V + a2
= a® +£(8,VN) =£{(B, VA +0a?)
0 No = o? + 3 No £28a = (a & )2
Table 1
Proof. Based on [3, Lemma 9.3 and Proposition 9.4]. (I

For each A in o, and for a8 # 0, there are 1,3 or 4 different singular
values when they are computed non classically in Ag, k& > 3. All results
for 0 < X # 1% differ from the exact value Ny given in Theorem 4.1 when
B # 0, with common mean. We now take a fresh look at the logical paradox
arising from the existence of split zero divisors for 5% = X + o2 [3].

2.5. Is the nonclassical SVD derivation absurd?

2.5.1. The conventional analysis

From the point of view of classical logic, the nonclassical SVD results are
plainly wrong, since for 0 < A # 1% they do not agree with the exact value
Ny. Moreover, when 32 = o? + A, they contradict the theoretical result
that zero divisors necessarily belong to Dj. At face value, nonclassical SVD
seems absurd, and it should be rejected by any sane mathematician. Or
should it not?

Should we think twice? In the 16th Century, v/—1 was a complete
mystery, which appeared totally absurd at first sight. It took three cen-
turies of painful reflections to master its meaning as the “imaginary” unit
i. Once tamed, i = /—1 found its way in almost all engineering calcula-
tions of the 19th Century which dealt with wave propagation (light, sound,
electricity,magnetism,...).

Warned by history, we should be extremely cautious. We should not
jump hastily to the “obvious” conclusion. Could it be possible that non-
classical SVD computation serves a purpose from a computational point of
view, and that it delivers useful information?
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2.5.2. Induction and nonclassical singular values

To the vector a = a + 1 + ¢ in Ay, we associate ¢ = (a + ¢, 1) in Apy1,
for k > 3. We still assume that ||c|| = 1, ¢ € Dy, and 3 # 0. Observe that

el = flall = V/Ny.

Theorem 2.3. The eigenvalues of L£L¢ are given in Table 1 by the left
most column. Their values equal the nonclassical eigenvalues for LT L,,
computed in Ay, via d = $1+ c¢. Their multiplicities are multiplied by 2.

Proof. Let ¢ = (a+ ¢, B1), and v = (x,y). Direct computation of
?(¢ x v) shows that LgLW has the 2 x 2 block representation

M |G
L =
(Foir)
where M = (a? + %) — L? = LT L,, G = —G" = B[c,—,1]. Now Gz =
Ble, x,1] is 0 for x € H, by associativity, and equals 208¢ x x for x € Ht.
It is easily shown that L has a block diagonal structure, with blocks of

order 8, derived from the eigenstructure for —L?2, see [3,Section 11].
For A = 1% or 0, the corresponding blocks NyIg are diagonal. For

K
0 < X\ # 1%, the blocks are of the form NyIg+26V\J, with J = <0 %0 )

0
I
Its eigenvalues are +: and its singular values are 1 quadruple. Thus the

—1I
and K = ( 0 2). K is antisymmetric, K7 = - K, KTK = —K? = I,.

eigenvalues of J are given by the quadruple pair £1. And the eigenvalues
of LTL, are Ny +28v/X for 0 < X # 1%, O

We have been able to interpret half of the seemingly meaningless sin-
gular values in Aj, by the singular values of (a + ¢, 61) in the complexified
algebra Axi11 = Ar © Ak X 1k+1.

This is not a complete surprise. The interpretation of the nonclassical
singular values by induction from Ay to Apy1 mimics, for k > 3, the inter-
pretation of /=1 from R to C (k = 0). What seemed at first impossible
or absurd at a given level (dimension 2*) can be resolved and understood
easily at the next level (dimension 2¢+1).

However, this is just the tip of the iceberg, since any a in Ay can induce
4 or 8 different vectors in Ax11. A more complete study can be found in [6].
It sheds light on the role of nonclassical SVD in the process of creation by
hypercomputation.
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2.6. Conclusion

The moral of this story about computation with hypercomplex numbers
has already been given by Leibniz more than 300 years ago: “There is
hardly any paradox without its proper role”. And history tells us that ex-
treme caution should be used before judging, based on past experience, that
certain computations are absurd or impossible. Computation in nonasso-
ciative Dickson algebras begs for an extension of classical logic. It calls
for a dynamical logic where the results of a computation can be right and
wrong, depending on the point of view.

For example, in Ay, k > 3, d = 1+ ¢ in Tm Ay, is alternative iff ¢ is
alternative in Dy. Thus d cannot be a zero divisor in A when we assume
¢ to be alternative. For |3| = ||c||, ¢ = (¢, 31) is a zero divisor in Dyy1 [3].
This property is indicated by the nonclassical singular values: one is 0, the
other is 2||c||. These 2 values are wrong in relation with a, in A, but they
are the exact singular values for L, in Di41. The exact classical singular
value relative to a is, of course, v/2||c|| = [|a|| = ||¢||, but it is mute about
the 2 other singular values for L.

This internal dynamical relativity of viewpoints created by induction
exists for each level k. The limit as k — oo defines an evolution which is
clearly beyond the reach of any Turing machine [6].

If one wants to understand the manifested world, the moving, flexible
world that one sees and experiences, it is necessary to scrutinise the way
information is being dynamically processed during computation. This ne-
cessity was sensed by Gregory Chaitin already in the mid 1960’s when he
conceived of his Algorithmic Information Theory (AIT). His theory explores
the limits of formal axiomatic reasoning based on the Turing paradigm. As
was mentioned in the introduction, Chaitin exposes the limitations from
within the paradigm. It is clear that Dickson’s hypercomputation lies out-
side the paradigm, shedding a complementary light on the limitations from
without.

Time will come when it will be obvious that the Turing thesis is a
straight-jacket imposed on computation to make it mechanical. Time will
come when the message of Chaitin about the limitations of purely rational
computation and of axiomatic reasoning will be received by everyone [2].

There are many ways out of the evolutive dead-end that would result
from any axiomatically constrained computation, such as the one that was
imagined in the 20t Century by Hilbert (1900) and Turing (1936).
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A few such examples were mentioned in the introduction. We presented
in some detail another example set in the framework of nonassociative Dick-
son algebras, for which an extension of classical logic beyond Turing is
meaningful from the point of view of information: it takes into account the
duality of viewpoints based on induction. Computation in Dickson algebras
defines its own internal dynamics for evolution by successive complexifica-
tion. The internal complexity differs from, yet is complementary to, the
descriptive complexity of AIT. In AIT, one considers the complexity from
the viewpoint of an observer who simulates the phenomenon by running a
program, but is not a player in the evolution.

Nonassociative Dickson algebras appear as a natural framework for non-
linear computation of the kind provided by Life itself. Hypercomputation
helps us understand some of Life’s computing mechanisms which are not
revealed by associativity.

Even more than physics, biology, and Life sciences in general, are in
desperate need for new computational logics. Logics which can explain how
information is being processed by living organisms during their evolution.
Chaitin is one of the forerunners in this quest.
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If geometry is to serve as a model for the treatment of physical azioms, we
shall try first by a small number of axioms to include as large a class as
possible of physical phenomena, and then by adjoining new axioms to
arrive gradually at the more special theories. ... The mathematician will
have also to take account not only of those theories coming near to reality,
but also, as in geometry, of all logically possible theories. We must be
always alert to obtain a complete survey of all conclusions derivable from
the system of axioms assumed.

D. Hilbert, 1900.

3.1. Prologue

We argue that physics can be seen as a Janus—faced discipline whose the-
ories may be conceived as a kind of computational device, as suggested
by Chaitin, which is then complemented by a conceptual play in the sense
that we elaborate here. We take our cue from Hilbert’s 6th Problem (the
axiomatization of physics) and present an axiomatic unified treatment for
classical physics (classical mechanics, first-quantized quantum mechanics,
electromagnetism, general relativity and gauge field theory) based on what
we call Suppes predicates. We then obtain several undecidability and in-

LCorresponding author
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completeness results for the axiomatic systems which are developed out of a
simple set of concepts where we have cradled significant portions of physics
and show that they imply the undecidability of many interesting questions
in physics and the incompleteness of the corresponding formalized theories.
We give chaos theory as an example. Those results point towards the con-
ceptual depth of the ‘game of physics.” Our presentation follows several
results that we have obtained in the last two decades.

Why axiomatize a scientific theory? Doesn’t the extra rigor required
carry with itself an unwanted burden that hinders the understanding of the
theory’s concepts?

We axiomatize a theory not only to better understand its inner work-
ings but also in order to obtain metatheorems about that theory. We will
therefore be interested in, say, proving that a given axiomatic treatment for
some physical theory is incomplete (that is, the system exhibits the incom-
pleteness phenomenon), among other things. As a follow—up, we would also
like to obtain examples, if any, of physically meaningful statements within
that theory that are formally independent of its axioms.

Out of the authors’ previous work [15-18] we describe here a technique
that allows for such an axiomatization. Its main guidelines are:

e First, the mathematical setting of the theory is clarified, and everything
is formulated within the usual standards of mathematical rigor.

e We then formulate those results within an adequate axiomatic frame-
work, according to the prescriptions we present in this paper.

We may also be interested in semantic constructions. As the required
step to obtain those results, we show here how to embed a significant por-
tion of classical physics within a standard axiomatic set theory such as
the Zermelo—Fraenkel system together with the Axiom of Choice (ZFC set
theory). By classical physics we mean classical mechanics as seen through
the analytico-canonical (Lagrangian and Hamiltonian) formalism; electro-
magnetic theory; Dirac’s theory of the electron — the Schrodinger theory
of the electron is obtained through a limiting procedure; general relativity;
classical field theories and gauge field theories in particular.

Then, it is possible to examine different models for that axiom system
and to look for sentences that are true or not depending on their interpre-
tation — and that hopefully have corresponding different physical interpre-
tations.



Janus—Faced Physics 27

It is obvious that the crucial idea is the rather loose concept of “phys-
ically meaningful sentence.” We will not try to define such a concept.
However we presume (or at least hope) that our main examples somehow
satisfy that criterion, as they deal with objects defined within physical
theories, and consider problems formulated within the usual intuitively un-
derstood mathematical constructions of physics. Chaitin says that math-
ematics is random at its core. We show here that mathematics and the
mathematically—based sciences are also pervaded by undecidability and by
high—degree versions of incompleteness when axiomatized.

3.2. Hilbert’s 6th Problem

When we discuss the possibility of giving physics an axiomatic treatment we
delve into an old and important question about physical theories [12, 68].
The sixth problem in Hilbert’s celebrated list of mathematical problems
sketches its desirable contours [34]:

The Mathematical Treatment of the Axioms of Physics.

The investigations on the foundations of geometry suggest the problem:
to treat in the same manner, by means of axioms, those physical sciences
in which mathematics plays an important part; in the first rank are the
theory of probability and mechanics.

As to the axioms of the theory of probabilities, it seems to me to be de-
sirable that their logical investigation be accompanied by a rigorous and
satisfactory development of the method of mean values in mathematical
physics, and in particular in the kinetic theory of gases.

Important investigations by physicists on the foundations of mechanics
are at hand; I refer to the writings of Mach. .., Hertz. .., Boltzmann. . .,
and Volkman. .. It is therefore very desirable that the discussion of the
foundations of mechanics be taken up by mathematicians also. Thus
Boltzmann’s work on the principles of mechanics suggests the problem
of developing mathematically the limiting processes, those merely in-
dicated, which lead from the atomistic view to the laws of continua.
Conversely one might try to derive the laws of motion of rigid bodies
by a limiting process from a system of axioms depending upon the idea
of continuously varying conditions on a material filling all space contin-
uously, these conditions being defined by parameters. For the question
as to the equivalence of different systems of axioms is always of great
theoretical interest.

If geometry is to serve as a model for the treatment of physical axioms,
we shall try first by a small number of axioms to include as large a class
as possible of physical phenomena, and then by adjoining new axioms
to arrive gradually at the more special theories. At the same time Lie’s
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principle of subdivision can perhaps be derived from the profound theory
of infinite transformation groups. The mathematician will have also to
take account not only of those theories coming near to reality, but also,
as in geometry, of all logically possible theories. We must be always alert
to obtain a complete survey of all conclusions derivable from the system
of axioms assumed.

Further, the mathematician has the duty to test exactly in each instance
whether the new axioms are compatible with the previous ones. The
physicist, as his theories develop, often finds himself forced by the results
of his experiments to make new hypotheses, while he depends, with
respect to the compatibility of the new hypotheses with the old axioms,
solely upon these experiments or upon a certain physical intuition, a
practice which in the rigorously logical building up of a theory is not
admissible. The desired proof of the compatibility of all assumptions
seems to me also of importance, because the effort to obtain such a
proof always forces us most effectively to an exact formulation of the
axioms.

3.3. A review of axiomatization techniques

There are two widely known basic procedures to axiomatize a
mathematically—based theory, such as theories in physics, economics or the
ecology of competing species:

e We either use a syntactical approach & la Bourbaki [45]; or
e We follow a semantic approach, with the help of what we have called
Suppes predicates.

Both methods are, in effect, essentially equivalent (see [8, 14, 62]).
Mathematical structures and the Suppes set—theoretical predicates are of
course essentially formulated in the language of set theory.

Our goal is to follow the programme sketched in Hilbert’s 6th Problem.
We propose here an axiomatic treatment for physics that encompasses the
whole of classical physics — classical mechanics and classical field theories
— plus first—quantized theories like Dirac’s theory of the electron and its
non-relativistic counterpart, Schrédinger’s theory.

Hilbert stresses that we have to take into consideration:

[...] not only [...] those theories coming near reality, but also, as in
geometry, [...] all logically possible theories.
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So we will delve here with incompleteness and other metamathematical
phenomena in the realm of physicsE|

Models

Notice that we deal here with different concepts for which we loosely employ
the same word “model”:

e Asinterpretation of a formal language, as in the domain which is usually
called “theory of models.” This is the usual meaning for model.

e Asin “model of, or interpretation for a domain of the physical world.”
This is the customary informal meaning of the word for physicists,
perhaps a synonym for “picture,” or “description.”

Context will make clear the sense we require for “model.”

Physics: from informality to mathematical rigor

Our main goal here is to axiomatize portions of physics within the frame-
work of axiomatic set theory. It is therefore interesting and worthwhile
to follow the main historical development of formal treatments of physics
in three central domains, namely electromagnetic theory, gravitation the-
ory, and classical mechanics. We will point out in an informal vein how
mathematical rigor evolved together with the conceptual development and
clarification of those domains. The last step, that of a rigorous axiomati-
zation, will be treated below.

The main point in our exposition is: physics, both classical and quan-
tum, is here seen as an outcome, or as an extension of classical mechanicsﬂ
The Lagrangian and Hamiltonian formalisms, for systems of particles and
then for fields, are seen as a basic, underlying construct that specializes
to the several theories considered. A course in theoretical physics usually
starts from an exposition of the Lagrangian and Hamiltonian (the so—called
analytico—canonical) formalisms, show how they lead to a general formal

2Results that derive from the use of metamathematical techniques which are among other
things applied to the mathematics that underlie physics had already been obtained by
Maitland—Wright [49] in the early 1970s. That author investigated some aspects of the
development of Solovay’s mathematics [58], i. e., of a forcing model of set theory where
a weakened version of the axiom of choice holds, as well as the axiom “every subset of
the real line is Lebesgue—measurable.” Among other interesting results, it is shown that
the theory of Hilbert spaces based on that model does not coincide with the classical
version. Explorations of forcing models in physics can be found in [6, 7, 46].

3This is the actual way most courses in theoretical physics are taught.
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treatment of field theories, and then one applies those formalisms to electro-
magnetic theory, to Schrodinger’s quantum mechanics — which is obtained
out of geometrical optics and the eikonal equation, which in turn arise from
Hamilton—Jacobi theory — and gravitation and gauge fields, which grow
out of the techniques used in the formalism of electromagnetic theory. Here
we use a variant of this approach.

Electromagnetism

The first conceptually unified view of electromagnetic theory is given in
Maxwell’s treatise, dated 1873 (for a facsimile of the 1891 edition see [50]).

Maxwell’s treatment was given a more homogeneous, more compact no-
tation by J. Willard Gibbs, and a sort of renewed presentation of Maxwell’s
main conceptual lines appears in the treatise by Sir James Jeans (1925,
[38]). Next step is Stratton’s textbook with its well-known list of difficult
problems [59], and then Jackson’s book, still the main textbook in the 1970s
and 1980s [37].

When one looks at the way electromagnetic theory is presented in these
books one sees that:

e The mathematical framework is calculus — the so—called advanced cal-
culus, plus some knowledge of ordinary and partial differential equa-
tions — and linear algebra.

e Presentation of the theory’s kernel becomes more and more compact;
its climax is the use of covariant notation for the Maxwell equations.
However covariant notation only appears as a development out of
the set of Maxwell equations in the traditional Gibbsian “gradient—
divergence-rotational” vector notation.

So, the main trend observed in the presentation of electromagnetic the-
ory is: the field equations for electromagnetic theory are in each case sum-
marized as a small set of coordinate-independent equations with a very
synthetic notation system. When we need to do actual computations, we
fall back into the framework of classical, 19th—century analysis, since for
particular cases (actual, real-world, situations), the field equations open
up in general to complicated, quite cumbersome differential equations to
be solved by mostly traditional techniques.

A good reference for the early history of electromagnetism (even if its
views of the subject matter are pretty heterodoxical) is O’Rahilly’s tract
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[52].

General relativity and gravitation

The field equations for gravitation we use today, that is, the Einstein field
equations, are already born in a compact, coordinate-independent form
(1915/1916) [30]. We find in Einstein’s original presentation an explicit
striving for a different kind of unification, that of a conceptual unification
of all domains of physics. An unified formalism at that moment meant
that one derived all different fields from a single, unified, fundamental field.
That basic field then “naturally” splits up into the several component fields,
very much like, or in the search of an analogy to, the situation uncovered
by Maxwell in electromagnetism, where the electric field and the magnetic
field are different concrete aspects of the same underlying unified electro-
magnetic field.

This trend starts with Weyl’s theory [67] in 1918 just after Einstein’s
introduction in 1915 of his gravitation theory, and culminates in Ein-
stein’s beautiful, elegant, but physically unsound unified theory of the
non—symmetric field (1946, see [29]). Weyl’s ideas lead to developments
that appear in the treatise by Corson (1953, [13]), and which arrive at the
gauge field equations, or Yang—Mills equations (1954), which were for the
first time examined in depth by Utiyama in 1956 [65].

An apparently different approach appears in the Kaluza—Klein unified
theories. Originally unpromising and clumsy-looking, the blueprint for
these theories goes back to Kaluza (1921) and then to Klein (1926, [63]). In
its original form, the Kaluza—Klein theory is basically the same as Einstein’s
gravitation theory over a 5—dimensional manifold, with several artificial-
looking constraints placed on the fifth dimension; that extra dimension is
associated to the electromagnetic field.

The unpleasantness of having to deal with extraneous conditions that do
not arise out of the theory itself was elegantly avoided when A. Trautmann
in the late 1960s and then later Y. M. Cho, in 1975 [11], showed that the
usual family of Kaluza—Klein—like theories arises out of a simile of Einstein’s
theory over a principal fiber bundle on spacetime with a semi—simple Lie
group G as the fiber. Einstein’s Lagrangian density over the principal fiber
bundle endowed with its natural metric tensor splits up as Einstein’s usual
gravitational Lagrangian density with the so—called cosmological term plus
an interacting gauge field Lagrangian density; depending on the group G
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one gets electromagnetic theory, isospin theory, and so on. The cosmolog-
ical constant arises in the Cho-Trautmann model out of the Lie group’s
structure constants, and thus gives a possible geometrical meaning to its
interpretation as dark energy.

Here, conceptual unification and formal unification go hand in hand,
but in order to do so we must add some higher—order objects (principal
fiber bundles and the associated spaces, plus connections and connection
forms) to get our more compact, unified treatment of gravitation together
with gauge fields, which subsume the electromagnetic field. We are but a
step away from a rigorous axiomatic treatment.

Classical mechanics

The first efforts towards an unification of mechanics are to be found in La-
grange’s Traité de Mécanique Analytique (1811) and in Hamilton’s results.

But one may see Hertz as the author of the first unified, mathematically
well-developed presentation of classical mechanics in the late 1800s, in a
nearly contemporary mathematical language. His last book, The Principles
of Mechanics, published in 1894, advances many ideas that will later resur-
face not just in 20th century analytical mechanics, but also in general rela-
tivity [33]. Half a century later, in 1949, we have two major developments
in the field: C. Lanczos publishes The Variational Principles of Mechanics,
a brilliant mathematical essay [42] that for the first time presents classical
mechanics from the unified viewpoint of differential geometry and Rieman-
nian geometry. Concepts like kinetic energy or Coriolis force are made into
geometrical constructs (respectively, Riemannian metric and affine connec-
tion); several formal parallels between mechanical formalism and that of
general relativity are established. However the style of Lanczos’ essay is
still that of late 19th century and early 20th century mathematics, and is
very much influenced by the traditional, tensor—oriented, over a local coor-
dinate domain, presentations of general relativity.

New and (loosely speaking) higher—order mathematical constructs ap-
pear when Steenrod’s results on fiber bundles and Ehresmann’s concepts of
connection and connection forms on principal fiber bundles are gradually
applied to mechanics; those concepts go back to the late 1930s and early
1940s, and make their way into the mathematical formulations of mechan-
ics in the late 1950s. Folklore has that the use of symplectic geometry in
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mechanics first arose in 1960 when a major unnamed mathematiciarEI cir-
culated a letter among colleagues which formulated Hamiltonian mechanics
as a theory of flows over symplectic manifolds, that is, a Hamiltonian flow is
a flow that keeps invariant the symplectic form on a given symplectic man-
ifold. The symplectic manifold was the old phase space; invariance of the
symplectic form directly led to Hamilton’s equations, to Liouville’s theorem
on the incompressibility of the phase fluid, and to the well-known Poincaré
integrals — and here the advantage of a compact formalism was made clear,
as the old, computational, very cumbersome proof for the Poincaré invari-
ants was substituted for an elegant two-line, strictly geometrical proof.

High points in this direction are Sternberg’s lectures (1964, [60]), Mac-
Lane’s monograph (1968, [47]) and then the Abraham-Marsden treatise,
Foundations of Mechanics [1]. Again one had at that moment a physical
theory fully placed within the domain of a rigorous (albeit intuitive) math-
ematical framework, as in the case of electromagnetism, gauge field theory
and general relativity. So, the path was open for an axiomatic treatment.

From classical to quantum mechanics

Quantum mechanics has always been snugly cradled in the classical theory,
at least when considered by theoretical and mathematical physicists, far
from the cloudy popular misconceptions that have surrounded the domain
since its inception in the late 1920s. The Bohr-Sommerfeld quantization
conditions in the first, “old,” quantum theory, arise from the well-known
Delaunay conditions in celestial mechanics; so much for the old quantum
theory. The new, or Schrodinger-Heisenberg-Dirac quantum mechanics
is nearly empirical in its inception [66], but when Schrédinger and Dirac
appear on stage [23] we clearly see that the theory’s conceptual roots and
formalism arise out of classical mechanics. Schrodinger’s wave equation
is a kind of reinterpretation of the eikonal equation in geometrical optics,
which in turn is a consequence of the Hamilton—Jacobi equation; the Dirac
commutators and Heisenberg’s motion equations are new avatars of well—
known equations in the classical theory that involve Poisson brackets. We
can also look at the motion equations:
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as the definition of a partial connection given by the Hamiltonian H on a
manifold [40].

A surprising technical development stems from the efforts by Wightman
to place quantum mechanics and the second—quantization theories on a firm
mathematical ground. The starting point here was von Neumann’s view in
the early thirties that quantum mechanics was a linear dynamical theory
of operators on some Hilbert space. The Murray and von Neumann theory
of what we now know as von Neumann algebras (1936), later expanded to
the theory of C* algebras, allowed a group of researchers to frame several
quantum—theoretic constructions in a purely algebraic way. Its realization
in actual situations is given by a quantum state that induces a particular
representation for the system (representation is here taken as the mean-
ing used in group theory). This is the so—called Gelfand—Naimark—Segal
construction [31].

The C* algebra approach covers many aspects of quantum field the-
ory, and is again framed within a rigorous, albeit intuitive mathematical
background. It also exhibits some metamathematical phenomena, since the
existence of some very general representations for C* algebras are depen-
dent of the full axiom of choice.

To sum it up: physics has strived for conceptual unification during the
20th century. This unification was attained in the domains we just de-
scribed through a least—effort principle (Hamilton’s Principle) applied to
some kind of basic field, the Lagrangian or Lagrangian density, from which
all known fields should be derived.

Most of physics is already placed on a firm mathematical ground, so
that a strict axiomatic treatment of the main physical theories is possible.
Still, there are mathematically uncertain procedures which are part of the
everyday activity of the theoretical physicist, like Feynmann integration
— but in this particular example we can take Feynmann’s technique as
an algorithm for the generation of a series of Feynmann diagrams, that is,
as a strictly symbolic computational procedure. Other theoretical physics
constructs that do not have a clear mathematical formulation (e.g. Boltz-
mann’s H-theorem) can perhaps be approached in a similar way, as when
we obtain formal series expansions out of the entropy integral, while one
waits for a sound mathematical formulation for it.
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3.4. Structures, species of structures, models

We introduce here the concept of a mathematical structure. Presentation
will be mostly informal for the sake of clarity, and it is quite easy to develop
the ideas introduced in a rigorous way. However we will go slightly beyond
what is strictly required in this essay for the sake of completeness.

Mathematical structures are usually introduced either within the frame-
work of set theory, or within higher—order logic, that is, type theory. Both
presentations turn out to be essentially equivalent; professional mathemati-
cians (see Bourbaki [8]) and model-theorists favor the first approach, while
some logicians like Russell and Carnap explored the second way [9, 10, 55].

We follow here the set—theoretic approach. We will define mathematical
structures within set theory, that is to say, mathematical structures will be
conceived here as set—theoretic constructs.

Mathematical structures, species of mathematical structures

Very roughly: the structure is the arena where the game is to be played;
the species of structures tells us the rules of the game.

To sum it up before we start and to give a first idea of the concepts we
deal with here:

e A mathematical structure is finite sequence of sets, the basic sets, and
some other sets which are obtained from the basic sets through a finite
number of applications of two operations, the power set operation and
the Cartesian product.

e A species of mathematical structures is a set—theoretic predicate which
is the conjunction of two parts: first, a description of the structures
we shall deal with, and second, the axioms that those structures must
satisfy.

We suppose that we are working within some standard system of set
theory, such as, say, Zermelo—Fraenkel set theory (ZF) [8, 32].

Suppes predicates

This presentation is semi—formal. We leave aside several important con-
cepts like transportability [8, 14] for the sake of clarity in the exposition.
The usual concept of species of mathematica structures as introduced by
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Bourbaki [8] is a syntactical one. One of the authors formulated [14] a se-
mantical version of it which is fully equivalent to the original construction.
That second notion was called a Suppes predicate in the reference.

Loosely speaking, it can be described as follows. Let Lzr be the lan-
guage of ZF set theory. We construct a predicate

P(S, X0, X1,...,Xn),

that is to say, a formula of Lz that defines a particular kind S of structures
based on the sets X1, Xs,.... Predicate P is given by the conjunction of
two pieces:

e First piece, P (S5, Xo, X1,...,X,), shows how structure S is built out
of the basic sets Xg, X1,...,X,.

e Second piece, Po(S, Xo, X1,...,X,), is the conjunction of the axioms
that we wish S to satisfy.

We get:
P(S, X0, X1,...,Xn) ©pet P1(S, Xo, X1,...,Xn) A Po(S, Xo, X1,...,Xpn).

Here P(S, Xy, X1,...,X,) is called a species of structures on the basic
sets

XO7 s 7Xn7
and the predicate:
X0, X1,..., Xn P(S, X0, X1,..., Xn)

is called the class of structures that corresponds to P.

3.5. Axiomatization in mathematics

The preceding construction sketches the required background for our formal
treatment in this essay. It shows the way we will fit usual mathematical con-
cepts like those of group or topological space within a formal framework
like ZF set theory. We will in general assume that those formalizations
have been done as in our examples; if required, each structure and species
of structures we deal with can easily be made explicit (even if with some
trouble). It is in general enough to know that we can axiomatize a theory
of our interest with a Suppes predicate.

An axiomatic theory starts out of some primitive (undefined) concepts
and out of a set of primitive propositions, the theory’s axioms or postulates.
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Other concepts are obtained by definition from the primitive concepts and
from defined concepts; theorems of the theory are derived by proof mecha-
nisms out of the axioms.

Given the set—theoretic viewpoint for our axiomatization, primitive con-
cepts are sets which are related through the axioms. We adopt here the

views expressed with the help of Suppes’ slogan [62], slightly modified to
suit our presentation:

To aziomatize a theory in mathematics, or in the mathematics—based
sciences, is to define a set—theoretic predicate, that is to say, a species of
structures.

More precisely, to axiomatize an informal theory is to exhibit a species of
structures so that:

e The primitive terms of the theory are the basic sets and the primitive
relations of the species of structures.

e The theorems of the theory are the logical consequences of the species of
structures, whose primitive elements are replaced by the corresponding
primitive terms of the theory.

Proofs are made within set theory.

Let P be the set—theoretic predicate that describes our theory. The
structures which are models of P are a family Fp that may be taken to
determine P. Therefore, in order to study the theory 7p given by P we
can either proceed syntactically out of P, or semantically, out of Fp.

Roughly, the syntactical and semantical approaches are complementary:
given Fp we can recover P, and vice-versa. As we define P in set theory,
and as set theory can be taken as a fully axiomatic theory [8, 39], then the
theory of P—structures, which is the theory of 7p can also be formulated
(and formalized) within set theory.

Therefore, any mathematical theory of the kind considered in physics
as we have described it in this paper can in principle be formalized. That
is to say: given any mathematical argument, such as the proof of any
major theorem within mathematics, from Euclid’s proofs to the prime—
number distribution theorems, to the Malgrange preparation theorem or
to the ergodic theorem, anything in mathematics can be formalized with
the present techniques, either within ZF set theory or within one of its
extensions.
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What is an empirical theory?

We may identify theories in an obvious way with sets of sentences, to which
we add an empirical counterpart, that is to say, observational terms, pro-
tocol sentences, and the like. Also, we may assert that a theory is a family
of structures (models). Finally, according to our viewpoint a theory may
also be identified to a triple (S, D, R), where S is a species of structures
(Suppes predicates), D the set of domains of applications, and R the rules
that relate S to R [15, 16].

These views are not mutually incompatible.

We mainly adopt this third viewpoint. We will take here an empirical
theory to be a species of structures plus a domain D and the set of rules R
that relate the sentences to D. However we must distinguish the two steps
required in the axiomatization of an empirical theory:

e Construction of the theory’s Suppes predicate;
e Characterization of D and R, a procedure that depends on the science
where we find that theory.

3.6. Suppes predicates for classical field theories in physics

The usual formaﬂ treatment for physics, that is axiomatization in a general
setting, goes as follows: one writes down a Lagrangian or a Lagrangian den-
sity for the phenomena we are interested at, and then use the variational
principle as a kind of algorithmic procedure to derive the Euler-Lagrange
equations, which give us the dynamics of the system. The variational prin-
ciple also allows us to obtain a conservation—law, symmetry dependent,
interpretation of interaction as in the case of the introduction of gauge
fields out of symmetry conditions imposed on some field [13, 65].

We take here a slightly different approach. We describe the arena where
physics happens — phase space, spacetime, fibered spaces — and add the
dynamics through a Dirac-like equation.

Our results are not intended as a complete, all-encompassing, axiomat-
ics for the whole of physics: there are many interesting areas in physics
with uncertain mathematical procedures at the moment, such as statistical
mechanics or quantum field theory, and the present techniques do not seem

5We will proceed in an informal way, and leave to the archetypical interested reader the
toil and trouble of translating everything that we have done into a fully formal, rigorous,
treatment of our presentation.
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to be adequate for them. But we may confidently say that our axioma-
tization covers the whole of classical mechanics, classical field theory and
first—quantized quantum mechanics.

We follow the usual mathematical notation in this subsection. In par-
ticular, Suppes predicates are written in a more familiar but essentially
equivalent way.

The species of structures of essentially all classical physical theories
can be formulated as particular dynamical systems derived from the triple
P = (X,G, ), where X is a topological space, G is a topological group,
and p is a measure on a set of finite rank over X U G and it is easy to put
it in the form of a species of structures.

Thus we can say that the mathematical structures of physics arise out
of the geometry of a topological space X. More precisely, physical objects
are (roughly) the elements of X that:

e Exhibit invariance properties with respect to the action of G.
(Actually the main species of structures in “classical” theories can be
obtained out of two objects, a differentiable finite-dimensional real
Hausdorff manifold M and a finite-dimensional Lie group G.)

e Are “generic” with respect to the measure p for X.

(This means, we deal with objects of probability 1. So, we only deal
with “typical” objects, not the “exceptional” ones. This condition isn’t
always used, we must note, but anyway measure p allows us to identify
the exceptional situations in any construction.)

Let’s now give all due details:

Definition 3.1. The species of structures of a classical physical theory
is given by the 9-tuple

E - <M’ G7 P7f7 A7Z7 g7 B? v@ = [/>7
which is thus described:

(1) The Ground Structures. (M,G), where M is a finite-dimensional
real differentiable manifold and G is a finite-dimensional Lie group.

(2) The Intermediate Sets. A fixed principal fiber bundle P(M,G)
over M with G as its fiber plus several associated tensor and exterior
bundles.

(3) The Derived Field Spaces. Potential space A, field space F and
the current or source space Z. A, F and Z are spaces (in general,
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manifolds) of cross—sections of the bundles that appear as intermediate
sets in our construction.

(4) Axiomatic Restrictions on the Fields. The dynamical rule
V¢ = ¢ and the relation ¢ = d(a)a between a field ¢ € F and its po-
tential o € A, together with the corresponding boundary conditions
B. Here d(«) denotes a covariant exterior derivative with respect to
the connection form «, and V a covariant Dirac-like operator.

(5) The Symmetry Group. G C Diff(M) ® G’, where Diff(M) is the
group of diffeomorphisms of M and G’ the group of gauge transfor-
mations of the principal bundle P.

(6) The Space of Physically Distinguishable Fields. If K is one of
the F, A or Z field manifolds, then the space of physically distinct
fields is K£/G. U

(In more sophisticated analyses we must replace our concept of theory for
a more refined one. Actually in the theory of science we proceed as in the
practice of science itself by the means of better and better approximations.
However for the goals of the present work our concept of empirical theory
is enough.)

What we understand as the classical portion of physics up to the level of
first—quantized theories easily fits into the previous scheme. We discuss in
detail several examples: Maxwellian theory, Hamiltonian mechanics, gen-
eral relativity and classical gauge field theory. Then, what is given an
abstract form will receive its usual empirical translation.

Maxwell’s electromagnetic theory

Let M = R*, with its standard differentiable structure. Let us endow M
with the Cartesian coordination induced from its product structure, and let
n = diag(—1,+1,4+1,+1) be the symmetric constant metric Minkowskian
tensor on M.

Then M is Minkowski spacetime, the physical arena where we do special
relativity theory. As it is well-known, out of the linear transformations that
keep invariant tensor 1 we obtain the well-known relativistic contraction
and dilation phenomena.

We use standard physics notation. If the F),, (z) are components of the
electromagnetic field, that is, a differentiable covariant 2—tensor field on M,
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w,v=0,1,2,3, then Maxwell’s equations are:

O = 3",

OuFvp+ 0,F +0,F,, =0.

The contravariant vectorfield whose components are given by the set of
four smooth functions j#(x) on M is the current that serves as source for
Maxwell’s field F},,,. (We allow piecewise differentiable functions to account
for shock—wave like solutions.)

It is known that Maxwell’s equations are equivalent to the Dirac-like

set
Vo =u,
where
¢ = (1/2)Fus,
and
v=Ju",
V =+°0,,

(where the {v* : u =0,1,2,3} are the Dirac gamma matrices with respect
to 7, that is, they satisfy the anticommutation rules v#~4” + ~¥yu = 2nH").
Those equation systems are to be understood together with boundary con-
ditions that specify a particular field tensor F,,, “out of” the source j* [25].

The symmetry group of the Maxwell field equations is the Lorentz—
Poincaré group that acts on Minkowski space M and in an induced way on
objects defined over M. However since we are interested in complez solu-
tions for the Maxwell system, we must find a reasonable way of introducing
complex objects in our formulation. One may formalize the Maxwellian
system as a gauge field. We sketch the usual formulation: again we start
from M = (R*, 1), and construct the trivial circle bundle P = M x S! over
M, since Maxwell’s field is the gauge field of the circle group S* (usually
written in that respect as U(1)). We form the set £ of bundles associated
to P whose fibers are finite-dimensional vectorspaces. The set of physi-
cal fields in our theory is obtained out of some of the bundles in £: the
set of electromagnetic field tensors is a set of cross—sections of the bundle
F = A? @ st(M) of all s'-~valued 2-forms on M, where s' is the group’s
Lie algebra. To be more precise, the set of all electromagnetic fields is
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F C CK(F), if we are dealing with C* cross-sections (actually a submani-
fold in the usual C* topology due to the closure condition dF = 0).

Finally we have two group actions on F: the first one is the Lorentz—
Poincaré action L which is part of the action of diffeomorphisms of M; then
we have the (here trivial) action of the group G’ of gauge transformations of
P when acting on the field manifold F. As it is well known, its action is not
trivial in the non—Abelian case. Anyway it always has a nontrivial action
on the space A of all gauge potentials for the fields in F. Therefore we take
as our symmetry group G the product L ® G’ of the (allowed) symmetries
of M and the symmetries of the principal bundle P.

We must also add the spaces A of potentials and of currents, Z, as
structures derived from M and S'. Both spaces have the same underlying
topological structure; they differ in the way the group G’ of gauge transfor-
mations acts upon them. We obtain I = A' ® s'(M) and A =T = C*(I).
Notice that Z/G" = Z while A/G’ # A.

Therefore we can say that the 9—tuple
<M7 517P7f7A7g7I7B7V90 = L>

where M is Minkowski space, and B is a set of boundary conditions for our
field equations V¢ = ¢, represents the species of mathematical structures
of a Maxwellian electromagnetic field, where P, F and G are derived from
M and S'. The Dirac-like equation

V=1

should be seen as an axiomatic restriction on our objects; the boundary
conditions B are (i) a set of derived species of structures from M and S*,
since, as we are dealing with Cauchy conditions, we must specify a local or
global spacelike hipersurface C' in M to which (ii) we add sentences of the
form Va € C f(z) = fo(x), where fy is a set of (fixed) functions and the f
are adequate restrictions of the field functions and equations to C.

Consistency of the added axioms

Hamzltonian mechanics

Hamiltonian mechanics is here seen as the dynamics of the “Hamiltonian
fluid” [1, 3, 42]. Our ground structure for mechanics starts out of basic sets
which are a 2n—dimensional real smooth manifold, and the real symplectic
group Sp(2n,R). Phase spaces in Hamiltonian mechanics are symplectic



Janus—Faced Physics 43

manifolds: even—dimensional manifolds like M endowed with a symplectic
form, that is, a nondegenerate closed 2—form €2 on M. The imposition of
that form can be seen as the choice of a reduction of the linear bundle
L(M) to a fixed principal bundle P(M, Sp(2n, R)); however given one such
reduction it doesn’t automatically follow that the induced 2—form on M is
a closed form.

All other objects are constructed in about the same way as in the pre-
ceding example. However we must show that we still have here a Dirac—like
equation as the dynamical axiom for the species of structures of mechanics.
Hamilton’s equations are

ixQ = —dh,

where ix denotes the interior product with respect to the vectorfield X
over M, and h is the Hamiltonian function. That equation is (locally, at
least) equivalent to:

LxQ =0,
or
d(ixQ) =0,

where Lx is the Lie derivative with respect to X. The condition dy = 0,
with ¢ = ix (), is the degenerate Dirac-like equation for Hamiltonian me-
chanics. We don’t get a full Dirac-like operator V # d because M, seen as
a symplectic manifold, doesn’t have a canonical metrical structure, so that
we cannot define (through the Hodge dual) a canonical divergence § dual
to d. The group that acts on M with its symplectic form is the group of
canonical transformations; it is a subgroup of the group of diffeomorphisms
of M so that symplectic forms are mapped onto symplectic forms under a
canonical transformation. We can take as “potential space” the space of all
Hamiltonians on M (which is a rather simple function space), and as “field
space” the space of all “Hamiltonian fields” of the form ix$2.

Interpretations are immediate here: h is the system’s Hamiltonian,
which (given some simple conditions) can be seen as the system’s total en-
ergy. Invariance of the symplectic form by the Lie derivative with respect to
a Hamiltonian flow is equivalent both to Poincaré’s integral invariant theo-
rem and to Liouville’s theorem — just as a flavor of the way our treatment
handles well-known concepts and results in mechanics.
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General relativity

General relativity is a theory of gravitation that interpretes this basic force
as originated in the pseudo—Riemannian structure of spacetime. That is
to say: in general relativity we start from a spacetime manifold (a 4-
dimensional, real, adequately smooth manifold) which is endowed with an
pseudo—Riemannian metric tensor. Gravitational effects originate in that
tensor.

Given any 4-dimensional, noncompact, real, differentiable manifold M,
we can endow it with an infinite set of different, nonequivalent pseudo—
Riemannian metric tensors with a Lorentzian signature (that is, — + ++).
That set is uncountable and has the power of the continuum. (By nonequiv-
alent metric tensors we mean the following: form the set of all such metric
tensors and factor it by the group of diffeomorphisms of M; we get a set
that has the cardinality of the continuum. Each element of the quotient set
is a different gravitational field for M.)

Therefore, neither the underlying structure of M as a topological
manifold, nor its differentiable structure determines a particular pseudo—
Riemannian metric tensor, that is, a specific gravitational field. From the
strictly geometrical viewpoint, when we choose a particular metric tensor g
of Lorentzian signature, we determine a g—dependent reduction of the gen-
eral linear tensor bundle over M to one of its pseudo—orthogonal bundles.
The relation

g — g—dependent reduction of the linear bundle
to a pseudo—orthogonal bundle

is 1-1.
We now follow our recipe:

e We take as basic sets a 4—dimensional real differentiable manifold of
class C*, 1 < k < +o0, and the Lorentz pseudo-orthogonal group
0(3,1).

e We form the principal linear bundle L(M) over M; that structure is
solely derived from M, as it arises from the covariance properties of the
tangent bundle over M. From L(M) we fix a reduction of the bundle
group L(M) — P(M,0(3,1)), where P(M,0(3,1)) is the principal
fiber bundle over M with the O(3,1) group as its fiber.

Those will be our derived sets. We therefore inductively define a
Lorentzian metric tensor g on M, and get the couple (M, g), which is
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spacetime.

(Notice that the general relativity spacetime arises quite naturally out
of the interplay between the theory’s “general covariance” aspects,
which appear in L(M), and — as we will see in the next section —
its “gauge-theoretic features, which are clear in P(M,0O(3,1)).)
Field spaces are:

— The first is the set (actually a manifold, with a natural dif-
ferentiable structure) of all pseudo-Riemannian metric tensors,
M C CH(@2T.(M)), where C*(®2T,(M)) is the bundle of all C*
symmetric covariant 2—tensors over M.

— Also out of M and out of adequate associated bundles we get
A, the bundle of all Christoffel connections over M, and F, the
bundle of all Riemann—Christoffel curvature tensors over M.

We need the space of source fields, Z, that includes energy—momentum
tensors, and arise out of adequate associated tensor bundles over M.
G is the group of C*—diffeomorphisms of M.

If K is any of the field spaces above, then K/G is the space of physically
distinct fields.

Finally the dynamics are given by Einstein’s equations (there is also a
Dirac—like formulation for those, first proposed by R. Penrose in 1960
as a neutrino-like equation; see [24]).

The quotient K/G is the way we distinguish concrete, physically diverse,

fields, as for covariant theories one has that any two fields related by an

element of G “are” the “same” field.

Classical gauge fields

The mathematics of classical gauge fields can be found in [5, 65]. We follow
here the preceding examples, and in particular the treatment of general
relativity:

e The basic sets are a spacetime (M, g), and a finite dimensional, semi—
simple, compact Lie group G.

e The derived set is a fixed principal bundle P(M,G) over M with G
as the fiber.

e The group of gauge transformations G is the subgroup of all diffeo-
morphisms of P(M,G) that reduce to a diffeomorphism on M and to
the group action on the fiber.

e If /(G) is the Lie algebra of G, we get:
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— Connection—form space, or the space of potentials, noted A, is
the space of all C*—cross sections of the bundle of ¢(G)-valued
1-forms on M.

— Curvature space, or the space of fields F, is the space of all C*—
cross sections of £(G)—valued 2-forms on M, such that F' € F is
the field with potential A € A.

— Source space Z coincides with A, but is acted upon in a different
way by the group G of gauge transformations. (Currents in Z are
tensorial 1-forms, while gauge—potentials in A are transformed
via an inhomogeneous transformation.)

e The space of physically different fields is /G, where K is any of the
above field spaces.

e Dynamics are given by the usual gauge—field equations, which are a
nonlinear version of the electromagnetic field equations. There is also
a Dirac-like equation for gauge fields [27].

To sum it up: with the help of the schema presented at the beginning of
the section, we can say that the structure of a physical theory is an ordered
pair (F,G), where F is an infinite-dimensional space of fields, and G is
an infinite-dimensional group that acts upon field space. To get the Sup-
pes predicate we must add the information about the dynamical equations
D(¢) =0,¢ € F, for the fields ¢.

Notice that general relativity can be seen as a kind of degenerate gauge
field theory, more precisely a gauge theory of the O(3,1) group.

Quantum theory of the electron

The Dirac electron theory (and the general theory of particles with any
spin) can be easily formalized according to the preceding schemata. One
uses as geometrical background the setting for special relativity; dynam-
ics is given either by Dirac’s equation or Weyl’s equation, for the case of
zero—mass particles. Higher spin fields are dealt with the help either of
the Bargmann—Wigner equations or their algebraic counterpart [25]. The
Schrodinger equation is obtained from the Dirac set out of a — loosely
speaking — ‘standard’ limiting procedure, which can be formally repre-
sented by the addition of new axioms to the corresponding Suppes predi-
cate.



Janus—Faced Physics 47

General field theory

Sometimes one may wish to discuss field theory in a very general, motion—
equation independent, way. We then use as geometrical background the
construction of Minkowski space and take as dynamical axioms the field—
theoretic Euler-Lagrange equations, or, as we've said, we can take the
variational principle as a formal algorithm to derive the dynamics of the
system.

Other domains of science

We can extend the preceding techniques to several scientific domains. For
example, the bulk of economics, as presented in Samuelson’s Foundations
of Economic Analysis [56], or some specific results, such as the Nash equi-
librium theorem [18], easily fit within our construction — we can find in
a straightforward way a Suppes predicate for results in mathematical eco-
nomics [17]. The same goes with mathematical biology [44].

Summaing it up

We have proceeded from start with a specific goal in mind: we wished to
follow Hilbert’s programme in his 6th Problem, that is, we proposed an
axiomatiation of physics that allows us to explore many interesting math-
ematical consequences of those theories.

We now wish to obtain examples of Godel sentences — undecidable
sentences — within the axiomatic versions of those theories, and in a more
general cadre, we wish to see the effects and consequences of metamathe-
matical results and techniques when applied to those theories, or to their
axiomatic versions.

3.7. Generalized incompleteness

Preliminary

“OI‘,” /\, LLand777 _)’

For concepts from logic see [51]. We use: —, “not,” V,
“if... then...,” <, “if and only if,” Iz, “there is a z,” Vz, “for every z.”
P(z) is a formula with x free; it roughly means “x has property P.” Finally
T F & means T proves &, or € is a theorem of T. w is the set of natural

numbers, w = {0,1,2,...}.
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We deal here mainly with algorithmic functions. These are given by
their programs coded in Gédel numbers e [54]. We will sometimes use Tur-
ing machines (noted by sans—serif letters with the Gédel number as index
M.) or partial recursive functions, noted {e}.

We start from arithmetic, specifically from Peano Arithmetic, noted
PA [51]. Its language includes variables x,y, ..., two constants, 0 and 1,
the equality sign =, and two operation signs, +, x. We will also require
Russell’s ¢ symbol [41]. ¢, P(x) is, roughly, the x such that P(x).

The standard interpretation for PA is: the variables z,y, ... range over
the natural numbers, and 0 and 1 are seen as, respectively, zero and one.
PA is strong enough to formally include most of Turing machine theory
[18, 19]. Recall that a Turing machine is given by its Gédel number, which
recursively codes the machine’s program. Rigorously, for PA, we have:

Definition 3.2. A Turing machine of Gédel number e operating on x with
output y, {e}(x) = y is representable in PA if there is a formula F,(z,y)
in the language of our arithmetic theory so that:

(1) PAF Fo(z,y) A Fe(z,2) = y =z, and
(2) For natural numbers a, b, {e}(a) = b if and only if PA + F.(a,b). U

Then we have the representation theorem for partial recursive functions in
PA:

Prop 3.3. Every Turing machine is representable in Peano Arithmetic.
Moreover there is an effective procedure that allows us to obtain F, from
the Godel number e. U

Remark 3.4. We mainly consider here theories that are arithmetically
sound, that is, which have a model with standard arithmetic for its arith-
metical segment. O

A first example of generalized incompleteness

The example we now give shows that incompleteness is a pervasive phe-
nomenon, from an arithmetic theory like PA and upwards, that is, it affects
all theories that contain enough arithmetic, have a model where arithmetic
is standard, and have a recursively enumerable set of theorems.

Suppose that our theory S has Russell’s description symbol ¢ [41]. Let
P be a predicate symbol so that for closed terms &, zeta so that S+ & # (,
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St P(§) and S+ —P(¢) (we call such P, nontrivial predicates). Then, for
the term:

n=tf(x=E6Na)V(z=C_Aa),
where « is an undecidable sentence in S:

Prop 3.5. St/ P(n) and St/ =P(n). U

This shows that incompleteness is found everywhere within theories like
S.

Remark 3.6. From now on we will consider theories S, T, like the one
characterized above. U

Our main tool here will be an explicit expression for the Halting Func-
tion, that is, the function that settles the halting problem [54]. We have
shown elsewhere that it can be constructed within the language of classical
analysis. We have originally used the Richardson transforms (see details
and references in [18]) in order to obtain an explicit expression for the Halt-
ing Function, but they are not essential in our construction. We start from
a strengthening of Proposition |3.3

Prop 3.7. If {e}(a) = b, for natural numbers a,b, then we can algo-
rithmically construct a polynomial p. over the natural numbers so that
{e}(a) =b < xy,29,...,2k € Wpe(a,b,x1,xa,...,x) =0. t

Prop 3.8. a € R., where R, is a recursively enumerable set, if and only if
there are e and p so that 3z, za,..., 2k € W (pe(a, z1,Ta,...,z5) =0). U

Our results derive from the preceding propositions.

The Halting Function

One of the main results in Alan Turing’s great 1937 paper, “On computable
numbers, with an application to the Entscheidungsproblem” [64], is a proof
of the algorithmic unsolvability of a version of the halting problem: given
an arbitrary Turing machine of Godel number e, for input x, there is no
algorithm that decides whether {e}(z) stops and outputs something, or en-
ters an infinite loop.

Remark 3.9. Let M,,(a) | mean: “Turing machine of Gédel number m
stops over input a and gives some output.” Similarly M,,(a) T means,
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“Turing machine of Gédel number m enters an infinite loop over input a.”
Then we can define the halting function 6:

e O(m,a) =1 if and only if M,,(a) |.
e G(m,a) =0 if and only if M,,(a) T.

6(m, a) is the halting function for M,, over input a. |
6 isn’t algorithmic, of course [54, 64], that is, there is no Turing machine
that computes it.

Then, if o is the sign function, o(+z) = +1 and o(0) = 0:

Ezxpressions for the Halting Function

Prop 3.10 (The Halting Function.). The halting function 6(n, q) is ex-
plicitly given by:

0(n,q) = U(Gn,q)a

+oo R
Gng = Cpqg(x)e™™ dx,

Cm,g(®) = [Fing(2) = 1| = (Fpng(x) = 1).

F"JI('T) = KkPPn,q- o

Here py, 4 is the two-parameter universal Diophantine polynomial and xp
an adequate Richardson transform.

The succession of definite integrals

B Hoo C(m,ac)e’m2
K= | T

—00
also gives us the Halting Function:
Km

Om,z) = 0((m, ) = 0(m) = (=

).0

Remark 3.11. There is an expression for the Halting Function even within
a simple extension of PA. Let p(n,x) be a 1-parameter universal polyno-
mial; x abbreviates z1,...,x,. Then either p?(n,x) > 1, for all x € wP, or
there are x in w” such that p?(n,x) = 0 sometimes. As o(r) when restricted
to w is primitive recursive, we may define a function ¢ (n,x) = 1 —op?(n, x)
such that:
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e Either for all x € wP, ¥(n,x) = 0;
e Or there are x € wP so that ¢)(n,x) = 1 sometimes.

Thus the Halting Function can be represented as:

Z’(/)TLX

T74(x)

where 79(x) denotes the positive integer given out of x by the pairing
function 7: if 77 maps g—tuples of positive integers onto single positive
integers, 797 = 7(z,7(x)). O

Undecidability and incompleteness

Our main undecidability (and the related incompleteness) results stem from
the following:

Lemma 3.12. There is a Diophantine set D so that
méeD— Jxy,...,x, Ewplm,z1,...,2,) =0,

p a Diophantine polynomial, and D 1is recursively enumerable but not re-
cursive. U

Corollary 3.13. For an arbitrary m € w there is no general decision pro-
cedure to check whether p(m,xzq,...) = 0 has a solution in the positive
integers. U

Main undecidability and incompleteness result

Therefore, given such a p, and F' = kp(p), where kp is an adequate Richard-
son transform:

Corollary 3.14. For an arbitrary m € w there is no general decision pro-
cedure to check whether, for F and G adequate real-defined and real-valued
functions:

(1) There are real numbers x1,...,x, such that F(m,x1,...,z,) = 0;

(2) There is a real number x so that G(m,x) < 1;

(8) Whether we have Vo € R 8(m,x) =0 or Vx € R 8(m,x) = 1 over the
reals.

(4) Whether for an arbitrary f(m,z) we have f(m,x) = 0(m,x).
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Proof: From the preceding results. The last undecidability statement
follows from the third one. U

We conclude with a first, quite all-encompassing, result. Let B be a
sufficiently large algebra of functions and let P(z) be a nontrivial predi-
cate. If £ is any word in that language, we write ||£|| for its complexity,
as measured by the number of letters from ZFC’s alphabet in £. Also we
define the complezity of a proof Cyzrc(€) of £ in the language of ZFC to be
the minimum length that a deduction of £ from the ZFC axioms can have,
as measured by the total number of letters in the expressions that belong
to the proof.

Remark 3.15. Recall that theory T' O PA is arithmetically sound if T has
a model where its arithmetic is standard. |

Prop 3.16. If ZFC is arithmetically sound, then:

(1) There is an h € B so that neither ZFC t/ =P (h) nor ZFC / P(h), but
N [ P(h), where N makes ZFC arithmetically sound.

(2) There is a denumerable set of functions h,,(z) € B, m € w, such that
there is no general decision procedure to ascertain, for an arbitrary m,
whether P(h,) or =P(h,,) is provable in ZFC.

(3) Given the set K = {m : ZFC F ¢(m)}, and given an arbitrary total
recursive function ¢ : w — w, there is an infinite number of values for
m so that Czpc(P(m)) > g(||P(m)]]).

Proof: Let 0 be as above. Let fy, go satisfy our conditions on P, that
is, ZFC - P(fo) and ZFC F =P(go). Then define:

h’(mVT) = 0(m7x)f0 + (1 - 0(m7x))90-

This settles (2). Now let us specify 6 so that the corresponding Diophantine
equation p = 0 is never solvable in the standard model for arithmetic, while
that fact cannot be proved in ZFC. We then form, for such an indicator
function,

h= 0o+ (1 6)go.

This settles (1). Finally, for (3), we notice that as K is recursively enumer-
able but not recursive, it satisfies the conditions in the Godel-Ehrenfeucht—
Mycielski theorem about the length of proofs. U



Janus—Faced Physics 53

3.8. Higher degrees
Our main result in this section is:

Prop 3.17. If T is arithmetically sound then we can explicitly and algo-
rithmically construct in the language L1 of T an expression for the char-
acteristic function of a subset of w of degree 0”.

Remark 3.18. That expression depends on recursive functions defined on
w and on elementary real-defined and real-valued functions plus the abso-
lute value function, a quotient and an integration, or perhaps an infinite
sum, as in the case of the # and 6 functions associated to the halting prob-
lem. U

Proof: We could simply use Theorem 9-II in [54] (p. 132). However
for the sake of clarity we give a detailed albeit informal proof. Actually
the degree of the set described by the characteristic function whose expres-
sion we are going to obtain will depend on the fixed oracle set A; so, our
construction is a more general one.

Let us now review a few concepts. Let A C w be a fixed infinite subset
of the integers:

Definition 3.19. The jump of A is noted A’; A’ = {x : ¢*(z) |}, where
¢4 is the A-partial recursive algorithm of index . |

In order to make things self-contained, we review here some ideas about
A-partial recursive functions.

From Turing machines to oracle Turing machines

(1) An oracle Turing machine ¢4 with oracle A can be visualized as a two—
tape machine where tape 1 is the usual computation tape, while tape 2
contains a listing of A. When the machine enters the oracle state s, it
searches tape 2 for an answer to a question of the form “does w € A?”
Only finitely many such questions are asked during a converging com-
putation; we can separate the positive and negative answers into two
disjoint finite sets D, (A) and D}(A) with (respectively) the positive
and negative answers for those questions; notice that D, C A, while
D} C w—A. We can view those sets as ordered k- and k*—ples; u and v
are recursive codings for them [54]. The D, (A) and D} (A) sets can be
coded as follows: only finitely many elements of A are queried during
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an actual converging computation with input y; if &’ is the highest in-
teger queried during one such computation, and if d4 C c4 is an initial
segment of the characteristic function c4, we take as a standby for D
and D* the initial segment d 4 where the length [(d4) = k" + 1.

We can effectively list all oracle machines with respect to a fixed A, so
that, given a particular machine we can compute its index (or Godel
number) z, and given z we can recover the corresponding machine.

(2) Given an A-partial recursive function ¢, we form the oracle Turing
machine that computes it. We then do the computation ¢4 (y) = z that
outputs z. The initial segment d,, 4 is obtained during the computation.

(3) The oracle machine is equivalent to an ordinary two—tape Turing ma-
chine that takes as input (y,dy 4); y is written on tape 1 while d 4 is
written on tape 2. When this new machine enters state sg it proceeds
as the oracle machine. (For an ordinary computation, no converging
computation enters sg, and dy, 4 is empty.)

(4) The two—tape Turing machine can be made equivalent to a one—tape
machine, where some adequate coding places on the single tape all the
information about (y, d, 4). When this third machine enters sq it scans
dy A

(5) We can finally use the standard map 7 that codes n—ples 1-1 onto w and
add to the preceding machine a Turing machine that decodes the single
natural number 7({y,d, 4)) into its components before proceeding to
the computation.

Let w be the index for that last machine; we note the machine ¢,,.
If = is the index for ¢2, we write w = p(z), where p is the effective

1-1 procedure above described that maps indices for oracle machines into
indices for Turing machines. Therefore,

(rbf (y) = ¢p($) (<ya dy,A>)'

Now let us note the universal polynomial p(n,q,z1,...,2,). We can
define the jump of A as follows:

A" =A{p(z) : Fz1,...,xn € wp(p(2), (2,dz 4), 21, ..., Ts) = 0}.

With the help of the Richardson map described above, we can now form
a function modelled after the 6 function that settles the Halting Problem:;
it is the desired characteristic function:

Cor (LL') = e(p(.’li), <£L’, dm,@’»'
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(Actually we have proved more; we have obtained

car(x) = 0(p(x), (x, ds,a)),

with reference to an arbitrary A C w.)
Finally, we write ) (z) = ¢ (). U

We recall [54]:

Definition 3.20. The complete Turing degrees 0,07,0”,...,0®) ... p <

w, are Turing equivalence classes generated by the sets 0, ', 0", ..., 0@ .. ..
O

Now let 0(") be the n-th complete Turing degree in the arithmetical
hierarchy. Let 7(n,q) = m be the pairing function in recursive function
theory [54]. For 8(m) = 6(r(n,q)), we have:

Corollary 3.21 (Complete Degrees.). If T is arithmetically sound, for
all p € w the expressions OP(m) explicitly constructed below represent char-
acteristic functions in the complete degrees 0(P) .

Proof: From Proposition [3.17}

0 (m) = cyr(m) = 0(m),
0™ (m) = cyom (m),

for c4 as in Proposition U

Incompleteness theorems

We now state and prove several incompleteness results about axiomatized
versions of arithmetic with a classical first—order language, a recursive vo-
cabulary and a recursively enumerable set of axioms; say, Peano Arithmetic
(PA). These results are of course also valid for extensions of it T with the
same language and recursively enumerable set of axioms.

We suppose, as already stated, that PA C T means that there is an
interpretation of PA in T.
The next results will be needed when we consider our main examples.

L]
We recall that “—” — the truncated sum — is a primitive recursive oper-
ation on w:
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° Fora>b,a:b:a—b.
L]
e Fora<b,a—b=0.
In the next result, Z is the set of integers. The starting point is the

following consequence of a well-known result which we now quote: let N
be a model, N = T, and N makes T arithmetically sound. Then:

Prop 3.22. If T is arithmetically sound, then we can algorithmically
construct a polynomial expression ¢(z1,...,z,) over Z such that M |
VZ1,...,&n € wg(x1,...,2,) > 0}, but

T Vxy,...,2n €wq(x1,...,2,) >0
and
TV 3x,...,zp €wg(ay,...,2,) =0.

Proof: Let € € Lp be an undecidable sentence obtained for T' with
the help of Godel’s diagonalization; let n¢ be its Godel number and let
mr be the Godel coding of proof techniques in T (of the Turing ma-
chine that enumerates all the theorems of T'). For an universal polynomial
p(m,q,z1,...,x,) we have:

q(xla e 7mn) = (p(mTvnf,xla o axn))Q' 0

Corollary 3.23. If PA is consistent then we can find within it a polyno-
mial p as in Proposition . O

We can also state and prove a weaker version of Proposition

Prop 3.24. If T is arithmetically sound, there is a polynomial expression
over Z p(z1,...,xy,) such that N | Vay,...,2, € wp(z1,...,2,) > 0,
while

T V2y,...,xn €Ewp(Ty,...,2n) >0

and
TV 3x1,...,2, €Ewp(x1,...,2,) =0.
Proof: See [21]. If p(m,x1,...,2,), m = 7(g, ), is an universal poly-
nomial with 7 being Cantor’s pairing function [54], then {m : Jz;... €

wp(m,z1,...) = 0} is recursively enumerable but not recursive. Therefore
there must be an mg such that Vay... € w(p(mg,z1,...))%2 > 0. (This
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is actually a version of Post’s original argument for the proof of Godel’s
theorem [53].) O

Prop 3.25. If PA is consistent and N | PA is standard, and if P is non-
trivial then there is a term—expression ¢ € Lpa such that N = P(¢{) while
PA I/ P(¢) and PA I/ =P(().

Proof: Put ¢ = &+r(xy,...,z,)v, forr =1 . (¢g+1), ¢ as in Proposition
3.22| (or as p in Proposition [3.24)). 0

Remark 3.26. Therefore every nontrivial arithmetical P in theories from
formalized arithmetic upwards turns out to be undecidable. We can gener-
alize that result to encompass other theories T that include arithmetic; see
below. U

3.9. The 0 function and the arithmetical hierarchy

We now give alternative proofs for well-known results about the arithmeti-
cal hierarchy that will lead to other incompleteness results. Recall;

Definition 3.27. The sentences £, ( € L1 are demonstrably equivalent
if and only if T F £ « (. |

Definition 3.28. The sentence £ € Lp is arithmetically expressible if
and only if there is an arithmetic sentence ¢ such that T F £ < (. U

Then, for N = T, a model that makes it arithmetically sound,

Prop 3.29. If T is arithmetically sound, then for every m € w there is a
sentence £ € T such that M |= £ while for no k < n there is a ¥ sentence
in PA demonstrably equivalent to &.

Proof: The usual proof for PA is given in Rogers [54], p. 321. However
we give here a slightly modified argument that imitates Proposition
First notice that

00+ = {z: 0™ (2))
is recursively enumerable but not recursive in (™). Therefore, §(m+1) isn’t
recursively enumerable in ("), but contains a proper #(")—recursively enu-
merable set. Let’s take a closer look at those sets.

We first need a lemma: form the theory T("*1) whose axioms are those
for T plus a denumerably infinite set of statements of the form “ny € §(™),”
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“py € 0™ 7 that describe §(™). Of course this theory doesn’t have a
recursively enumerable set of theorems. Then,

Lemma 3.30. If T s arithmetically sound, then ¢2(m) () | if and
only if
THD - 3y x, € wp(p(2), (2, dy gom))s 15 Ty) = 0.
Proof: Similar to the proof in the non-relativized case; see [48], p. 126
ff. O
Therefore we have that the oracle machines ¢2‘”’” (x) | if and only if
T - 3y, ay, € wp(p(2),(z,dy gom ) T1,- -, T5) = 0.

However, since §(m+1) isn’t recursively enumerable in §(™) then there
will be an index mo(0™)) = (p(2), (z, d, gem)) such that

N =V, ..., 2, [p(mo, x1,...,2,)]% > 0,
while it cannot be proved neither disproved within 7™ It is therefore

demonstrably equivalent to a II,,+1 assertion. |

Now let q(mo(0™),z1,...) = p(mo(B™),x1,...))% be as in Proposi-
tion 3291 Then:

Corollary 3.31. If T is arithmetically sound, then for:
B = 6(G(mo (™)),

€T,

. +o00 C(m (@(”))’I)eim[z
G(mo(w( )>) :[m 1+é’(mo(®(”))>$)

Clmo(0™), ) = Ag(mo(0™), 21, ..., z,),
N = Bt = 0 but for all n < m + 1, ={T™ "+ = 0} and
—~{T™ b =(Bm+D) = 0)}. O

We have used here a variant of the construction of 6 and g which first
appeared in [16]. Then,

Corollary 3.32. If T is arithmetically sound and if Lp contains expres-
sions for the 0(™) functions as given in Proposition then for any
nontrivial arithmetical predicate P there is a ( € L1 such that the asser-
tion P(C) is T—-demonstrably equivalent to and T—arithmetically expressible
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as a Il,, 11 assertion, but not equivalent to and expressible as any assertion
with a lower rank in the arithmetic hierarchy.

Proof: As in the proof of Proposition we write:

C = E + [1 - (p(mo((l)m),xl, s 7:1;71) + 1)}”7
where p(...) is as in Proposition U

Remark 3.33. Rogers discusses the rank within the arithmetical hierarchy
of well-known open mathematical problems ( [54], p. 322), such as Fermat’s
Conjecture—which in its usual formulation is demonstrably equivalent to a
119 problemﬂ or unsettled questions such as Riemann’s Hypothesis, which
is also stated as a II{ problem. On the other hand, the P < NP hypoth-
esis in computer science is formulated as a ITJ sentence that can be made
equivalent to an intuitive I sentence, while its negation, the P = N P con-
jecture, can be formalized as a I1{ sentence within Peano Arithmetic [19].

Rogers conjectures that our mathematical imagination cannot handle
more that four or five alternations of quantifiers. However the preceding
result shows that any arithmetical nontrivial property within T can give
rise to intractable problems of arbitrarily high rank.

We stress the need for the extension T O PA, since otherwise we
wouldn’t be able to find an expression for the characteristic function of
a set with a high rank in the arithmetical hierarchy within our formal lan-
guage. 0

An extension of the preceding result is:

Corollary 3.34. If T is arithmetically sound then, for any nontrivial P
there is a ¢ € L1 such that P(() is arithmetically expressible, N = P(()
but only demonstrably equivalent to a H?H_l assertion and not to a lower
one in the hierarchy.

Proof: Put
¢=¢&+ 5y,
where one uses Corollary O

6The question of whether Wiles’ proof can be fully formalized within ZFC is still open,
and so, while we know that Fermat’s Theorem is true of the standard integers, we don’t
know which minimum axiomatic resources are required for its proof.
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Beyond arithmetic
We recall:
Definition 3.35.
0) = {{z,) @ € B0},

for z,y € w. O

Then:
Definition 3.36.

6 (m) = e (m),

where ¢y (m) is obtained as in Proposition U

Still,
Definition 3.37.

Pt — (@(w))/_
|

Corollary 3.38. 0“1 s the degree of 0(“+1). |

Corollary 3.39. 0“1 (m) is the characteristic function of a nonarith-
metic subset of w of degree 01, O

Corollary 3.40. If T is arithmetically sound, then for:
FEtD = a(Gmo(0))),

2

dx,

y +o00 C(m (@(W))’J;)e_x
G(mo(@( ))) :/_oc 1+2‘(m0( (@), x)

C(mo(0“)), 2) = Ag(mo(0“)), z1, ..., 2),
N & @t =0 but T @Y =0 and Tt ~(«@+D = 0). |

Prop 3.41. If T is arithmetically sound then given any nontrivial predicate
P:

(1) There is a family of terms (, € Lr such that there is no general
algorithm to check, for every m € w, whether or not P((,).
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(2) There is a term ¢ € L such that M = P(¢) while T I/ P(¢) and
Tt/ =P(Q).
(3) Neither the (,,, nor ¢ are arithmetically expressible.

Proof: We take:

(1) Gn = 2@ (m) + (1 = 0+ (m))y.
(2) ¢(=a+ypth.
(3) Neither 8+ (m) nor B@+1) are arithmetically expressible. U

Remark 3.42. We have thus produced out of every nontrivial predicate
in T intractable problems that cannot be reduced to arithmetic problems.
Actually there are infinitely many such problems for every ordinal «, as
we ascend the set of infinite ordinals in T'. Also, the general nonarithmetic
undecidable statement P({) has been obtained without the help of any kind
of forcing construction. O

For the way one proceeds with those extensions we refer the reader to
references on the hyperarithmetical hierarchy [4, 22, 54].

3.10. First applications: mechanics and chaos theory

The search for some algorithmic procedure or at least for some reasonable
criterion that would distinguish chaotic systems from non—chaotic ones was
the original motivation that led to the results presented in this work. After
striving for a short time to get one such criterion, the authors wondered
around 1985 whether the question wasn’t in fact algorithmically undecid-
able, perhaps due to the complexity of the behavior of systems that exhibit
chaotic behavior, even if such systems are described by rather simple sys-
tems of equations.

We later saw that the metamathematical phenomena we were looking
for had a different origin.

The original intuition was, roughly, that if a simple description encap-
sulates an involved behavior, then we would perhaps lack the tools to check
for specific properties of the system like chaos, since the system’s complex-
ity might — perhaps — exceed by far the available tools for its analysis,
whatever that might mean. However as it turned out the undecidability
and incompleteness of chaotic dynamical systems turned out to stem from
a totally different aspect of the question: as we have shown in detail, it is
essentially a linguistic phenomenon, that is, it depends on the tools that we
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have within formal systems to handle expressions for the objects in those
systems.

(When we say “the undecidability and incompleteness of dynamical sys-
tems,” we are making an abuse of language: more precisely, we mean the
undecidability or incompleteness properties of the formal theory of those
systems developed with the help of the language of classical analysis.)

Undecidability in classical mechanics

Let’s go straight to the point and ask three questions in order to give a
good example:

(1) Given a Hamiltonian h, do we have an algorithm that tells us whether
the associated Hamiltonian dynamical system X}, can be integrated by
quadratures?

(2) Given a Hamiltonian h such that X}, can be integrated by quadratures,
can we algorithmically find a canonical transformation that will do the
trick?

(3) Can we algorithmically check whether an arbitrary set of functions is
a set of first integrals for a Hamiltonian system?

The answer to those questions is, no. Proof follows from the techniques
developed in the previous sections [16].

Chaos theory is undecidable and incomplete

We finally reach the question that originally motivated our quest. Let X
be a smooth vectorfield on a differentiable manifold M. Can we algorith-
mically check whether X has some kind of chaotic behavior — in any of
the usual meanings for that word, that is, given an arbitrary vectorfield X,
can we algorithmically decide whether X is chaotic?

This problem was explicitly discussed by M. Hirsch [35] when he makes
some remarks about the Lorenz system of equations [43]:

(...) By computer simulation Lorenz found that trajectories seem to
wander back and forth between two particular stationary states, in a ran-
dom, unpredictable way. Trajectories which start out very close together
eventually diverge, with no relationship between long run behaviors.

But this type of chaotic behavior has not been proved. As far as [ am
aware, practically nothing has been proved about this particular system

(...)
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A major challenge to mathematicians is to determine which dynamical
systems are chaotic and which are not. Ideally one should be able to tell
from the form of the differential equations.

Emphasis is ours. Therefore we can ask:

Is there a general algorithmic criterion so that, if we specify some formal
definition for chaos in a dynamical system, we can determine whether
an arbitrary expression for a dynamical system satisfies that definition?

Again the answer is, no.

Let M be a differentiable manifold, and let U C M be a starshaped
open domain. As always, we suppose that ZFC is arithmetically sound,
and that our results happen within ZFC.

Remark 3.43. For the next proposition we need two specific results:

e The construction of a Hamiltonian system with a Smale horseshoe [36].
e The fact that some geodesic flows are Bernouilli flows.
That is, those geodesic flows have a decidedly random behavior.

We assert:

Prop 3.44. There is no general algorithmic procedure to check:

(1) Whether an arbitrary vectorfield X over U is ergodic.

(2) If dim M > 4, whether an arbitrary vectorfield X over U has a Smale
horseshoe.

(3) If M is compact, real, two-dimensional, of class C* and has a constant
negative curvature, whether an arbitrary X is a Bernouillian flow.

Proof: As above. For the first two assertions, let Ky be a constant
vectorfield on U, and let Y be ergodic, or have a Smale horseshoe (for an
explicit example, see [36]). Now let 6 be the “yes—no” function, or Halting
Function. Then

Zm =OmKo+ (1 -0,,)Y,
where
O (1, .., Tpn) = O (1),

has the same smoothness properties of Y, as both Ky and 6 are constant
functions. It is an undecidable, countable family of vectorfields, as in the
preceding results.
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For the third assertion, we know that geodesic flows on such an M are
Bernouillian. Then, if X is one such flow, we write

Zm = 0(m)X.

Again we cannot in general decide whether we have a trivial zero field or a
Bernouillian flow. U

We conclude with an incompleteness theorem:

Prop 3.45. If T contains an axiomatization of dynamical system theory
then there is an expression X in the language of T so that

T+ T is a dynamical system
while
Tt X is chaotic
and
Tt/ =(X is chaotic),

for any nontrivial predicate in the language of T' that formally characterizes
chaotic dynamical systems. |

That is to say, chaos theory is undecidable and incomplete (in its ax-
iomatic version), no matter what nontrivial definition that we get for chaos.

3.11. Janus—faced physics

Theoretical physics has two faces. On one side, it allows us to do computa-
tions, to quantitatively obtain data that describe and predict the behavior
of real-world systems. On the other side it allows us to imagine the inner
workings of the phenomena out of the mathematical tools used in their
description. This is the ‘conceptual game’ we mentioned before; we believe
that it clarifies and complements Chaitin’s vision of physical theories as
algorithmic devices. The plethora of incompleteness results we’'ve offered
is of course a parallel to his vision of randomness as deeply ingrained into
mathematics.

Let’s consider one aspect of our work as an example. We have axiom-
atized physics with axiom systems where the dynamical rule is given by
Dirac—like equations, instead of the more commonplace variational prin-
ciples. Dirac-like equations are today an important tool in differential



Janus—Faced Physics 65

geometry [57], where they are used in the classification of bundles over
4—dimensional manifolds (and 4-dimensional differential manifolds are our
current formal depiction of spacetimes). They appear in K—theory and in
modern theories of cohomology. When one uses Dirac-like equations in the
axiomatization of physical theories one wishes to stress the wide-ranging
relations that such a mathematical object has within today’s geometry.
Dirac-like equations are a kind of crossroad—concept in today’s mathemat-
ics. They lead to manifold routes, many of them still unexplored.

We’ve briefly mentioned 4-dimensional differential manifolds. The prob-
lem of the physical meaning of exotic, “fake” spacetimes, if any, is still wide
open. We've, again briefly, mentioned it before [15], when we pointed out
that there is an extra difficulty in that question: once we have uncountable
many exotic differentiable structures for some fixed adequate topological
4-manifold, we will have uncountable many set theoretically generic dif-
ferentiable structures for that manifold in adequate models for our theory.
What is their meaning?

We don’t know. Our axiomatization for classical and first—quantized
physics opens up large vistas towards unknown, totally new, landscapes.
Such is its raison d’étre.
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The Implications of a Cosmological Information Bound
for Complexity, Quantum Information and the Nature of
Physical Law
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Whereof one cannot speak, thereof one must remain silent.
Ludwig Wittgenstein'

Is our universe a polynomial or an exponential place?

Scott Aaronson?

4.1. What are the laws of physics?

Gregory Chaitin is undoubtedly one of the most profound thinkers of our
time. I have drawn on his work at several stages in my own career devel-
opment, and especially in formulating the ideas that follow. It is an honor
to contribute to this volume to celebrate Chaitin’s important insights into
mathematics, computing and physical reality.

I should like to start with a quotation from Chaitin’s recent book Meta-
Math: “Why should I believe in a real number if I can’t calculate it, if I
can’t prove what its bits are, and if I can’t even refer to it? ... The real line
from 0 to 1 looks more and more like a Swiss cheese.” 3 In other words,
the real line is a useful fiction, an unattainable idealization. The question
I wish to address here is how this sweeping conclusion impacts on my own
field of theoretical physics and cosmology. The real line, its extension to
the complex plane, together with the related properties of differentiability,
play an absolutely central role in theoretical physics, on account of the fact
that all the known fundamental laws of physics are expressed in terms of
differentiable functions defined over the set of real or complex numbers.
So I want to start by asking a very basic, but surprisingly little addressed
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question: What are the laws of physics and where do they come from?
The subsidiary question, Why do they have the form that they do? I have
discussed in detail elsewhere.

First let me articulate the orthodox position, adopted by most theoret-
ical physicists, which is that the laws of physics are immutable, absolute,
eternal, perfect mathematical relationships, infinitely precise in form. The
laws were imprinted on the universe at the moment of creation, i.e. at
the big bang, and have since remained fixed in both space and time. The
properties of the physical universe depend in an obvious way on the laws
of physics, but the basic laws themselves depend not one iota on what hap-
pens in the physical universe. There is thus a fundamental asymmetry: the
states of the world are affected by the laws, but the laws are completely
unaffected by the states — a dualism that goes back to the foundation of
physics with Galileo and Newton. The ultimate source of the laws is left
vague, but it is tacitly assumed to transcend the universe itself, i.e. to
lie beyond the physical world, and therefore beyond the scope of scientific
inquiry. The proper task of the physicist, it is often said, is to discover the
forms of the laws using reason and experiment, adopt them pragmatically,
and get on with the job of determining their consequences. Inquiry into
their origin is discouraged as a quasi-religious quest.

The orthodox view of the nature of physical laws conforms well to the
mathematical doctrine of Platonism. Plato regarded mathematical forms
and relationships as enjoying a real existence in an otherworldly realm,
where mathematicians come upon them in a voyage of intellectual discovery.
A Platonist regards mathematics as possessing an existence independent of
the physical universe, rather than being a product of the human brain. An
essential quality of the Platonic heaven is that the mathematical forms it
contains are perfect. For example, circles are exactly round, in contrast to
circles in the physical universe, which are always flawed approximations to
the idealized Platonic forms.

Most theoretical physicists are by temperament Platonists. They envis-
age the laws of physics too as perfect idealized mathematical relationships
and operations that really exist, located in an abstract realm transcending
the physical universe. I shall call this viewpoint physical Platonism to dis-
tinguish it from mathematical Platonism. Newton was a physical Platonist,
and cast his laws of mechanics and gravitation in terms of what we would
now call real numbers and differentiable functions. Taking Newton’s laws
seriously implies accepting infinite and infinitesimal quantities, and arbi-
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trary precision. The idealized, Platonic notion of the laws of physics reached
its zenith with the famous claim of Laplace, concerning an omniscient de-
mon. Laplace pointed out that the states of a closed deterministic system,
such as a finite collection of particles subject to the laws of Newtonian me-
chanics, are completely fixed once the initial conditions are specified®.

“We may regard the present state of the universe as the effect of its
past and the cause of its future. An intellect which at any given moment
knew all of the forces that animate nature and the mutual positions of the
beings that compose it, if this intellect were vast enough to submit the
data to analysis, could condense into a single formula the movement of the
greatest bodies of the universe and that of the lightest atom; for such an
intellect nothing could be uncertain and the future just like the past would
be present before its eyes.”

If Laplace’s argument is taken seriously, on the assumptions adopted,
then everything that happens in the universe, including Laplace’s decision
to write the above words, my decision to write this article, Chaitin’s beauti-
ful work on Omega, etc. are all preordained. The information about these
events is already contained in the state of the universe at any previous
time. To get some idea of the demon’s gargantuan task, note the follow-
ing. If the demon overlooked the gravitational force of a single electron
located at the edge of the observable universe, then his prediction for the
motion of a given molecule of air in your living room would be rendered
completely uncertain after only 12 intermolecular collisions.® This arrest-
ing example reveals how exquisitely sensitive to error predicting the future
can be. Laplace’s vignette is based on classical mechanics, and is usually
dismissed by invoking quantum mechanics, or arguing that the universe is
an open system, but this misses the point. The real absurdity in Laplace’s
statement is its implicit reliance on physical Platonism extrapolated to a
staggering degree, made without any experimental foundation whatever.In
spite of the fact that we now know Newtonian mechanics is only an ap-
proximation, physical Platonism remains the dominant philosophy among
theoretical physicists. The project of quantum cosmology, for example,
is predicated on the assumption that the laws of quantum mechanics and
general relativity exist independently of the universe, and may therefore
be invoked to explain how the universe came to exist from nothing. In the
fashionable subject of string/M theory, the string Lagrangian, or whatever
else serves to determine the unified dynamics, is assumed to somehow “al-
ready exist”, so that from it may (one day) flow an explanation for space,
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time, matter and force.

4.2. Laws as software

A completely different view of the relationship between mathematics and
physics comes from Chaitin’s development of algorithmic information the-
ory, from which he was drawn to the conclusion, “A scientific theory is like a
computer program that predicts our observations.”” For example, in New-
tonian mechanics the initial positions and momenta of a system of particles
serve as input data, the laws of mechanics are the program, and the final
state of the particles at some later time of interest corresponds to the out-
put. In this manner, the universe processes information automatically as it
evolves. So we might envisage the laws of physics in terms of software, as a
grand cosmic computer program. This shift of perspective, simple though it
may be, has profound implications, which are immediately apparent when
we ask what is the hardware on which the cosmic software is being run?
The answer is, of course, the universe itself. And by this I mean the real,
physical universe. I am not referring to some imaginary cosmic hardware
in a Platonic heaven, but the real universe we observe. The significance of
this last point is that the real universe might very well be finite, that is,
have finite resources and age, and thus be subject to restrictions on what
it can accomplish in regards to computation.

Why might the universe be finite in resources? What matters for com-
putational purposes is not the spatial extent of the universe, but the num-
ber of physical degrees of freedom located in a causally connected region.
Information processed in causally disconnected parts of space cannot be
considered as belonging to the same “program.” In the standard cosmo-
logical models, the region of the universe to which we have causal access
at this time is limited by the finite speed of light and finite age of the
universe (since the big bang). That is, there exists a “particle horizon”
in space, measuring some billions of light years across at this time. The
08 particles of matter,
and about 10%° photons and neutrinos. If the system is treated quantum

region within our particle horizon contains about 1

mechanically, with information encoded in discrete bits (e.g. spin up, spin
down), then the maximum number of bits of information contained in a
horizon volume at this time is about 10'?2 according to Seth Lloyd.® His
calculation takes into account the gravitational degrees of freedom too. If
the universe is uniform, any other causal region would possess a similar
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upper bound. Thus we may write

Iuniverse < 10122- (1)

The bound (1) is not fixed, but grows with time as the horizon expands
and encompasses more particles:

Iuniverse 08 tz- (2)

It is a simple matter, using quantum mechanics and thermodynamics,
to also calculate the maximum amount of information that could have been
processed (i.e. the total number of possible bit flips) in our causal region
since the origin of the universe. The answer comes out again of order 10'22 |
taking into account Eq. (2), i.e. the fact that the causal region was smaller
in the past and so encompassed less particles.

A similar information bound may be derived from an entirely different
line of argument, exploiting the link between physics and information dis-
covered by Bekenstein® and Hawking'® when applying quantum mechanics
to black holes. They found that an uncharged, non-rotating black hole
possesses entropy S given by

S = 4rkGM?/he® = 1 A, (3)

where M and A are the mass and area of the black hole respectively, and the
other symbols have their usual meanings as various fundamental constants
of nature.

The fact that the entropy is a function of black hole area, as opposed to
volume, is deeply significant. In the case of a laboratory gas, for example,
entropy is additive: twice the volume of a (homogeneous) gas will have
twice the entropy. Evidently, when gravitation enters the picture, the rules
of the game change fundamentally. Entropy can been regarded as a measure
of information I (or information loss), through the relationship

S =klogy I (4)

so the Bekenstein-Hawking formula (3) relates the total information content
of a region of space to the area of the surface encompassing that volume.
The information inside a black hole is lost because an observer in the ex-
ternal region cannot access it on account of the fact that the surface of the
hole is an event horizon. (There remains an unresolved issue about whether
the information is permanently lost, or just rendered inaccessible until the
black hole eventually evaporates. I shall not consider that topic further in
this chapter.) A useful way to think about Eq. (3) is to define the Planck



74 P. C. W. Davies

length Lp = (G/hc*)'/? as a fundamental unit, and note that, using Eq.
(4), the information of the black hole is simply one quarter of the horizon
area in Planck units.

Early on, Bekenstein sought to generalize his result by postulating that
Eq. (1) serves as a universal bound on entropy (or information content)
applicable to any physical system.!! That is, the information content of a
physical system can never, he claims, exceed one quarter of the area of its
encompassing surface. The black hole saturates the Bekenstein bound, and
represents the maximum amount of information that can be packed into the
volume occupied by the hole, as befits the equilibrium end state of a grav-
itating system. A simple argument in support of the universal Bekenstein
bound is that if a system confined to a certain region of space possessed
an information content in excess of the bound, one could then add some
matter and induce this system to undergo gravitational collapse to a black
hole, thereby reducing its entropy and violating the second law of thermo-
dynamics (suitably generalized to include event horizon area). However,
the Bekenstein bound remains a conjecture: a general proof is lacking.The
idea of associating entropy and information with horizon area was soon
extended to include all event horizons, not just those surrounding black
holes. For example, if the universe becomes dominated by dark energy,
which is what current astronomical observations suggest, it will continue
to expand at an accelerating rate (dark energy acts as a sort of antigravity
force). This creates a cosmological event horizon, which may be envisaged
as a roughly spherical surface that bounds the region of the universe to
which we can ever have causal and informational access. A similar horizon
characterizes the period of inflation, widely believed to have occurred at
about 10734 s after the big bang. Generalizations of horizon entropy have
been proposed for cosmological horizon area too, with de Sitter space (a
universe subject to dark energy alone) saturating the Bekenstein bound, by
Gibbons and Hawking!'?, Bousso'?
calculations support the proposal. Based on the foregoing ideas, 't Hooft!®
and Susskind!'® have proposed the so-called holographic principle, according
to which the information content of the entire universe is captured by an
enveloping surface that surrounds it. The principle states that the total
information content of a region of space cannot exceed one quarter of the
surface area that confines it (other variants of the holographic principle
have been proposed, with different definitions of the enveloping area), and
that this limit is attained in the case of the cosmological event horizon. A

, and Davis and Davies'*. A number of



The Implications of a Cosmological Information Bound 75

simple calculation of the size of our universe’s event horizon today based on
the size of the event horizon created by the measured value of dark energy
gives an information bound of 1022 bits, the same as found by Lloyd using
the particle horizon. The event horizon also expands with time, and at this
epoch is roughly the same radius as the particle horizon, but unlike the
latter, it asymptotes to a constant value not a lot greater than its present
value (assuming that the density of dark energy is constant). So whether
we take the particle horizon or the event horizon, or a more generalized
holographic principle, as the basis for the calculation, we discover an upper
bound like (1) on the information content of a causal region of the universe.

How might the bound affect physics and cosmology? The answer to
this question depends critically on one’s assumptions about the nature of
information. The traditional logical dependence of laws, states of matter
and information is

A. laws of physics — matter — information.

Thus, conventionally, the laws of physics form the absolute and eternal
bedrock of physical reality and, as mentioned, cannot be changed by any-
thing that happens in the universe. Matter conforms to the “given” laws,
while information is a derived, or secondary property having to do with
certain special states of matter. But several physicists have suggested that
the logical dependence should really be as follows:

B. laws of physics — information — matter.

In this scheme, often described informally by the dictum “the universe
is a computer,” information is placed at a more fundamental level than
matter. Nature is regarded as a vast information-processing system, and
particles of matter are treated as special states which, when interrogated
by, say, a particle detector, extract or process the underlying quantum
state information so as to yield particle-like results. It is an inversion fa-
mously encapsulated by Wheeler’s pithy phrase ‘It from bit’.!” Treating
the universe as a computer has been advocated by Fredkin'®, Lloyd® and
Wolfram!® among others. An even more radical transformation is to place
information at the base of the logical sequence, thus

C. information — laws of physics — matter.

The attraction of scheme C is that, after all, the laws of physics are
informational statements.
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For most purposes the order of logical dependence does not matter
much, but when it comes to the information bound on the universe, one is
forced to confront the status of information: is it ontological or epistemo-
logical? If information is simply a description of what we know about the
physical world, as is implied by Scheme A, there is no reason why Mother
Nature should care about the limit (1). Or, to switch metaphors, the
bedrock of physical reality according to Scheme A is sought in the perfect
laws of physics, which live elsewhere, in the realm of the gods — the Platonic
domain they are held by tradition to inhabit — where Mother Nature can
compute to arbitrary precision with the unlimited quantity of information
at her disposal. According to orthodoxy, the Platonic realm is the “real
reality,” while the world of information is but the shadow on Plato’s cave.
But if information underpins physical reality — if, so to speak, it occupies
the ontological basement — (as is implied in Scheme C and perhaps B) then
the bound on Iypniverse represents a fundamental limitation on all reality,
not merely on states of the world that humans perceive.

Someone who advocated precisely this latter position was Rolf Lan-
dauer, a former colleague of Chaitin’s at IBM. He explicitly took the view
that “the universe computes in the universe,” because he believed, as he
was fond of declaring, that “information is physical.” And Landauer was
quick to spot the momentous consequences of this shift in perspective:

“The calculative process, just like the measurement process, is subject
to some limitations. A sensible theory of physics must respect these limi-
tations, and should not invoke calculative routines that in fact cannot be

carried out.”?0

In other words, in a universe limited in resources and time — a universe
subject to the information bound (1) in fact — concepts like real numbers,
infinitely precise parameter values, differentiable functions, the unitary evo-
lution of a wave function — are a fiction: a useful fiction to be sure, but
a fiction nevertheless, and with the potential to mislead. It then follows
that the laws of physics, cast as idealized infinitely precise mathematical
relationships inhabiting a Platonic heaven, are also a fiction when it comes
to applications to the real universe. Landauer’s proposal that our theories
should be constrained by the — possibly finite — resources of the universe
has been independently developed in recent years by Benioff.2!

If one adopts Landauer’s philosophy, then some serious consequences
follow. In effect, one cannot justify the application of the laws of physics in
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situations employing calculations that involve numbers greater than about
1022, and if one does, then one might expect to encounter departures be-
tween theory and experiment. What might this mean in practice? Well,
for many purposes, the information bound is so large that the consequences
are negligible. Take for example the law of conservation of electric charge.
If this were to fail at the 10122 bit level of accuracy, the implications are
hardly dire. (The law has been tested only to about one part in 10'2.)

There are situations in which very large numbers routinely crop up in
theoretical physics calculations. One obvious class of cases is where ex-
ponentiation occurs. Consider, for example, statistical mechanics, where
Poincaré recurrence times are predicted to be of order exp(10") Planck
times (chosen to make the number dimensionless) and N is the number
of particles in the system. Imposing a bound of 10'?? implies that the
recurrence time prediction is reliable only for recurrence times of about
1090 years. Again, this is so long we would be unlikely to notice any de-
parture between theory and observation. Closely related is the problem
of Laplace’s demon already discussed. Imposing the information bound
renders the demonic prediction valueless almost immediately, because the
bound will be exhausted after of order one bit-flip of the 10'?? degrees of
freedom in the universe. Exponentiation arises in chaos theory too, via
the Lyapunov coefficient. In these examples, the fact that the underlying
deterministic mechanics might possess only finite precision is of little im-
portance, because any uncertainties thereby generated are already totally
swamped by the practical breakdown of predictability involved in complex
and/or chaotic systems.

A case of exponentiation in a relatively simple system occurs in general
relativity in connection with the formation of event horizons. For example,
when a star implodes to form a black hole, light leaving the surface of the
star is exponentially redshifted with an e folding time typically of order a
few microseconds. What happens, then, if the exponential redshift is cut
off at 10'?? Planck lengths? The classical properties of the black hole are
scarcely affected, but Hawking’s original derivation of black hole radiance is
invalidated, as it already well known.2? Inflation in the very early universe
involves an exponential rate of expansion, i.e. a de Sitter phase, and this
offers a stringent test of the information bound hypothesis. It is a key
feature of the information bound that it is time-dependent. In the past,
the bound was smaller, and its effects on physics would have been greater
(see Eq.(2)). During the very early universe, the effects could have been
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significant, and may have left a trace on the structure of the universe that
could be used to test the existence of the bound. Inflation is a brief episode
of exponential expansion thought to have occurred at about 10734
the big bang. At that time, the horizon size was about 3 x 1072* cm,
yielding a surface of about 107!? Planck areas. The information bound
then implies for the cosmological scale factor change

a(tafter)/a(tbefore) < 1019, (5)

Guth’s original proposal was for an inflation factor at least 10%°, so
(given the rough-and-ready nature of the calculation) the information
bound is consistent with inflation, but only marginally so, and a more

s after

detailed analysis may suggest observable consequences, such as a measur-
able departure from spatial flatness

Another class of problems in which large numbers are unavoidable is
quantum mechanics and quantum field theory, and it is to that topic that
I now turn.

4.3. The quantum vacuum

In quantum mechanics the state of the system is described by a vector in
a Hilbert space. For a generic problem, the Hilbert space will possess an
infinite number of dimensions. Clearly this construction comes into conflict
with the information bound hypothesis. A simple example of the problem
concerns the energy of the quantum vacuum, evaluated by summing zero
point modes over an infinite set of simple harmonic oscillators.?®> For a
massless scalar field confined to a cube of space of linear dimension L, the
energy density p of the vacuum is given by

p=thel™ Y, w0, (5)

where the sum is taken over all the field modes of momentum k. The right
hand side of Eq. (5) diverges like ~ w*
by imposing a cut-off in the summation. A natural cut-off is provided by
the Planck frequency, which incorporates only the fundamental constants
already present in the theory: %, ¢ and G. Using this cut-off, Eq. (5) yields
a vacuum energy density of 10112 Jm™3, which is some 10'?? times the
observed dark energy density. This staggering discrepancy between theory
and observation has been known for many years, and is known as the dark
energy (or cosmological constant) problem. It is one of the main outstand-
ing challenges to physical theory.

as w — 00. It may be rendered finite
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The occurrence of the same factor 1022 in this discrepancy as in the
cosmological information bound is a clear pointer to an alternative expla-
nation for dark energy, and indeed, inequality (1) provides a second natural
cut-off for the summation in Eq. (5). Rewriting (5) in terms of modes,

p~ heL™* S nt. (6)

If it is now argued that the sum Yn* should be bounded by (1), then
taking L to be the horizon radius (roughly a Hubble radius) and ¥n* ~
10'?2, we may evaluate the vacuum energy density to be

p = 10_9 Jm_3 ~ Pobserved- (7)

The same result may be derived in a completely different way, by im-
posing the condition on the vacuum energy that at every scale of size L,
the energy density must not exceed the level at which the total mass within
a volume L3 is greater than the mass of a black hole of size L, otherwise
the vacuum energy would presumably undergo gravitational collapse. This
requirement may be expressed as follows:

p02L3 < Mbh(L) (8)

Substituting the right hand side of Eq. (5) for p we obtain, to an order
or magnitude,

GhwlL3/c" < L (9)
or
p<ct/GL? (10)

Taking L to be the Hubble radius, inequality (10) may be re-cast in the

following suggestive form?*:

p < (pPPH)1/2 ~ 1079 J’ITL73 ~ Pobserved (11)

where pp is the Planck energy density and pg is the Hubble energy density,
defined to be the energy density of a single quantum in a Hubble volume
with a wavelength equal to the Hubble radius.

This remarkable result — that the cosmological information bound ex-
plains the magnitude of the dark energy — comes at a price, however. The
same reasoning may be applied to the pressure of the vacuum, p, which for
a massless scalar field is

p=—3hl 'Zw (12)
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i.e. p = —p, which is the necessary equation of state for the vacuum energy
to play the role of dark energy. Now recall that the information bound
varies with time in the manner indicated by Eq. (2). Hence the cut-off
in the summation in both Egs. (5) and (12) will be time-dependent, so
the dark energy is also predicted to be time-dependent. This raises an
immediate difficulty with the law of energy conservation:

pda® + d(pa) =0 (13)

which can be satisfied for a time-dependent p and p only if there is some
compensatory change, e.g. G and/or ¢ vary with time. There is a substantial
literature on such holographic cosmological models,?’ including comparison
with observations, which I shall not review here.

4.4. Quantum information processing

As a final application of the information bound hypothesis, let me turn
to non-relativistic quantum mechanics. A transformation in our under-
standing of information came with the recognition that because nature is
fundamentally quantum mechanical, the rules for information processing at
the quantum level differ not only in the technical details but in their very
conceptual basis from the classical case. In conventional (classical) infor-
mation theory, the basic unit is the bit, or binary choice, usually symbolized
by 0 and 1. In quantum mechanics, the bit is replaced by a more abstract
entity: the qubit. When humans read out the information content of a
quantum system, they appropriate only bits — the act of read-out collapses
qubits into bits. But the importance of quantum information dynamics is
that in an isolated unobserved quantum system, the qubits generally evolve
in a manner completely different from the classical case, involving the whole
panoply of quantum weirdness, including, most crucially, superposition and
entanglement. It is this feature that has commended quantum information
science to governments and business by holding out the promise of large-
scale quantum computation. By exploiting qubit dynamics, a quantum

computer would represent an unprecedented leap in computational power.25

The key to quantum computation lies with the exponential character of
quantum states. Whereas a classical binary switch is either on (1) or off
(0), a quantum system can be in a superposition of the two. Furthermore,
a multi-component quantum system can incorporate entanglement of spa-
tially separated subsystems. Combining these two properties implies that
an n-component system (e.g. n atoms) can have 2™ states, or components
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of the wave function, that describe the system. If it were possible to control
all the components, or branches, of the wave function simultaneously, then
the quantum system would be able to process information exponentially
more powerfully than a classical computer. This is the aspiration of the
quantum computation project.

Because the complexity of an entangled state rises exponentially with
the number of qubits (which is its virtue), large-scale quantum information
processing comes into conflict with the information bound. Specifically, a
quantum state with more components than about n = logy Iyniverse Will
require more bits of information to specify it than can be accommodated
in the entire observable universe! Using the bound given by inequality (1),
this yields a limit of approximately n = 400. In other words, a generic
entangled state of more than about 400 particles will have a quantum state
with more components than Iypiverse, €volving in a Hilbert space with more
dimensions than Iniverse- The question therefore arises of whether this vi-
olation of the information bound (1) signals a fundamental physical limit.
It seems to me that it must.

On the face of it, the limit of 400 particles is stringent enough to chal-
lenge the quantum computation industry, in which a long-term objective
is to entangle many thousands or even millions of particles and control
the evolution of the quantum state to high precision. The foregoing anal-
ysis, however, is overly simplistic. First, note that the dimensionality of
the (non-redundant part of the) Hilbert space is not an invariant number:
by changing the basis, the number might be reduced. So specifying the
complexity of a quantum state simply by using the dimensionality of the
Hilbert space can be misleading. A more relevant criterion is the number of
independent parameters needed to specify inequivalent n-component quan-
tum systems. This problem has been addressed, but it is a difficult one on
which only limited progress has so far been made.?” Second, the dimension-
ality of the Hilbert space serves to define the number of amplitudes needed
to specify a generic superposition. But the amplitudes themselves require
additional information to specify them; indeed, a single complex number
coefficient «; will mostly contain an infinite number of bits of information.
If we are to take the bound (1) seriously, then it must be applied to the
total algorithmic information content of the amplitude set over the entire
Hilbert space. Following Chaitin, the algorithmic information measure of
a binary string X is defined as

H(X) = —InP(X)+0(1) (14)
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where P(X) is the probability that the proverbial monkey typing randomly
on a typewriter will generate a program which, when run on a universal
Turing machine, will output X. Applied to the amplitude set {«;} of a
generic quantum state (plus any ancillary information needed to specify the
state, such as constraints), the cosmological information bound (1) may be
expressed as follows:

H({ai}) < Anoto/LP (15)

where Ao is the area of the appropriate holographic surface (e.g. a cos-
mological event horizon). Inequality (17) is a stronger constraint than (1),
appropriate to the interpretation of information as ontological and funda-
mental, and therefore including not merely a head-count of the degrees of
freedom, but the algorithmic information content of all the specifying pa-
rameters of the state too. This extra informational burden on the bound
will reduce somewhat the dimensionality of the Hilbert space at which uni-
tary evolution is expected to break down.

A more subtle issue concerns the specific objectives of quantum com-
putation, which is not to control the dynamical evolution of arbitrary en-
tangled quantum states, but an infinitesimal subset associated with certain
mathematical problems of interest, such as factoring. It is trivially true that
it is impossible to prepare, even approximately, a state containing more
than 10'?? truly independent parameters because it is impossible to even
specify such a state: there are not enough bits in the universe to contain
the specification. Almost all states fall into this category of being impos-
sible to specify, prepare and control. So in this elementary sense, generic
quantum computation is obviously impossible. Less obvious, however, is
whether the subset of states (of measure zero) of interest to the computing
industry is affected by the cosmological information bound, for even if it is
the case that the number of independent amplitudes exceeds 1022, there
may exist a compact mathematical algorithm to generate those amplitudes.
(The algorithm for generating the amplitudes that specify the initial state
should not be confused with the algorithm to be executed by the quan-
tum computer dynamics.) For example, the amplitudes of the quantum
computer’s initial state could be the (unending) digits of 7, which can be
generated by a short algorithm. That is, the set of amplitudes may contain
an unbounded number of bits of information, but a finite (and even small)
number of bits might be sufficient to define the generating algorithm of the
amplitude set. So if the information bound on the universe is interpreted as
an upper limit on the algorithmic information (as opposed to the Shannon
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information), then a measure-zero subset of initial states can be specified
without violating the cosmological information bound. But this loophole
leaves many unanswered questions. For example, a mathematical specifica-
tion is one thing, a physical process to implement that specification — and
to do so in an acceptable period of time — is another. To take the cited
example, it is far from clear that there exists any physical process that can
create an entangled quantum state in which the amplitudes (enumerated
in some sequence) are the digits of m. And even if this further problem
is satisfactorily addressed, one has to confront the fact that as the initial
state evolves, and the amplitudes change, so the set of amplitudes may not
remain algorithmically compressible. To be sure, a unitary evolution of an
initially algorithmically compressible state will, by definition, preserve al-
gorithmic compressibility (because the unitary operation is an algorithm).
But such a pure system is unstable: the inevitability of random errors due
to the fact that the quantum system is not closed will raise the algorith-
mic complexity, and seemingly raise it above the bound (1) in pretty short
order.?® This uncovers a deeper set of issues, which is whether a quantum
state that cannot be specified, and is in principle unknowable, and the am-
plitude set of which exceeds the total information capacity of the universe,
may nevertheless still be said to exist and conform to physical law. Ac-
cording to the Landauer point of view I am articulating here, the answer is
no.

4.5. Unfinished business

I have been asked what, exactly, would go wrong if one tried to build
and operate a quantum computer with, say, 500 entangled qubits. First
let me make a general point. In science, one always has to distinguish
between mathematical possibility contained in a theory, and physical pos-
sibility. For example, general relativity contains mathematical models with
closed timelike world lines, but these may be inconsistent with cosmological
boundary conditions or some other global requirement.?? So the fact that a
unitary transformation that implements a desirable quantum computation
may exist mathematically does not necessarily mean it can be implemented
physically, even in principle. And in fact, a prima face example would seem
to be the expectation that the resources needed to prepare an initial quan-
tum state are expected to grow with its complexity, and would require more
and more of the surrounding universe to be commandeered, and more yet
for the error correction of its evolution. Inevitably, the gravitational effects
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of the commandeered matter will eventually become important. Before the
complexity of the state reached the cosmological bound of 1022, the en-
tire resources of the observable universe would necessarily be exhausted.
Thus, almost all quantum initial states, and hence almost all unitary trans-
formations, seem to be ruled out by the cosmological constraint (1) (if one
accepts it). It is important to realize, however, that this restriction may not
be an impediment to preparing an algorithmically simple state, providing a
physical mechanism can be found to implement the preparation algorithm.
These criteria will undoubtedly be satisfied for the (very limited) examples
of known quantum algorithms, such as Shor’s algorithm for factorization,
which is algorithmically simple by definition, since its input state can be
specified and there is a simple association between the input data and the
initial quantum state. What is less clear is whether this ease of prepara-
tion of the initial state is representative of a broader class of problems of
interest, or remains confined to a handful of special cases.

A more radical conjecture about what might go wrong concerns the sub-
sequent evolution of the state, which entails an escalation of the algorithmic
complexity through the cosmological information bound due to random er-
rors in the manner I mentioned above. Under these circumstances, it may be
that the unitary evolution of the state actually breaks down (over and above
the breakdown caused by tracing out the degrees of freedom associated with
the errors caused by environmental disturbances). This would manifest it-
self in the form of an additional source of errors, ultimately of cosmological
origin, in a manner such that all error-correcting protocols applied to these
errors would fail to converge. What I am suggesting here seems to be close
to the concept of unavoidable intrinsic decoherence proposed by Milburn.3°
Some clarification of these issues may emerge from the further study of the
recent discovery that the entropy of quantum entanglement of a harmonic
lattice also scales like area rather than volume?!, which would seem to offer
support for the application of the holographic principle to entangled states.
It would be good to know how general the entanglement-area relationship
might be. Finally, I should point out that the information bound (1) was
derived using quantum field theory, but that same bound applies to quan-
tum field theory. Ideally one should derive the bound using a self-consistent
treatment. If one adopts the philosophy that information is primary and
ontological, then such a self-consistency argument should be incorporated
in a larger program directed at unifying mathematics and physics. If, fol-
lowing Landauer, one accepts that mathematics is meaningful only if it is



The Implications of a Cosmological Information Bound 85

the product of real computational processes (rather than existing indepen-
dently in a Platonic realm) then there is a self-consistent loop: the laws
of physics determine what can be computed, which in turn determines the
informational basis of those same laws of physics. Benioff has considered
a scheme in which mathematics and the laws of physics co-emerge from
a deeper principle of mutual self-consistency,?? thus addressing Wigner’s
question of why mathematics is so “unreasonably effective” in describing
the physical world.?3 I have discussed these deeper matters elsewhere.3*
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Chapter 5

What is a Computation?
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On numerous occasions during the Second World War, members of the Ger-
man high command had reason to believe that the allies knew the contents
of some of their most secret communications. Naturally, the Nazi leader-
ship was most eager to locate and eliminate this dangerous leak. They were
convinced that the problem was one of treachery. The one thing they did
not suspect was the simple truth: the British were able to systematically
decipher their secret codes. These codes were based on a special machine,
the “Enigma,” which the German experts were convinced produced coded
messages that were entirely secure. In fact, a young English mathematician,
Alan Turing, had designed a special machine for the purpose of decoding
messages enciphered using the Enigma. This is not the appropriate place
to speculate on the extent to which the course of history might have been
different without Turing’s ingenious device, but it can hardly be doubted
that it played an extremely important role.

In this essay we will discuss some work which Alan Turing did a few years
before the Second World War whose consequences are still being developed.
What Turing did around 1936 was to give a cogent and complete logical
analysis of the notion of “computation.” Thus it was that although people
have been computing for centuries, it has only been since 1936 that we have
possessed a satisfactory answer to the question: “What is a computation?”

10riginally published in L. A. Steen, Mathematics Today: Twelve Informal Essays,
Springer-Verlag, New York, 1978, pp. 241-267. Re-published with the kind permission
of Springer.
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Alan M. Turing

Alan M. Turing was born in 1912, the second son in an upper class
English family. After a precocious childhood, he had a distinguished ca-
reer as a student at Cambridge University. It was shortly after graduation
that Turing published his revolutionary work on computability. Turing’s
involvement in the deciphering of German secret codes during the Second
World War has only recently become public knowledge. His work has in-
cluded important contributions to mathematical logic and other branches
of mathematics. He was one of the first to write about the possibility of
computer intelligence and his writings on the subject are still regarded as
fundamental. His death of cyanide poisoning in June 1954 was officially

adiiidoed c11icide
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Turing’s analysis provided the framework for important mathematical in-
vestigations in a number of directions, and we shall survey a few of them.

Turing’s analysis of the computation process led to the conclusion that
it should be possible to construct “universal” computers which could be
programmed to carry out any possible computation. The existence of a
logical analysis of the computation process also made it possible to show
that certain mathematical problems are incapable of computational solu-
tion, that they are, as one says, unsolvable. Turing himself gave some
simple examples of unsolvable problems. Later investigators found that
many mathematical problems for which computational solutions had been
sought unsuccessfully for many years were, in fact, unsolvable. Turing’s
logical proof of the existence of “universal” computers was prophetic of the
modern all-purpose digital computer and played a key role in the think-
ing of such pioneers in the development of modern computers as John von
Neumann. (Likely these ideas also played a role in Turing’s seeing how
to translate his cryptographic work on the German codes into a working
machine.) Along with the development of modern computers has come a
new branch of applied mathematics: theory of computation, the application
of mathematics to the theoretical understanding of computation. Not sur-
prisingly, Turing’s analysis of computation has played a pivotal role in this
development.

Although Turing’s work on giving a precise explication of the notion of
computation was fundamental because of the cogency and completeness of
his analysis, it should be stated that various other mathematicians were
independently working on this problem at about the same time, and that
a number of their formulations have turned out to be logically equivalent
to that of Turing. In fact the specific formulation we will use is closest to
one originally due to the American mathematician Emil Post.

The Turing — Post Language

Turing based his precise definition of computation on an analysis of what a
human being actually does when he computes. Such a person is following a
set of rules which must be carried out in a completely mechanical manner.
Ingenuity may well be involved in setting up these rules so that a compu-
tation may be carried out efficiently, but once the rules are laid down, they
must be carried out in a mercilessly exact way. If we watch a human being
calculating something (whether he is carrying out a long division, perform-
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Emil L. Post

Emil L. Post was born in Poland in 1897, but arrived in New York City
at the age of seven, and lived there for the remainder of his life. His life
was plagued by tragic problems: he lost his left arm while still a child and
was troubled as an adult by recurring episodes of a disabling mental illness.
While still an undergraduate at City College he worked out a generaliza-
tion of the differential calculus which later turned out to be of practical
importance. His doctoral dissertation at Columbia University initiated the
modern metamathematical method in logic. His researches while a postdoc-
toral fellow at Princeton in the early 1920’s anticipated later work of Godel
and Turing, but remained unpublished until much later, partly because of
the lack of a receptive atmosphere for such work at the time, and partly be-
cause Post never completed the definitive development he was seeking. His
work on computability theory included the independent discovery of Tur-
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ing an algebraic manipulation, or doing a calculus problem), we observe
symbols being written, say on a piece of paper, and the behavior of the
person doing the calculating changes as he notes various specific symbols
appearing as results of computation steps.

The problem which Turing faced and solved was this: how can one ex-
tract from this process what is essential and eliminate what is irrelevant?
Of course some things are clearly irrelevant; obviously it does not matter
whether our calculator is or is not drinking coffee as he works, whether he
is using pencil or pen, or whether his paper is lined, unlined, or quadruled.
Turing’s method was to introduce a series of restrictions on the calculator’s
behavior, each of which could clearly be seen to be inessential. However,
when he was done all that was left were a few very simple basic steps per-
formed over and over again many times.

We shall trace Turing’s argument. In the first place, he argued that
we can restrict the calculator to write on a linear medium, that is, on a
tape, rather than on a two-dimensional sheet of paper. Instead of paper
tape (such as is used in an adding machine) we can, if we prefer, think of
magnetic tape as used in a tape recorder. (Of course, in this latter case,
the symbols occur as magnetic signals rather than as marks on paper, but
conceptually this makes no difference whatsoever.) It is easy to convince
oneself that the use of a two-dimensional sheet of paper plays no essential
role in the computational process and that we really are not giving up any
computational power by restricting ourselves to a linear tape. Thus the
“two-dimensional” multiplication:

26

X 32
52
780
832

can be written on a “tape” as follows:
26 x 32 = 52 + 780 = 832.

We suppose that the linear tape is marked off into individual squares and
that only one symbol can occupy a square. Again, this is a matter of
convenience and involves no particular limitations. So, our multiplication
example might look like this:
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The next restriction we impose (here we are actually going a bit further
than Turing did) is that the only symbols which may appear on our tape
are 0 and 1. Here we are merely making use of the familiar fact that all
information can be “coded” in terms of two symbols. It is this fact, for
example, which furnishes the basis for Morse code in which the letters of
the alphabet are represented as strings of “dots” and “dashes.” Another
example is binary arithmetic which forms the basis of modern digital com-
putation.

Our next restriction has to do with the number of different symbols our
calculator can take note of (or as we shall say, “scan”) in a single obser-
vation. How many different symbols can a human calculator actually take
in at one time? Certainly no one will be able to take in at a glance the
distinction between two very long strings of zeros and ones which differ
only at one place somewhere in the middle. One can take in at a glance,
perhaps, five, six, seven, or eight symbols. Turing’s restriction was more
drastic. He assumed that in fact one can take in only a single symbol at
a glance. To see that this places no essential restriction on what our cal-
culator can accomplish, it suffices to realize that whatever he does as a
result of scanning a group of, say, five symbols can always be broken up
into separate operations performed viewing the symbols one at a time.

What kinds of things can the calculator actually do? He can replace a 0
by a 1 or a 1 by a 0 on the square he is scanning at any particular moment,
or he can decide to shift his attention to another square. Turing assumed
that this shifting of attention is restricted to a square which is the imme-
diate neighbor, either on the left or on the right, of the square previously
scanned. Again, this is obviously no essential restriction: if one wants to
shift one’s attention to a square three to the right, one simply shifts one
to the right three successive times. Also the calculator may observe the
symbol in the square being scanned and make a decision accordingly. And
presumably this decision should take the form: “Which instruction shall I
carry out next?” Finally, the calculator may halt, signifying the end of the
computation.

To summarize: any computation can be thought of as being carried out
by a human calculator, working with strings of zeros and ones written on
a linear tape, who executes instructions of the form:

e Write the symbol 1
e Write the symbol 0
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Move one square to the right

Move one square to the left

Observe the symbol currently scanned and choose the next step accord-
ingly

Stop

The procedure which our calculator is carrying out then takes the form
of a list of instructions of these kinds. As in modern computing practice, it
is convenient to think of these kinds of instructions as constituting a special
programming language. A list of such instructions written in this language
is then called a program.

We are now ready to introduce the Turing-Post Programming Lan-
guage. In this language there are seven kinds of instructions:

PRINT 1

PRINT 0

GO RIGHT

GO LEFT

GO TO STEP i IF 1 1S SCANNED
GO TO STEP i IF 0 IS SCANNED
STOP

A Turing—Post program is then a list of instructions, each of which is of
one of these seven kinds. Of course in an actual program the letter i in a
step of either the fifth or sixth kind must be replaced by a definite (positive
whole) number.

In order that a particular Turing—Post program begin to calculate, it
must have some “input” data. That is, the program must begin scanning at
a specific square of a tape already containing a sequence of zeros and ones.
The symbol 0 functions as a “blank”; although the entire tape is infinite,
there are never more than a finite number of ones that appear on it in the
course of a computation. (A reader who is disturbed by the notion of an
infinite tape can replace it for our purposes by a finite tape to which blank
squares—that is, squares filled with zeros—are attached to the left or the
right whenever necessary.)

Figure 1 exhibits a Turing—Post program consisting of ten instructions
which we will use repeatedly for illustrative purposes. The presence of the
“GO TO” instruction makes it possible for the same instruction to be exe-
cuted over and over again in the course of a single computation. This can
be seen in some detail in Figure 2 which shows the successive steps in one
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PRINT 0

GO LEFT

GO TO STEP 2 IF 1 IS SCANNED
PRINT 1

GO RIGHT

GO TO STEP 5 IF 1 IS SCANNED
PRINT 1

GO RIGHT

GO TO STEP 1 IF 1 IS SCANNED
STOP

LN RLNE

[ua—y
i

Figure 1. Doubling Program. The underlying idea is to double the number
of ones by simply copying them one at a time. Each 1 to be copied is
(temporarily) replaced by a 0 which acts as a place marker (Step 1). Next
the computation moves left over all the ones (which as the computation
progresses will include newly printed ones) seeking the first unused (i.e.,
blank) square (Steps 2, 3—which will be repeated over and over again until
a blank square is encountered). The 1 is now copied (Step 4). Next the
computation returns rightward until it encounters the 0 which takes the
place of the 1 which has just been copied (Steps 5, 6—which again are
repeated). The copied 1 is restored (Step 7). The computation moves one
square to the right seeking another 1 to copy (Step 8). If there is another
1 to be copied the computation goes back to Step 1; otherwise it advances
to Step 10 and halts (Steps 9, 10).

particular computation by the program of Figure 1. The computation is
completely determined by the initial arrangement of symbols on the tape
together with a specification of which square is initially scanned. In Figure
2 this latter information is given by an upward arrow (1) below the scanned
square. (Of course only a finite number of symbols from the tape can ac-
tually be explicitly exhibited; in Figure 2, we exhibit six adjacent symbols,
and assume that all squares not explicitly shown are blank, that is contain
the symbol 0.) Such combined information, consisting of the symbols on
the tape (pictorially represented by showing a finite number of consecutive
squares, the remainder of which are presumed to be blank) and the identity
of the scanned square (designated by an arrow just below it) is called a tape
configuration.

Figure 2 gives a list of such tape configurations, with the initial configu-
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ration at the top, each of which is transformed by an appropriate step of the
program (from Figure 1) into the configuration shown below it. The pro-
gram steps are listed alongside the tape configurations. The computation
begins by executing the first step (which in our case consists in replacing
the 1 on the scanned square by 0) and continues through the successive
steps of the program, except as “GO TQO” instructions cause the computa-
tion to return to earlier instructions. Ultimately, Step 9 is executed with
the tape configuration as shown at the bottom of Figure 2. Since 0 is being
scanned, the computation continues to Step 10 and then halts.

The computation shown in Figure 2 begins with two ones on the tape
and ends with four. It is because this happens generally that we call the
program in Figure 1 a “doubling program.” To put it precisely: beginning
with a tape configuration the nonblank portion of which consists of a row
of ones with the scanned square containing the leftmost of the ones, the
doubling program will eventually halt with a block of twice as many ones
on the tape as were there to begin with. It is by no means obvious at a
glance (even to an experienced computer programmer) that our doubling
program really behaves in the manner just stated.

The fact that this doubling program is so short and accomplishes such
a simple task should not be permitted to obscure the point of Turing’s
analysis of the computation process: we have reason to be confident that
any computation whatsoever can be carried out by a suitable Turing—Post
program.

As we have seen, once a STOP instruction is executed, computation
comes to a halt. If, however, no STOP instruction is ever encountered in
the course of a computation, the computation will (in principle, of course)
continue forever. The question “When can we say that a computation will
eventually halt?” will play a crucial role later in our discussion. To see how
this can be answered in a simple example, consider the following three-step
Turing-Post program:

1. GO RIGHT
2. GO TO STEP 1 IF 0 IS SCANNED
3. STOP

This program will halt as soon as motion to the right reaches a square
containing the symbol 1. For once that happens the program will move on
to Step 3 and halt. That being the case, suppose we begin with a tape on
which there are no ones to the right of the initially scanned square. (For
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example, the entire tape could be blank or there could be some ones but
all to the left of the initially scanned square.) In this case, the first two
steps will be carried out over and over again forever, since a 1 will never be
encountered. After step 2 is performed, step 1 will be performed again. This
makes it clear that a computation from a Turing—Post program need not
actually ever halt. In the case of this simple three-step program it is very
easy to tell from the initial tape configuration whether the computation
will eventually halt or continue forever: to repeat, if there is a 1 to the
right of the initially scanned square the computation will eventually halt;
whereas if there are only blanks to the right of the initially scanned square
the computation will continue forever. We shall see later that the question
of predicting whether a particular Turing—Post program will eventually halt
contains surprising subtleties.

Codes for Turing — Post Programs

All of the dramatic consequences of Turing’s analysis of the computa-
tion process proceed from Turing’s realization that it is possible to en-
code a Turing—Post program by a string of zeros and ones. Since such
a string can itself be placed on the tape being used by another (or even
the same) Turing—Post program, this leads to the possibility of thinking
of Turing—Post programs as being capable of performing computations on
other Turing—Post programs.

There are many ways by which Turing—Post programs can be encoded
by strings of zeros and ones. We shall describe one such way. We first
represent each Turing—Post instruction by an appropriate sequence of zeros
and ones according to the following code:

Code Instruction

000 PRINT O
001 PRINT 1
010 GO LEFT

011 GO RIGHT
1010...01 GO TO STEP i IF 0 IS SCANNED
\-/—/
1101...10 GO TO STEP i IF 1 IS SCANNED
R-/_/

100 STOP
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This table gives the representation of each Turing—Post instruction by a
string of zeros and ones. For example the code for the instruction

GO TO STEP 3 IF 0 1S SCANNED

is: 1010001. To represent an entire program, we simply write down in
order the representation of each individual instruction and then place an
additional 1 at the very beginning and 111 at the very end as punctuation
marks.

For example, here is the code for the doubling program shown in Figure

100001011011000101111011111000101111010100111

To make this clear, here is the breakdown of this code:

Begin Step Step Step Step Step Step Step Step
1 2 3 4 5 6 7 8
1 000 010 110110 001 011 110111110 001 011

Step Step End
9 10
11010 100 111

It is important to notice that the code of a Turing—Post program can be de-
ciphered in a unique, direct, and straightforward way, yielding the program
of which it is the code. First remove the initial 1 and the final 111 which
are just punctuation marks. Then, proceeding from left to right, mark off
the first group of 3 digits. If this group of 3 digits is 000, 001, 010, 011, or
100 the corresponding instruction is: PRINT 0, PRINT 1, GO LEFT, GO
RIGHT, or STOP, respectively. Otherwise the group of 3 digits is 101 or
110, and the first instruction is a “GO TO.” The code will then have one
of the forms:

101“1 1101\../._1/0
corresponding to
GO TO STEP i IF 0 IS SCANNED
and

GO TO STEP i IF 1 IS SCANNED

respectively. Having obtained the first instruction, cross out its code and
continue the process, still proceeding from left to right. Readers who wish
to test their understanding of this process may try to decode the string:
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101000110100110000010101010111

The Universal Program

We are now ready to see how Turing’s analysis of the computation process
together with the method for coding Turing—Post programs we have just
introduced leads to a conclusion that at first sight seems quite astonish-
ing. Namely, there exists a single (appropriately constructed) Turing—Post
program which can compute anything whatever that is computable. Such
a program U (for “universal”) can be induced to simulate the behavior of
any given Turing—Post program P by simply placing code(P), the string of
zeros and ones which represents P, on a tape and permitting U to operate
on it. More precisely, the non-blank portion of the tape is to consist of
code(P) followed by an input string v on which P can work. (For clarity,
we employ capital letters to stand for particular Turing—Post programs and
lowercase letters to stand for strings of zeros and ones.) For example, the
string

1 000010110110001011110111110001011110101001 111 11
—~ =~

Begin Coded instructions of doubling program End Input

signifies that U should simulate the behavior of the doubling program when
11 is the input. Thus, at the end of the computation by U, the tape should
look just like the final tape in Figure 2.

Now, a universal Turing—Post program U is supposed to perform in this
way not only for our doubling program, but for every Turing—Post pro-
gram. Let us be precise: U is to begin its computation presented with
a tape whose nonblank portion consists of code(P) for some Turing—Post
program P (initially scanning the first symbol, necessarily 1, of this code)
followed by a string v. U is then supposed to compute exactly the same
result as the program P would get when starting with the string v as the
nonblank part of the tape (scanning the initial symbol of v). Such a pro-
gram U can then be used to simulate any desired Turing-Post program P
by simply placing the string code(P) on the tape.

What reason do we have for believing that there is such a program U?
To help convince ourselves, let us begin by thinking how a human calcu-
lator could do what U is supposed to do. Faced with the tape contents
on which U is supposed to work, such a person could begin by scanning
this string of zeros and ones, from left to right, searching for the first place
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that 3 consecutive ones appear. This triple 111 marks the end of code(P)
and the beginning of the input string. Our human calculator can then
write code(P) on one sheet of paper and the input string on another. As
already explained, he can decode the string code(P) and obtain the actual
Turing—Post program P. Finally, he can “play machine,” carrying out the
instructions of P, applied to the given input string in a robotlike fashion.
If and when the computation comes to a halt, our calculator can report the
final tape contents as output. This shows that a human calculator can do
what we would like U to do. But now, invoking Turing’s analysis of the
computation process, we are led to believe that there must be a Turing—
Post program which can carry out the process we have just described, a
universal Turing—Post program.

The evidence we have given for the existence of such a program is rather
unsatisfactory because it depends on Turing’s analysis of the computation
process. It certainly is not a mathematical proof. But in fact, if one is
willing to do some tedious but not very difficult work, one can circumvent
the need to refer to Turing’s analysis at all and can, in fact, write out in
detail an explicit universal Turing—Post program. This was done in fact by
Turing himself (in a slightly different, but entirely equivalent context) in
his fundamental 1936 paper. And subsequently, it has been redone many
times. The success of the construction of the universal program is in itself
evidence for the correctness of Turing’s analysis. It is not appropriate here
to carry out the construction of a universal program in detail; we hope,
merely, that the reader is convinced that such a program exists. (Experi-
enced computer programmers will have no difficulty in writing their own
universal program if they wish to do so.)

We have conceived of Turing—Post programs as consisting of lists of
written instructions. But clearly, given any particular Turing—Post program
P, it would be possible to build a machine that would actually carry out
the instructions of P in sequence. In particular, this can be done for our
universal program U. The machine we get in this way would be an example
of an all-purpose or universal computing machine. The code for a particular
program P placed on its tape could then be thought of as a “program” for
doing the computation which P does. Thus, Turing’s analysis leads us, in
a very straightforward manner, to the concept of an all-purpose computer
which can be programmed to carry out any computation whatever.
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The Halting Problem

We are now in a position to demonstrate a truly astonishing result: we are
able to state a simple problem, the so-called halting problem, for which we
can prove that no computational solution exists.

The halting problem for a particular Turing—Post program is the prob-
lem of distinguishing between initial tape configurations which lead to the
program’s eventually halting and initial tape configurations which lead the
program to compute forever. We saw above that certain input strings may
cause a particular program to run forever, due to an infinite loop caused by
the “GO TO” instruction. It would surely be desirable to have a method
for determining in advance which input data leads the program to halt and
which does not. This is the halting problem: given a particular Turing—
Post program, can we computationally test a given tape configuration to
see whether or not the program will eventually halt when begun with that
tape configuration.

The answer is no. There is no computation procedure for testing a given
tape expression to determine whether or not the universal program U will
eventually halt when begun with that tape configuration. The fact that there
is no such procedure for the universal program shows of course that there
can’t be such procedures for Turing—Post programs in general, since the
universal program is itself a Turing—Post program. Before we see how this
unsolvability theorem can be proved, it is worthwhile to reflect on how ex-
citing and remarkable it is that it should be possible to prove such a result.
Here is a problem which is easy to state and easy to understand which we
know cannot be solved. Note that we are not saying simply that we don’t
know how to solve the problem, or that the solution is difficult. We are
saying: there is no solution.

Readers may be reminded of the fact that the classical problems of an-
gle trisection and circle squaring also turned out to have no solution. This
is a good analogy, but with a very significant difference: the impossibility
proofs for angle trisection and circle squaring are for constructions using
specific instruments (straightedge and compass); using more powerful in-
struments, there is no difficulty with either of these geometric construction
problems. Matters are quite different with the halting problem; here what
we will show is that there is no solution using any methods available to
human beings.
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The proof of the unsolvability of the halting problem is remarkably sim-
ple. It uses the method known as indirect proof or reductio ad absurdum.
That is, we suppose that what is stated in italics above is false, that in fact,
we possess a computing procedure which, given an initial tape configura-
tion will enable us to determine whether or not the universal program will
eventually halt when started in that configuration. Then we show that this
supposition is impossible; this is done in the box on p.[114

Other Unsolvable Problems

In the 1920’s the great German mathematician David Hilbert pointed to a
certain problem as the fundamental problem of the newly developed field of
mathematical logic. This problem, which we may call the decision problem
for elementary logic, can be explained as follows: a finite list of statements
called premises is given together with an additional statement called the
conclusion. The logical structure of the statements is to be explicitly exhib-
;7 “implies,” “for all,” and “there exists.”
Hilbert wanted a computing procedure for testing whether or not the con-
clusion can be deduced using the rules of logic from the premises. Hilbert
regarded this problem as especially important because he expected that its
solution would lead to a purely mechanical technique for settling the truth
or falsity of the most diverse mathematical statements. (Such statements
could be taken as the conclusion, and an appropriate list of axioms as the
premises to which the supposed computing procedure could be applied.)
Thus the very existence of an unsolvable mathematical problem (in par-
ticular, the halting problem) immediately suggested that Hilbert’s decision
problem for elementary logic was itself unsolvable. This conclusion turned
out to be correct, as was carefully shown by Turing and, quite indepen-
dently, by the American logician Alonzo Church. Turing represented the
theory of Turing—Post programs in logical terms and showed that a solution
to the decision problem for elementary logic would lead to a solution of the
halting problem. (This connection between logic and programs was redis-

ited in terms of “not,” “and,” “or

covered many years later and now forms the basis for certain investigations
into the problem of proving the correctness of computer programs.)

The unsolvability of the decision problem for elementary logic was im-
portant, not only because of the particular importance of this problem, but
also because (unlike the halting problem) it was an unsolvable problem that
people had actually tried to solve. A decade went by before another such
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example turned up. Early in the century the Norwegian Axel Thue had
emphasized the importance of what are now called “word problems.” In
1947, Emil Post showed how the unsolvability of the halting problem leads
to the existence of an unsolvable word problem. Post’s proof is discussed
in the box on p. Here we merely explain what a word problem is.

In formulating a word problem one begins with a (finite) collection,
called an alphabet, of symbols, called letters. Any string of letters is called
a word on the alphabet. A word problem is specified by simply writing down
a (finite) list of equations between words. Figure 3 exhibits a word problem
specified by a list of 3 equations on the alphabet a,b,c. From the given
equations many other equations may be derived by making substitutions
in any word of equivalent expressions found in the list of equations. In the
example of Figure 3, we derive the equation bac = abce by replacing the
part ba by abc as permitted by the first given equation.

We have explained how to specify the data for a word problem, but we
have not yet stated what the problem is. It is simply the problem of deter-
mining for two arbitrary given words on the given alphabet, whether one
can be transformed into the other by a sequence of substitutions that are
legitimate using the given equations. We show in the box on p. that we
can specify a particular word problem that is unsolvable. In other words,
no computational process exists for determining whether or not two words
can be transformed into one another using the given equations. Work on
unsolvable word problems has turned out to be extremely important, lead-
ing to unsolvability results in different parts of mathematics (for example,
in group theory and in topology).

Another important problem that eventually turned out to be unsolvable
first appeared as the tenth in a famous list of problems given by David
Hilbert in 1900. This problem involves so-called “Diophantine” equations.
An equation is called Diophantine when we are only interested in solutions
in integers (i.e., whole numbers). It is easy to see that the equation

dz — 2y = 3

has no solutions in integers (because the left side would have to be even
while the right side is odd). On the other hand the equation

dr —y = 3

has many (even infinitely many) solutions in integers (e.g., z = 1, y = 1;
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x =2,y =5). The Pythagorean equation

also has infinitely many integer solutions (of which x =3,y =4, 2 =5
was already known to the ancient Egyptians). Hilbert’s tenth problem was
to find a computing procedure for testing a Diophantine equation (in any
number of unknowns and of any degree) to determine whether or not it has
an integer solution.

Since I have been directly involved with this problem and related mat-
ters over the past thirty years, my discussion of Hilbert’s tenth problem
will necessarily have a rather personal character. I first became interested
in the problem while I was an undergraduate at City College of New York
on reading my teacher Emil Post’s remark in one of his papers that the
problem “begs for an unsolvability proof.” In my doctoral dissertation at
Princeton, I proved the unsolvability of a more difficult (and hence easier to
prove unsolvable) related problem. At the International Congress of Math-
ematicians in 1950, I was delighted to learn that Julia Robinson, a young
mathematician from California, had been working on the same problem
from a different direction: she had been developing ingenious techniques
for expressing various complicated mathematical relationships using Dio-
phantine equations. A decade later Hilary Putnam (a philosopher with
training in mathematical logic) and I, working together, saw how we could
make further progress by combining Julia Robinson’s methods with mine.
Julia Robinson improved our results still further, and we three then pub-
lished a joint paper in which we proved that if there were even one Dio-
phantine equation whose solutions satisfy a special condition (involving the
relative size of the numbers constituting such a solution), then Hilbert’s
tenth problem would be unsolvable.

In subsequent years, much of my effort was devoted to seeking such a
Diophantine equation (working alone and also with Hilary Putnam), but
with no success. Finally such an equation was found in 1970 by the then
22-year old Russian mathematician Yuri Matiyasevich. Matiyasevich’s bril-
liant proof that his equation satisfied the required condition involved sur-
prisingly elementary mathematics. His work not only showed that Hilbert’s
tenth problem is unsolvable, but has also led to much new and interesting
work.
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Undecidable Statements

The work of Bertrand Russell and Alfred North Whitehead in their three-
volume magnum opus Principia Mathematica, completed by 1920, made
it clear that all existing mathematical proofs could be translated into the
specific logical system they had provided. It was assumed without question
by most mathematicians that this system would suffice to prove or dis-
prove any statement of ordinary mathematics. Therefore mathematicians
were shocked by the discovery in 1931 by Kurt Godel (then a young Vien-
nese mathematician) that there are statements about the whole numbers
which can neither be proved nor disproved in the logical system of Principia
Mathematica (or similar systems); such statements are called undecidable.
Turing’s work (which was in part inspired by Go6del’s) made it possible to
understand Goédel’s discovery from a different, and indeed a more general,
perspective.

Let us write N (P, v) to mean that the Turing—Post program P will never
halt when begun with v on its tape (as usual, scanning its leftmost sym-
bol). So, for any particular Turing—Post program P and string v, N (P, v)
is a perfectly definite statement which is either true (in case P will never
halt in the described situation) or false (in case P will eventually halt).
When N(P,v) is false, this fact can always be demonstrated by exhibit-
ing the complete sequence of tape configurations produced by P leading
to termination. However, when N(P,v) is true no finite sequence of tape
configurations will suffice to demonstrate the fact. Of course we may still
be able to prove that a particular N(P,v) is true by a logical analysis of
P’s behavior.

Let us try to be very rigorous about this notion of proof. Suppose that
certain strings of symbols (possibly paragraphs of English) have been sin-
gled out as proofs of particular statements of the form N(P,v). Suppose
furthermore that we possess a computing procedure that can test an al-
leged proof II that N(P,v) is true and determine whether II is or is not
actually such a proof. Whatever our rules of proof may be, this require-
ment is surely needed for communication purposes. It must be possible in
principle to perform such a test in order that II should serve its purpose
of eliminating doubts concerning the truth of N(P,v). (In practice, pub-
lished mathematical proofs are in highly condensed form and do not meet
this strict requirement. Disputes are resolved by putting in more detail as
needed. But it is essential that in principle it is always possible to include
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sufficient detail so that proofs are susceptible to mechanical verification.)

There are two basic requirements which it is natural to demand of our
supposed rules of proof:

o Soundness: If there is a proof II that N(P,v) is true, then P will in
fact never halt when begun with v on its tape.

o Completeness: If P will never halt when begun with v on its tape, then
there is a proof II that N(P,v) is true.

Godel’s theorem asserts that no rules of proof can be both sound and com-
plete! In other words, if a given set of rules of proof is sound, then there
will be some true statement N(P,v) which has no proof II according to
the given rules of proof. (Such a true unprovable statement may be called
undecidable since it will surely not be disprovable.)

To convince ourselves of the truth of Godel’s theorem, suppose we had
found rules of proof which were both sound and complete. Suppose “proofs”
according to these rules were particular strings of symbols on some spe-
cific finite alphabet. We begin by specifying a particular infinite sequence
1y, 115, I3, . . . which includes all finite strings on this alphabet. Namely, let
all strings of a given length be put in “alphabetical” order, and let shorter
strings always precede longer ones. The sequence IIy, I, 113, ... includes
all possible proofs, as well as a lot of other things; in particular, it contains
a high percentage of total nonsense—strings of symbols combined in com-
pletely meaningless ways. But, hidden among the nonsense, are all possible
proofs.

Now we show how we can use our supposed rules of proof to solve the
halting problem for some Turing—Post program P. We wish to find out
whether or not P will eventually halt when begun on v. We have some
friend begin to carry out the instructions of P on input v with the under-
standing that we will be informed at once if the process halts. Meanwhile
we occupy ourselves by generating the sequence Iy, IIs, II3, ... of possible
proofs. As each II; is generated we use our computing procedure to deter-
mine whether or not II; is a proof of N(P,v). Now, if P will eventually halt,
our friend will discover the fact and will so inform us. And, if P will never
halt, since our rules of proof are assumed to be complete, there will be a
proof II; of N(P,v) which we will discover. Having obtained this II; we will
be sure (because the rules are sound) that P will indeed never halt. Thus,
we have described a computing procedure (carried out with a little help
from a friend) which would solve the halting problem for P. Since, as we
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well know, P can have an unsolvable halting problem (e.g., P could be the
universal program U), we have arrived at a contradiction; this completes
the proof of Godel’s theorem.

Of course, Godel’s theorem does not tell us that there is any particular
pair P, v for which we will never be able to convince ourselves that N (P, v) is
true. It is simply that, for any given sound rules of proof, there will be a pair
P, v for which N(P,v) is true, but not provable using the given rules. There
may well be other sound rules which decide this “undecidable” statement.
But these other rules will in turn have their own undecidabilities.

Complexity and Randomness

A computation is generally carried out in order to obtain a desired an-
swer. In our discussion so far, we have pretty much ignored the “answer,”
contenting ourselves with discussing only the gross distinction between a
computation which does at least halt eventually and one which goes on
forever. Now we consider the question: how complex need a Turing—Post
program be to produce some given output? This straightforward question
will lead us to a mathematical theory of randomness and then to a dramatic
extension of Gédel’s work on undecidability.

We will only consider the case where there are at least 2 ones on the
tape when the computation halts. The output is then to be read as consist-
ing of the string of zeros and ones between the leftmost and rightmost ones
on the tape, and not counting these extreme ones. Some such convention
is necessary because of the infinite string of zeros and ones on the tape. In
effect the first and last one serve merely as punctuation marks.

To make matters definite suppose that we wish to obtain as output a
string consisting of 1022 ones. When we include the additional ones needed
for punctuation, we see that what is required is a computation which on
termination leaves a tape consisting of a block of 1024 ones and otherwise
blank. One way to do this is simply to write the 1024 ones on the tape
initially and do no computing at all. But surely we can do better. We can
get a slight improvement by using our faithful doubling program (Figure
1). We need only write 512 ones on the tape and set the doubling program
to work. We have already written out the code for the doubling program:;
it took 39 bits. (A bit is simply a zero or a one; the word abbreviates
binary digit.) So we have a description of a string of 1022 ones which uses
39+ 512 = 551 bits. But surely we can do better. 1024 = 2'°, so we should
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be able to get 1024 ones by starting with 1 and applying the doubling
program 10 times. In Figure 4 we give a 22-step program, the first nine
steps of which are identical to the first nine steps of the doubling program,
which accomplishes this. Beginning with a tape configuration

1011...1
TR/—/

this program will halt with a block of 2"*! ones on the tape.

It is not really important that the reader understand how this program
works, but here is a rough account: the program works with two blocks of
ones separated by a zero. The effect of Steps 1 through 9 (which is just
the doubling program) is to double the number of ones to the left of the
0. Steps 10 through 21 then erase 1 of the ones to the right of the zero
and return to Step 1. When all of the ones to the right of the zero have
been erased, this will result in a zero being scanned at Step 11 resulting in
a transfer to Step 22 and a halt. Thus the number of ones originally to the
left of the zero is doubled as many times as there are ones originally to the
right of the zero.

The full code for the program of Figure 4 contains 155 bits. To obtain
the desired block of 1024 ones we need the input 10111111111. We are thus
down to 155 4 11 = 166 bits, a substantial improvement over 551 bits.

We are now ready for a definition: Let w be any string of bits. Then we
say that w has complexity n (or equivalently, information content n) and
write I(w) = n if:

(1) There is a program P and string v such that the length of code(P)
plus the length of v is n, and P when begun with v will eventually
halt with output w (that is with 1w1) occupying the nonblank part of
the tape, and

(2) There is no number smaller than n for which this is the case.

If w is the string of 1022 ones, then we have shown that I(w) < 166. In
general, if w is a string of bits of length n, then we can easily show that
I(w) < n+9. Specifically, let the program P consist of the single instruc-
tion: STOP. Since this program does not do anything, if it begins with
input 1wl, it will terminate immediately with 1wl still on the tape. Since
Code(P) = 1100111, it must be the case that I(w) is less than or equal to
the length of the string 11001111w1, that is, less than or equal to n + 9.
(Naturally, the number 9 is just a technical artifact of our particular for-
mulation and is of no theoretical importance.)
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How many strings are there of length n such that, say, I(w) < n — 107
(We assume n > 10; in the interesting cases n is much larger than 10.)
Each such w would be associated with a program P and string v such that
Code(P)v is a string of bits of length less than or equal to n — 10. Since
the total number of strings of bits of length 4 is 2, there are only:

2 4+ 4+ ... 4 27710

strings of bits of length < n — 10. This is the sum of a geometric series
easily calculated to be 2"~ —2. So we conclude: there are fewer than 2"~
strings of bits w of length n such that I(w) <n — 10.

Since there are 2™ strings of bits of length n, we see that the ratio of
the number of strings of length n with complexity < n — 10 to the total
number of strings of length n is no greater than

v 11 1
> T P T sz T 500
This is less than 0.2%. In other words, more than 99.8% of all strings of
length n have complexity > n — 10. Now the complexity of the string of
1022 ones is, as we know, less than or equal to 166, thus much less than
1022 — 10 = 1012. Of course, what makes this string so special is that the

digit pattern is so regular that a comparatively short computational de-

scription is possible. Most strings are irregular or as we may say, random.

Thus we are led to an entirely different application of Turing’s analysis
of computation: a mathematical theory of random strings. This theory was
developed around 1965 by Gregory Chaitin, who was at the time an un-
dergraduate at City College of New York (and independently by the world
famous A. N. Kolmogorov, a member of the Academy of Sciences of the
U.S.S.R.). Chaitin later showed how his ideas could be used to obtain a
dramatic extension of Godel’s incompleteness theorem, and it is with this
reasoning of Chaitin’s that we will conclude this essay.

Let us suppose that we have rules of proof for proving statements of
the form I(w) > n where w is a string of bits and n is a positive integer.
As before, we assume that we have a computing procedure for testing an
alleged proof II to see whether it really is one. We assume that the rules
of proof are sound, so that if IT is a proof of the statement I(w) > n, then
the complexity of the string w really is greater than n. Furthermore, let
us make the very reasonable assumption that we have another computing
procedure which, given a proof II of a statement I(w) > n, will furnish us
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with the specific w and n for which I(w) > n has been proved.

We now describe a new computing procedure we designate as A. We
begin generating the sequence I, 1l5, I3, ... of possible proofs as above.
For each II; we perform our test to determine whether or not II; is a proof
of a statement of the form I(w) > n. If the answer is affirmative we use
our second procedure to find the specific w and n. Finally we check to see
whether n > kg where kg is some fixed large number. If so, we report w
as our answer; otherwise we go on to the next II;. By Turing’s analysis
this entire procedure A can be replaced by a Turing—Post program, where
the fixed number kg is to be chosen at least as large as the length of this
program. (The fact that ky can be chosen as large as this is not quite ob-
vious; the basic reason is that far fewer than k bits suffice to describe the
number kg.)

Now, a little thought will convince us that this Turing—Post program
can never halt: if it did halt we would have a string w for which we had
a proof II; that I(w) > n where n > ky. On the other hand this very
program has length less than or equal to ky (and hence less than n) and
has computed w, so that I(w) < n, in contradiction to the soundness of
our proof rules. Conclusion: our rules of proof can yield a proof of no
statement of the form I(w) > n for which n > k¢. This is Chaitin’s form
of Godel’s theorem: given a sound set of rules of proof for statements of
the form I(w) > n, there is a number kg such that no such statement is
provable using the given rules for any n > kq.

To fully understand the devastating import of this result it is important
to realize that there exist rules of proof (presumably sound) for proving
statements of the form I(w) > n which include all methods of proof avail-
able in ordinary mathematics. (An example is the system obtained by using
the ordinary rules of elementary logic applied to a powerful system of ax-
ioms, of which the most popular is the so-called Zermelo-Fraenkel axioms
for set theory.) We are forced to conclude that there is some definite num-
ber kg, such that it is in principle impossible, by ordinary mathematical
methods, to prove that any string of bits has complexity greater than k.
This is a remarkable limitation on the power of mathematics as we know
it.

Although we have discussed a considerable variety of topics, we have
touched on only a tiny part of the vast amount of work which Turing’s
analysis of the computation process has made possible. It has become
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possible to distinguish not only between solvable and unsolvable problems,
but to study an entire spectrum of “degrees of unsolvability.” The very
notion of computation has been generalized to various infinite contexts.
In the theory of formal languages, developed as part of computer science,
various limitations on Turing—Post programs turn out to correspond in a
natural way to different kinds of “grammars” for those languages. There
has been much work on what happens to the number of steps and amount
of tape needed when the programs are allowed to operate on several tapes
simultaneously instead of on just one. “Nondeterministic” programs in
which a given step may be followed by several alternative steps have been
studied, and a great deal of work has been done attempting to show that
such programs are intrinsically capable of performing much faster than
ordinary Turing-Post programs. These problems have turned out to be
unexpectedly difficult, and much remains to be done.
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Unsolvability of Halting Problem

Suppose we possess a computing procedure which solves the halting prob-
lem for the universal program U. Then we can imagine more complicated
procedures of which this supposed procedure is a part. Specifically, we
consider the following procedure which begins with a string v of zeros and
ones:

(1) Try to decode v as the code for a Post—Turing program, i.e., try to find
P with code(P) = v. If there is no such P, go back to the beginning of
Step 1; otherwise go on to Step 2.

(2) Make a copy of v and place it to the right of v getting a longer string
which we can write as vv (or equivalently as code(P)v since code(P) =
V).

(3) Use our (pretended) halting problem procedure to find out whether or
not the universal program U will eventually halt if it begins with this
string vv as the nonblank portion of the tape, scanning the leftmost
symbol. If U will eventually halt, go back to the beginning of Step 3;
otherwise stop.

This proposed procedure would eventually stop if, first, v = code(P) for
some Turing—Post program P (so we will leave Step 1 and go on to Step
2), and, second, if also U will never halt if it begins to scan the leftmost
symbol of vv. Since U beginning with code(P)v simulates the behavior of
P beginning with v, we conclude that our supposed procedure applied to
the string v will eventually stop if and only if v = code(P) where P is a
computing procedure that will never stop beginning with v on its tape.

By Turing’s analysis, there should be a Turing—Post program Py which
carries out this very procedure. That is, Py will eventually halt beginning
with the input v if and only if U will never halt beginning with the input
vv. Now let vg = code(Py). Does U eventually halt beginning with the
input vovg? By what we have just said, Py eventually halts beginning with
the input v if and only if U will never halt beginning with the input vyvg.
But, as we will show, this contradicts our explanation of how U works as
a universal program. Since vg = code(Fy), U will act, given the input
VoV, to simulate the behavior of Py when begun on input vy. So U will
eventually halt beginning with the input vovg if and only if Py will eventually
halt beginning with the input vy. But this contradicts the previous italicized
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statement. The only way out of this contradiction is to conclude that what
we were pretending is untenable. In other words, the halting problem for
U is not solvable.
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An Unsolvable Word Problem

One way to find a word problem that is unsolvable is to invent one whose
solution would lead to a solution for the halting problem, which we know
to be unsolvable. Specifically, we will show how to use a Turing—Post
program P (which we assume consists of n instructions) to construct a word
problem in such a way that a solution to the word problem we construct
could be used to solve the halting problem for P. Therefore, if we begin
with a program P whose halting problem is unsolvable, we will obtain an
unsolvable word problem.
We will use an alphabet consisting of the n + 4 symbols:

10h qu g2 ... Gn Gny1-

The fact that the ith step of P is about to be carried out and that there is
some given tape configuration is coded by a certain word (sometimes called
a Post word) in this alphabet. This Post word is constructed by writing
down the string of zeros and ones constituting the current nonblank part
of the tape, placing an h to its left and right (as punctuation marks) and
inserting the symbol ¢; (remember that it is the ith instruction which is
about to be executed) immediately to the left of the symbol being scanned.
For example, with a tape configuration

11011

T

and instruction number 4 about to be executed, the corresponding Post
word would be

h110g411h.

This correspondence between tape configurations and words makes it
possible to translate the steps of a program into equations between words.
For example, suppose that the fifth instruction of a certain program is

PRINT 0.
We translate this instruction into the equations

940 = ¢50,  qal = ¢50,
which in turn yield the equation between Post words

h110gs11h = h110g501h
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corresponding to the next step of the computation. Suppose next that the
fifth instruction is

GO RIGHT.

It requires 6 equations to fully translate this instruction, of which two
typical ones are

Q501 = Oq(;l, q51h = 1q60h.

In a similar manner each of the instructions of a program can be translated
into a list of equations. In particular when the ith instruction is STOP,
the corresponding equation will be:

q; = Qdn+1-

So the presence of the symbol ¢, 11 in a Post word serves as a signal that
the computation has halted. Finally, the four equations

Gn+10 = qny1, @1l = qua
OQn—i-l = Qn+1, 1Qn+l = Qqn+1

serve to transform any Post word containing g,11 into the word hgn41h.
Putting all of the pieces together we see how to obtain a word problem
which “translates” any given Turing—Post program.

Now let a Turing—Post program P begin scanning the leftmost symbol
of the string v; the corresponding Post word is hgyvh. Then if P will
eventually halt, the equation

hqivh = hgni1h

will be derivable from the corresponding equations as we could show by
following the computation step by step. If on the other hand P will never
halt, it is possible to prove that this same equation will not be derivable.
(The idea of the proof is that every time we use one of the equations which
translates an instruction, we are either carrying the computation forward,
or—in case we substitute from right to left—undoing a step already taken.
So, if P never halts, we can never get hqvh equal to any word containing
Gn+1.) Finally, if we could solve this word problem we could use the solution
to test the equation

hqivh = hgpy1h

and therefore to solve the halting problem for P. If, therefore, we start
with a Turing—Post program P which we know has an unsolvable halting
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problem, we will obtain an unsolvable word problem.
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Tape Configuration  Program Step

..001100. .. 1
T
..000100. .. 2
T
..000100. .. 4
T
..010100. .. 5
T
..010100. .. 7
T
..011100. .. 8
T
..011100. .. 1
T
..011000. .. 2
T
..011000. .. 2
T
..011000. .. 2
T
..011000. .. 4
T
..111000. .. 5
T
..111000. .. 5
T
..111000. .. 5
T
..111000. .. 7
T
.. 111100. .. 8
T
.. 111100. .. 10
T

Figure 2. Steps in a Computation by Doubling Program
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Given an alphabet of three symbols a, b, ¢, and three equations

ba = abc
bc = cba
ac = ca

we can obtain other equations by substitution:
[ba]c = abee
Or
blac] = [bcJa = c[bala = cabca = [calbea = acbea = . ..

= cablca] = cabac = ...

= ca[bcla = cacbaa = ...
(The expressions in brackets are the symbols about to be replaced.) In this
context can be raised questions such as: “Can we deduce from the three
equations listed above that bacabca = acbca?” The word problem defined
by the three equations is the general question: to determine of an arbitrary

given equation between two words, whether or not it can be deduced from
the three given equations.

Figure 3. A Word Problem
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Julia B. Robinson
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played a key role in the unsolvability proof for Hilbert’s tenth problem. In
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mathematician to be so honored.
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Martin Davis

9.
10.
11.
12,
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

PRINT 0

GO TO STEP 1 IF 1 1S SCANNED
GO RIGHT

GO TO STEP 22 IF 0 IS SCANNED
GO RIGHT

GO TO STEP 12 IF 1 IS SCANNED
GO LEFT

PRINT 0

GO LEFT

GO TO STEP 16 IF 1 IS SCANNED
GO LEFT

GO TO STEP 18 IF 1 IS SCANNED
GO RIGHT

GO TO STEP 1 IF 1 IS SCANNED
STOP

Figure 4. A Program for Calculating Powers of 2
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Among the several new ideas and contributions made by Gregory
Chaitin to mathematics is his strong belief that mathematicians should
transcend the millenary theorem-proof paradigm in favor of a quasi-
empirical method based on current and unprecedented access to computa-
tional resources [3]. In accordance with that dictum, we present in this pa-
per an experimental approach for defining and measuring the Kolmogorov-
Chaitin complexity, a problem which is known to be quite challenging for
short sequences — shorter for example than typical compiler lengths.

The Kolmogorov-Chaitin complexity (or algorithmic complexity) of a
string s is defined as the length of its shortest description p on a universal
Turing machine U, formally K(s) = min{l(p) : U(p) = s}. The major
drawback of K, as measure, is its uncomputability. So in practical applica-
tions it must always be approximated by compression algorithms. A string
is incompressible if its shorter description is the original string itself. If a
string is incompressible it is said that the string is random since no patterns
were found. Among the 2™ different strings of length n at least one will
be completely random simply because there are not enough shorter strings.
By using the same argument it can be also deduced that most of the strings
have maximal K-C complexity. Therefore many of them will remain equal
or very close to their original size after compression. Most of them will be
therefore random. An important property of K is that it is nearly inde-
pendent of the choice of U. However, when the strings are short in length,
the dependence of K on a particular universal Turing machine U is higher
producing arbitrary results. In this paper we will suggest an empirical ap-
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proach to overcome this difficulty and to obtain a stable definition of the
K-C complexity for short sequences.

Using Turing’s model of universal computation, Ray Solomonoff [9, 10]
and Leonid Levin [7] developed a theory about a universal prior distribu-
tion deeply related to the K-C complexity. This work was later known
under several titles: universal distribution, algorithmic probability, uni-
versal inference, among others [5, 6]. This algorithmic probability is the
probability m(s) that a universal Turing machine U produces the string s
when provided with an arbitrary input tape. m(s) can be used as a uni-
versal sequence predictor that outperforms (in a certain sense) all other
predictors [5]. It is easy to see that this distribution is strongly related to
the K-C complexity and that once m(s) is determined so is K (s) since the
formula m(s) can be written in terms of K as follows: m(s) ~ 1/2K(). The
distribution of m(s) predicts that non-random looking strings will appear
much more often as the result of a uniform random process, which in our ex-
periment is equivalent to running all possible Turing machines and cellular
automata of certain small classes according to an acceptable enumeration.
By these means, we claim that it might be possible to overcome the problem
of defining and measuring the K-C complexity of short sequences. Our pro-
posal consists of measuring the K-C complexity by reconstructing it from
scratch basically approximating the algorithmic probability of strings to ap-
proximate the K-C complexity. Particular simple strings are produced with
higher probability (i.e. more often produced by the process we will describe
below) than particular complex strings, so they have lower complexity.

Our experiment proceeded as follows: We worked with Turing machines
(TM) and cellular automata enumerations defined by Stephen Wolfram
[11]. We let run (a) all 2 — state 2 — symbol Turing machines, and (b) a
statistical sample of the 3 — state 2 — symbol ones, both henceforth denoted
as TM(2,2) and TM(3,2).

Then we examine the frequency distribution of these machines’ outputs
performing experiments modifying several parameters: the number of steps,
the length of strings, pseudo-random vs. regular inputs, and the sampling
sizes.

For (a) it turns out that there are 4096 different Turing machines accord-
ing to the formula (2sk)** derived from the traditional 5—tuplet description
of a Turing machine: d(s1 2y, kg1,2y) — (51,2}, k{1,2}, {1, —1}) where s 9}
are the two possible states, k{1 2y are the two possible symbols and the last
entry {1,-1} denotes the movement of the head either to the right or to the
left. From the same formula it follows that for (b) there are 2985984 ma-
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chines so we proceeded by statistical methods taking representative samples
of size 1000, 5000, 10000, 20000 and 100000 Turing machines uniformly dis-
tributed over T'M(3,2). We then let them run 30, 100 and 200 steps each
and we proceeded to feed each one with (1) a (pseudo) random (one per
Turing machine) input string of length equal to the number of steps and
(2) with a regular input.

We proceeded in the same fashion for all one dimensional binary cellular
automata (C'A), those (1) which their rule depends only on the left and
right neighbours and those considering two left and one right neighbour,
henceforth denoted by CA(t, c)E| where ¢ and ¢ are the neighbour cells in
question, to the left and to the right respectively. These C'A were fed
with (a) a single 1 surrounded by 0s and (b) a pseudo-random input string
of length equal to the length . There are 256 one dimensional nearest-
neighbour cellular automata or CA(1,1), also called Elementary Cellular
Automata (ECA) [11] and 65536 C A(2,1). We then let them run 30, 100
and 200 steps each and we proceeded to feed each one with (1) a pseudo-
random (one per cellular automata) input string of length equal to the
number of steps and (2) with a regular input.

To determine the output of the Turing machines we look at the string
consisting of all parts of the tape reached by the head. We then partitioned
the output in substrings of length k. For instance, if £ = 3 and the Turing
machine head reached positions 1,2,3,4 and 5 and the tape contains the
symbols {0,0,0,1,1} then the counter of the occurrences of the substrings
000, 001, 011 is incremented by one each. Similar for C'A using the “light
cone” of all positions reachable from the initial 1 in the time run. Then
we perform the above for (1) each different TM and (2) each different C A,
giving two distributions over strings of a given length k.

We then looked at the frequency distribution of the outputs of both
classes TM and C’AEL (including EC A) performing experiments modifying
several parameters: the number of steps, the length of strings, (pseudo)
random vs. regular inputs, and the sampling sizes.

An important result is that the frequency distribution was very stable
under the several variations described above allowing to define a natural
distribution m(s) particularly for the top of the distribution. We claim

LA better notation is the 3 — tuplet C A(t, c, j) with j indicating the number of symbols,
but because we are only considering 2 — symbol cellular automata we can take it for
granted and avoid that complication.

2Both enumeration schemes are implemented in Mathematica calling the functions
CelullarAutomaton and TuringMachine, the latter implemented in Mathematica version
6.0
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that the bottom of the distribution, and therefore all of it, will tend to
stabilise by taking bigger samples. By analysing|[6.1]it can be deduced that
the output frequency distribution of each of the independent devices of
computation (T'M and CA) follows an output frequency distribution. We
conjecture that these systems of computation and others of equivalent com-
putational power converge toward a single distribution when bigger samples
are taken by allowing a greater number of steps and/or bigger classes con-
taining more and increasingly sophisticated computational devices. Such
distributions should then match the value of m(s) and therefore K(s) by
means of the convergence of what we call their experimental counterparts
me(s) and K. (s). If our method succeeds as we claim, it could be possible
to give a stable definition of the K-C complexity for short sequences inde-
pendent of any constant.

Figure 6.1. The above diagram shows the convergence of the frequency distributions of
the outputs of TM and ECA = CA(1,1) for k = 4, after 200 steps, fed with (pseudo)
random inputs. Matching strings are linked by a line. As one can observe, in spite
of certain crossings, T'M and ECA are strongly correlated and both successfully group
equivalent output strings. By taking the six groups — marked with brackets — the
distribution frequencies only differ by one.
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For instance, the strings 0101 and 1010 are grouped in second place.
They are therefore the second most complex group after the group com-
posed by the strings of a sequence of zeros or ones but before all the other
2% strings. And that is what it would be expected according to what al-
gorithmic probability predicts since more structured non-random strings
appear classified at the top (as our 0101... example) while less structured
random-looking strings appear classified at the bottom. In favour of our
claims about the nature of these distributions as following the universal
distribution m(s) and therefore approaching K (s), notice that all strings
were correctly grouped with their equivalent category of complexity under
the three possible symmetries preserving their K-C complexity, namely re-
version (sy), complementation (co) and composition of the two (syco). The
fact that the method groups all the strings by their complexity category
allowed us to apply a well-known lemma used in group theory to enumer-
ate actual different cases, which let us consider only a single representative
string for each of the complexity categories. For instance, for strings of
length 10 (k = 10), the compressed distribution after the application of
Burnside’s lemma has 272 actual different strings from all 219 = 1024 orig-
inal cases. The distribution below was built from CA(3,2) after 200 steps
and regular inputs (a 1 surrounded by 0s). The following table contains
the top 20 strings with their respective frequencies of appearance.

string  frequency (%)

0000000000 25.2308
0101010101 4.92308
0111101111 1.84615
0011110011 1.84615
0101001010 1.84615
0001001000 1.84615
0110000110 1.84615
0010001000 1.53846
0101101101 1.53846
0000100000 1.53846
0110111111 1.53846
0100100100 1.23077
0010010000 1.23077
0011111111 1.23077
0100100000 1.23077
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0001000000 1.23077
0110001100 1.23077
0000110000 1.23077
0010110100 1.23077
0011100000 0.923077

Even though each distribution obtained by different means favoured dif-
ferent symmetries, it turned out that all them were strongly correlated to
the others. Furthermore, we found that frequency distributions from several
real- world data sources also approximates the same distribution, suggesting
that they probably come from the same kind of computation, supporting
contemporary claims about nature as performing computations [8, 11]. The
extended paper available online contains more detailed results for strings
of length k = 4,5,6,10 as well as two metrics for measuring the conver-
gence of TM(2,2) and ECA and the real-world data frequency distribu-
tions extracted from several sourcesEI Detailed papers with mathematical
formulations and conjectures and the real-world data distribution results,
are currently in preparation.
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Universality of Cellular Automata (CA) is the ability to develop
arbitrary computations, and is viewed as a “complexity certificate”. The
concept exists since the creation of CA by John von Neumann, and it
has undergone several transformations and ramifications. We review a
sample of models, starting with Banks’s CA, where universality has been
shown through the construction of arbitrary boolean circuits (“Circuit
Universality”), in most but not all cases leading to proofs of Turing
Universality.

7.1. Introduction

A d-dimensional Cellular Automata (d-CA) is a dynamical system evolving
in Z¢ in discrete time, where the upgrade of the lattice is synchronous and
each site changes its state following a local rule which depends on the states
of a fixed neighborhood.

Such a system can present very diverse and complex behaviors, the
prediction of which is usually difficult. But what is exactly meant by this?
If we completely know the initial configuration of a CA, we can compute
its whole evolution up to any iteration . On the other hand, if we only
know the state of a finite part of the lattice, we can only update the state

1 This work was partially supported by FONDECYT #1061036.

2The author is also affiliated with the Centro de Modelamiento Matemético (CMM), Uni-
versidad de Chile, UMR 2071-CNRS. This work was partially supported by FONDECYT
#1070022.
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of those cells whose neighbors’s states are all known. In this case the set of
cells that can be updated decreases over time until an instant in which we
cannot compute anymore.

Let us illustrate this with an example in Z. Consider the following rule:
if the central cell is in state 1, it will change to 0 if any of its neighbors is in
state 0; in any other case, it keeps its current state. (Figure illustrates
the evolution of this rule for a certain initial configuration). Let us now
suppose that we know the initial state of cells 1 to 10. Initially, we can
update only cells 2 to 9. In the next iteration we can update only cells 3
to 8, and, in general, at iteration ¢ we can only update cells 1+ to 10 — <.
At step 5, the state of every cell is unknown to us.

W W W W

Figure 7.1. A space-time diagram of a 1-dimensional Cellular Automaton. Time evolves
upward.

In general, in a d-dimensional CA with a neighborhood of radius 1, if
we know the state of a hypercube of side 2¢, we can compute the state of
the central cell for only ¢ — 1 iterations; the computation will take O(t?+1!)
operations in a serial computer.

What means to predict in this context? It means to compute faster than
that. In this context the previous CA is predictable: we can assert that the
state of the central cell will be 1 at iteration ¢ — 1 if and only if we see no
cell in state 0 at the beginning. Computing this last proposition takes only
O(t%) on a serial computer, and O(1) on a parallel computer with O(t%)
processors. Thus, we can say that this CA is simple.

One may define the complexity of a CA rule f as the complexity of the
following problem:

(CA—VALUE(f))ﬂ Given the configuration of a finite hypercube ¢ of size
2t and a given state s, decide whether after ¢-1 steps, s will or will
not be the state of the central cell of the hypercube, when the initial
configuration is ¢ and the CA rule is f.

Now, let us consider the class of polynomial problems (P), i.e., problems

3this problem has been also called “CA-PREDICTION” by C. Moore.
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which are solvable in polynomial time on a serial computer. Clearly the
problem of predicting the state of a site at step ¢ in a CA belongs to P.
Within the class P, an important subclass is the class NC of problems that
can be solved in polylogaritmic time on a parallel computer with a polyno-
mial number of processors. It is not known whether P=NC or not; like in
the case of the P=NP question, the concept of P-completeness plays an im-
portant role. P-complete problems are such that if any of them belongs to
NC, then the complete class P is in NC, because every polynomial problem
reduces to every P-complete problem. If, as is widely suspected, P#NC,
then being P-complete probably means to be inherently secuencial, out of
NC. See R. Greenlaw et al [1], for example, for a detailed presentation of
this subject.
An important P-complete problem [2] is CIRCUIT-VALUE:

(CIRCUIT-VALUE) Given a directed acyclic graph whose vertices have
0,1,2-ary logical gates, given a truth value assignment to each
0-ary vertex, and given a particular vertex called output, decide whether
the output is or not True after computing each logical gate.

If we reduce CIRCUIT-VALUE to CA-VALUE(f), we prove that the
second problem is P-complete. To achieve that for a particular 2-CA, it is
enough to embed circuits in the lattice. In this case, the automaton is said
to be Circuit Universal.

The technique of emulating a boolean circuit by a CA was first used
by E. R. Banks [3] (1971). Banks embedded a complete computer design
in the cellular lattice in order to prove that the CA was Turing Universal,
i.e., that it was able to simulate a Universal Turing machine (TM). Turing
Universality implies Circuit Universality, since with a TM we can compute
a circuit. The converse is not necessarly true, but it often turns out to
work: in the case of Banks, his method to simulate circuits also allowed the
simulation of a Turing machine, because a Turing machine can be computed
with an infinite periodical circuit. See Z. Réka and B. Durand [4], N.
Ollinger [5] and J-C. Delvenne et al [6] for extensive discussions of these
and other notions of universality in Cellular Automata.

Evidently, circuit simulation is not the unique path to proving Turing
Universality. One dimensional cellular automata, for instance, do not lend
themselves easily to building logical circuits (though, if they are Turing
Universal, we know that they can compute them). In particular, M. Cook
showed the Turing universality of the elementary CA with Wolfram’s code
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110 by simulating a TAG-system [7, 8].

In this paper we will review several Circuit Universal models taken from
different domains, thus giving a sample of different techniques. Some of
these models are well known and/or important, arising mostly in physics
and the field of artificial life; other have been chosen mostly for their tech-
nical interest.

7.2. Computing through signals

Turing Universality of two dimensional cellular automata has been proved
mainly by emulating logical gates, in particular when working with a small
number of states.

Roughly speaking, the idea is to represent logical values as ‘signals’
that travel in the space and interact with each other. The interactions
must be rich enough to reproduce all the logical gates. Usually a signal
represents the logical value True, and the absence of a signal is the logical
value Fualse. Logical gates are stable or periodical configurations, i.e., finite
configurations that, under certain boundary conditions, remain unchanged
when iterating the CA rule, and if they change, they do it in a periodical
way.

It is not necessary to exhibit each of the logical gates, a finite but
complete set being enough. For example, it suffices to emulate a NOT and
an AND gate, together with some devices allowing to direct, duplicate (a
FANOUT) and to cross signals (a CROSSOVER) (Figure[7.2)shows a XOR
gate constructed by pasting the needed pieces together). The CROSSOVER
can be computed with a planar logical circuit by using only NOT and OR
gates, and hence if we can emulate a NOT and an OR gate (or an AND
gate) we do not need to give the CROSSOVER explicitly.

On the other hand, if we have the CROSSOVER, the AND gate and the
OR gate are enough (the NOT gate is not necessary) because the MONO-
TONE CIRCUIT VALUE problem -which consists in computing a circuit
with no NOT gates- is also P-complete [9].

With all the pieces in hand, a logical circuit is emulated by a config-
uration of the CA such that some cells represent the value of the input
variables. When the CA evolves, the signals advance, enter the logical
gates, and the circuit is computed. After a certain delay, one can recover
the result of the computation by looking at whether a signal appears or
not as the output of the last logical gate. We remark that in order to work
correctly, signals must be synchronized: all the trajectories from the inputs
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OUTPUT

CROSSOVER

FANOUT FANOUT

X Y

Figure 7.2. A scheme which, embedded in a CA, computes a XOR gate.

to the output must have the same length.

If the usual coding of True and False through presence and absence of
signal is used, the NOT gate has some particular requirements. When a
signal enters the NOT gate, nothing should exit; on the other hand, if no
signal enters, the NOT gate must generate a signal. How will the NOT
gate know when to generate this signal? This problem has been solved in
two ways: 1) defining the NOT as a device that periodically emits signals
when no signal enters; 2) allowing a second input to the NOT, which, in
some sense, indicates when to compute.

The first solution has the inconvenient of periodically introducing sig-
nals in the system, thus producing many output signals before the “real”
computed output. This is not as bad as it may sound, as long as we are
able to discard all the spurious outputs and read only the good one. The
second solution enlarges the amount of “wires” in the circuit, but only
proportionally to the number of gates.

A an additional feature may be wanted in the gates and devices, though
it is not really necessary it is used to ensure that information flows in the
proper directions, i.e., that gates do not send back signals in the direction
of the inputs. This is achieved with a DIODE.

The first work that showed the universality of a CA by simulating a
circuit was E. R. Banks’s PhD thesis [3], which defined the smallest two-
dimensional universal automaton: a CA with two states and von Neumann
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neighborhood (i.e., the four nearest cells in the 2-dimensional lattice). It
is not easy to do this, and thus the Banks automaton with two states
features some rather complicated devices. Banks also defined some three
state automata, which are much simpler. In the next section we show one
of them.

7.2.1. A three states CA by Banks

The local transition rule of Banks’s CA is given in Figure [7.3] The figure
shows the states of the cell together with its four nearest neighbors, followed
by an arrow pointing to the state the cell will adopt in the next iteration.
The rule is isotropic, and thus each configuration represents also its rotated
versions. If a cell is in a situation not given in the list, then the cell does
not change of state.

o RLEE . ELEE ELEL.EEE SR R
Wo-n ofn-n ofe-n om-w

Figure 7.3. The transition rule of the three states Banks’s CAE

Banks defined a wire: a line of cells in gray state, embedded in a back-
ground of cells in blank state. This is a stable configuration, but if two
neighboring cells in the chain are changed to blank and black, this pertur-
bation propagates over the chain in the direction of the black cell (this is
a signal), and if two signals collide, they disappear; a cut wire is a dead
end for the signal. A junction of three or four wires is also a stable config-
uration; a grey cell is added in the three wires case, giving it a short cut
wire. When one or two signals (in right angle) enter a junction they exit by
the remaining wires. But if three signals enter a junction, they disappear.
Figure [7.4] shows simulations of some of these phenomena.

The OR gate is simply a junction of three wires, which can be also used
as a FANOUT. These gates can send signals in the direction of the inputs,
something that Banks prefered to avoid. He managed this by defining a
DIODE, shown in Figure a)7 which only allows a signal to pass in one
direction. Banks also constructed a Timer that generates signals period-
ically, shown in Figure b): the signal inside the cycle duplicates each
time it passes by the junction, sending a signal into the exiting wire. The
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Figure 7.4. Top: A wire and the propagation of a signal. Middle: When one signal
enters a three wire junction. Bottom: When two signals enter a four wire junction.

NOT gate is composed by two Timers connected to a junction (see Fig-
ure[7.5(c)). If a signal A arrives to this junction at the same iteration that
both Timer signals, they mutually annihilates.

A~>
—A A— 1— 1‘
1‘ IRE

@ (b) (0

Figure 7.5. (a) the Diode. (b) the Timer. (c) the NOT gate.

Another universal CA was defined by B. Silverman [10], and is known
as Wireworld. Its rule is very similar to those of Banks’s CA, but it uses
four states and Moore’s neighborhood; this gives more flexibility and al-
lows to build smaller and simpler circuits. In fact, a very small circuit
that enumerates prime numbers has been constructed by D. Moore and M.
Owen [11].
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7.3. CA over a hexagonal grid and three states

The rule of this CA [12] by the present authors is very similar to those of
Banks’s CA. The fundamental difference is the cellular space: it works over
the hexagonal grid, with the cells located on the vertices of the grid, and
having thus only three neighbors each. The transition rule is as follows:

e blank state remains blank except if it has at least a black and a grey
cells in its neighborhood, in which case it becomes grey, it also becomes
gray if it has exactly two gray and one blank neighbors,

e grey state remains grey except if it has exactly one black neighbor, in
which case it becomes black,

e black state always changes to blank state, except if it has a black neigh-
bor, in which case it becomes grey.

In this CA we can define the following two configurations, which are
enough to construct all the needed gates, as we will show.

Wire : a connected chain of grey cells over a background of blank cells.
This configuration is stable, but if two neighboring cells in the chain
are changed to blank and black, this perturbation propagates over the
chain in the direction of the black cell (this is a signal, Figure [7.6(a)),
and if two signals collide, they disappear.

Annihilating Junction : a device with three connected wires, such that:
if it receives one signal on one of the wires, it generates one signal
at each of the two remaining wires; but if it receives more than one
signal simultaneously, it absorbs them and generates no outgoing signal

(Figure [7.6[b)).

The Wire ensures that we can transport the signals anywhere in the
cellular plane. The Annihilating Junction acts as a FANOUT when it
receives only one signal. It can also act as a XOR gate when two of its wires
are used as inputs, and this XOR can be used to construct a NOT gate, by
taking the idea of Banks. As in Banks’s work, a DIODE is required if we
want to prevent a return of the signals back to the inputs. Since Banks’s
DIODE uses the four wires junction, its construction cannot be imported
here. Figure (a) shows the solution, composed by two successive NOT
gates. They will not change the input signals, but if a signal enters by
the right, a triple collision is produced in the output of the second NOT;
nothing changes inside the DIODE, and no signal goes to the left.
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Figure 7.6. (a) A signal and the wire. (b) Two signals entering an Annihilating Junc-
tion.

Unfortunately, the XOR, and the NOT gates are not enough for con-
structing the OR and the AND gates. In Banks’s CA, the OR gate was
obtained because two signals do not annihilate each other in a junction,
something which does not work here. However, the logical gate ‘p AND
NOT ¢’ can be computed within this system, as shown in Figure b).
In order to correctly use the gate, the input signals must be synchronized
to collide at point C (or anywhere between the hexagon and the input p).
If a signal arrives by p, it will exit. If a signal arrives by ¢, it will die at
the Annihilating Junction A. If two signals arrive at the same time they
will be mutually annihilated at point C and no output will be produced.
Any logical gate can be constructed by using the ‘p AND NOT ¢’ gate, and
hence the cellular automaton is Circuit Universal.

@ (b)

Figure 7.7. (a) The DIODE. (b) The p AND NOT gq gate.
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7.4. Life automata

7.4.1. Game of life

John Conway’s famous Game of Life [13], which is known for its formidable
variety of complex structures that make us think about life forms, is also
universal. This automaton has two states (alive and dead) and Moore’s
neighborhood (i.e., the eight nearest neighbors in the square grid). The
rule is very simple: a dead cell becomes alive if exactly three of its neighbors
are alive, and an alive cell remains alive only if two or three of its neighbors
are alive.

Here the computation is made through signals that travel in the empty
lattice, and the main logical gate is simply a collision. The Turing Univer-
sality of this automaton was proved by E. Berlekamp, J. H. Conway and
R. Guy [13]. Here we will expose a variation of the proof by Z. Réka and
B. Durand [4].

The signals are called gliders, one of which is shown in Figure a)
while travelling in the lattice. Notice that its displacement is done in four
steps, implying that there are several kinds of collisions, depending on the
respective phase of the participating gliders. One of these collisions Kkills
both gliders (see Figure [7.§b)).

<
=
¥
L

Figure 7.8. (a) A glider traveling in the lattice. (b) A glider crash.

This collision emulates a gate with two outputs: p AND NOT ¢ and
NOT p AND g, because each glider will continue its way if and only if the
other glider does not arrive. It is possible to kill one of the outputs with a
configuration called eater, which is a stable configuration that destroys the
gliders when they collide with it. We obtain in this way a p AND NOT
q gate. If we replace the input p by a periodical glider generator, which
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exists (a glider gun), we obtain a NOT gate. With these two gates all the
other gates can be obtained.

To complete the construction, we still need to duplicate and to direct
the gliders, and this cannot be done with a logical gate. To achieve this,
another collission must be used: a collision called Kickback Collision. When
a stream of gliders collides with a glider in a Kickback collision, the first
glider comes back to the stream and collides with the second glider. This
last collision can kill the third glider too. In short, a single glider can kill
three. This can be used to duplicate and change the direction of a logical
value, as shown in Figure The FANOUT requires several gliders (1’s),
which can be generated with glider guns.

0 A
A 0
0 0
1111 0 AcoA 0 Aooo
—
A 1
1 0
0 0
0 0

Figure 7.9. A FANOUT. If A = 1, the first three 1’s of the left are killed, and the 1’s
coming from the bottom survive, as well as the last 1 which finally exits by the right. If
A = 0, the last three 1’s of the left are killed, and no glider goes up; only the first one
goes on to kill the 1 coming from the right-bottom, preventing the exit of gliders in any
direction.

7.4.2. Life without death

This CA has almost the same rule as the Game of Life, but in this case
no cell ever dies. Here there are signals that travel in the lattice too, but
they leave, of course, a trace of living cells. This phenomenon is called a
ladder. The universality of this automaton was proved by D. Griffeath and
C. Moore [14]. In their work, they establish three basic properties that the
CA satisfies and that are enough to prove its P-completeness.

ladder : it is a configuration that grows in a straight line.

L : it is a stable configuration such that the ladder turns when colliding
with it.

ladder collision : if one ladder collides with the trace of another ladder
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it stops.

With the collision we have a p AND NOT q gate and all the other gates,
including the CROSSOVER. If a ladder turns three times it collides with
its own trace and stops, and this can be used to stop unused outputs. The
FANOUT can also be constructed with this property (see Figure .
Since within this system we have no ‘ladder gun’, all 1’s must be produced
at the beginning and delayed long enough to arrive at the desired iteration
to the gate where they are needed. Griffeath and Moore proved that this
can be done without making the circuit grow in an inconvenient way.

ATATA

Al |1

Figure 7.10. If a signal A passes before the 1 of the right, every other 1 passes. But if
the signal A is 0, then the 1 of the right prevents the other 1’s from going up.

7.5. Reversible models

Reversibility used to be seen as a limitation for universality. In fact, since
the AND gate is not reversible, no reversible system can emulate an AND
gate without producing some “garbage signals” (i.e., additional outputs).
For example, in the Game of Life, the basic gate p AND NOT ¢ was obtained
with a collision that generated two output signals and with an “eater” that
killed unused output. In a Reversible Cellular Automata the equivalent
of an “eater” cannot exist, and any “garbage signals” need to be “sent
away” or “recycled.” In 1982 E. Fredkin and T. Toffoli [15] formally proved
that any boolean Circuit can be computed with only wires and a given
reversible logical gate now known as Fredkin Gate. Their construction uses a
linear number of input constants and does not generate additional “garbage
signals.” Later, in 1990, K. Morita [16] showed that a universal reversible
1-CA can also be computed with only wires and the Fredkin gate, showing
in this way that in order to have Turing Universality in a 2-CA it is enough
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to emulate wires and the Fredkin gate. Figure shows the behavior of
the Fredkin gate.

P
q q j,><£,

Figure 7.11. The Fredking gate is a three-inputs-three-outputs logical gate. If the upper
input value is 1 (True), the outputs are equal to the inputs. If the upper input value is
0 (False), the upper output is also 0 but the other two inputs are permuted.

Two important reversible models are: 1) the Billiard Ball
Model [15](BBM) (as well as its CA implementation [17]) and 2) the sim-
ulations of hydrodynamics and Navier-Stokes equations [18]. Essentially,
both models represent a gas of identical hard spheres in a 2-dimensional
space.

Let us start by studying the BBM. Figure shows a balls collision.
At time ¢ we can put a ball either at X, Y, or both. If we put both balls,
they will collide following the outer paths. Otherwise, one of the other
paths will be followed. Then, with this collision, we have a two-inputs-
four-outputs gate, where the outputs are: X AND Y twice, X AND NOT
Y and NOT X AND Y. With an ingenious construction (Figure this
gate can be used to compute a Fredkin gate [15]. Hence the general Billiard
Ball Model is P-complete and Turing Universal.

X XY

XY

XY
XY

Figure 7.12. The collision of two balls can be viewed as a general logical gate with
multiple outputs. The variables X and Y represent the presence or the absence of a
travelling ball.

A sort of CA which simulates the BBM was defined by N. Margolus [17],
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Figure 7.13. The Fredking gate computed only with the BBM collision. The gray boxes
represent either the two-inputs-four-outputs gate given by the collision or its inverse.

The lines outside these gates represent particle trajectories, which are controlled by well
placed mirrors. The circuit must be constructed in such a way that the particles do not
interact when their trajectories cross.

which he called partitioned cellular automata and have a special kind of
iteration. Consider a 2-dimensional lattice with two states per site and
divide the lattice in 2 x 2 blocks of sites. A transformation will be applied
to each block. In our case the transformation is given in Figure It
is conservative and reversible. The updating consists in applying the rule
alternately to the 2 x 2 blocks in the solid blocks partition and in the dotted
one, as explained by Figure One may see that this local rule allows to
simulate the two dimensional BBM. Then, it is also Circuit Universal [17].

_§ "Nulualsal==
!
__§ "Na"Ruul"SNEE

Figure 7.14. Rules for the BBM partitioned automata

Other reversible CA, also called ‘partitioned CA’ but in a different sense,
are those defined by Morita et al [19-21]; they are proper CA. Morita and
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Figure 7.15. Billiard ball collision in the BBM automata.

his collaborators showed the universality of three simple 2-CA by emulating
Fredking gates. Each publication cited does it for a different grid: a 32
states CA over the triangular grid, a 16 states CA over the square grid,
and a 8 states CA over the hexagonal grid.

Lattice gas models are defined in a similar way as the BBM, also with
collisions of particles. We will refer here to the simplest one, proposed
by J. Hardy, O. de Pazzis and Y. Pomeau [18] in 1976. The HPP model
considers only one kind of collision: when two particles collide head-on the
outgoing particles are rotated by 90 degrees (see Figure . In any other
case, the particles do not interact. This give us the same logical gate as
the collision of the BBM, but here two of the outputs go back towards
the inputs, requiring some tricky construction in order to recover them.
The HPP lattice gas is P-complete, as was proved by C. Moore and M.
Nordahl [22] in 1997. As an example, we give the construction of the NOT

gate in Figure [7.17]
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Figure 7.16. Two ball head-on collision in the HHP lattice gas.
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Figure 7.17. NOT gate for the HPP lattice gas. If a signal comes by A, it will collide
with the 1 coming from above and two horizontal signals will exit. If no signal comes by
A, the 1 from below will collide with the other one, then a signal will exit and collide
the 1 from the right to finally exit by the top.

7.6. Sandpiles

Bak et al [23] introduced a model, mostly known as the Sandpile Automa-
ton, which captures important features of many nonlinear dissipative sys-
tems. Consider a set of sites in a d-dimensional lattice such that each cell is
connected to the 2d nearest neighbors. A finite number of tokens, x;(t) > 0,
is assigned to each cell i. Given the configuration at step t, if the site 4
has more than 2d tokens, it gives one of these to each neighbor. Since
the updating is synchronous, the site i also receives one token from each
neighbor with more than d tokens. In Figure [7.18| we give an example of
the Sandpile dynamics in a two dimensional lattice.

If the number of tokens is finite, within a finite amount of time every
site will have less than d tokens (see, for example, C. Moore [24] for a formal
proof). Then, any finite configuration becomes stationary (a fixed point),
that is to say, every avalanche stops in a finite number of iterations. The
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Figure 7.18. A simulation of the Sandpile.

interesting thing is that before reaching the equilibrium, the dynamics of
this automaton is far from simple. In fact, for d > 3 and other topologies,
it has been shown to be P-complete [24, 25]. It is not difficult to construct
wires and some logical gates by using tokens: in Figure[7.19 we exhibit this
constructions in dimension two [24].

The wire and the signal The OR gate and the fanout The AND gate
T[T 3333 3333
1[T[TI[1[4[3[3[3 3[3[3[3[3] 2[3[3[3[3]
1111 3333 3333

Figure 7.19. The logical gates for the sandpile model.

However, the construction of a CROSSOVER in two dimensions is not
possible and this can be proved [26]; here we sketch the argument. A
CROSSOVER can be viewed as a stable configuration in a finite portion of
the 2-dimensional lattice. The circuit activity begins when some tokens are
added to the input cells provoking avalanches. In order to cross avalanches,
the CROSSOVER must be susceptible to develop a West-to-East and a
South-to-North avalanche. The difficulty is that the avalanches intersect
each other, because of the planarity of the grid, and the monotonicity of
the rule makes one avalanche follow the course of the other one and vice
versa. Figure shows a configuration that could be a CROSSOVER.
It can produce both West-to-East and a South-to-North avalanches. But
when one of these avalanches is produced, tokens arrives both to the East
and North sides.

The same result is obtained when we consider Moore’s neighborhood
(i.e., the 8 neighbors of a site). But if we relax the size of the neighborhood
further by considering radius 2, one can obtain a P-complete two dimen-
sional model [26], whose logic gates as well as CROSSOVER are shown in



148 Anahi Gajardo and Eric Goles

W
*i
3
3ls[ala]s
|3 | 13 |
3 3 —
. 3|a[2]3]s 3lalafsafa]n
s|als[sls]s 13 | El
3 | |3 | 3 |
3 3 3
s3|s[3[s]3]3[3]s]s
13 |
3
Eal
?

Figure 7.20. A failed CROSSOVER. If an avalanche comes in by the West or by the
South, it exits both by the North and the East.

Figure [7.21]

The wire and the signal
The OR gate and the fanout

1 1
1 1 1 LI 7L 71 171 7
2[1[2[0[1]8] (7] |7
3 7 7 17117
The neigborhood 777 1717
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Figure 7.21. Logical gates constructed for a Sandpile with von Neumann neighborhood
of radius two. In this model, the critical threshold is 8.

7.7. Conclusions

The construction of boolean circuits in 2-CA is not always an easy task,
but it remains the best known path to proving Turing Universality. Turing
Universality is an important property, since it means being able to perform
any algorithmic calculation, and has strong consequences like the existence
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of undecidable questions (in particular, that of the halting problem, which
can be translated for a T.U. CA as the undecidability of knowing whether
a certain local configuration will ever appear on the grid). But even when
Turing Universality is not reached, Circuit Universality is by itself an inter-
esting feature. If all the needed devices are available and can be properly
combined, then configurations can be built to compute any given function
F : {0,1}" — {0,1}™; moreover, the P#NC conjecture would put the
dynamics of the CA in the “inherently sequential” category, making easy
prediction hopeless. These two consequences of circuit construction are
enough to justify it as a relevant certificate of complexity.

The set of models shows both the similarities and the diversity we can
encounter when we try to follow Banks’s steps toward universality. The
shape and cardinality of the neighborhood can be a problem, sometimes
solvable (like the case of the hexagonal grid, where it prevented an easy
migration of some of Banks’s constructions) and sometimes insurmountable
(witness, the impossibility of crossovers in the standard sandpile). In some
cases moving configurations are readily available (Life’s gliders, billiard
balls), but often a signal must be coded into a wire. The logic gates that are
easier to build vary greatly between different automata too; and sometimes
it is not in the logic gates, but in the complementary devices, where the
most difficult part of the construction is found: duplicating, producing or
even directing signals can be non-trivial, and even garbage disposal can
become an issue.

Banks’s approach or slight variants of it have even worked well in quite
different settings, like Langton’s ant [27], where changes on the lattice are
made by the action of an agent (the ant) while the rest of the configuration
remains static. Circuit and Turing universality were proved for this system
by using gates and devices very much like those described here, the main
differences being that there the configurations must be defined in such a
way that the ant visits each gate to make it work, while logical values are
“read” by the ant by affecting its trajectory, and “written” through the
trail it leaves behind [28].

Are there precise features shared by all these automata, which allow
them to be Circuit Universal? A set of sufficient conditions seems unlikely,
but perhaps some necessary conditions could be found which the local rule
of a 2-CA must satisfy if arbitrary boolean circuits are to be constructed.
This is an intriguing open question, since proving non-universality is even
more difficult, for non-trivial CA, than proving the opposite.
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Chapter 8

Chaitin’s Graph Coloring Algorithm
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As a computer architect, and one oriented toward real-world problems,
I am not familiar with many of Greg Chaitin’s important contributions. I
am aware of one very important one with practical impact: the Chaitin
graph coloring algorithm for optimal global register allocation. This work,
first disseminated beyond IBM in a 1981 publication [1], “Register Alloca-
tion via Coloring,” demonstrated how a graph coloring algorithm could be
solved in n? time to determine an optimal allocation of variables to reg-
isters. While the link between the four-color graph problem and register
allocation had been recognized as early as 1957, graph coloring has long
been known to be an NP-hard problem.

Chaitin’s algorithm featured as a key innovation in the IBM 801 com-
puter [2], the machine many would claim as the original RISC machine.
Fran Allen points out [3] that prior to Chaitin’s algorithm, “most global as-
signment methods were essentially variants on the FORTRAN I approach”
[1954].

This algorithm was a major factor in achieving a goal expressed in
the abstract of Chaitin’s paper: “Preliminary results of an experimental
implementation in a PL/I optimizing compiler suggest that global regis-
ter allocation approaching that of hand-coded assembly language may be
attainable.” Global register allocation was an important step forward in
computer architecture. With the technology advances of the 1980s, it was
becoming increasingly clear that computers could be provided with far more
general-purposes registers than the typical number of the day(8-16). But
there was serious question about whether the registers could be adequately
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utilyzed—hand-coded programs tested human limits by requiring the pro-
grammer to think about the efficient sharing of registers across different
procedures that might or might not have concurrent scope. The develop-
ment of an efficient global register allocation scheme was an important step
forward, and justified the larger general register file typical of the new pro-
cessors emerging in the early 1980s. Today compilers are able to do far
better than humans can hope to do in allocating registers.
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In this brief note we want to present and make known a statement of
Berry paradox which has been ignored — buried in the graveyard of dead
languages — and which is due to Beppo Levi, in 1908, independently
from Russell. Berry paradox should actually be called Russell’s para-
dox, as Chaitin has observed, in [3, pp. 8-9], on the basis of Alejandro
Garciadiego’s findings.

Beppo Levi’s version is much more modern than Russell’s informal one,
since it is cast in arithmetical terms, with the appropriate numerical com-
putations; although Levi’s assessment of it is rather muddled, his paradox
is ready for use when supplemented with the ideas which will transform the
epistemological paradoxes in positive arguments in the theory of undecid-
able problems, as foreseen by Godel and as realized in [2] or [1].

Beppo Levi doesn’t mention Berry paradox and he doesn’t cite the paper
[10], where it was presented, which he quite certainly did not know; his
only references are to [9]. He gives a mathematically rigorous version of the
paradox in the course of a rather lengthy analysis of Richard’s antinomy;,
where he follows and improves Peano’s discussion of the latter.

1. Beppo Levi did not belong to Peano’s school, although he graduated
in Torino in 1896 with a dissertation in analysis. At the beginning of his
career he worked in set theory, starting out with the perusal of Baire’s the-
sis, then reverting to measure and category theory of the line after a failed
attack at the continuum hypothesis. His name in mentioned in connection
with the history of the axiom of choice, as he seems to have been the first to
recognize (and formulate) the principle of partition in Berstein’s proof that
there are continuum many closed sets; he also gave a new proof avoiding
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choice. Azriel Levy for example gives as reference for the axiom of choice
“(Beppo Levi 1902; Erhard Schmidt 1904 — see Zermelo 1904)”, in [6, p.
159], but Zermelo in 1904 only attributed, rightly, to Beppo Levi the prin-
ciple of partition. Levi’s precise contributions are spelled out in [8, pp.
78-80] and [7].

Further work by Beppo Levi in logic concerned mainly improvements
and criticism of Peano’s logic, and has only historical interest. As a math-
ematician he is best remembered for results in analysis related to Lebesgue
theory, such as the theorem of the passage to limit under integral sign —
equivalent to the later Lebesgue’s dominated convergence — and in number
theory, as explained in [11].

Beppo Levi had a crystal clear conception of the new axiomatic method
as it had been recognized at the end of the nineteenth century; to him, on a
par with Pasch, Hilbert, Enriques and Pieri, are due some of the most neat
explications of the nature of mathematical theories, of the impossibility for
primitive notions to be completely determined and of the unavoidability of
multiple interpretations.

He relied on these principles also in the analysis of logical antinomies
he gave in [4].

2. In discussing Richard’s antinomy Levi denotes by FE the set of real
numbers definable with a finite number of words, and by R an enumeration
of F.

He concludes that E does not exist, but the reason he gives is different
from that of Poincaré and Russell imputing the antinomy to the impred-
icative character of the definition. He also notices the circularity of the
definition of E, which to him, from his axiomatic point of view, means that
E ed R are not to be considered defined and independent entities; they are
primitive ideas subjected as a whole to some postulates, which he tries to
identify:

(1) E is a set of numbers comprised between 0 and 1;

(2) R is an order of the numbers of E;

(3) All numbers of E and only they can be expressed with a finite number
of symbols, including £ and R.

Richard’s diagonal number N proves only, according to Levi, that the pos-
tulates imposed on F and R are not mutually consistent.
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Levi does not pinpoint the source of the contradiction, observing that
“when a set of postulates is inconsistent, the contradiction lies in their
union, not in any single one of them”.

He dwells however on the ordering R, which is naturally thought of as
obtained by a lexicographic ordering of the set F' of all statements by prun-
ing it of those which do not define a number or define a number previously
listed. Let us call it briefly the lexicographic order.

Here comes the paradox (we had to change the counting with respect to
Levi’s because of the different length of sentences in Italian and in English).

Let us call B, as we did, the number of symbols needed to compose
our statements: among these symbols we’ll assume to be included, for
simplicity, the symbol for exponentiation [ (“to the”). It is easy to see
that B > 40: suppose we write it in the decimal system, and let 3 be the
number of its digits (we can reasonably assume 3 = 2). Now consider
the proposition

< The number whose place in Ris B[ B » ;

this proposition contains 32 + 23 symbolfﬂ its place in the enumeration
of F is therefore < B*?*2% < B | B; if numbers of E are listed in the
order described in n. 8 [by enumerating and pruning the members of F],
the above defined number must have a place < B | B. Hence that order
cannot be R.

It is obvious that similar contradictions can be concocted for many other
definitions of orderings one can imagine substituted to that of n. 8 [the
lexicographic one|. Richard’s contradiction presents itself for any way R
can be thought to be deﬁnecEl .

! [Blank spaces count as occurrences of a symbol for Levi.]
2We give also the italian original text for the historian’s sake:

Si chiami B, come pocanzi, il numero dei segni che servono a comporre
le nostre frasi: fra questi segni supporremo compreso, per comodita,
il segno | (elevato a). Si vede facilmente che B > 40: lo supporremo
scritto in cifre nel sistema decimale, e chiameremo £ il numero di queste
cifre (presumibilmente 8 = 2). Si consideri allora la proposizione

< Il numero di posto B | B in R >;

essa consta di 254 2/3 segni; il suo posto nell’ordinamento di F' & quindi
< B¥*+2% < B | B; se dunque i numeri di E si numerano come si disse
nel n. &, il numero considerato dovra avere posto < B [ B. Quella
numerazione non puo dunque essere R.

E chiaro che simili contraddizioni si possono costruire per molte al-
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Levi is unaware that his argument can be made to stand independently
of Richard’s setting in the real numbers and of diagonalization, to which
indeed it offers an alternative, while he continues to call it “Richard’s anti-
nomy”. He could have noticed, with his axiomatic sensibility, that no men-
tion is made of the nature of the definable entities, and that it could as well
refer to the definability of natural numbers.

But it is clear that the general phenomenon upon which Levi stumbled
is that of descriptions which are shorter than what they describe. What
is missing of course, to arrive at an instance of the incompleteness phe-
nomenon, is the idea of proving in a formal system which is the place of
the number defined as “the number whose place is B [ B”. Since this de-
scription is shorter than B | B, the number defined should occupy a place
< B | B, so no place can be proved to exist for it.

What Beppo Levi instead argues is the following, as can be inferred by
his last vague comment: think of the order R as the lexicographic order,
then the number “whose place is B | B” shows that the order cannot be
that one. But think of R as any other ordering, and a similar argument
will show that the order cannot be the one you thought. So there is none,
which is consistent with F.
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We present a new method for expressing Chaitin’s random real, €,
through Diophantine equations. Where Chaitin’s method causes a par-
ticular quantity to express the bits of 2 by fluctuating between finite
and infinite values, in our method this quantity is always finite and the
bits of 2 are expressed in its fluctuations between odd and even values,
allowing for some interesting developments. We then use exponential
Diophantine equations to simplify this result and finally show how both
methods can also be used to create polynomials which express the bits
of © in the number of positive values they assume.

10.1. Recursive Enumerability, Algorithmic Randomness
and

One of the most startling recent developments in the theory of computation
is the discovery of the number €2, through the subfield of algorithmic infor-
mation theory. € is a real number between 0 and 1 which was introduced
by G. J. Chaitin [2] as an example of a number with two conflicting prop-
erties: it is both recursively enumerable and algorithmically random. Very
roughly, this means that 2 has a simple definition and can be computed in
the limit from below, yet we can determine only finitely many of its digits
with certainty—for the rest we can do no better than random.

Understanding the full importance of these properties requires some fa-
miliarity with the recursive functions—commonly presented through mod-
els of computation such as Turing machines or the lambda calculus. For
the purposes of algorithmic information theory, however, it is convenient to
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abstract some of the details from these models and consider a programming
language in which the (partial) recursive functions are represented by finite
binary stringsﬂ These strings are just programs for a universal Turing ma-
chine (or universal lambda expression) and they take input in the form of
a binary string then output another binary string or diverge (fail to halt).
For convenience, we will often consider these inputs and outputs to encode
tuples of positive integers.

On top of this simplified picture of computation, we impose one re-
striction which is necessary for the development of algorithmic information
theory (and hence §2). The set of strings that encode the recursive functions
must be prefix-free. This means that no program can be an extension of
another, and thus each program is said to be self-delimiting. As algorithmic
information theory is intricately linked with communication as well as com-
putation, this is quite a natural constraint—if you wish to use a permanent
binary communication channel, then you need to know when the end of a
message has been reached and this cannot be done if some messages are
extensions of others.

There are many prefix-free sets that one could choose and many recur-
sive mappings between these and the recursive functions. These different
choices of ‘programming language’ lead to different values of €2, but this
does not matter much as almost all of its significant properties will remain
the same regardless. However, to allow talk of 2 as a specific real number
we will use the same language as Chaitin [3].

Now that we have explained what we mean by a programming language,
we can give a quick overview of computability in terms of programs. A pro-
gram computes a set of n-tuples if, when provided with input (z1,...,z,),
it returns 1 if this is a member of the set and 0 otherwise. A program
computes an infinite sequence if, when provided with input n, it returns
the value of the n-th element in the sequence. A program computes a real,
r, if it computes a sequence of rationals {r,} which converges to r and
|r —rn| < 2% These sets, sequences and reals that are computed by pro-
grams are said to be recursive.

There are also many sets, sequences and reals that cannot be computed,
but can be approximated in an important way. A program semi-computes a
set of n-tuples if, when provided with input (z1,...,z,), it returns 1 if this
is a member of the set and diverges otherwise. A program semi-computes

IFor more details see Chaitin [3].
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an infinite sequence of bits if, when provided with input n, it returns 1 if
the n-th bit in the sequence is 1 and diverges otherwise. A program semi-
computes a real, r, if, when provided with input n, it computes a rational
number, r,, where {r,} converges to r from below. These sets, infinite
bitstrings and reals that are semi-computed by programs are said to be
recursively enumerable or r.e.

There is an important point that needs to be made concerning reals
and their representations. Each real number between 0 and 1 has a binary
expansion: a binary point followed by an infinite sequence of bits that rep-
resents the realﬂ Throughout this paper, we shall be making considerable
use of the binary expansions of real numbers so it is important to point out
an oddity in the definitions above: a real is recursive if and only if its binary
expansion is recursive, but a real may be r.e. even if its binary expansion is
not r.e. We shall thus take care to distinguish the weaker property of being
an r.e. real from the stronger one of being a real whose binary expansion is
T.€e.

An example of a real that is r.e. but not recursive is 7: the real number
between 0 and 1, whose k-th digit is 1 if the k-th program (in the usual
lexical ordering of finite bitstrings) halts when given the empty string as
input and 0 if the k-th program diverges. Equivalently:

T= Y 2" (10.1)

pn, halts

T is an r.e. real because there is a computable sequence of rationals {7;},
where

= > 2 (10.2)
n<i
prn halts in <i steps

such that {7;} converges to 7 from below.

Furthermore, it is clear that the binary representation of 7 is also r.e. be-
cause there is a program that simulates the k-th program, halting if and
only if it does. This program is a slightly modified universal program that
first determines the bits of the k-th program and then simulates it.

2For numbers that can be expressed with a representation ending in an infinite string
of 0’s, there is another representation ending in an infinite sequence of 1’s, but we shall
remove this ambiguity by only using representations with an infinite number of 0’s. This
will not affect the important reals in this paper, Q and 7, as they are irrational and thus
have unique representations regardless.
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T is not recursive, however, because if a program could compute it to
arbitrary accuracy, it would determine whether each program halts or not
when given the empty string as input. This is known as the blank tape
problem and is easily shown to be equivalent to the more general halting
problem—‘does a given program halt on a given input?’. The halting prob-
lem is fundamental to the theory of computation and is the most famous
problem that cannot be recursively solved. 7 merely encodes the informa-
tion necessary to solve the halting problem into the binary expansion of a
real number and thus provides a very simple example of a non-computable
real to which we can contrast the more exotic properties possessed by (2.

Q) encodes the halting problem in a more subtle way: it is the halting
probability. We could, theoretically, generate a random program one bit
at a time, by flipping a fair coin and writing down a 1 when it comes up
heads and a 0 for tails—stopping if we reach a valid program. The chance
of generating any given n bit program is therefore % Q) is the chance that
this method of random program construction generates a program that

halts. Letting |p| represent the size of p in bits, we can also express Q as

Q=Y 27l (10.3)
p halts

As was the case for 7, there is a computable sequence of rationals {{;},
where

Q; = > ol (10.4)
lp|<i
p halts in <i steps
which converges to € from below, showing it to be an r.e. real. However,
we shall see shortly that the binary representation of 2 is not r.e.

A real is said to be algorithmically random [3] if and only if the ‘al-
gorithmic complexity’ of each mn-bit initial segment of its binary expansion
becomes and remains arbitrarily greater than nE| In other words a real,
r, is algorithmically random if and only if any program that has access to
outside advice in the form of binary messages requires more than n bits of
advice to compute the first n bits of 7’s binary expansion (for all values of n
above some threshold)ﬂ Thus a random real is one for which only finitely

3This is only one of four common definitions of algorithmic randomness, however, all
have been shown to be equivalent.

4The reason that slightly more than n bits of advice are needed is because in algorith-
mic information theory the advice comes in self-delimiting messages (which are actually
programs that generate the advice—like self-extracting archives) and in order to be self-
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many prefixes of its binary expansion can be compressed.

It is easy to see that a random real cannot have an r.e. binary expan-
sion. Let x be an arbitrary real whose binary expansion is r.e. By definition,
there must be a program, p,, that takes a positive integer, k, and halts if
and only if the k-th bit of x is 1. To determine n bits of x, we just need
to know how many of these n values of £ make p, halt. We could then
simply run p, on all the values of k and stop when this many have halted,
knowing that no more will halt and thus determining the n bits of . Since
all positive integers less than n can be encoded in logn bits (rounding up),
we only need to send a message of about (logn + loglogn) bits. In this
manner, any prefix of x can be significantly compressed, so x cannot be
random.

Because of this, we can see that 7 too is not random. However,
Chaitin [3] has proven that Q is random and so cannot be compressed
in this mannerﬂ For sufficiently high values of n, n bits of 2 provide n bits
of algorithmically incompressible information.

In addition to recursive incompressibility, random reals are also char-
acterised by recursive unpredictability [3]. Consider a ‘predictive’ program
that takes a finite initial segment of an infinite bitstring and returns a value
indicating either ‘the next bit is 1’, ‘the next bit is 0’ or ‘no prediction’.
If any such program is run on all finite prefixes of the binary expansion
of a random real and makes an infinite amount of predictions, the limiting
relative frequency of correct predictions approaches % In other words when
any program is used to predict infinitely many bits of a random real, such
as 2, it does no better than random—even with information about all the
prior bits.

The power of this unpredictability can be seen when compare the pre-
dictability of 7. In this case, the predictive program can easily predict an
infinite amount of bits with no errors. This is because infinitely many bits
of 7 are ’easy’ to compute. For example, consider the halting behaviour of
Turing machines: there are infinitely many Turing machines which have no
loops in their transition graphs and thus cannot possibly diverge. When
the predictive program is asked to predict the n-th bit of 7, it can just

delimiting, these messages need slightly more bits than they would otherwise. In general,
an n bit string requires about (n + logn) bits. Chaitin [3] provides further details.
5Indeed, it has since been shown through the work of R. Solovay, C. S. Calude,
P. Hertling, B. Khoussainov, Y. Wang and T. A. Slaman that the only r.e. random
reals are {2’s for different programming languages. See Calude [1] for more details.
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check to see if the n-th program corresponds to such a machine, returning
‘the next bit is 1’ if it does and ‘no prediction’ otherwiseﬁ

With its inherent incompressibility and unpredictability, {2 really does
go beyond the type of uncomputability present in a more typical non-
recursive real such as 7. However, its contrasting property of being an
r.e. real makes €2 seem to be just beyond our reach. In the next section, we
will introduce Diophantine equations and show how these can be used to
bring uncomputability into the more classical field of number theory. Then,
in Section we will show two ways of using Diophantine equations to
bring 2 and randomness to number theory—Chaitin’s original method and
our new technique.

10.2. Diophantine Equations and Hilbert’s Tenth Problem

A Diophantine equation is a polynomial equation in which all of the co-
efficients and variables take only positive integer values. Many natural
phenomena with discrete quantities are modelled well by Diophantine equa-
tions and they occur frequently in number theory. It is often convenient to
express a Diophantine equation with all terms on the left hand side:

D(z1,...,2m) =0 (10.5)

Here D is a polynomial of x4, ..., x,, in which the coefficients can take both
positive and negative integer values.

The number of solutions for a Diophantine equation varies widely. For
example, 3z; + 6 = 0 has one solution, while x12x2 — 2 = 0 has two and
2129 — X3 = 0 has infinitely many. Some however, such as 2 — 3z; = 0,
have no solutions at all. There are many different methods for deciding
whether Diophantine equations of certain forms have solutions and deter-
mining what these solutions are, but there has been a great desire for a
single method that takes an arbitrary Diophantine equation and determines
whether or not it has solutions. In 1900, David Hilbert [6] gave the prob-
lem of finding such a method as the tenth in his famous list of important
problems to be addressed by mathematicians in the 20th Century. Since
then, the task of finding this method has become known simply as Hilbert’s
Tenth Problem.

6From the definition of binary programs in algorithmic information theory, there must
be a recursive mapping between programs and Turing machines (or any such model).
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Another area of research concerns families of Diophantine equations. A
family of Diophantine equations is a relation of the form:

D(ai,...,Gn,Z1,...,Zm) =0 (10.6)

in which we distinguish between two types of variable. The variables
T1,...,T, are called unknowns, while aq,...,a, and called parameters.
By assigning values to each of the parameters (and treating them as con-
stants), we pick out an individual Diophantine equation from the family.
For example, the family a; —3z; = 0 consists of the equations: 1—3z; =0,
2—3x1 =0,3—3x; =0 and so on.

Each family of Diophantine equations is naturally associated with a
certain set of n-tuples of positive integers, ®, in the following manner:

(a1,...,an) €D <= Fx1...2mD(a1,...,an,21,...,2,m) =0 (10.7)

In other words, a tuple is in the set if the equation it corresponds to has
a solution. Such sets are said to be Diophantine or to have a Diophantine
representation. For example, the set of all multiples of 3 is Diophantine
because it is represented by the family a; — 321 = 0.

Over the 1950’s and 1960’s, M. Davis, H. Putnam and J. Robinson es-
tablished several important results regarding which sets are Diophantine.
Their key result concerned a characterisation, not of Diophantine sets, but
their close relation: exponential Diophantine sets.

A family of exponential Diophantine equations is a relation of the form:
D(ay,...,Gn, @1, .., Ty, 27, ...,27") =0 (10.8)

where D is once again a polynomial, but now some of its variables are ex-
ponential functions of others. Davis, Putnam and Robinson [5] used this
additional flexibility to show that all r.e. sets are exponential Diophantine.
It had long been known that all exponential (and standard) Diophantine
sets are r.e. because it is trivial to write a program that searches for a so-
lution to a given equation and halts if and only if it finds one. Therefore,
the new result meant that the exponential Diophantine sets were precisely
the r.e. sets.

In 1970, Yu. Matiyasevich [7] completed the final step, proving that all
exponential Diophantine sets are also Diophantine and thus that the Dio-
phantine sets are exactly the r.e. sets—a result now known as the DPRM
Theorem.
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The DPRM Theorem provides an intimate link between Diophantine
equations and computability, reducing the task of determining whether a
set has a Diophantine representation to a matter of programming. For in-
stance, there is a program that takes a single input k£ and halts if and only
if the k-th bit of 7 is 1. Thus, the set of positive integers that includes
k if and only if the k-th program halts is an r.e. set and via the DPRM
Theorem, there is a family of Diophantine equations with a parameter k,
that has solutions if and only if the k-th program halts.

This family of equations provides an example of uncomputability in
number theory and shows that Hilbert’s Tenth Problem must be recursively
undecidable because a program that finds whether arbitrary Diophantine
equations have solutions could be used to determine the bits of 7 and thus
to solve the halting problem. Indeed, it was long known that the recursive
undecidability of Hilbert’s Tenth Problem would follow immediately from
the DPRM Theorem and this was the main motivation for its proof—the
Diophantine representations for all other r.e. sets being largely a bonus.

10.3. Expressing Omega Through Diophantine Equations

While the DPRM Theorem demonstrates the existence of 7 and uncom-
putability in number theory, it also denies the possibility of finding a simi-
lar family of Diophantine equations expressing ) and randomness. This is
due to the fact discussed in Section that, while Q is an r.e. real, its
sequence of bits is not r.e. However, the DPRM Theorem only prohibits a
direct Diophantine representation of 2 and says nothing about the more
subtle properties of Diophantine equations in which these bits could per-
haps be encoded.

Chaitin [3] takes such an approach. While there is no program of one
variable, k, that halts if and only if the k-th bit of Q is 1, Chaitin provides a
program, P, that takes two variables, k and N, and computes €2 somewhat
less directly. For a given value of k, P can be thought of as making an
infinite series of ‘guesses’ as to the value of the k-th bit of Q—when P is
run on k and N, it gives the N-th guess as to the k-th bit of 2. What is
impressive is that P gets infinitely many of these guesses right and only
finitely many wrong.

How does P do this? It simply computes the sequence {€;} discussed
in Section until it gets to Q5 and then returns the k-th bit of Q.
Just as {Q;} forms a sequence of approximations to 2, so the k-th bit of
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each {€;} forms a sequence of approximations to the k-th bit of €.

Consider this k-th bit of each {£;} as i is increased. This bit could
change between 0 and 1 many times, but since {€2;} approaches 2, it must
eventually remain fixed, at which point it must have the same value as the
k-th bit of 2. Therefore, if the k-th bit of © is 1, the k-th bit of {Q;} must
be 0 for only finitely many values of i, and so P must return 0 for finitely
many values of N and 1 for infinitely many. On the other hand, if the k-th
bit of © is 0, then the k-th bit of {€2;} must be 1 for only a finite number
of values of ¢ and P must return 1 for finitely many values of N and 0 for
infinitely many. Either way, as N increases, the output of P applied to k
and N limits to the k-th bit of €.

It may seem as though this program is computing the bits of 2 but this
is not quite the case. P just computes the N-th ‘guess’ of the k-th bit. From
the infinite sequence of such guesses, the k-th bit could be determined but
P does not and cannot put the guesses together like that—it just returns
one of them.

Since recursive functions are just a special type of r.e. function, we can
apply the DPRM Theorem and see that there must be a family of Diophan-
tine equations

x1(k,Nyx1,...,&m) =0 (10.9)

that has solutions for given values of k and N if and only if P returns 1
when provided with these as input. For a given value of k, there are solu-
tions for infinitely many values of N if and only if the k-th bit of € is 1.

Thus, by using a more subtle property of the family of Diophantine
equations, Chaitin was able to show that algorithmic randomness occurs
in number theory: as k is varied, there is simply no recursive pattern to
whether this family of equations has solutions for finitely or infinitely many
values of N.

By modifying Chaitin’s method slightly, we can find a new way of ex-
pressing the bits of € through a family of Diophantine equations. We will
present this method informally here, with complete details being found
in [9] (see also [4]). Our result has now been extended by Matiyasevich [8].

Consider a new program, ), that also takes inputs k and N, and begins
to compute the sequence {Q;}. For each value of ;, Q checks to see if it is
greater than 2%, halting if this is so, and continuing through the sequence

otherwise. Since {€;} approaches Q from below, we can see that Q; > Z¢
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implies that Q > 2% and conversely, if Q > 2% there must be some value
of ¢ such that Q; > zﬂk Therefore, @ will halt on k£ and N if and only
if Q > % Alternatively, we could say that @ recursively enumerates the

pairs (k, N) such that © > 2.

Just as we could determine the k-th bit of 2 from the number of values
of N that make P return 1, so we can determine it from the number of
values of N for which @ halts. In what follows, we shall refer to these
quantities as as pi and g respectively.

Unlike pg, gi is always finite. Indeed, an upper bound is easily found.
Since 2 < 1, only values of k and N such that zﬂk < 1 can possibly be less
than Q and thus make @ halt. Since both k and N take only values from
the positive integers we also know that zﬂk > 0 and thus for a given k, there
are less than 2 values of N for which @ halts and ¢ € {0,1,...,2F — 1},

From the value of g, it is quite easy to derive the first k bits of €.
Firstly, note that g is equal to the largest value of N such that 2% < O—
unless there is no such IV, in which case it equals 0. Either way, its value can

be used to provide a very tight bound on the value of Q: Zr < Q < q’;jl.

Since 2 is irrational, we can strengthen this to 2 < Q < qgil, which

means that the first & bits of Z¢ are exactly the first & bits of Q.

This gives some nice results connecting g and 2. The first k bits of 2
are just the bits of ¢ when written with enough leading zeros to make k
digits in total. Thus ¢, when written in this manner, provides the first k&
bits of 2. Additionally, we can see that gi is odd if and only if the k-th bit
of Qis 1.

Now that we know the power and flexibility of ¢y, it is a simple matter
to follow Chaitin in bringing these results to number theory. The function
computed by @ is r.e. so, by the DPRM Theorem, there must be a family of
Diophantine equations

x2(k, N, z1,...,2,) =0 (10.10)

that has a solution for specified values of k£ and NV if and only if @) halts
when given these values as inputs. Therefore, for a particular value of k,
this equation only has solutions for values of N between 0 and 2¥ — 1 with
the number of solutions, g, being odd if and only if the k-th bit of Q is 1.

This new family of Diophantine equations improves upon the original
one in a couple of ways. Whereas the first method expressed the bits of €2
in the fluctuations between a finite and infinite amount of values of NV that
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give solutions, the second keeps this value finite and bounded, with the bits
of 2 expressed through the more mundane property of parity. It is the fact
that this quantity is always finite that leads to many of the new features
of this family of Diophantine equations. py is infinite when the k-th bit of
Q is 1 and, since there is only one way in which it can be infinite, it can
provide no more than this one bit of information. On the other hand, g
can be odd (or even) in 2~! ways, which is enough to give k — 1 additional
bits of information, allowing the first &k bits of Q to be determined.

The fact that ¢ is always finite also provides a direct reduction of the
problem of determining the bits of € to Hilbert’s Tenth Problem. To find
the first k bits of 2, one need only determine for how many values of N
the new family of Diophantine equations has solutions. Since we know that
there can be no solutions for values of N greater than or equal to 2¥, we
could determine the first k bits of Q from the solutions to 2 instances
of Hilbert’s Tenth Problem. In fact, we can lower this number by taking
advantage of the fact that if there is a solution for a given value of N then
there are solutions for all lower values. All we need is to find the highest
value of N for which there is a solution and we can do this with a bisection
search, requiring the solution of only k instances of Hilbert’s Tenth Prob-
lem.

Finally, the fact that ¢, is always finite allows the generalisation of these
results from binary to any other base, b. If we replace all above references
to 2F with bF we get a new program, Qy, with its associated family of Dio-
phantine equations. For this family, the value of ¢; now gives us the first k&
digits of the base b expansion of 2: it is simply the base b representation of
qr with enough leading zeroes to give k digits. The value of the k-th digit
of Q is simply g mod b.

Chaitin [3] did not stop with his Diophantine representation of €, but
instead moved to exponential Diophantine equations where his result could
be presented more clearly. He made this move to take advantage of the
theorem that all r.e. sets have singlefold exponential Diophantine represen-
tations, where a representation is singlefold if each equation in the family
has at most one solution.

We can denote the singlefold family of exponential Diophantine equa-
tions for the program P by

X5 (ky N, 21, ... @, 2%, ...,2%) =0 (10.11)

For a given k, this equation will have exactly one solution for each of in-
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finitely many values of NV if the k-th bit of © is 1 and exactly one solution
for each of finitely many values of N if the k-th bit of 2 is 0. We can make
use of this to express the bits of €2 through a more intuitive property.

If we treat N in this equation as an unknown instead of a parameter,
we get a new (very similar) family of exponential Diophantine equations
with only one parameter

XT(ky Toy X1,y v oy Ty, 271, ...,277) =0 (10.12)

Since the previous family was singlefold and N has become another un-
known, there will be exactly one solution to this single parameter family
for each value of IV that gave a solution to the double parameter family.
Thus, has infinitely many solutions if and only if the k-th bit of
is 1.

This same approach can be used with our method [9]. There is a two-
parameter singlefold family of exponential Diophantine equations for ) and
this can be converted to a single parameter family of exponential Diophan-
tine equations

X5k, 0, X1, .oy Tm, 274, ..., 2%m) =0 (10.13)

with between 0 and 2* — 1 solutions, the quantity being odd if and only if
the k-th bit of Q is 1.

Finally, we have also shown [9] that both Chaitin’s finitude-based
method and our parity-based method can be used to generate polynomials
for 2. For a given family of Diophantine equations with two parameters,

D(k,N,x1,...,2m) =0 (10.14)
we can construct a polynomial, W, where
W(k, 2o, @1,...,Tm) = Tg (1 — (D(k,xg, 21, . .., aﬁm))Q) . (10.15)

Note that the parameter, N, is again treated as an unknown and thus de-
noted xzg.

If we restrict the values of the variables to positive integers then, for a
given k, this polynomial takes on exactly the set of all values of N for which
has solutions. We can thus use this method on x; = 0 and x2 =0,
generating polynomials that express p;y and ¢ in the number of distinct
positive integer values they take on for different values of k. We therefore
have a polynomial whose number of distinct positive integer values fluctu-
ates from odd to even and back in an algorithmically random manner as a
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parameter k is increased.

Our result has now been further extended by Matiyasevich [8].

There are thus many ways in which algorithmic randomness is mani-

fested in number theory. While finding whether solutions exists for cer-
tain equations is undecidable, finding the quantity of solutions or even just

whether this is finite or infinite, odd or even, is much harder. In the long
run, even the best computer program can do no better than chance.
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The paper deals with information-theoretic complexity based on
Chaitin’s formal notion of a self-delimiting computer. The technical
apparatus required for the presentation of the remarkable properties of
the halting probability €2 is developed in detail. Special emphasis is on
consequences concerning Diophantine problems.

11.1. Introduction

The purpose of this paper is to discuss formally some key issues dealing with
randomness, compressibility and undecidability. Our discussions lead also
to a comprehensive exposition of the properties of Chaitin’s “secret number”
Q and the remarkable connection with the undecidability of Diophantine
problems. Many of the subsequent arguments follow our exposition in [7].

Our presentation will be largely self-contained. The reader is assumed
to be familiar with the basics of formal languages, Turing machines and
recursively enumerable sets. For instance, [8] may be consulted in this re-
spect.

A brief description about the contents of the paper follows. The main
result about exponential Diophantine representations will be given below
in this Introduction. Section 2 contains an informal discussion about ran-
domness versus the compressibility of information. The informal discus-
sion will continue in Section 10. Section 3 deals with Kraft’s inequality,
prefix-freeness and frequency indicators. The formal notion of a (Chaitin)

LCorresponding author
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computer is presented in Section 4, where also the importance of being self-
delimited will become apparent. Section 5 shows the existence of universal
computers and, accordingly, the notion of (program-size) complexity is de-
fined in the following Section. It is independent of the choice of the univer-
sal computer. Section 7 proves fundamental inequalities about program-size
complexity. Section 8 compares computational and information-theoretic
complexity and also discusses Kolmogorov complexity, where no prefix-
freeness is required. Section 9 is about the construction of self-delimiting
programs. Section 11 is about the formal connection between probability
and complexity. It leads to the degree of randomness, Section 12. The for-
mal apparatus suffices to present in Section 13 the remarkable properties of
), the halting probability of the universal computer. Resulting conclusions
about formal theories and Diophantine problems are presented in Section
14. The paper ends with some general remarks in Section 15.

We will end this Introduction with some well-known undecidability con-
siderations needed for the main results in Section 14. A very good illustra-
tion about how “everyday considerations” in mathematics may lead to un-
decidability is Hilbert’s Tenth Problem. The problem, proposed by Hilbert
in a list of problems at the International Congress of Mathematicians in
1900, is to give an algorithm that will tell whether or not a polynomial
equation with integer coeflicients has a solution in integers. Nothing was
known about undecidability in 1900 and, in view of Hilbert’s later attempts
to find general decision methods in logic, it remains questionable whether
he in 1900 really had in mind the possibility of a negative solution for the
Tenth Problem.

Thus, we consider equations of the form
(A) P(z1,...,z,) =0,

where P is a polynomial with integer coefficients in the variables z1, ..., z,.
A simple number-theoretic argument shows that, from the point of view of
decidability, it is irrelevant whether we are looking for integer or nonnega-
tive integer solutions for (A). (See, for instance, [7].)

Things become somewhat simpler and sufficient for our purposes if ex-
ponential terms are allowed in (A), that is, if exponential Diophantine
representations are considered. This will be our approach.

We now give the formal details. It will be convenient for us to look for
solutions in nonnegative integers, rather than in arbitrary integers.
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Definition 11.1. A set S of ordered n-tuples (as,...,a,), n > 1, of non-
negative integers is termed Diophantine if and only if there are polynomials

P(al,...,amxl,...,a}m), Q(ala"'varuxlw";mnz)

with nonnegative integer coefficients such that we have, for all nonnegative
integers ay,...,ay,

(a1,...,a,) €S if and only if (Jz; >0)...(Fz,, > 0)

[P(al, ..., Qny @1y ) = Qa1, .-y Qpy X1,y ooy Tin)] -

Similarly, S is termed exponential Diophantine, briefly ED, if and only if
exponentiation is allowed in the formation of P and @, that is, P and @
are functions built up from aq,...,an,1,..., T, and nonnegative integer
constants by the operations of addition A + B, multiplication AB and
exponentiation AZ.

Some additional remarks are in order. For n > 1 we speak of Diophan-
tine and exponential Diophantine relations. The terms unary and singlefold
are used in connection with exponential Diophantine representations. Here
singlefold means that, for any n-tuple (ai,...,a,), there is at most one
m-tuple (z1,...,x,,) satisfying the equation. Unary means that only one-
place exponentials, such as 27, are used rather than two-place exponentials
y®. One of the easy observations due to number theory, [7], is that it is no
loss of generality to restrict the attention to unary representations.

In decidability theory one begins with an interesting set or relation,
such as the set of primes or the relation “x is the greatest common divisor
of y and 2”, and looks for a Diophantine or an exponential Diophantine
equation representing it, in the sense of Definition [I1.1]

Diophantine and exponential Diophantine sets and relations are recur-
sively enumerable. Also the converses of these statements hold true. The
converse of the latter statement, often referred to as the Davis - Putnam -
Robinson Theorem can be stated as follows.

Theorem 11.2. Every recursively enumerable set and relation possesses a
singlefold exponential Diophantine representation.

The proof of Theorem m given in [7] is based on a sequence of con-
structions, each one showing that a set or relation is exponential Diophan-
tine. The exponential Diophantine characterization is obtained via register
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machines and shows that the representation obtained is singlefold. This
will be essential in our final considerations in Section 14.

It is not known whether or not every recursively enumerable set pos-
sesses a singlefold Diophantine representation, although it always possesses
a Diophantine representation, by the famous Theorem of Matijasevitch.
These matters are discussed in detail in [7].

11.2. Compressibility of information and randomness. An
informal discussion

How much can a given piece of information be compressed? This is a matter
of fundamental scientific importance and also very relevant for undecidabil-
ity considerations. In this paper we consider the fundamental problem of
compressibility of information. Our considerations lead to a mysterious
number Q (“the secret number”, “the magic number”, “the number of wis-

b2

dom”, “the number that can be known of but not known”, to mention only a
few possible descriptions) that encodes very compactly any “cornerstones”

of undecidability.

The number €2 is between 0 and 1. It encodes, for instance, the Post
Correspondence Problem in the following sense. Suppose we are given an
instance PC'P. Then, if we know a suitable initial segment of the binary
representation of {2, we are able to compute whether or not PC'P possesses
a solution. If we restrict our attention to instances of a reasonable size,
the knowledge of the first 10,000 bits of €2 is already more than enough.
Roughly, if we know the first 10,000 bits of 2, we are able to solve the
halting problems of Turing machines describable in less than 10,000 bits.
This surely includes the Turing machines looking for counterexamples to
the most famous conjectures in mathematics, such as the Goldbach Con-
jecture and Riemann’s hypothesis.

Even a step further can be taken. Consider a formal system F' of math-
ematics with axioms and rules of inference. For any well-formed formula
a, design a Turing machine TM (F, «) that checks through all the proofs
of F' and halts if it finds one for a. A similar Turing machine TM (F, ~ «)
is designed for the negation of a. Again, if we know a sufficiently long
initial segment of Q) then we can decide whether « is provable, refutable
or independent. The required length depends on F' and o« — in all reason-
able cases the first 10,000 bits of 2 will suffice. This surely justifies the
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attributes attached above to €.

We use bits as fundamental units of information. A bit indicates a choice
between two possibilities, and any piece of information can be encoded as
a sequence of bits. Certainly in many cases there are redundant bits in the
sequence. In other words, the same sequence can be described in some other
way that gives rise to a shorter sequence. This is per se the case if the bit
sequence is the result of encoding some text in a natural language. Natural
languages abound redundancies that have been estimated numerically for
various languages and various types of text. The existence of redundancies
is obvious because noise in the information channel may distort or delete
some letters, and still nothing is lost in the piece of information. Also in
classical cryptography cryptanalytic attacks are often based on redundancy
properties (unbalanced frequency of individual letters, pairs of letters, etc.)
of natural languages.

We now investigate the possibility of compressing information, making
sequences of bits shorter. Our first goal is to formalize the notion of com-
pressibility. The following construction contains some additional aspects to
be considered.

Construction 1. Consider the following two sequences of bits, both of
length 16:

1010101010101010
0110000110111111

The first follows an obvious pattern: 10 written 8 times. No such uniform
pattern is visible in the second sequence. In fact, the second sequence was
generated by coin tosses. Tossing the coin 16 times can produce each of
the 26 binary sequences of length 16, and each one of them, including the
two mentioned above, has exactly the same probability. Still, it is harder
to believe of the first than of the second that it results from coin tosses.

The pattern can be used to compress the first sequence. However, even
under some favorable notational conventions, “8 times 10” does not neces-
sarily compress it to less than 16 bits. The matter is entirely different if
we are dealing with longer sequences of bits. “1048576 times 10” certainly
describes the sequence of repetitions more compactly than the sequence of
2097152 bits 1010...10. Further advantage can be taken of the fact that
1048576 = 220, In general, the most compact way of describing a short
sequence is just to write down the sequence. There is no clear borderline
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to tell which method is preferable for dealing with sequences such as those
in Construction 1.

There may be other ways to compress information than detected pat-
terns. There is no pattern visible in tables of trigonometric functions. Even
tables of a modest size give rise to a rather long sequence of bits if every-
thing is expressed as a single sequence. However, a much more compact way
to convey the same information is to provide instructions for calculating the
tables from the underlying trigonometric formulas. Such a description is
brief and, moreover, can be used to generate tables of any size.

Usually no such compression method can be devised for tables present-
ing empirical or historical facts. For instance, there are books presenting
the results of the gold medal winners in each event in each of the Olympic
Games since 1896. As regards such information, the amount for compres-
sion is negligible, especially if attention is restricted to the least significant
digits. Since the results tend to improve, there are regularities in the most
significant digits, even to the extent that predictions can be made for the
next Olympic Games. In general, as regards empirical data, compression
can be linked with inductive inference and inductive reasoning as it is em-
ployed in science: observations presented as sequences of bits are to be
explained and new ones are to be predicted by theories. For our purposes
in this paper, it is useful to view a theory as a computer program to re-
produce the observations actually made. The scientist searches for minimal
programs, and then the amount of compression can be measured by com-
paring the size of the program with the size of the data. This leads also to
a plausible definition concerning what it means that the data are random:
no compression is possible. In other words, the most concise way of repre-
senting the data is just to list them.

Randomness will be a central theme in our considerations. We want
to mention one important aspect already at this point. There are various
statistical tests for disclosing deviations from randomness. We consider here
potentially infinite sequences of bits or digits, such as the decimal expansion
of w. A sequence is normal if and only if each bit or digit, as well as each
block of any length of bits or digits, occurs with equal asymptotic frequency.
Clearly, if a sequence does not qualify as normal, then it is not intuitively
viewed as a random sequence. On the other hand, normality does not
guarantee randomness, no matter whether we view randomness intuitively
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or in the sense of incompressibility. For instance, Champernowne’s number
0.123456789101112131415161718192021 ... |

obtained by writing all integers in decimal notation, one after the other, is
normal. Intuitively it is non-random. For any ¢, the ith digit is easily cal-
culated from 7 and, consequently, long initial segments can be compressed
arbitrarily because the formula for the ith digit is independent of the length
of the segment. A similar compression is possible for the decimal expansion
of the number 7 because the whole expansion can be generated by a fixed
program. Although no proof has been given so far, it is generally conjec-
tured that the expansion of 7 is normal in the sense described above. The
observed statistical data also support this conjecture.

The identification of randomness and incompressibility is feasible also
because of the following reason. A gambler who knows the rule govern-
ing m or Champernowne’s number wins an infinite gain against a gambling
casino if the latter produces “random” numbers according to one of the
two sequences. Clearly, an intuitive precondition for a sequence being ran-
dom is that no gambling strategy can produce an infinite gain against that
sequence. The knowledge of an initial segment in a random sequence, as
opposed to complete ignorance of it, gives no advantage for bets concerning
the continuation.

The facts presented in Construction 1 can be viewed as an introduc-
tion to the subsequent formal discussion. Construction 1 shows that some
central issues in science, such as inductive reasoning and randomness, are
just different aspects of compressibility. In order to formalize the idea “no
program shorter than the sequence itself can produce the sequence”, we
have to formalize the notion of a program. For this purpose we present an
abstract notion of a computer, due to Chaitin. (An intuitive picture of the
abstract notion will be given below in Construction 2.) First some technical
details about prefix-freeness are needed.

11.3. Prefix-freeness and Kraft’s inequality

A language L, finite or infinite, is termed prefiz-free if and only if no
word in L is a prefix of another word in L. For instance, the language
{a'bli = 0,1,2,...} is prefix-free. The only prefix-free language containing
the empty word A is the language {A}.
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Words in a prefix-free language L can be used to encode letters from
another alphabet. For instance, the subset {a’b|0 < i < 5} of the above
language encodes the letters of the alphabet Vi = {ao, a1, a2, as,as4,as5} in
a natural fashion. Moreover, this encoding has the property of unique de-
codability: a word over the alphabet {a, b} can be decoded in at most one
way as a word over V. For instance, the word bba?ba*b can be decoded
only as agagasay, whereas ba can be decoded in no way.

The property of unique decodability is satisfied always when words in a
prefix-free language L are used to encode letters of an alphabet V. For as-
sume that the encodings of two different words a; ...a; and by ...b;, where
the a’s and b’s are letters, coincide. We may assume that a; # b; because,
otherwise, we can divide by the encoding of a1 from the left. But then the
encodings of the two words coincide only if the encoding of a; is a prefix of
the encoding of by, or vice versa, which contradicts the prefix-freeness of L.
The argument shows also that decoding from left to right is instantaneous:
the remainder of the word does not affect the decoding.

The inequality presented in the next theorem is customarily referred to
as the Kraft inequality. (See [1] for more details.) The inequality is im-
portant in our discussions concerning probabilities. Although we mostly
consider binary alphabets in the sequel, the theorem is presented for alpha-
bets with p > 2 letters.

We begin with the following definition.

Definition 11.3. For a word w over the alphabet V,, = {a1,...,a,}, we
define the frequency indicator of w, in symbols FI(w), by
FI(w)=p~ vl

For a language L over V),, we define the frequency indicator FI(L) to be
the sum of the frequency indicators of the words in L.

Thus, FI(L) is a rational number if L is finite. If L is infinite, FI(L)
is either a real number or co (depending on whether or not the series con-
verges).

Theorem 11.4. Every prefiz-free language L satisfies FI(L) < 1.
Proof. 1If FI(L) > 1 holds for an infinite language L, then also

FI(L;) > 1 holds for a finite subset L; of L. Moreover, every subset
of a prefix-free language is prefix-free. Consequently, it suffices to establish
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the claim for a given finite language L.

We claim that, for all ¢ > 1,
() FI(LY) = (FI(L))'.

(*) is established inductively, the basis i = 1 being obvious. Assuming that
(%) holds, consider Li*t. Clearly, Li*! is prefix-free and all of its words can
be represented uniquely in the form zy, where z € L and y € L’. Assume
that L = {z1,...,2,} and denote

FI(xj):p_‘xJ'l: 1<j<r.

]

Then

r

FI(L"*Y) = ithI(Li) =FI(L))
j=1 j=1

— (FI(L))'FI(L) = (FI(L))"*" .

Here the inductive hypothesis, the unique product representation men-
tioned above, as well as the obvious equation FI(zy) = FI(x)FI(y) have
been used.

Let m be the length of the shortest and M the length of the longest
word in L. (Possibly m = M.) Consequently, every word in L? is of length
> mi and < Mi. This means that there are at most (M —m)i+ 1 different
lengths possible among the words of L’. On the other hand, FI(L;) < 1
clearly holds for any language L, such that all words in L, are of the same
length. These observations give us the estimate

FI(LY) < (M —m)i+1
and hence, by (x),
(%) (FI(L))* < (M —m)i+1, forall i>1.

Since M — m is a constant independent of ¢, F'I(L) > 1 would contradict
() for values of i large enough. This proves Theorem m

The inequality of Theorem need not be strict. The language L =
{a'bli = 0,1,2,...} considered above satisfies

1 1 1
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The equation holds also for some finite languages, for instance,

L1 11 1

F1 =—+-=FI — 4+ 4=

({a,b}) 2+2 ({a, ba, bb}) 2+4+4
1 1 1 1

—FI({aa,a@ba,bb})_14-1-4-14_1_1.

All of these languages are maximal with respect to prefix-freeness: if a new
word over {a,b} is added to the language then the prefix-freeness is lost.
This follows either by a direct argument or by Theorem Observe also
that the converse of Theorem fails: the inequality FI(L) < 1 does not
imply that L is prefix-free.

11.4. Computer: a formal notion

We are now ready to introduce a formal notion of a computer very suitable
for our purposes.

Consider the binary alphabet V' = {0, 1}. (Thus, FI will later be defined
for p = 2.) For partial functions f : V* x V* — V* we counsider also
“projections” f, : V* — V* y € V*, defined by

fy(@) = f(z,y) -

Definition 11.5. A computeris a partial recursive function C' : V* x V* —
V* such, for all v € V*, the domain of C, is prefix-free.

Hence, the basic requirement is that whenever C(u,v) is defined (con-
verges in customary terminology of recursive functions) and wu is a prefix of
u’ with u # o/, then C'(u/,v) is not defined (diverges).

Construction 2. We now explain the above definition in terms of a
concrete machine model that can be viewed as a modification of the Turing
machine. Briefly, u is the program and v is the input. Here the “program”
is understood as a description of the computing strategy in the same sense
as a universal Turing machine is given a description of an individual Turing
machine, which it is supposed to simulate. Exactly as in case of ordinary
Turing machines, the step by step moves of our computer follow a previ-
ously given finite table that completely determines the computation for the
argument (u,v).

The computer C' has two tapes, a program tape and a work tape. The
program tape is finite. Its leftmost square contains a blank, and each of the
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remaining squares contains either a 0 or a 1. It is a read-only tape, and the
reading head can move only to the right. At the start of the computation,
the program wu occupies the whole program tape except for the leftmost
blank square which is scanned by the reading head.

The work tape is potentially infinite in both directions. Each of its
squares contains a blank, 0 or 1. At the beginning all squares are blank ex-
cept that the input v is written on consecutive squares, and the read-write
head scans the leftmost of them. The read-write head can move in both
directions. The computer has finitely many internal states, among which
are a specific initial and a specific halt state. At the start of the computa-
tion, the computer is in the initial state, and no further action is possible
in the halt state. (A minor additional detail is that « and/or v may equal
the empty word A.)

The behavior is defined similarly as for ordinary Turing machines. The
triple consisting of the current state and the currently scanned symbols
from the program and work tapes (there are three possibilities for both
of the latter) determine each of the following: (i) the next state, (ii) the
symbol written on the work tape (three possibilities), (iii) the move of the
reading head (stay or move one square to the right), (iv) the move of the
read-write head (stay or move one square to the right or move one square
to the left). Thus, each particular computer can be defined by specifying
its behavior by a finite table.

The computation of a computer C, started with a program u and input
v, is a success if C enters the halt state when the reading head is scanning
the rightmost square of the program tape. In this case the output value
C(u,v) is read from the work tape, starting from the square scanned by the
read-write head and extending to the first blank square. Thus, although
called briefly “work tape”, the work tape acts also as an input and an output
tape. If the computation is a failure, that is, if the halt configuration de-
scribed above is not reached, then C'(u,v) is not defined. The computation
of C(0110,10) = 0 is depicted as follows:
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initial halt

\_L

P IO T - ~f [2[ [ JO[ [0

It can now be shown that this concrete machine model computes exactly
the partial recursive functions specified in the abstract definition of a com-
puter given before Construction 2. Indeed, the partial recursive functions
computed by the machine model must satisfy the additional condition of
prefix-freeness. This follows because the machine is allowed neither to run
off the right end of the program tape nor to leave some part of the program
unread. Thus, C(u,v) and C(uuq,v), u1 # A, can never both be defined.
Observe, however, that C(u,v) and C(uuy,v’) can both be defined.

Conversely, we show how a concrete machine C can simulate an abstract
computer C’. The basic idea is that C moves the reading head on the pro-
gram tape only when it is sure that it should do so.

Given a program u and an input v, C first ignores u and starts gener-
ating on its work tape, just as an ordinary Turing machine, the recursively
enumerable set X = {x|C’(z,v) is defined}. This is done by “dovetailing”
through computations for all . Denote by u; the prefix of u already read;
initially u; = A. (C keeps u; on its work tape.) All the time C keeps
checking whether or not u; is a prefix of some element of X already gen-
erated. If it finds an x such that u; = x, C' goes to the halt state, after
first producing the output C’(uy,v) on its work tape. If C finds an « such
that u; is a proper prefix of x, then it reads the next symbol a from the
program tape and starts comparisons with u;a.

This works. If C’'(u,v) is defined, C' will eventually find w. It then
compares step by step the contents of the program tape with u, and halts
with the output C’(u, v) if the program tape contains u. If the program tape
contains something else, C' does not reach a correct halting configuration.
This is also the case if C’'(u,v) is not defined. Observe that in this case
C’(u1,v) may be defined, for some prefix u; of u. Then C finds u; and
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goes to the halt state but the halting configuration is not the correct one:
a portion of the program tape remains unread.

11.5. Universal computer

We now continue to develop the abstract notions.

Definition 11.6. A computer U is universal if and only if, for every com-
puter C, there is a simulation constant sim(C') such that, whenever C(u, v)
is defined, there is a program u’ (that is, a word over the binary alphabet
V ={0,1}) such that

Uu',v) = C(u,v) and |u'] < |u| + sim(C) .
The following result shows that our definition is not vacuous.
Theorem 11.7. There is a universal computer.

Proof. Consider an enumeration of all computers, that is, of all tables
defining a computer: Cy, Cq, ... . Clearly, the partial function F' : N X
V* x V* — V* defined by

F(i,u,v) = Ci(u,v), i € N; u,veV™*,

is partial recursive, and so is the partial function U : V* x V* — V* defined
by

U(0“1u,v) = Ci(u,v) .

Moreover, for each v, the domain of the projection U, is prefix-free.
This follows because all projections of each C; possess the required prop-
erty of prefix-freeness. Consequently, U is a universal computer with
sim(C;) =i + 1, for each 1.

Thinking of the machine model, after reading ¢ 0’s from the program
tape, U has on its work tape a description of C; (part from the input v that
it has already at the beginning). When U meets the first 1 on the program
tape, it starts to simulate the computer C; whose description it has at that
moment on its work tape. (Alternatively, U can store only ¢ on its work
tape and, after seeing 1 on the program tape, compute C; from i.) This
concludes the proof of Theorem [T1.7]

Universal computers are by no means unique. A different U results, for
instance, from a different enumeration of the computers C;. However, from
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now on we consider a fized universal computer U and speak of the universal
computer U.

Consider the following ordering (alphabetical and according to the
length) of the set of words over V' = {0, 1}:

,0,1,00,01,10, 11,000,001, ... .

We use the notation min(L) for the first word of L. If L is empty, min(L)
is undefined. We now choose one particular program for a word.

Definition 11.8. Given w € V*, the canonical program w* for w is defined
by

w* = min{u € V*|U(u, ) = w}.

Thus, w* is the first (and consequently also shortest) program of the
universal computer U producing w, when U is started with the empty
work tape. The next theorem contains some simple observations about the
canonical program.

Theorem 11.9. The function f:V* — V* defined by f(w) = w* is total.
For any w, U(w*,\) = w and w* # A.

Proof. Given w, we consider the computer C' such that C(\,A) = w.
Thus, C just prints w on its originally empty work tape, the whole action
being embedded in its internal states. (Clearly, we can use also the abstract
definition and conclude that a partial recursive function C with the required
properties exists. In what follows we use the abstract and concrete notions
interchangeably.) By Theorem m U(uw',\) = w, for some u'. Hence,
the set {u € V*|U(u,A) = w} is not empty. Since f(w) is defined for an
arbitrary w, we conclude that f is total. The equation U(w*,\) = w is
clear by the definition of w*, and w* # X follows because the domain of U
is prefix-free. (Indeed, assume that U(A, A\) = w. Consider a word w; # w.
There is a w’ such that U(w’, \) = wy. Since w; # w we must have w’ # A.
This implies that the domain of Uy is not prefix-free.) We have established
Theorem [IT.91

11.6. Complexity

We now define the notion of the complezity (that could also be called
program-size complexity) associated to a word w € V*.

Definition 11.10. The complexity of a word w with respect to a computer
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C, equals
Heo(w) =min{|u| |u € V* and C(u,\) = w}.

Again, min is undefined if the set involved is empty. We denote briefly
H(w) = Hy(w).

Thus, H(w) is the length of the minimal program for U to compute
w when started with the empty work tape. We can view the ratio be-
tween H(w) and |w| as the compressibility of w. We want to emphasize
that, intuitively, H(w) should be understood as the information-theoretic
(or program-size) complexity of w, as opposed to the computational com-
plexity of w. This is also why we have chosen the notation H, standard in
information theory in entropy considerations. H(w) could also be referred
to as the algorithmic entropy.

We define next the conditional complexity of w, given t € V*.

Definition 11.11. For a computer C, the conditional complezity of a word
w € V* with respect to a word t € V* equals

Heo(w/t) = min{|u| | v € V* and C(u,t") = w}.

We denote briefly Hy(w/t) = H(w/t), and speak of the conditional
complexity of w with respect to t. It is immediate by Theorem that
H(w) and H(w/t) are defined for all w and ¢.

The complexities defined depend on the computer C. This is true also
as regards H(w) and H(w/t), because they depend on our chosen universal
computer. The next theorem asserts that words possess also an inherent
complexity, independent of the computer. This holds both for plain and
conditional complexity. Although easy to prove, this result is of fundamen-
tal importance for the whole theory. The result is often referred to as the
Invariance Theorem. It says that the universal computer is asymptotically
optimal. It does not say much about the complexity of an individual word
w, because the constant involved may be huge with respect to the length
of w.

Theorem 11.12. For every computer C, there is a constant Ac such that
H(w) < He(w) + Ac and H(w/t) < Ho(w/t) + Ac ,

for all w and t.
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Proof. The simulation constant sim(C) satisfies the requirements for
Ac and, hence, the theorem follows. Observe that Heo(w) and He(w/t)
might be undefined. We may either agree that the theorem concerns defined
values only, or consider the undefined values as oco.

Recall that we fixed the universal computer U in a rather arbitrary and
certainly in a very nonspecific way. According to Theorem this does
not matter. For any two universal computers U and U’, there is a constant
Ay, such that

(*) |Hy(w) — Hyr(w)] < Ay,

for all w. The same result holds for the absolute value of the difference of
the conditional complexities as well. Observe, however, that an analogous
result does not hold for arbitrary computers C and C".

The equation H(w) = |w*| is an immediate consequence of the defini-
tion of w* and Theorem [I1.9

Sometimes it is convenient to use the O0-notation for the order of magni-
tude, defined for functions on real numbers. By definition, f(z) = 0(g(x))
if and only if there are positive constants a and xg such that

()] < alg()]

holds for all x > zy. Thus, the above inequality (*) can be written as

Let p(z,y) be a pairing function, that is, a recursive bijection of V* x V*
onto V*. Such a pairing function is obtained, for instance, from the ordering
of V* using a pairing function for nonnegative integers. We now present
the latter in detail. Consider the function (i, ) defined by the table

4 5 ...
10 15 ...

© ot N OO
OO =~ = =
—

o N W
T
— O w

= W NN = O
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Thus, values are plotted to the table in the increasing order of magnitude
along the diagonals. The function ¢ can be defined also by the quadratic
expression

@(i,x):%(i—kx—}-l)(i—i—x)—kl.

The function ¢ establishes a one-to-one correspondence between pairs
(i,z) and nonnegative integers. Hence, there are “inverse components”
p1(x) and pa(x) such that the equation

o(p1(x), pa()) = =

holds for all z. These observations are immediate from the table represen-
tation of ¢. In particular, p1(z) (resp. @2(z)) is the index of the row (resp.
column) in which z lies. Thus,

©1(15) =0, ¢2(15) =5 because (0,5) =15.
The table representation also yields immediately an effective procedure for

computing the values (i, ), p1(x), Y2(z)

Given a computer C, we define
He(w,t) = He(p(w, 1))

and again H(w,t) = Hy(w,t). Intuitively, H(w,t) is the length of the
shortest program that outputs w and ¢ in a way that tells them apart. The
next theorem is an exercise concerning symmetry.

Theorem 11.13. H(w,t) = H(t,w) + 0(1).

Proof. The idea is to use the “inverse components” of ¢ to carry out
the commuting. Thus, let ¢; : V* — V* ¢ =1,2, be functions such that

p(p1(w), p2(w)) = w,
for all w. Consider the computer C, defined by the condition
Clx,A) = p(pa(U(z, N)), p1(U(x, A))) -
We now use the fact that, for all w,
H(w) < He(w) +sim(C) .

Consequently, we compute
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H(w,t) = H(p(w,t)) < Ho(p(w, ) + sim(C)

= min{[z| [z € V" and @(p2(U(z, ), ¢1(U(z, 1)) = ¢(w, 1)} + sim(C)
=min(|z| |z € V* and a(U(x,\) = w and @1 (U(z,\)) = t} + sim(C)
= H(p(t,w)) +sim(C) = H(t, w) + sim(C) .

Here also the definition of He has been used. Observe also that the map-
ping U(z,A) = Ux(x) is surjective: the universal computer is capable of
producing any word starting with the empty word as its input. Theorem

[[T.13] follows.

In fact, the above proof shows that if g : V* — V* is a recursive
bijection, then

H(w) = H(g(w)) +0(1) .
To see this, it suffices to consider the computer C defined by the condition
C(z,A) = g(U(z,N)) .
The above proof uses the recursive permutation

9(x) = p(p2(z), p1()) -

11.7. Fundamental inequalities

The next theorem is in many ways fundamental in our considerations.
The Theorem presents further results concerning the interrelation between
H(w), H(w/t) and H(w,t). It consists of several assertions. In (ii) the no-
tation H(w) means the word over V whose ordinal number in our ordering
of V* equals H(w).

Theorem 11.14.

(1) H(w/w) = 0(1).
(ii) H(H(w)/w) =0
(iii) H(w) < H(w,t)
(w) H(w/t) < H(w)
(v) H(w,t) < H(w)
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(vi) H(w,t) < H(w) + H(t) + 0(1).

Proof. Consider (i). Since obviously H(w/w) is always nonnegative, it
suffices to show that there is a constant A such that H(w/w) < A, for all
w. Define the computer C' by the condition

C(\v)=U(v,\), forall veV*.
Consequently,
Chw) =U(w" A\ =w
and hence,
Heo(w/w) = min{ju| | u € V* and C(u,w*) =w}=0.
By Theorem [11.12
H(w/w) < Ho(w/w) +sim(C) =sim(C) = A.

For (ii), define the computer C' by the following condition. Whenever
U(u, A) is defined,

C(A\u) =|ul.

Since U(w*, \) = w, we obtain

C\w*) =|w*| = H(w) .

Consequently,

H(H(w)/w) < He(H(w)/w) + sim(C)

=min{|u| |u € V* and C(u,w*) = H(w)} + sim(C)

=0+ sim(C) = sim(C),
from which (ii) follows.

For (iii) and (iv), we use similarly the computers C and C” defined by
the conditions

C(u,\) = p1(U(u, A)) and
C'(w,t) = U(w, \) .

Clearly, (vi) is an immediate consequence of (iv) and (v). Hence, it
suffices to establish (v). This will be the most interesting construction used

in Theorem [TT.14]
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We claim that there is a computer C' satisfying the following property.
Whenever

(%) U(u,w*) =t and |u| = H(t/w),

that is, whenever u is a minimal-size program for U to compute ¢ from w*,
then

(xx) C(w*u, A) = o(w,t) .

Let us see how (v) follows from this claim. Indeed, by definition, He (w, t)
is the length of the shortest program for C' to compute ¢(w,t) from the
empty word. Since, by (%), w*u is such a program, we obtain

He(w,t) < |w*u| = |w*| + |u] = H(w) + H(t/w) .

From this (v) follows because always H(w,t) < Ho(w,t) + sim(C).

It remains to verify the claim that there is such a computer C. We
follow the abstract definition. Let C'(x,y) be the following partial recursive
function. For y # A, C(x,y) is undefined. Let Y be the domain of Uy, that
is,

Y ={ueV*|U(u, ) is defined} .

The following effective procedure is now used to compute the value C(z, ).
Elements of the recursively enumerable set Y are generated until, if ever,
a prefix v of x is found. Then we write x in the form x = vu and simulate
the computations U(u,v) and U(v, A). If both of these computations halt,
we output

C(z, ) = o(U(v,\),U(u,v)) .

Obviously C' is partial recursive. We show that C' satisfies the required
condition (%), whenever u, w and ¢ satisfy (x). Denote x = w*u, and
consider our algorithm for computing C(z, ). Since U(w*,\) = w, we
conclude that w* is in Y and, consequently, will eventually be found as a
prefix v of z, yielding the factorization z = vu = w*u. Moreover, it is not
possible that another prefix v’ of x would be found in this fashion, because
then one of the words v and v’ would be a prefix of the other, where both
of the words v and v' are in Y. However, this would contradict our basic
assumption concerning computers: the domain of Uy is prefix-free.
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Once the unique factorization £ = vu with v = w* has been found, both
of the computations U(u,v) and U (v, A) halt because

U(u,v) =U(u,w*) =t and U(v,A\) =UWw",\) =w.
Now we see that the output satisfies
C(JJ, /\) = @(U(Uv >‘)7 U(uvv)) = @(wvt) ’

as it should according to ().

We still have to show that C(z,y) is a computer, that is, the domain of
Cy is prefix-free, for all . This is clear for y # A. Consider the domain of
C. Assume that z is a prefix of y and that C(x,\) and C(y, \) are both
defined. This implies that we obtain the decompositions

T =UglUy , Y = Uyly
and, moreover, each of the values
Ulug,vz), U(vg,A), Uluy,vy), Ulvy,A)

is defined. Since z is a prefix of y, one of the words v, and v, is a prefix
of the other. But this is possible only if v, = v,, because the domain of
U, is prefix-free. We now conclude that u, is a prefix of u,. Because both
uy and u, belong to the prefix-free domain of U,, (= U,,), we make the
further conclusion that u, = u, and, consequently, * = y. This shows that
the domain of C) is prefix-free. We have completed the proof of (v) and,
consequently, of Theorem [11.14

We introduce a further notion. The amount by which the conditional
complexity H(w/t) is less than the (unconditional) complexity H (w) can be
viewed to indicate how much ¢ contains information about w. The notion
is again first defined for arbitrary computers and then for the universal
computer.

Definition 11.15. The algorithmic information in t about w with respect

to the computer C' equals

Ic(t : w) = Hc(’w) — Hc(’w/t) ,
It:w) =Iy(t:w).
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One would expect that the information contained in w about w is ap-
proximately the same as the information contained in w, and that the infor-
mation contained in A about w, and vice versa, amounts to nothing. Also
the other formal statements presented in the next theorem are plausible
from the intuitive point of view.

Theorem 11.16.

(i) I(t:w)>0(1).

(it) I(t:w) < H(t)+ H(w) — H(t,w) + 0(1).
(1i1) I(w:w) = H(w)+0(1)

(iv) I(w:X)=0(1).

(v) I(X:w)=0(1).

Proof. Assertions (i)—(iii) follow by Theorem |[11.14] from assertions (iv),
(v) and (i), respectively. To prove (iv), we observe the already established
(i) and write according to (ii):

I(w: X) < H(w) + HO\) — H(w, \) + 0(1)
= H(w) — H(w,\) +0(1) = 0(1) .

Here the last equation is established by defining the computer
Clu, A) = 01(U(u, A))

and observing that H(w) < H(w, A) + sim(C). The proof of (v) is similar,
and Theorem [[T.16] follows.

11.8. Computational and information-theoretic complexity

The notion of complexity discussed above could be referred to as the Chaitin
complezity; the basic concepts and the notation, as well as the definition of
the computer C, are from [chal]. This notion of complexity falls within the
framework of descriptional or information-theoretic complexity, as opposed
to computational complexity. In the former, one is interested in the program
size: only the length of the shortest program for a specific task matters, not
how hard the computation according to the program will be. For the latter
type of complexity, computational complexity, the amount of resources such
as time needed in the computation is essential.
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Construction 3. Many problems concerning regular languages, al-
though decidable, are known to be hard from the point of view of compu-
tational complexity. For instance, it has been shown that for some such
problems no polynomial space bound exists. We use this fact to show that
sometimes the descriptional complexity is “as low as it can be”, whereas
the computational complexity is high.

Consider regular expressions over the alphabet {a,b}. Thus, we use
Boolean operations, catenation and star to the “atoms” a,b,¢. Let «;,
i =0,1,..., be an ordering of such regular expressions. For instance, we
may order the regular expressions first according to length and then alpha-
betically to get the order «;. Let us call an index ¢ saturated if and only if
the regular language denoted by «a; equals {a,b}*, that is, its complement
is empty. A real number

r = .apa1as ...

in binary notation is now defined by the condition: a; = 1 if and only if 4
is saturated.

Clearly, » > 0 because some indices ¢ are saturated. On the other
hand, in our ordering that takes the length into account, the first saturated
index appears quite late, because at the beginning only languages with a
nonempty complement appear. We consider also the language consisting of
all prefixes of the binary expansion of r:

L, ={w e {0,1}|w = apa; ...a;, forsome i>0}.

It is obvious that there is a constant A such that the descriptional com-
plexity of words in L, is bounded from above by A, provided the length of
the word is given. This follows because the algorithm for computing bits
of the expansion of r, that is, for testing the emptiness of certain regular
languages can be carried out by a fixed computer. Such a computer can
be one of the computers C defined above. Then C starts with an empty
program tape and with the index ¢ written in binary notation on its work
tape, and halts with the output aga; ...a;. Since the binary expansion of
i contains, roughly, logi bits we obtain the result H(w) < log|w| + A for
all w in L,. The same result is obtained also if r is the decimal or binary
expansion of w. This can be viewed as the lowest possible descriptional
complexity: the same algorithm produces arbitrarily long prefixes of an
infinite sequence. This is a property shared by all computable (recursive)
sequences. The estimate H(w) < log|w| + A can be further improved by
replacing |w| = ¢ + 1 with its descriptional complexity. This yields the
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estimate H(w) < H(i+ 1) + A.

On the other hand, the computational complexity of r (that can be
viewed as the computational complexity of the membership problem in L,.)
is very high. Indeed, in order to decide the membership of a word of length
i, one has to settle the emptiness of the complement for all of the ¢ regular
languages involved. Although both r and 7 are of essentially the same low
descriptional complexity, the computational complexity of r is essentially
higher than that of .

It is natural to ask whether there are reverse examples, that is, cases
where the computational complexity is low but the descriptional complexity
is high. This is very much a matter of how the setup is defined. It is difficult
to find examples as obvious as the ones above.

The descriptional complexity of a word, or the amount of information
in a word, can be identified as the size of the smallest program that pro-
duces the word when started with a blank memory. In general, according
to different models, the amount of information is invariant up to a minor
additive term. Descriptional complexity is nowadays usually referred to as
the Kolmogorov complexity. With the early developments from 1960’s in
mind, Solomonoff - Chaitin - Kolmogorov complezity is perhaps the most
appropriate term for descriptional complexity. (See [6] for a historical ac-
count concerning these matters.) Our notion of Chaitin complexity could
also be called self- delimiting Kolmogorov complezity. We now discuss this
difference in more detail, and explain also why Chaitin complexity is more
appropriate for our purposes.

In general, the Kolmogorov complexity of a word w with respect to a
description method M, in symbols Ky (w), is the length of the shortest
program p such that M with the program p produces w. To get a formal
definition, we identify “description methods” with partial recursive func-
tions.

Consider again the binary alphabet V' = {0,1}, and let f : V* x V* —

V* be partial recursive.

Definition 11.17. The Kolmogorov complexity of a word w in V* with
respect to f is defined by

Ky(w) = min{[p| | f(p,A) = w} .

(The min-operator is undefined when applied to the empty set.) Similarly,
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the conditional Kolmogorov complexity of w, given t, is defined by
Ky(w/t) = min{[p| | f(p,t) = w}.

Let us immediately compare this definition with our previous definition
of (Chaitin) complexity and conditional complexity. The essential difference
is that the definition of the Kolmogorov complexity does not require the
condition concerning prefix-freeness: it is not required that the domain of

fi(p) = f(p, 1)

is prefix-free, for all t. We will comment this further in the sequel. Another
difference is that ¢ rather than ¢* appears as the second argument place of
f in the definition of the conditional Kolmogorov complexity. (One con-
sequence of this difference is that K(w/)\) = K(w), whereas in general

H(w/X) # H(w).)
The Invariance Theorem holds for the Kolmogorov complexity as well,

the proof being essentially the same as for Theorem [I1.12] Therefore, the
proof of it is omitted.

Theorem 11.18. There is a partial recursive function fy (a “universal”
function) with the following property. For every partial recursive function
f, there is a constant Ay such that

Ky (w) < Ky(w) + Ay and Ky, (w/t) < Kp(w/t) + Ay,
for all w and t.

Similarly as before, we fix a partial recursive function fy; satisfying
Theorem [11.18 and use the simple notation K instead of K,. We can also
define similarly as before

K(w,t) = K(p(w, 1)),

where ¢ is a pairing function. But a remarkable difference is that now we
do not obtain the estimate K(w,t) < K(w) + K(t) + 0(1), analogous to
Theorem [11.14] (vi). Let us look into this in more detail.

The construction for Theorem (v), used to obtain Theorem
(vi), does not work for K instead of H. If arbitrary partial recursive func-
tions rather than computers (satisfying the prefix-freeness condition) are
used, then the decomposition x = vu is not clear a priori but additional
information is needed to tell v and u apart. This amounts to information
concerning the length of either w or t. The length of w being logarithmic
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in terms of w viewed as a binary number, the estimate corresponding to

Theorem (vi) reads
K(w,t) < K(w) + K(t) + 0 (log(min(K (w), K(t)))) .

It can be shown that the logarithmic fudge term is necessary.

We already pointed out that the Chaitin complexity could be called self-
delimiting Kolmogorov complexity. Here “self-delimiting” means that the
total length of a program must be given within the program itself. In our
machine model (the computer C) this is taken care of by the requirement
that the computer never runs off the end of the program tape or ignores
a part of the program. This leads to prefix-freeness: no program for a
successful computation is a prefix of another.

11.9. Self-delimiting programs

Programs are self-delimiting if constructs are provided for beginning and
ending a program. This is easily accomplished if end markers are available.
The situation is trickier if the whole program is, as in our case, just a se-
quence of bits. The program might actually describe a formal parametrized
procedure, as well as list the values of the parameters. One has to be able
to tell apart all of these items in the single bit sequence that constitutes the
program. How this requirement (of self-limitedness) can be realized will be
illustrated in the next construction.

Construction 4. Given a word w over the binary alphabet, we de-
fine the self-delimiting presentation SD(w) of w. The idea is to write the
length of w written in binary notation in front of w, that is, to consider the
word |w|w, where |w]| is given in binary notation. The following additional
trick makes it possible to recognize immediately in a (possibly long) binary
sequence, where the length indicator ends and the “proper word” begins.
(Although every word over V' can be represented in at most one way as the
catenation of |w| and w, for some w, an unbounded amount of lookahead is
needed to tell the border between |w| and w without the additional trick.)
In |w| we write a 0 after every bit except that after the last bit we write a
1. In this fashion we obtain the word M L(w), the “modified length” of w.
Finally, SD(w) = M L(w)w. Some illustrations are given in the following
table.
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w | |w| | ML(w) SD(w)
01 | 10 | 1001 100101
101001| 110 | 101001 [101001101001
1% 11111]10101011| 1010101'7

Consider now an arbitrary word x over {0,1}. To present x in the form
x = M L(w)w, provided this is at all possible, it suffices to find the first bit
1 in z that occurs in an even-numbered position, counted from left to right.

The longer the word w is, the less is the contribution of M L(w) to the
length of SD(w). Asymptotically, we have

|SD(w)| = |w| + 2 log|w] .

Thus, the length increases only by an additive logarithmic term in the
transition from a word to its self-delimiting presentation. Such a difference
by a logarithmic term is often present when comparisons are made between
the Kolmogorov complexity and the self-delimiting Kolmogorov complexity
(Chaitin complexity). A typical example is Theorem (vi). Because
K is not self-delimited, a logarithmic term is needed, but it is not needed
for H because it is already taken care of in the definitions.

To summarize, one can distinguish in the study of descriptional com-
plexity the self-delimiting version (Chaitin complexity) and the non-self-
delimiting version (Kolmogorov complexity). As regards conditional com-
plexity, there is a further possibility for a different definition, depending on
whether a word ¢ itself, or the shortest program ¢* for it is considered. (We
made the latter choice in our definition of complexity.) Different variations
in the basic definitions result in somewhat different theories but it is beyond
the scope of this contribution to investigate this matter in detail.

For our purposes, the given definition of complexity, using computers C'
and the resulting prefix-freeness, is the most suitable. Our main purpose
is the discussion concerning the secret number 2, a very compact way of
encoding the halting problem (or any of the other undecidable problems,
[5]). In this discussion, probabilities play a central role: we will use the
Kraft inequality (Theorem . The self-delimiting version satisfies the
essential requirement for prefix-freeness.
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11.10. Randomness: intuitive considerations

We now return to the discussion, started already in Section 2, concerning
randomness viewed as incompressibility. Before giving the formal defini-
tions, we will begin with some informal considerations. As before, we will
talk about words w over the binary alphabet V' = {0, 1}.

A word w is incompressible or random if and only if the shortest pro-
gram describing w is roughly of the same length as w. An infinite sequence
of bits is random if and only if the condition mentioned holds for all prefixes
of the sequence. For (finite) words w, randomness is a matter of degree.
Depending on the model, a certain additional term to |w| is needed, and
the degree of randomness indicates how close the length of the shortest
program for w is to the maximal value. “How random is w?” is the proper
question to ask in this case because the additional term may be huge or
negligible, depending on the length of w. For infinite sequences, there is
a sharp distinction between randomness and nonrandomness, because the
additional term will eventually become negligible.

Consider the degree of randomness of a word w with |w| = ¢ > 20. Call
a word w “fairly random” iff the shortest program for describing w is of
length > i —20. (We have here an arbitrary model in mind, not necessarily
the model with computers C' and complexity H.) The following argument
shows that almost all words are fairly random. Consider a fixed i. Assume
that every word over V' of length < i — 20 is actually a program describing
a word of length 7. There are

9l 492 4 ... 4 9021 _9i-20 _o

nonempty words of length < i — 20. Hence, out of the 2! words of length
i, at most 2720 — 2 can be described by a program of length < i — 20.
This holds for an arbitrary i. The ratio between 2720 — 2 and 2¢ is less
than 107%. Consequently, less than one in a million among the numbers
of any given length is not fairly random. If randomness is taken to mean
information-theoretic incompressibility in the sense explained above, almost
all numbers are fairly random. A formal counterpart of this result will be
presented in Theorem If a word w over {0,1} is generated by fair
coin tosses, the probability is greater than .999999 that the result will be
random to the extent indicated in the definition of fair randomness. This
would seem to suggest that it is easy to exhibit a specimen of a long fairly
random word. One of the conclusions made in the sequel will be that it is
actually impossible to do so.
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Let us elaborate the latter claim. The claim is that, although most
words are random, we will never be able to explicitly exhibit a long word
that is demonstrably random. The reason is that the axioms and rules of
inference in any formal system T can be described in a certain number,
say n, of bits. The system T cannot be used to prove the randomness of
any word w much longer than n because, otherwise, a contradiction would
arise. If |w| = m is much larger than n and the randomness of w could
be proven within 7', we could construct a computer C to check through
the proofs of T, until the correct one is found. The description of C' takes
roughly n bits and, thus, we get a program much shorter than m describing
w, a contradiction. To put it very simply, we cannot construct a program p
to print a word w with |w| > |p| unprintable by programs g with |q| < |w].
Chaitin has expressed the matter by saying that if one has ten pounds of
axioms and a twenty-pound theorem, then the theorem cannot be derived
from the axioms.

Thus, we cannot know a random number but we can still know of a
random number. In particular, we can know of the secret number Q: it
is the probability that the universal computer U halts when it is started
with an empty work tape. (Thus U is started with a pair (u, A), where the
program u is arbitrary.) Before going into formal details, we still present
another possibility to encode the halting problem.

Construction 5. We consider now ordinary Turing machines because
self-delimitedness is not important here. Let T'My, TMy, TM>, ... be a
numbering of all Turing machines, and define a number A by its binary
expansion

A= .apaias ... ,

where, for all i, a; = 1 if and only if T'M; halts with the empty tape. We
already pointed out in Construction 3 above that computable sequences are
never random. However, A is clearly noncomputable and, thus, could be
random as far as this matter is concerned. But A is not random. A gambler
is able to make an infinite profit by using some infinite subclass of Turing
machines with a decidable halting problem. A formal argument concerning
the compressibility of A can be based on the following observation. Consider
any prefix of A of length n. Suppose we know the number m of 1’s in this
prefix. Then we know also the prefix itself, because we can dovetail the
computations of the first » Turing machines, until have found m of them
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that have halted. Eventually, this will happen. Thus, information about
the prefix of length n can be compressed to information about n and m.

11.11. Probability and complexity

We first present the formal definition of 2. We consider the binary alpha-
bet V = {0,1}. We use the definitions of a computer C and a universal
computer U given above. Moreover, exactly as was done above, a fixed
universal computer U will be considered all the time. Also the “optimal
program” t* for t is defined as before.

We are now ready for the fundamental definition.

Definition 11.19. the probability of a word w € V* with respect to a
computer C equals

Po(w)= > 27l
ueV™
C(u,\)=w

The conditional probability of w with respect to a word t € V* and computer
C equals

Po(w/ty= Y 27l

ueV’™
C(u,t™)=w

Po(w), resp. Po(w/t), is defined to be 0 if no u as required on the right
side exists. The probability of w and the conditional probability of w with
respect to ¢ are defined by

P(w) = Py(w) and P(w/t) = Py(w/t).

Finally, the halting probability of the universal computer is defined by

o= Y ol
ueV™

U(u,\) converges

In this definition, instead of probabilities, we could speak also of algo-
rithmic probabilities or information-theoretic probabilities. The justification
for the terminology and the interconnection with the classical probability
theory will be discussed below. We prove first some formal results.
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Theorem 11.20. The following inequalities hold for all words w and t over
V' and for all computers C.

(i) 0< Po(w) <1,

(i) 0 < Po(w/t) <1,
(i) 0 <3 cy- Pol(r) <1,
(iv) 0 <Y cyw Polz/t) < 1.

Proof. Recall the definition of the frequency indicator, F'I, Definition
Clearly,

Po(w) = FI(L), where L ={ue V*|C(u,\) =w}.

By the definition of a computer, the domain L’ of C) is prefix-free. L is
a subset of this prefix-free language and, hence, L itself is prefix-free. The
inequality Pc(w) < 1 now follows by Theorem [11.4]

Observe next that > .. Pc(xz) = FI(L'), and hence the upper bound
in (iii) follows by Theorem[11.4] To get the upper bounds in (i) and (iv), we
use in the same way the domain of Cy- (that is prefix-free by the definition
of a computer) and its subset determined by w. The lower bounds in (i)-

(iv) are obvious because all terms in the series are nonnegative. Hence,
Theorem [11.20] follows.

The next theorem presents an interconnection between probability and
complexity.
Theorem 11.21. For all w, t and C,
Po(w) > 27 HeW) and  Po(w/t) > 27 Hew/t)

Proof. According to the definition, Po(w) (resp. Po(w/t)) is a sum
of terms, one of which is 2=#c(®) (resp. 2-Hco(w/t)) The inequalities are
formally valid also for undefined values of H¢ if we agree that the value is
oo in this case. This completes the proof.

The next theorem shows that the probabilities lie in the proper interval.
Theorem 11.22. For all w and t,

0<Plw)<1l and 0< P(w/t)<1.
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Proof. The inequalities 0 < P(w) and 0 < P(w/t) follow by Theorem
11.21| because H(w) and H(w/t) are always defined (see Theorem [11.9)).

By Theorem [11.20} (iii),
Z P(zx)<1

zeV*

and each term in the sum is greater than 0, we must have P(w) < 1. The
inequality P(w/t) < 1 follows similarly by Theorem [11.20} (iv). Conse-
quently, Theorem [11.22] follows.

11.12. Degree of randomness

We begin this section by establishing some upper bounds concerning the
cardinalities of certain sets defined in terms of H and P. Intuitively, if
randomness is understood as information-theoretic incompressibility, then
almost everything is fairly random.

Theorem 11.23. For all computers C, words t and integers m,n > 1, we
have

(i) card{w € V*|Ho(w) < m} < 2™,
(i) card{w € V*|Ho(w/t) < m} < 2m,
(iii) card{w € V*|Po(w) > ™} <
(iv) card{w € V*|Po(w/t) > =} < .

Proof. H¢(w) is the length of the shortest u, if any, such that C(u, \) =
w. Each u gives rise to at most one w, and there are no more than 2™ — 1
possible u’s, since this is the total number of words shorter than m. Hence,
(i) follows. The proof for (ii) is similar. Arguing indirectly, we see that if
(iii) does not hold, then

< card{w € V*|Pc(w) >

m m
n

P

Here the last inequality follows by Theorem (iii), and the strict in-
equality holds because we have strictly increased every element in a sum
and possibly added new elements. The contradiction 1 < 1 shows that (iii)
holds. Again, the proof for (iv) is similar, and Theorem follows.
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We want to emphasize that in our definitions the term “probability”
is only suggestive. No properties of probabilities have been used in the
proofs of Theorems |11.20) However, this suggestive term is very well
justified. Intuitively, Po(w) coincides with the probability for the computer
C to produce the output w when started with a program u generated by
coin tosses, and an empty work tape. (The length of the program tape
is adjusted according to the program w.) An analogous intuitive point of
view can be given as regards the other P-notions. A more formal approach
would be to introduce a uniform probabilistic structure s on the alphabet V'
by defining s(0) = s(1) = %, and to consider the product space, consisting
of infinite sequences of letters of V', provided with the product probability.
The details of such an approach are beyond the scope of this article.

We now return to the discussion of randomness. We already pointed
out that, for words w, there is no sharp distinction between randomness
and nonrandomness. However, one can speak of the degree of randomness
. For a word w of length ¢, the degree of randomness of w indicates how
close H(w) is to the maximal value i + H (7).

As regards infinite sequences, there is a sharp distinction. We can define
explicitly what we mean by a random sequence. Although practically all
infinite sequences are random, it is (and will be also in the future!) impos-
sible to exhibit one of which we can prove that it is random. We now give
the formal definition.

Definition 11.24. For an infinite sequence
B =bibobs...

of elements of {0,1}, we let B; = by ...b; be the prefix of length ¢ of B, for
i=1,2,.... The sequence B is random if and only if there is a constant A
such that, for all 7,

At the beginning of this paper we pointed out that random sequences
must possess certain statistical properties such as being normal. Such prop-
erties must be present in all reasonably constructed subsequences as well. In
Construction 5, for instance, we found a reasonable subsequence consisting
of 1’s only — hence the whole sequence is not random. One can formulate
the notion of randomness in terms of effectively verifiable statistical tests.
What is very pleasing is that this definition of randomness yields exactly
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the same random sequences as the definition given above, see [Li Vi] and
[Cal].

11.13. Magic bits: properties of the secret number

We now discuss the properties of €2, the halting probability of the universal
computer, the “secret number”. Taking C' = U in Theorem (iii),
we obtain first 0 < Q < 1. Theorem shows that the first inequality
is strict. That also the second inequality is strict is a consequence of the
fact that U cannot halt for all programs used in the proof of the Kraft
inequality, Theorem Thus, we have

0<Q<1.
Let
Q = .bibybs. ..

be the binary expansion of 2. Ambiguities are avoided by choosing the
non-terminating expansion whenever two expansions are possible. (We do
not want to exclude the possibility of Q being rational!) Informally, we
refer to the bits b;, i > 1, in the expansion of 2 as magic bits. Thus, € is
a real number. We consider also the infinite sequence

B = bbb, . ..
of letters of {0, 1}, as well as its prefix of length 4,
Bi=by...b, i>1.
For all i > 1, we consider the rational number
Qi = by...bi.

We are now in the position to establish the remarkable properties of
the number 2 hinted at earlier in this paper. We prove first a result show-
ing that Q encodes the halting problem in a very compact form. We then
establish that B (as defined above from §2) is random, and proceed to con-
sider the implications to formal axiomatic theories. Any theory is capable
of yielding only finitely many bits of B. Thus, we can never know 2 in the
sense that we could somehow produce infinitely many bits of B. But we
can know of 2 in the sense that we can define it formally. Finally, we show
that no formal axiomatic theory can ever tell whether a certain Diophantine
equation with a parameter has infinitely many solutions. This can possibly
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be determined for finitely many parameter values but never for infinitely
many, let alone all, of them.

The domain of Uy, that is, the set
DOM(Uy) = {u € V*|U(u, A) is defined }

is recursively enumerable. We consider some fixed enumeration of it, where
repetitions do not occur. Such an enumeration is obtained by a method
customarily referred to as “dovetailing”. We have already hinted at this
method before: you order the steps in different computations in one se-
quence, as in the definition of the pairing function.

Thus, we obtain a total recursive injection g of the set of positive integers
into V*. We define, for n > 1,

n
wn =32l
j=1

It is obvious that the sequence w,, n = 1,2,..., is monotonically strictly
increasing and converges to 2.

Theorem 11.25. Whenever w,, > $);, then
D <w, <Q<Q+27°.

Given any i, if we know the first i bits of ), we can decide the halting of
any program with length < i.

Proof. The first sentence is an immediate consequence of the inequality

o0
270> > b2
j=i+1
To prove the second sentence, assume that we know B;. Hence, we are able
to compute €2;. We now compute the numbers w; until we have found an n
such that w, > ;. By the properties of w;, this is always possible because
we know that such an n eventually comes up.

Let u; be a word over V of length iy < i. We claim that U(uq, ) is
defined if and only if w; is one of the words g(1),...,g(n). The “if’-part
of the claim is clear. To prove the “only if” -part, we assume the contrary:
u; = g(m), where m > n. We obtain a contradiction by the following chain
of inequalities

A>wn>wn+2 0 >w, +27 >0 +27>Q.



210 Grzegorz Rozenberg and Arto Salomaa

This concludes the proof of Theorem [11.25

Theorem [11.25] justifies the term “magic bits”. The knowledge of a suf-
ficiently long prefix B; enables us to solve any halting problem. The same
applies to Post Correspondence Problems as well, because we can design
programs to search for a solution of a given PC'P. Similarly, we can design
programs looking for counterexamples to famous conjectures in classical
mathematics, such as the Goldbach Conjecture or Riemann’s hypothesis.
We have already indicated before how the knowledge of a sufficiently long
sequence B; of magic bits opens even more general vistas. It enables us to
decide whether a well-formed formula is, according to a formal theory, a
theorem, a nontheorem or independent.

How many magic bits are actually needed, depends of course on the
formal theory and also on the programming of the universal computer U.
Certainly our programming of U in the proof of Theorem was not very
economical in this respect. We started the programs with 0?1, where i is
the index of an individual computer C;. A much more compact program-
ming for U results if we take the programs of the individual computers
C; as such and use the technique of Construction 4 to make words self-
delimiting. Then for any conceivably interesting formal theories the knowl-
edge of 10,000 magic bits, that is B; with ¢ = 10, 000, is more than enough.

Thus, if an oracle tells us 10,000 magic bits, we are wise enough to
settle all halting problems and PCP’s that are of some reasonable size, as
well as famous conjectures in classical mathematics. Although we are wise
in this sense, we still face a task of an enormous computational complexity
when we start calculating the numbers w,,.

We will now prove that Q is truly random.
Theorem 11.26. The sequence B is random.

Proof. We apply the notation from the proof of Theorem [11.25] We
showed that whenever U(u, A) is defined and |ui| < 4, then w; is one of
the words g(1),...,g(n). This leads to the equation
(4) {Ug(), Mt <j <n and |g(j)| < i} = {w|H (w) <i}.

Indeed, every word belonging to the left side belongs to the right side and,

conversely, if H(w) < ¢ then w has a program of length at most i.

Consider now the partial recursive function f from V* into V*, defined
as follows. Given z = z1...x, x; € V, find the smallest m, if any, such
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that
t
Wy > Zxﬂﬂ .
j=1

If such an m is found, f(x) is the first word (in lexicographical order) not
belonging to the set

{91 <j<m}.
Let C be the computer defined by

We now consider an arbitrary prefix B; and infer

H(f(B,) < He(f(By)) + sim(C)
= min{lu] | C(u,A) = f(B,)} + sim(C)

= min{Ju] | f(U(u,\) = f(B;)} +sim(C)
< min{|u| | U(u, \) = B;} + sim(C)

= H(B;) +sim(C) .

By the equation (A), H(f(B;)) > i. Hence,
i —sim(C) < H(B;)

for all 5. This means that B is random, by Definition [11.24] with A =
sim(C).

It is clear by the discussion after Theorem that an upper bound
n is inherent in every formal theory, such that no prefix B; with ¢ > n
can be produced according to the theory. Theorem shows that such
an upper bound concerns also the total number of bits of 2 that can be
produced according to the theory.
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11.14. Diophantine equations and randomness

We are now ready to take the final step. A really dramatic implication
of the properties of € is that we can exhibit a particular (exponential)
Diophantine equation

(%) PG, z1,...,@m) = Q(i,21,...,Tm)

such that, for each ¢, (x) has infinitely many solutions in x1, ..., Z,, if and
only if b;, the ith bit in €, equals 1. As in the definition of an exponential
Diophantine relation, P and @ are functions built up from ¢, x4, ..., z,, and

nonnegative integer constants by the operations of addition, multiplication
and (unary) exponentiation . Denote by (x);, ¢ = 1,2,..., the equation
obtained from (x) by fixing the parameter i. Does (x); have infinitely many
solutions? By the properties of €2 deduced above, any formal theory can
answer this question for finitely many values of ¢ only. No matter how many
additional answers we learn, for instance, by experimental methods or just
flipping a coin, this won’t help us in any way as regards the remaining in-
finitely many values of i. As regards these values, mathematical reasoning
is helpless, and a mathematician is not better off than a gambler flipping
a coin. This holds in spite of the fact that we are dealing with basic arith-
metic.

In fact, we have already developed all the technical apparatus needed
to establish the above claim concerning (%) and the magic bits. Recall the
definition

n
wp =2l
j=1

where g constitutes an enumeration of programs for U that halt when
started with the empty word. We fix an ¢ and consider the ith bit b(i,n)
in wy, for increasing values of n. At first b(¢,n) may fluctuate irregularly
between 0 and 1 but will stabilize from a certain point on. The reason for
this is that because w,, tends to 2, b(i,n) has to become b;.

The binary relation b(i,n) = 1 is recursively enumerable — in fact, it
is recursive. (The notation should be changed from n to z; to conform
with (%). However, no confusion should arise although we stick to the more
natural n-notation.) By Theorem there are P and @ such that (x)
has a solution in zs,...,z,, if and only if b(i,n) = 1. Moreover, this ED
representation is singlefold: for each ¢ and n, there is at most one (m — 1)-
tuple (z2,...,x,,) satisfying
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(**) P(ian’x%"'axm):Q(ivnax%""xm)'

Consequently, for each i, b(i,n) = 1 holds for infinitely many values of n if
and only if (xx) holds for infinitely many m-tuples (n, zo, ..., z,,). Because
b; = 1 if and only if b(i,n) = 1 for infinitely many values of n, we have
established the desired result, expressed in the following theorem.

Theorem 11.27. The ith magic bit b; equals 1 if and only if (x) has in-
finitely many solutions.

Chaitin, [3] has constructed (%) explicitly. His equation is really huge:
some 17,000 variables and 900,000 characters.

It is essential that we ask whether or not () has infinitely many solu-
tions for a given 4. It is not sufficient to consider the existence of solutions
because the set of (the indices of) solvable Diophantine equations is recur-
sively enumerable and, hence, cannot lead to randomness.

Singlefoldedness could be replaced by a weaker property: for each 4
and n, (xx) holds for only finitely many (m — 1)-tuples o, ..., &y, It is
not known whether the theory of Diophantine representations holds for
this notion weaker than singlefoldedness. Consequently, it is not known
whether P and @ in (%) can be assumed to be polynomials, and thus,
whether exponentiation can be avoided.

11.15. Conclusion

We end this paper with a brief philosophical conversation about the central
issues discussed above. We refer the reader also to the recent article of
Chaitin [4]. The final part of [1] is also very relevant in this context.

Question. A lot of things escape any given axiom system. Let us
go to matters discussed in the last section above. It is hard for me to
visualize that we just flip a coin to decide whether an equation has a finite
or an infinite number of solutions. Both outcomes seem to be OK and in
accordance with any theory we might have had before. And the additional
knowledge gained by deciding about this particular equation does not help
us much: infinitely many equations remain to be handled similarly.

Answer. You might have difficulties only because you forget that
everything can be encoded as solutions of equations. All recursively enu-
merable sets can be represented in this way. We might equally well ask
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whether a given Turing machine defines a finite or an infinite language.
It might be easier for you to visualize that no formal system can answer
this question in regard to all Turing machines. After all, a formal system
itself is nothing but a Turing machine. There always will be machines for
which the decision has to be made by coin flipping, or possibly by some
experiments.

Question. I can follow all that. Still, we have a specific equation.
Even if it is long, it can be written down explicitly, and it has been written
down explicitly. The question whether it has a finite or an infinite number
of solutions is clear enough. In my world, call it Platonic if you like, this
question has a definite answer. It is only because of my ignorance that I
don’t know the answer. In my world the law of the excluded middle holds
in great generality, at least in arithmetical matters like this. I like the idea
that we always discover new things from this world, never being able to
exhaust it.

Answer. Think of the infinite sequence of equations about which we
have to make the decision: finitely or infinitely many solutions. So we
get an infinite sequence of 0’s and 1’s for each completed set of decisions.
Each such sequence corresponds to a (hopefully) consistent theory. There
are many sequences, even if we take into account that some of them do
not correspond to an axiomatizable theory (this happens if the sequence
is not recursive). Which sequence is the one of your Platonic world? Is
your world the same as mine? You also admitted that you don’t know your
world so well. Finding the answers is discovery , not creation. Objects of
set theory should be discovered. You can also encode things in different
ways, symbolize them as Post says. Here the physical, experimental aspect
is important: which objects correspond to the universe we live in. Which
of the Platonic worlds is realized, is a question of physics.
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Let C and H denote the plain and prefix-free description complexity,
respectively. Then the sets NRC of nonrandom numbers with respect to
C has neither a maximal nor an r-maximal superset. The set of NRH of
nonrandom numbers with respect to H has an r-maximal but no maximal
superset. Thus the lattices of recursively enumerable supersets (modulo
finite sets) of NRC and NRH are not isomorphic. Further investigations
deal with the related set NRW of numbers z with a stronger nonran-
domness property: x # max{W.} for any e < x where Wy, W1,... is
derived from the underlying acceptable numbering of partial-recursive
functions. Friedman originally asked whether NRW =7 K for every un-
derlying acceptable numbering and Davie provided a positive answer for
many underlying acceptable numberings. Later Teutsch asked whether
the set NRW can be r.e. or co-r.e.; as an answer to this question it is
shown that in the case that the underlying numbering is a Kolmogorov
numbering, NRW is not n-r.e. for any n. If one uses any acceptable
numbering instead of a Kolmogorov numbering, then the underlying
numbering can be chosen such that NRW is a co-2-r.e. set; but it cannot
be a 2-r.e. set for any acceptable numbering.

12.1. Introduction

Let C' and H denote the plain and prefix-free description complexity, re-
spectively. Furthermore, one can identify the numbers in the set I, =
{27 —1,2",2" +1,...,2"*1 — 2} with the binary strings of length n; a num-
ber x corresponds to a string o iff £ 41 is the binary value of the string 1o.
For having an easier connection to other fields of recursion theory, natural
numbers are used from now on. For any number z, the n with = € I, is
called the length of x, written |z|. The plain description complexity C' is
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defined as

C(z) = min{[p| : U(p) = =}

where U is a universal function. That is, the value C based on U satisfies
the following two conditions:

(1) The range of U is the set of all natural numbers, so that C(z) is defined
for all z.

(2) For every further unary partial-recursive function V there is a constant
¢ with C(V(p)) < |p| + ¢ for all p in the domain of V.

The other variant H is based on prefix-free machines. Chaitin [1-3] and
Levin [11] laid the foundations and showed the significance of this alterna-
tive approach which developed together with the original notion C' to the
two best accepted concepts in description complexity. A prefix-free ma-
chine satisfies that all different strings p, ¢ in its domain are incomparable
with respect to the string-prefix-relation; alternatively, one can also use the
Kraft-Chaitin-Theorem [1-3, 11] and say that a machine U is equivalent to

a prefix-free one iff
Z 2-Irl < 1.

pedom(U)

A prefix-free machine U is universal iff the two conditions above hold where
in Condition [2] only prefix-free machines V' are considered. Then

H(x) = min{[p| : U(p) = =}

where U is a prefix-free partial-recursive unary function which is universal
for the class of all prefix-free partial-recursive unary functions. Now the
two sets in question are defined as

e NRC={z:C(z) < |z|};
e NRH={z: H(z) < |z|}.

They are called the sets of nonrandom numbers with respect to C' and
H or the sets of compressible strings with respect to C' and H. These
sets are standard examples of simple sets, which do not arise through a
complicated construction but are just given as natural. Furthermore, they
are wtt-complete but not btt-complete. Kummer [9] showed that NRC' is
tt-complete (for any given universal machine), but according to Muchnik
and Peretselski [14] the tt-completeness of NRH depends on the choice of
the universal machine. The existence of universal machines for which NRH
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is tt-complete is easy to show; a clever definition makes it possible to satisfy
the equivalence

n€ K< [NRHN{2",2" +1,...,2"" — 1}] is odd.

The choice of a universal machine where NRH is not tt-complete is the
more difficult part.

In the present work, it is shown that the sets NRC and NRH can also
be used as examples for the following theorems. Martin [13] showed that
there is a recursively enumerable coinfinite set without a maximal super-
sets; both sets NRC and NRH have this property as well. Lachlan [10] and
Robinson [18] constructed a recursively enumerable coinfinite set without
an r-maximal superset; NRC' is also such an example. Furthermore, Lach-
lan and Robinson constructed a set with an r-maximal but without any
maximal superset; NRH is such an example.

For these theorems, recall that a recursively enumerable and coinfinite
set A is called maximal if either A C* B or A C* B for every recursively
enumerable set B. Furthermore, a recursively enumerable and coinfinite
set A is called r-maximal if either A C* B or A C* B for every recursive
set B. Here X C* Y if X —Y is finite, that is, if almost all z € X are also
in Y; furthermore, X C*Y if X C*Y and Y ¢* X.

A lot of variants of the basic notions C' and H have been studied in the
theory of description complexity. One related notion to the sets NRC and
NRH is the set

NRW = {x : Je < z [z = max(W, U {0})]}

which is based on the underlying acceptable numbering of partial-recursive
functions with W, being the domain of the e-th partial-recursive func-
tion. Wy, Wy, ...; Friedman [6] asked what the Turing-degree of NRW
is; Davie [4] obtained the by now best results with respect to this prob-
lem. Davie first solved this question for the case where the underlying
numbering is a Kolmogorov numbering. Here a numbering g, 1, ... of
partial-recursive functions is a Kolmogorov numbering iff, given any other
numbering g, Y1, ... of partial-recursive functions, there are constants ¢, d
such that one can compute for every index n an index m < cn + d with
wm = ¥,. Later, based on correspondence with Solovay, Davie pointed
out how to solve Friedman’s question for a further large class of acceptable
numberings. But Friedman’s question is still not completely solved. At the
end, an alternative proof using Kummer’s Cardinality Theorem is given for
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Davie’s first result that K <;p NRW whenever the underlying numbering is
a Kolmogorov numbering.

Schaefer and Teutsch also studied related problems, for example,
whether NRW is an r.e. or a co-r.e. set [20]. Note that the set NRW is
similar to NRC and NRH; so if one chooses the universal machines and the
numbering Wy, W1, ... properly, then one gets NRH C NRC C NRW which
would directly imply that NRW is co-immune and thus not a co-r.e. set.
But the obtained results are more general: There is an acceptable num-
bering such that — when based on this numbering — NRW is a co-2-r.e.
set. But NRW cannot be a 2-r.e. set. Furthermore, if NRW is based on a
Kolmogorov numbering then NRW is not n-r.e. for any number n. In any
case, NRW is still w-r.e. as witnessed by the approximation A with z € A,
iff there is an y < = with {z} C W, ,n{0,1,...,s} € {0,1,...,z}.

Unexplained recursion-theoretic notation follows the books of
Odifreddi [15, 16] and Soare [19].

12.2. Known Results

Neither the set NRC nor the set NRH have hyperhypersimple supersets.
Defining the universal machines adequately gives that C(x) < H(x) for
all z and thus NRH C NRC; this will be assumed here and in all further
proofs.

Remark 12.1. Martin [13] proved that there is a recursively enumerable
coinfinite set without a maximal superset. Odifreddi [16] proved Proposi-
tion 1X.2.27 by producing a set A which contains for all n and all e < n
every element of a set I,, — W, whenever that set has at most one element
y. He then showed that such a set A has no maximal superset. As

Cly) <C((n+e)(n+e+1)+n)+c<2log(n+1)

for some constant ¢ independent of n, e whenever such a y exists, the con-
struction implies that for every function f with f(n) > 3-log(n) for almost
all n, the sets

{z:C(z) < f(z)} and {z : H(z) < f(z)}
do not have a maximal superset. In particular NRC and NRH do not have
maximal supersets. One can generalize the above result to all recursive,
increasing and unbounded functions f by using larger intervals J,, instead
of I,,. Taking J,, = {z: f(z) € I,}, one gets that the complement of every
maximal set contains infinitely many x with C(x) < f(z).
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So this result is already more or less there. Nevertheless, a formal proof
will be given for the sake of completeness. The description complexity part
of this proof can be put into the following form, which is quite often used
implicitly although the author is not aware of a direct reference.

Proposition 12.1. Let A be a recursively enumerable set. Then there is a
constant ¢ such that the following holds:

If NRC C A then for all n, either I, C A or |I,, — A| >27¢-|1,]|.

If NRH C A then for all n, either I, C A or |I,, — A| > 27 %Inl=¢ .|, |.

Proof. Assume that A is recursively enumerable and NRC C A.

Then one splits each interval I, into intervals J;, ,, with 2"~™ elements
for m = 1,2,...,n plus one further element. Now one can define a partial-
recursive function V' such that V[J,.m]| ={V(p) :p € Jom} 2 Lngm — A
whenever |I4py — A] < 277™ by waiting on each interval J,, ,, for the
event |I1m — A| < |Jn.m| to take place and by then assigning the values
correspondingly. Note that V' is not total as there are intervals J,, ,,, where
the corresponding event will never take place. It follows that C(z) <n—m
for all © € I,,4,, whenever |I,,,, — A] < 2"~™. Now one can argue that
there is a constant ¢’ with C(V'(p)) < |p| + ¢ for all p in the domain of V.
It follows that I,y is not in the range of V/[J, ] and hence there is no n
such that 1 < [Ty — 4] < on—c,

The second result is just based on the fact [12] that |H(z) — C(z)] <
2-|n|+ ¢’ for some constant ¢, all n and all © € I,,. So the whole theorem
holds with ¢ = 2(¢’ 4+ ¢"). O

Proposition 12.2. Neither the set NRC nor the set NRH have a hyper-
hypersimple superset.

Proof. As NRH C NRC, it is sufficient to show that no coinfinite r.e. su-
perset A of NRH is hyperhypersimple. So let such a coinfinite r.e. superset
A of NRH be given. By Proposition there is an increasing and un-
bounded recursive function b such that for infinitely many n the set I,, — A
contains at least b(n) many elements.

Having this property, it is easy to define a partial-recursive function
such that 1 takes on every set I, with |I, — A| > b(n) on b(n) elements
of I,, — A the values 0,1,...,b(n) — 1, respectively. Whenever then some
x € I, with ¥(x) = m A m < b(n) is enumerated into As11 at stage s,
one takes the least value x € I, — Asy1 where ¢)5(xz) is still undefined and
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assigns the value ¥sy1(x) = m.

By choice of the function b there are for every m infinitely many n such
that |I, — A| > n > m and ¢¥(x) = m for an z € I,, — A. It follows from a
result of Yates [21] that A is not hyperhypersimple. O

The next result is an alternative proof for the result of Robinson [18] in
1967 and Lachlan [10] in 1968 that there is a recursively enumerable and
coinfinite set without an r-maximal superset. The proof is based on an
adjustment of Lachlan’s proof [10].

Theorem 12.1. NRC has no r-mazimal superset.

Proof. Let A be arecursively enumerable and coinfinite superset of NRC.
By Proposition there is a constant ¢ such that, for infinitely many n,
I,, — A has at least 2" ¢ elements. Now let

By = {m,m+2°"1 m 4+2.2¢71 m 4 3.2071 )

for m =0,1,...,2°"" — 1. These sets form a finite partition of the natural
numbers, but for each m, A ¢* B,, as

30 (|1, — Al > 271 |I,| > | B N 1)

Hence A is not r-maximal. O

12.3. NRH has r-maximal supersets

One main result of the present work is that in contrast to NRC, NRH has
an r-maximal superset.

Theorem 12.2. There is an r-mazximal superset of NRH.

Proof. Anr-maximal set A is constructed such that AUNRH is coinfinite.
Then AU NRH is also r-maximal and a superset of NRH.

Now let Jy, J1, Ja,... be a partition of the natural numbers such that
each J,, has 23" elements. Let L,, = U{[l,, : m € J,,} be the union of all I,
such that m € J,. The sets Lg, L1, Lo, . .. are also a recursive partition of
the natural numbers.

First, a recursively enumerable set B is defined such that for all r.e. sets
W;,W; and n > ¢ + j, if L, — B € W; UW; then either L, — B C W; or
L, — B C W;. This is obtained by making one indirect step into Lachlan’s
construction. More precisely, L, — B is forced to become a subset of W,
whenever W, contains at stage s the majority of the sets I with I, € B,
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satisfy that at least the half of I, — B, is contained in W, ;. More formally,
the following is done.

e For each n and stage s, let e be the remainder of s divided by n and
do the following:

Let Do ={k € Jp : I, £ Bs};

Let Dy ={k € Dy : |(Ix — Bs) "1 We 5| > 0.5 I, — Bs|};

If 2|Dq| > |Dog| and L,, — By € W, s then update B, on L,, by letting

— By 1 NI, =1 for all k € Dy — Dx;
— Bsy1 NI, = (BS ﬂ[}c) U (Ik - We,s) for all k € Dq;

else let Bs11 N L, = Bs N Ly,

Now one can verify that the desired property holds. Assume that L,, € B
but L,, € W;UW; and t is so large that B;NL,, = BNL,, W; ;NL, = W;NL,
and W N L, = W;NL,. Inevery stage s > t, Dy = {k € J,, : I, £ B} as
B,NL,=BnNL,. Furthermore,

Vk € Do 3e € {i,7} [|(Ix — Bs) N We 5| > 0.5 - |I;; — Bs]].

Thus, either for e = i or for e = j, it must hold that at stage s = tn+e that
2|Dy| > |Dg|. As at this step, no new elements are put into B, the condition
L, — Bs C W, , must be satisfied. So L,, - B C W; or L, — B C W;.

Second, it is shown that for almost every n, L, € B. To see this, note
that for each interval L,, it happens only in at most n stages s that some
elements of L, are enumerated into B. One can easily verify that after
each step, at least half of the k € J,, with I}y € By also satisfy the condition
|[IxBst1| > |Ix — Bs| - 0.5 while all other k € J, satisfy I C Bsy;. As a
consequence, in the limit, |J,|- 27" of the intervals I}, with k € J,, satisfy
I — B| > |[I| - 27™ > 2k=". As |J,,| = 23", the number of these intervals
is at least 227

Chaitin [2] showed that there is a constant ¢ independent of k and r
with H(x) < k+ H(k) — r for at most 2¥+°~" numbers = € Ij; Downey
and Hirschfeldt [5] call it the “Counting Theorem”. Taking r = n + ¢ gives
that at least 28 — 25=" members z of I, satisfy H(z) > k + H(k) —n —c
and thus H(x) > k+n — c. So, for sufficiently large n, the set .J,, contains
a k such that H(k) > 2n and I,  BU NRH. Hence L,, ¢ BU NRH for all
sufficiently large n.

Third, taking any maximal set M and A= BU{z:3n € M (z € L,)},
the sets A and A U NRH are r-maximal. Clearly, A and A U NRH are
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coinfinite by the preceding two paragraphs. For each e define the r.e. set
Ve={n:L,—BCW,.}.

Now let 4,7 be indices of r.e. sets such that W; is the complement of W;.
By the first part of the proof, all numbers n > i+ j are in V;UV;. As M is
maximal, M C* V, for some e € {i,j}. Then A C* W,. Therefore, A and
AU NRH are r-maximal. O

The r-maximal set A U NRH constructed has by Theorem no hyper-
hypersimple superset. Thus it has no maximal superset. Such type of
r-maximal sets had been constructed by Robinson [18] in 1967 and by Lach-
lan [10] in 1968.

Corollary 12.1. There is an r-mazimal set without a maximal superset.

A maximal set A has the property that the structure £ of its r.e. superset
modulo finite sets is just the 2-element Boolean Algebra. Hyperhypersim-
ple sets are characterised as those sets where this structure is a Boolean
Algebra. Theorems and [12.2] show that the two sets of nonrandom

numbers have a different superset structure.

Corollary 12.2. Given a set E, let (L%, C*) be the partially ordered set
of the r.e. supersets of E modulo finite sets with the ordering induced from
set-inclusion. Then the structures (L}‘VRC,C*) and (L"EVRH,C*) are not
isomorphic.

12.4. The Problems of Friedman and Teutsch

A numbering ¢ of partial recursive functions is called a Kolmogorov num-
bering iff for every further numbering of partial-recursive functions ¢ there
are constants c,d such that, for all =, every 1, equals some ¢, with
y < cx + d. This translated of course to the domains W, of ¢,: for every
further numbering Ag, A1, As, ... of any r.e. sets there are constants ¢, d
such that for every x there is an y < cz + d with W, = A,. Furthermore,
if Wy, W1, Wa, ... is derived from an acceptable numbering ¢ of partial re-
cursive functions, then there is for every numbering Ag, Ay, As, ... of any
r.e. sets a recursive function f such that W) = A, for all indices x. Let
NRW denote the set

NRW = {z : Jy < = [z = max(W, U {0})]}
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for a given fixed Kolmogorov numbering ¢ of the partial recursive func-
tions. Friedman [6] asked whether NRW =¢ K for every underlying ac-
ceptable numbering ; certainly it is easy to construct some for which is
true. Teutsch [20] added the question whether NRW can be r.e. or co-r.e.
for some acceptable numbering. The general case is indeed the more dif-
ficult one and therefore only Teutsch’s question can be answered for all
acceptable numberings.

In the following, a set is 2-r.e. iff it is the difference of two r.e. sets, it
is 3-r.e. iff it is the difference of an r.e. set minus a 2-r.e. set and so on.
Alternatively, one can say that a set A is n-r.e. iff there is an approximation
A, of A such that Ag = () and there are for every n at most n indices with
s with Agy1(x) # As(z). Recall the default approximation Ag, A1, As, ...
is that

reA; &y <z [{z} CW,,n{0,1,...,5} €{0,1,...,2}].

This approximation makes for each = up to 2x mind changes; so it witnesses
that NRWis w-r.e. but it does not witness that NRW is n-r.e. for any natural
number n. So the main question is whether NRW can be n-r.e. for some n.
The answer is affirmative if the underlying numbering is not requested to
be a Kolmogorov numbering.

Theorem 12.3. There is an acceptable numbering such that NRW is the
complement of some 2-r.e. set.

Proof. Fix the recursive partition Jy, {0}, J1, {1}, J2, {x2} of the nat-
ural numbers satisfying |J;| = 2* + 2 for all k; this is the partition given by
Jo={0,1,2}, 29 = 3, J1 = {4,5,6,7}, 1 = 8, J» = {9,10,11,12,13,14}
and so on. Furthermore, let for every k£ the number

yp =min{z € Jy :Vz € Jy, [z <V H(z) < k]}.

Note that the intervals Jy are chosen so large that every interval J; contains
at least three numbers z with H(z) > k and yy, is just the maximum of all
these z. Furthermore, the y; are uniformly approximable from above as the
formula of their definition shows, let y; s be the value of y; before stage s.
Now define A;(z) = 1iff thereis a k with x € J, and s > 0 and z = yp 5. It
is easy to verify that this approximation witnesses that A is 2-r.e.: At the
beginning, As(z) = 0; if yj, s has come down and reached x then As(z) = 1;
if yg s has gone below z then A (z) = 0 again.

The proof is completed by defining an acceptable enumeration
Wo, W1, ... such that NRW based on this numbering is a finite variant
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of A. So let any acceptable numbering v be given. Define W,, to be the

domain of ¥y, in order to make the numbering Wy, W71, ... acceptable. For
x € Ji, let
W {z+1}, ifyp, >+ 1,
1 {z + 1,2 + 2}, otherwise.

It is straightforward to verify that Wy, Wy, ... is indeed a numbering,
the only important ingredient is that the y; are approximated from above.

Let & > 0 be given and choose the k with min(J;)+1 < = < max(Jx)+2.
If < yy, then x < max(Jy), x—1€ Jg, yp > (x — 1)+ 1 and W1 = {z},
hence x € NRW. If x > yi then & > min(Jy) + 2 (as there are three or
more numbers z € Jy with H(2) > k), v —2 € Ji, yp < (x —2) + 1 and
We—o = {x— 1,2}, hence x € NRW again. If x = y; then x € NRW only if
there is an ¢ < k with W, being nonempty and having the maximum yj.
If this holds, one can compute the value of y; from k, ¢ by waiting for the
first stage s where y s € Wy, ; then the value yi s equals y;. It follows
that H(yx) < H(k) + H(¢) + ¢ for some constant ¢ independent of k and
£. As H(k) and H(¢) are both logarithmic in k and H(yx) > k for all k,
this can happen only for finitely many k. In other words, yi, ¢ NRW for
almost all k.

This shows that the complement of NRW is a finite variant of A. By
adjusting the co-2-r.e. approximation to A at finitely many places, one
receives a co-2-r.e. approximation to NRW. ]

The next result shows that NRW can never by 2-r.e.; as all r.e. and co-r.e.
sets are 2-r.e., this result provides a negative answer to Teutsch’s ques-
tion [20].

Theorem 12.4. For every underlying acceptable numbering o, the set
NRW is not 2-r.e., that is, NRW 1is not the difference of two r.e. sets.

Proof. Assume by way of contradiction that NRW = W; — W;. Note
that NRW is coinfinite as there are infinitely many indices of the empty
set. Using the fixed-point theorem, one can construct sets W,, W} such
that

W, ={x:Vy<zyeW,;U{0,1,...,a}]};
Wy={z:3s[z>bANzec W1 AW;s C{0,1,...,b}]}.

If W; is infinite, then the maximum of W} is greater than b and is in Wj.
But then this maximum is a member of NRW but not of W; — W;. Hence
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W; must be finite and W; coinfinite. So the set W, is finite as its maximum
is the least nonelement of W; which is greater than a. Again this maximum
is a member of NRW but not of W; — W;. This gives a contradiction to
NRW = W; — W;. Hence NRW is not a 2-r.e. set. O

In the case that the underlying numbering is a Kolmogorov numbering, a
even stronger result can be obtained: NRW is not n-r.e. for any natural
number n. The proof uses a basic fact stated in the following remark.

Remark 12.2. If the underlying numbering is a Kolmogorov numbering
then there is a constant ¢ such that [{0,1,...,cx} — NRW| > z for all .

To see this, note that 0 ¢ NRW, hence it is enough to look at positive x.
Let B,, be the complement of {m} for all m. Then there are constants ¢/, d’
such that for each B, equals a set W,, with n < ¢'m+d’. So for every z > 0
there are x4+ 1 indices of sets B,, with m < x below (¢/4+d’)x. Therefore at
most (¢’ +d')x —xz —1 of the numbers 0, 1,.. ., (¢' +d')z are indices of finite
sets. Hence, only (¢ +d')z — 2z —1 of the numbers 0,1, ..., (¢’ +d')z can be
in NRW. In other words, taking ¢ = ¢’ + d’ implies the desired inequality
{0,1,...,cx} — NRW| > x for all z.

Theorem 12.5. If the underlying numbering is a Kolmogorov numbering
then the set NRW is not n-r.e. for any n.

Proof. Let ¢ be the constant from Remark [I2:2] Assume by way of
contradiction that there is a number n and an approximation Ay, A1, As, ...
to NRW which makes at most n mind changes for all x. Now one construct
a family By, Bi,... of sets such that, using the fixed point theorem, one
knows the constants ¢/, d’ to translate the B, into some W, with y < ¢/z+d'.
Now let By o = {dz +d + 1}. At stage s let y = max(B, ) and check
whether the following conditions hold:

oy Ay
e |{0,1,...,3yc}t — A;| > 3y;
e max(B, s) > 3cy for all u < x.

If these conditions are satisfied then let By 11 = Bys U {y + 1} else let
B:L’,s+1 = Ba:,s~

If some of the so constructed sets is finite, then choose x to be the least
number such that B, is finite and let y = max(B,). Asthereisa z < cz+d’
with W, = B, and y > ¢/ +d + 1 > z, it holds that y = max(W,) and
y € NRW. There is a stage s which is so large that
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o y =max(Bys);

o A (z) = NRW(z) for all z € {0,1,...,3cy}; in particular, y € A, and
[{0,1,...,3yc} — As| > 3y.

e for every u < x, there is an element larger than 3cy of the infinite set
B, enumerated, that is, max(B, s) > 3cy.

Now it would follow that By s41 = Bys U {y + 1} by the construction of
the set B, in contradiction to the assumption that y = max(B,). Hence
B, has to be infinite.

Given n, let m be so large that every z < 2¢n + n + 1 satisfies the
condition max(B; ) < m. For these z, let s, be the first stage where
m+1€ By s, 41. Asmax(B, s,.,) > 3mcand [{0,1,...,3mc}—A,, | > 3m,
there is for any y € {m,m+1,...,3mc} astaget € {sz, 8. +1,...,8,41—1}
with y = max(B, ;) and y < max(B; ¢+1), hence y € A, for that ¢. Hence
there at least 2m numbers y € {m,m + 1,...,3cm} for which there is a
t € {8z,8: +1,...,25401 — 1} with Ai(y) = 0 < A¢11(y) = 1. As this
applies to z = 0,1,...,2¢n + n, there are 2m(2cn + n) pairs (y,t) with
y € {m,m+1,...,3em} and A;(y) < Ai+1(y). So there is an number y with
Ai(y) < Apy1(y) for at least 2n stages t as [{m,m+1,...,3cm}| = 2em+1
and

2m(2en +n) S 2mn(2c+ 1)

= 2n.
2me+1 = (2¢+1)m "

This contradicts to NRW being an n-r.e. set. (]

The last result of this paper gives a short alternative proof for Davie’s
first result that whenever NRW is based on a Kolmogorov numbering then
NRW =1 K. As NRW is w-r.e., obviously NRW <r K and this direction
is not included in the proof. After his first result, Davie corresponded
with Solovay who indicated to him how to generalize his first result such
that it answers Friedman’s question for every “usual” underlying acceptable
numbering where “usual” means that there exists a polynomial p such that
for every recursively enumerable family Ag, Ay, ... of r.e. sets and every x
there is an y < p(z) with W, = A,. The proof for Davie’s first result given
here uses Kummer’s Cardinality Theorem [7, 8], but it should be noted
that also Owing’s preliminary results [17] are sufficient to prove this result
as the sets F, in the proof below are uniformly recursive relative to NRW.

3

Theorem 12.6. If the underlying numbering is a Kolmogorov numbering
then the set NRW is Turing complete; that is, NRW = K.
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Proof. Note that the constant ¢ from Remark satisfies for every z
the condition {z,z+1,...,cx} € NRW. Now let Jy, J1, ... be a partitioning
of the natural numbers into intervals satisfying min(.J,,)c < max(J,) for all
natural numbers n. Furthermore, let Dg, D1, Ds, ... be a canonical indexing
of all finite sets of natural numbers with Dy = (. Define

B, ={y:y <m-(|Dy|+1) +|K N D,| for the n with m € J,,}

and note that the B,,, are uniformly r.e. finite sets. Now choose a constant
k such that for all n with |D,| > k and all m € J,, every set B,, has an
index u such that W,, = B,,, and u < mk < m - (|D,| + 1) + |K N D,]|.
The constant exists since Wy, Wy, W, ... is a Kolmogorov numbering of r.e.
sets. Now one can define the following sets in a way that they are uniformly
r.e. relative to NRW:

E,={uec{0,1,....k} :¥Ym € J, [|Dn| = k A mk +u € NRW]}.

By choice, E, contains |K N D,| whenever |D,| = k. Furthermore,
c¢(k + D)min(J,) < (k + 1)max(J,), thus there is for every n some
u € {0,1,...,k} not contained in F,,. Now applying Kummer’s Cardi-
nality Theorem [7, 8] to the cardinality function #5% gives K <q NRW. [
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Chapter 13

Omega and the Time Evolution of the n-Body Problem
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The series solution of the behavior of a finite number of physical bodies
and Chaitin’s Omega number share quasi-algorithmic expressions; yet
both lack a computable radius of convergence.

13.1. Solutions to the n—body problem

The behaviour and evolution of a finite number of bodies is a sort of “rosetta
stone” of classical celestial mechanics insofar as its investigation induced a
lot of twists, revelations and unexpected issues. Arguably the most radical
deterministic position on the subject was formulated by Laplace, stating
that [1, Chapter II] “We ought then to regard the present state of the uni-
verse as the effect of its anterior state and as the cause of the one which
is to follow. Given for one instant an intelligence which could comprehend
all the forces by which nature is animated and the respective situation of
the beings who compose it an intelligence sufficiently vast to submit these
data to analysis it would embrace in the same formula the movements of
the greatest bodies of the universe and those of the lightest atom; for it,
nothing would be uncertain and the future, as the past, would be present to
its eyes.”

In what may be considered as the beginning of deterministic chaos the-
ory, Poincaré was forced to accept a gradual departure from the determin-
istic position: sometimes small variations in the initial state of the bodies
could lead to huge variations in their evolution in later times. In Poincaré’s
own words [2, Chapter 4, Sect. II, pp. 56-57], “If we would know the laws of
Nature and the state of the Universe precisely for a certain time, we would
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be able to predict with certainty the state of the Universe for any later time.
But [[ ... ]] it can be the case that small differences in the initial values pro-
duce great differences in the later phenomena; a small error in the former
may result in a large error in the latter. The prediction becomes impossible
and we have a ‘random phenomenon.’ ”

In what follows we present an even more radical departure from Lapla-
cian determinism. A physical system of a finite number of bodies capable
of universal computation will be presented which has the property that
certain propositions remain not only provable intractable, but provable un-
knowable. Pointedly stated, our knowledge of any such system remains in-
complete forever. For the sake of making things worse, we shall “compress”
and “compactify” this kind of physical incompleteness by considering phys-
ical observables which are truly random, i.e., algorithmically incompressible
and stochastic.

The methods of construction of physical n—body observables exhibiting
the above features turn out to be rather humble and straightforward. In
a first step, it suffices to reduce the problem to the halting problem for
universal computation. This can be achieved by “embedding” a universal
computer into a suitable physical system of a finite number of bodies. The
associated ballistic computation will be presented in the next section. In a
second reduction step, the universal computer will be directed to attempt to
“compute” Chaitin’s Omega number, which is provable random, and which
is among the “most difficult” tasks imaginable. Finally, consequences for
the series solutions [3-6] to the general n-body problem will be discussed.

13.2. Reduction by ballistic computation

In order to embed reversible universal computation into a quasi-physical
environment, Fredkin and Toffoli introduced a “billiard ball model” [7-
10] based on the collisions of spheres as well as on mirrors reflecting the
spheres. Thus collisions and reflections are the basic ingredients for building
universal computation.

If we restrict ourselves to classical gravitational potentials without colli-
sions, we do not have any repulsive interaction at our disposal; only attrac-
tive 1/r potentials. Thus the kinematics corresponding to reflections and
collisions has to be realized by purely attractive interactions. Fig. )
depicts a Fredkin gate realized by attractive interaction which corresponds
to the analogue billiard ball configuration achieved by collisions (e.g., [8,
Fig. 4.5]). At points A and B and time ¢;, two bodies are either put at both
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locations A and B; or alternatively, one body is put at only one location,
or no bodies are placed at all. If bodies are present at both A and B, then
they will follow the right paths at later times ¢;. In case only one body
is present at A or B, only one of the dotted inner outgoing paths will be
used. Boolean logic can be implemented by the presence or absence of balls.
Fig. ) depicts a reflective “mirror” element realized by a quasi-steady
mass. For a proof of universality, we refer to the classical papers on the

a) b)

Figure 13.1. Elements of universal ballistic computation realized by attractive 1/r po-
tentials. a) Fredkin’s gate can perform logical reversibility: bodies will appear on the
right outgoing paths if and only if bodies came in at both A and B; b) Reflective “mirror”
element realized by a quasi-steady mass.

billiard ball model cited above.

13.3. Undecidability and Omega in the n-body problem

By reduction to the recursive unsolvability of the rule inference [11-15] and
the halting [16-18] problems, the general induction and forecasting prob-
lem of the n-body ballistic universal computer sketched above is provable
unsolvable. That is, there exist initial configurations for which it is im-
possible to predict with certainty whether or not certain “final” states will
eventually be reached. Moreover, given a finite segment of the time evo-
lution alone is in general insufficient for a derivation of the initial state
configuration of the n-body problem.

For the sake of making things worse, we imagine an n-body system
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attempting to evaluate its associated halting probability Omega [19-21].
In order to establish the equivalent of prefix-free programs, only a limited
number of n-body initial configurations contribute to the configuration.
Furthermore, as the computation is reversible and procedural, certain “fi-
nal” configurations must be defined as halting states. This is a feature
shared with the billiard ball model, as well as with quantum computation.

13.4. Consequences for series solutions

Wang’s power series solution to the n-body problem [4, 6] may converge
“very slowly” [5]. Indeed, by considering the halting problems above, and
in particular by reduction to the computation of the halting probability
Omega, certain physical observables associated with the n-body problem
do not have a power series solution with a computable radius of convergence.

This is a particular case of Specker’s theorems in recursive analysis,
stating that there exist recursive monotone bounded sequences of rational
numbers whose limit is no computable number [22]; and there exist a recur-
sive real function which has its maximum in the unit interval at no recursive
real number [23].

It is important to realize that, while it may be possible to evaluate
the state of the n bodies by Wang’s power series solution for any finite
time with a computable, though excessively large, radius of convergence,
global observables, referring to all times, may be uncomputable. Examples
of global observables are, for instance, associated with the stability of the
solar system and associated with it, bounds for the orbits.

This, of course, stems from the metaphor and robustness of universal
computation and the capacity of the n-body problem to implement uni-
versality. It is no particularity and peculiarity of Wang’s power series so-
lution. Indeed, the troubles reside in the capabilities to implement Peano
arithmetic and universal computation by n-body problems. Because of this
capacity, there cannot exist other formalizable methods, analytic solutions
or approximations capable to decide and compute certain decision problems
or observables for the n-body problem.

Chaitin’s Omega number, the halting probability for universal comput-
ers, has been invented in a totally different, unrelated algorithmic context,
and with intentions in mind which are seemingly different from issues in
classical mechanics. Thus it is fascinating that Omega is also relevant for
the prediction of the behaviour and the movement of celestial bodies.
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Chapter 14

Binary Lambda Calculus and Combinatory Logic
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In the first part, we introduce binary representations of both lambda cal-
culus and combinatory logic terms, and demonstrate their simplicity by
providing very compact parser-interpreters for these binary languages.
Along the way we also present new results on list representations, bracket
abstraction, and fixpoint combinators. In the second part we review Al-
gorithmic Information Theory, for which these interpreters provide a
convenient vehicle. We demonstrate this with several concrete upper
bounds on program-size complexity, including an elegant self-delimiting
code for binary strings.

14.1. Introduction

The ability to represent programs as data and to map such data back to
programs (known as reification and reflection [9]), is of both practical use
in metaprogramming [14] as well as theoretical use in computability and
logic [17]. It comes as no surprise that the pure lambda calculus, which
represents both programs and data as functions, is well equipped to offer
these features. Kleene [7] was the first to propose an encoding of lambda
terms, mapping them to Godel numbers, which can in turn be represented
as so called Church numerals. Decoding such numbers is somewhat cumber-
some, and not particularly efficient. In search of simpler constructions, var-
ious alternative encodings have been proposed using higher-order abstract
syntax [8] combined with the standard lambda representation of signa-
tures [11]. A particularly simple encoding was proposed by Mogensen [22],
for which the term Am.m(Azx.x)(Az.x) acts as a selfinterpreter. The preva-
lent data format, both in information theory and in practice, however, is

Ino longer employed by CWI.
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not numbers, or syntax trees, but bits. We propose binary encodings of
both lambda and combinatory logic terms, and exhibit relatively simple
and efficient interpreters (using the standard representation of bit-streams
as lists of booleans).

This gives us a representation-neutral notion of the size of a term, mea-
sured in bits. More importantly, it provides a way to describe arbitrary
data with, in a sense, the least number of bits possible. We review the no-
tion of how a computer reading bits and outputting some result constitutes
a description method, and how universal computer correspond to optimal
description methods. We then pick specific universal computers based on
our interpreters and prove several of the basic results of Algorithmic Infor-
mation Theory with explicit constants.

14.2. Lambda Calculus

We only summarize the basics here. For a comprehensive treatment we
refer the reader to the standard reference [18].
Assume a countably infinite set of variables

a,b, ..., Ty, 2,20, %1, -
The set of lambda terms A is built up from variables using abstraction
(Ax.M)
and application
(M N),

where z is any variable and M, N are lambda terms. (Az.M) is the func-
tion that maps  to M, while (M N) is the application of function M
to argument N. We sometimes omit parentheses, understanding abstrac-
tion to associate to the right, and application to associate to the left, e.g.
Az Ay.x y x denotes (A\z.(Ay.((x y)z))). We also join consecutive abstrac-
tions as in Az y.x y x.

The free variables FV (M) of a term M are those variables not bound
by an enclosing abstraction. A° denotes the set of closed terms, i.e. with
no free variables. The simplest closed term is the identity \z.x.

We consider two terms identical if they only differ in the names of bound
variables, and denote this with =, e.g. Ay.y * = Az.z . The essence of A
calculus is embodied in the (-conversion rule which equates

(Az.M)N = M|z := NJ,
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where M|z := N] denotes the result of substituting N for all free occur-
rences of x in M (taking care to avoid variable capture by renaming bound
variables in M if necessary). For example,

Az yy z)y= Ae.(Az.z )y = Az 2.2 2)y = Az.2 y.

A term with no S-redex, that is, no subterm of the form (Ax.M)N, is said
to be in normal form. Terms may be viewed as denoting computations of
which g-reductions form the steps, and which may halt with a normal form
as the end result.

14.2.1. Some useful lambda terms
Define (for any M, P,Q,...,R)
I=)\zx

true = Az y.x
nil = false = \z y.y
(P,Q,...,Ry=X22PQ... R
MI[0] = M true
Mli+ 1] = (M false)[:]
Y = \f.(Az.xz 2)(Ax.f (z x)))
Q= (zv.x 2)(Az.x )
Note that

true PQ =N yx) PQ=z[x:=P]=P

false P Q = (Az y.y) P Q =yly := Q] = Q,

justifying the use of these terms as representing the booleans.
A pair of terms like P and @Q is represented by (P, @), which allows one
to retrieve its parts by applying (true) or (false):

(true)(P, Q) = (P, Q) true = true P Q =P

(false)(P, Q) = (P, Q) false = false P Q = Q.

Repeated pairing is the standard way of representing a sequence of
terms:

(P{Q, (R, ..)))-
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A sequence is thus represented by pairing its first element with its tail—the
sequence of remaining elements. The ¢’th element of a sequence M may be
selected as M[i]. To wit:

(P,Q)[0] =true P Q = P,

(P,Q)li +1] = ((P, Q) false)[i] = Q[i].

The empty sequence, for lack of a first element, cannot be represented by
any pairing, and is instead represented by nil. A finite sequence P, Q, ..., R
can thus be represented as (P, (Q, (..., (R,nil)...))).

Our choice of nil allows for the processing of a possible empty list s
with the expression

s M N,

which for s = nil reduces to N, and for s = (P, Q) reduces to M P @ NJ.
In contrast, Barendregt [13] chose I to represent the empty list, which
requires a much more complicated list processing expression like like
s (Aa b c.c a b) MXN, which for s = nil reduces to N M X, and for
s =(P,Q) reduces to M P Q X NJ.

Y is the fizpoint operator, that satisfies

Yf=Qwf (@z)Aef (zw)=f (Y f)

This allows one to transform a recursive definition f = ... f... into f =
Y(Af.(... f...)), which behaves exactly as desired.

2 is the prime example of a term with no normal form, the equivalence
of an infinite loop.

14.2.2. Binary strings

Binary strings are naturally represented by boolean sequences, where true
represents 0 and false represents 1.

Definition 14.1. For a binary string s and lambda term M, (s : M)
denotes the list of booleans corresponding to s, terminated with M. Thus,
(s : nil) is the standard representation of string s.

For example, (011 : nil) = (true, (false, (false, nil))) represents the string
011. We represent an unterminated string, such as part of an input stream,
as an open term (s : z), where the free variable z represents the remainder
of input.
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14.2.3. de Bruijn notation

de Bruijn [12] proposed an alternative notation for closed lambda terms
using natural numbers rather than variable names. Abstraction is simply
written AM while the variable bound by the n’th enclosing A is written
as the index n. In this notation, Az y 2.z z y = A A A 0 2 1. It thus
provides a canonical notation for all identical terms. Beta-conversion in this
notation avoids variable capture, but instead requires shifting the indices,
i.e. adjusting them to account for changes in the lambda nesting structure.
Since variable/index exchanges don’t affect each other, it’s possible to mix
both forms of notation, as we’ll do later.

14.2.4. Binary Lambda Calculus

Definition 14.2. The code for a term in de Bruijn notation is defined
inductively as follows:

n=1"t0
W = 001\7
MN =01M N

We call \M\| the size of M.

For example I = 0010, false = 000010, true = 0000110 and Az.x z =
00011010, Az.false = 00000010, of sizes 4,6,7,8 and 8 bits respectively, are
the 5 smallest closed terms.

The main result of this paper is the following

Theorem 14.1. There is a self-interpreter E of size 210 (which happens
to be the product of the smallest four primes), such that for every closed
term M and terms C, N we have

EC (M:N)=C (A\2.M) N

The interpreter works in continuation passing style [15]. Given a continu-
ation and a bitstream containing an encoded term, it returns the contin-
uation applied to the abstracted decoded term and the remainder of the
stream. The reason for the abstraction becomes evident in the proof.

The theorem is a special case of a stronger one that applies to arbitrary
de Bruijn terms. Consider a de Bruijn term M in which an index n occurs
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at a depth of i < n nested lambda’s. E.g., in M = A3, the index 3 occurs at
depth 1. This index is like a free variable in that it is not bound within M.
The interpreter (being a closed term) applied to other closed terms, cannot
produce anything but a closed term. So it cannot possibly reproduce M.
Instead, it produces terms that expect a list of bindings for free indices.
These take the form M*!, which is defined as the result of replacing every
free index in M, say n at depth i < n, by z[n — i]. For example, (A\3)*l =
Az[3 —1] = A( false false true), selecting binding number 2 from binding
list z.
The following claim (using mixed notation) will be needed later.

Claim 14.1. For any de Bruijn term M, we have (AM)?1 = \y. M (v-2)1

Proof. A free index n at depth i < n in M, gets replaced by (y, z)[n — ]
on the right. If ¢ < n then n is also free in AM at depth ¢ + 1 and gets
replaced by z[n —i—1] = (y, z)[n—4]. If i = n then n is bound by the front
A, while (y, 2)[n — ] = (y, 2)[0] = . O

To prove Theorem [I4.1] it suffices to prove the more general:

Theorem 14.2. There is a self-interpreter E of size 210, such that for all
terms M,C, N we have

EC (M:N)=C (\.M) N

Proof. We take
E=Y (Ae cs.s (Aatt (Ab.a Eg Eq)))

Eo=e (Az.b (¢ (Az yx (y,2)))(e (Ay.c (Az.x z (y 2)))))
E; = (b (¢ (Az.z b))(As.e (Az.c (A\z.z (2 b))) t))

of size 217 and note that the beta reduction from Y M to
(A.x z)(Ax.M (x x)) saves 7 bits.

Recall from the discussion of Y that the above is a transformed recursive
definition where e will take the value of E.

Intuitively, E works as follows. Given a continuation ¢ and sequence
s, it extracts the leading bit a and tail ¢ of s, extracts the next bit b, and
selects Eg to deal with a = true (abstraction or application), or E; to deal
with a = false (an index).

Eq calls E recursively, extracting a decoded term x. In case b = true
(abstraction), it prepends a new variable y to bindings list z, and returns
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the continuation applied to the decoded term provided with the new bind-
ings. In case b = false (application), it calls E recursively again, extracting
another decoded term y, and returns the continuation applied to the appli-
cation of the decoded terms provided with shared bindings.

E;, in case b = true, decodes to the 0 binding selector. In case b =
false, it calls E recursively on ¢ (coding for an index one less) to extract a
binding selector x, which is provided with the tail z b of the binding list to
obtain the correct selector.

We continue with the formal proof, using induction on M.

Consider first the case where M = 0. Then

EC (M:N)=EC (10: N)
= (false, (true, N)) (Aa t.t (Ab.a Eg Eq))
= (true, N) (\b.false Ej E;)
= (E; N)[b:= true]
= C (Az.z true) N,
as required. Next consider the case where M = n + 1. Then, by induction,
EC (M:N)=EC (1""20: N)
= (false, (false, (170 : N))) (Aa t.t (\b.a Eg Eq))
= (As.e (\x.C (\z.z (2 false))) (1”710 : N))(1"0: N)
=E (\z.C (A\z.xz (z false))) (n: N)
= (Mz.C (\z.x (z false))) (Az.n?l) N
=C ()\z.n(z false)“) N
= C (Az.(z false)[n])) N
=C (Az.z[n+1])) N
=C (Az.(n+ 1)) N,
as required. Next consider the case M = AM’. Then, by induction and

claim [T]

E C ((AM': N)) =E C (00M’ : N)
= (true, (true, (M’ : N))) (Aa t.t (\b.a Eq Ey))
=e (\.(C (\z y.x(y, 2)))) (M’ : N)
= (Mz.(C Az yx (y,2)) . M?0) N
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=C Az y.(02. M) (y,2)) N
=C (\z.(\y.M"v21) N
=C (Az.(AM")*)) N,

as required. Finally consider the case M = M’ M". Then, by induction,

E C (M M":N)=E C (01M' M” : N)

(true, (false, (M’ M” : N)))(Aa t.t (\b.a Eq E;))
e (\z.(e (w.C (A2 2 (y 2))))) (M' M7 : N)
(Az.(e (\y.C (\ex 2 (y 2)))(Az.M0) (M7 : N)
=e (\.C Az. (A2 My 2 (y z)))(M” :N)

= (\y.C (Az2.M"70 (y 2))(Ae. M2y N

= C (Az.M'#0 M=y N

=C Az.(M' M"Y N

as required. This completes the proof of Theorem [T4.1] O

We conjecture that E is the smallest self-interpreter for any binary
representation of lambda calculus.

14.3. Combinatory Logic

Combinatory Logic (CL) is the equational theory of combinators—terms
built up, using application only, from the two constants K and S, which
satisfy

SMNL=ML(NL)
KMN=M

CL may be viewed as a subset of lambda calculus, in which K = Az y.x,
S =Xz yz.x z (y z), and where the beta conversion rule can only be applied
groupwise, either for an S with 3 arguments, or for a K with 2 arguments.
Still, the theories are largely the same, becoming equivalent in the presence
of the rule of extensionality (which says M = M’ if M N = M’ N for all
terms N).

A process known as bracket abstraction allows for the translation of any
lambda term to a combination—a CL term containing variables in addition
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to K and S. It is based on the following identities, which are easily verified:
Mmax=I=SKK
Ax.M =K M (xnot free in M)
Ax.M N =8 (Az.M) (Az.N)
A’s can thus be successively eliminated, e.g.:
A yy x = x (Ay.y x)
=Xz (SI(K z))
=S (K (SI)(S (KK)I),
where I is considered a shorthand for S K K.
Bracket abstraction is an operation A\° on combinations M with respect

to a variable z, such that the resulting combination contains no occurrence
of x and behaves as \z.M:

Nz oz=1
Ne. M=K M (z¢g M)
Nz (M N)=S8 (\z. M) (\’z. N)

14.3.1. Binary Combinatory Logic

Combinators have a wonderfully simple encoding as binary strings: encode
S as 00, K as 01, and application as 1.

Definition 14.3. We define the encoding C of a combinator C as

S =00
K =01
C/'VDzléf)

Again we call |C| the size of combinator C.

For instance, the combinator S(KSS) = (S((KS)S)) is encoded as
10011010000. The size of a combinator with n K/S’s, which necessarily
has n — 1 applications, is thus 2n +n —1=3n — 1.

For such a simple language we expect a similarly simple interpreter.

Theorem 14.3. There is a cross-interpreter ¥ of size 124, such that for
every combinator M and terms C, N we have

FC(M:N)=CMN
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Proof. We take

F=Y (e cs.s(Aa.a Fy Fy))
Fo = At.t (\b.c (b S K))
Fi=e (A\z.e My.(czy)))

of size 131 and note that a toplevel beta reduction saves 7 bits in size.
Given a continuation ¢ and sequence s, it extracts the leading bit a
of s, and tail ¢ extracts the next bit b, and selects Fy to deal with a =
true (S or K), or F; to deal with a = false (application). Verification is
straightforward and left as an exercise to the reader. O

We conjecture F' to be the smallest interpreter for any binary represen-
tation of CL. The next section considers translations of F' which yield a
self-interpreter of CL.

14.3.2. Improved bracket abstraction

The basic form of bracket abstraction is not particularly efficient. Applied
to F, it produces a combinator of size 536.
A better version is A\', which uses the additional rule

Mz, (M z)=M (xzg M)

whenever possible. Now the size of F as a combinator is only 281, just over
half as big.

Turner [23] noticed that repeated use of bracket abstraction can lead to
a quadratic expansion on terms such as

X=Xab...z(ab...2)(ab ... 2),

and proposed new combinators to avoid such behaviour. We propose to
achieve a similar effect with the following set of 9 rules in decreasing order



Binary Lambda Calculus and Combinatory Logic 247

of applicability:
Mz (SK M)=S K (forall M)
MNe. M=KM (z¢ M)
Nz ox=1
Nz (Mz)=M (z¢ M)
N, stc)—)\2 (SSKaz M)
Nz (M (N L)) = Nz (S (\2z. M) N L) (M,N combinators)
Nz, (M N) L) = Nz (S M (\z. L) N) (M, L combinators)
N ((M L) (N L)) =Xz (SM N L) (M,N combinators)
z. (M N)=S8 (\°2. M) (\’z. N)
The first rule exploits the fact that S K M behaves as identity, whether
M equals K, x or anything else. The fifth rule avoids introduction of two
Is. The sixth rule prevents occurrences of x in L from becoming too deeply
nested, while the seventh does the same for occurrences of x in N. The
eighth rule abstracts an entire expression L to avoid duplication. The
operation A2z. M for combinators M will normally evaluate to K M, but
takes advantage of the first rule by considering any S K M a combinator.
Where A! gives an X combinator of size 2030, A? brings this down to 374
bits.
For F the improvement is more modest, to 275 bits. For further im-

provements we turn our attention to the unavoidable fixpoint operator.

Y, due to Curry, is of minimal size in the A calculus. At 25 bits, it’s 5
bits shorter than Turing’s alternative fixpoint operator

= (Mz.z 2)(Az A f.f (z 2 f)).
But these translate to combinators of size 65 and 59 bits respectively.
In comparison, the fixpoint operator
=N yzxzyx) Ay zylx yx))
translates to combinator
SSK(S(K(SS(S(SSK)))) K)

of size 35, the smallest possible fixpoint combinator as verified by exhaustive
search by computer.

(The situation is similar for €2 which yields a combinator of size 41, while
SS K (S (S S K)), of size 20, is the smallest unsolvable combinator—the
equivalent of an undefined result, see Barendregt [18]).
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Using Y” instead of Y gives us the following

Theorem 14.4. There is a self-interpreter F for Combinatory Logic of size
263.

Comparing theorems and we conclude that A-calculus is a
much more concise language than CL. Whereas in binary A-calculus, an
abstraction takes only 2 bits plus ¢ + 1 bits for every occurrence of the
variable at depth 4, in binary CL the corresponding bracket abstraction
typically introduces at least one, and often several S’s and K’s (2 bits
each) per level of depth per variable occurrence.

14.4. Program Size Complexity

Intuitively, the amount of information in an object is the size of the shortest
program that outputs the object. The first billion digits of 7 for example,
contain little information, since they can be calculated by a program of a few
lines only. Although information content may seem to be highly dependent
on choice of programming language, the notion is actually invariant up to
an additive constant.

The theory of program size complexity, which has become known as
Algorithmic Information Theory or Kolmogorov complexity after one of its
founding fathers, has found fruitful application in many fields such as com-
binatorics, algorithm analysis, machine learning, machine models, and logic.

In this section we propose a concrete definition of complexity that is
(arguably) as simple as possible, by turning the above interpreters into a
‘universal computer’.

Intuitively, a computer is any device that can read bits from an input
stream, perform computations, and (possibly) output a result. Thus, a
computer is a method of description in the sense that the string of bits
read from the input describes the result. A universal computer is one
that can emulate the behaviour of any other computer when provided with
its description. Our objective is to define, concretely, for any object =z,
a measure of complexity of description C(x) that shall be the length of
its shortest description. This requires fixing a description method, i.e. a
computer. By choosing a universal computer, we achieve invariance: the
complexity of objects is at most a constant greater than under any other
description method.

Various types of computers have been considered in the past as descrip-
tion methods.
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Turing machines are an obvious choice, but turn out to be less than
ideal: The operating logic of a Turing machine—its finite control—is of an
irregular nature, having no straightforward encoding into a bitstring. This
makes construction of a universal Turing machine that has to parse and
interpret a finite control description quite challenging. Roger Penrose takes
up this challenge in his book [1], at the end of Chapter 2, resulting in a
universal Turing machine whose own encoding is an impressive 5495 bits in
size, over 26 times that of E.

The ominously named language ‘Brainfuck’ which advertises itself as
“An Eight-Instruction Turing-Complete Programming Language” [21], can
be considered a streamlined form of Turing machine. Indeed, Oleg Ma-
zonka and Daniel B. Cristofani [16] managed to write a very clever BF self-
interpreter of only 423 instructions, which translates to 423 - log(8) = 1269
bits (the alphabet used is actually ASCII at 7 or 8 bits per symbol, but
the interpreter could be redesigned to use 3-bit symbols and an alternative
program delimiter).

In [5], Levin stresses the importance of a (descriptional complexity)
measure, which, when compared with other natural measures, yields small
constants, of at most a few hundred bits. His approach is based on con-
structive objects (c.0.’s) which are functions from and to lower ranked c.0.’s.
Levin stops short of exhibiting a specific universal computer though, and
the abstract, almost topological, nature of algorithms in the model compli-
cates a study of the constants achievable.

Gregory Chaitin [2] paraphrases John McCarthy about his invention of
LISP, as “This is a better universal Turing machine. Let’s do recursive
function theory that way!” Later, Chaitin continues with “So I've done
that using LISP because LISP is simple enough, LISP is in the intersection
between theoretical and practical programming. Lambda calculus is even
simpler and more elegant than LISP, but it’s unusable. Pure lambda calcu-
lus with combinators S and K, it’s beautifully elegant, but you can’t really
run programs that way, they’re too slow.”

There is however nothing intrinsic to A calculus or CL that is slow; only
such choices as Church numerals for arithmetic can be said to be slow, but
one is free to do arithmetic in binary rather than in unary. Frandsen and
Sturtivant [10] amply demonstrate the efficiency of A calculus with a linear
time implementation of k-tree Turing Machines. Clear semantics should be
a primary concern, and Lisp is somewhat lacking in this regard [4]. This
paper thus develops the approach suggested but discarded by Chaitin.
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14.4.1. Functional Complexity

By providing the appropriate continuations to the interpreters that we
constructed, they become universal computers describing functional terms
modulo equality. Indeed, for

U=E ()
U=FI

of sizes |U| = 236 and [U’| = 272, Theorems and give
U(M:N)=MN
U (M:N)=MN

for every closed A-term or combinator M and arbitrary IV, immediately
establishing their universality.

The universal computers essentially define new binary languages, which
we may call universal binary lambda calculus and universal combinatory
logic, whose programs comprise two parts. The first part is a program in
one of the original binary languages, while the second part is all the binary
data that is consumed when the first part is interpreted. It is precisely
this ability to embed arbitrary binary data in a program that allows for
universality.

Note that by Theorem [14.2] the continuation (€2) in U results in a term
M. For closed M, this term is identical to M, but in case M is not
closed, a free index n at A-depth n is now bound to Q[n —n], meaning that
any attempt to apply free indices diverges. Thus the universal computer
essentially forces programs to be closed terms.

We can now define the complexity of a term x, which comes in three
flavors. In the simple version, programs are terminated with N = nil and
the result must equal . In the prefiz version, programs are not terminated,
and the result must equal the pair of x and the remainder of the input. In
both cases the complexity is conditional on zero or more terms y;.

Definition 14.4.

KS(x|y1,...,yx) = min{l(p) | U (p:mil) y1 ... yp =z}
KP(z|y1,...,y) =min{l(p) | U (p:2) y1 ... yx = (z,2)}

In the special case of kK = 0 we obtain the unconditional complexities
KS(z) and KP(x).
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Finally, for a binary string s, we can define its monotone complexity as

KM(slyr,...,ye) =min{l(p) | IM U (p: Q) y1 ... yp = (s: M)}.

In this version, we consider the partial outputs produced by increasingly
longer prefixes of the input, and the complexity of s is the shortest program
that causes the output to have prefix s.

14.4.2. Monadic 10

The reason for preserving the remainder of input in the prefix casse is
to facilitate the processing of concatenated descriptions, in the style of
monadic IO [19]. Although a pure functional language like A calculus cannot
define functions with side effects, as traditionally used to implement 10, it
can express an abstract data type representing IO actions; the IO monad.
In general, a monad consists of a type constructor and two functions, return
and bind (also written >>= in infix notation) which need to satisfy certain
axioms [19]. IO actions can be seen as functions operating on the whole
state of the world, and returning a new state of the world. Type restrictions
ensure that 10 actions can be combined only through the bind function,
which according to the axioms, enforces a sequential composition in which
the world is single-threaded. Thus, the state of the world is never duplicated
or lost. In our case, the world of the universal machine consists of only the
input stream. The only IO primitive needed is readBit, which maps the
world onto a pair of the bit read and the new world. But a list is exactly
that; a pair of the first element and the remainder. So readBit is simply
the identity function! The return function, applied to some z, should map
the world onto the pair of x and the unchanged world, so it is defined by
return = Az y.(z,y). Finally, the bind function, given an action z and a
function f, should subject the world y to action z (producing some (a,y’))
followed by action fa, which is defined by bind = Az f y.x y f (note that
(a,y")f = f a y') One may readily verify that these definitions satisfy the
monad axioms. Thus, we can wite programs for U either by processing the
input stream explicitly, or by writing the program in monadic style. The
latter can be done in the pure functional language ‘Haskell’ [20], which is
essentially typed lambda calculus with a lot of syntactic sugar.
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14.4.3. An Invariance Theorem

The following theorem is the first concrete instance of the Invariance The-
orem, 2.1.1 in Li&Vitdnyi [6].

Theorem 14.5. Define KS'(x|y1,...,yx) and KP'(x|y1,...,yx) analo-
gous to Definition in terms of U'. Then KS(z) < KS'(z) + 130
and KP(z) < KP'(x) + 130.

The proof is immediate from Theorem by using U of length 130
as prefix to any program for U’. We state without proof that a redesigned
U translates to a combinator of size 617, which thus forms an upper bound
in the other direction.

Now that complexity is defined for as rich a class of objects as terms
(modulo equality), it is easy to extend it to other classes of objects by
mapping them into A terms.

For binary strings, this means mapping string s onto the term (s : nil).
And for a tuple of binary strings sg, ..., sk, we take ((so : nil),..., (s :
nil)).

We next look at numbers in more detail, revealing a link with self-
delimiting strings.

14.4.4. Numbers and Strings

Consider the following correspondence between natural numbers and binary
strings

neN:0123 456 7 8 9 .
2 €{0,1}*: € 01001001 11 000 100 010 ...

which can be described in several ways. The number n corresponds to the
reverse of

e the n-th binary string in lexicographic order

e the string obtained by stripping the leading 1 from (n + 1), the binary
representation of n + 1

e the string obtained by renaming digits in n(; 2y, the base 2 positional
system using digits {1, 2}

There are two reasons for taking the reverse above. Bits are numbered
from right to left in a positional system where position i carries weight 27,
while our list representation is inherently left to right. Second, almost all



Binary Lambda Calculus and Combinatory Logic 253

operations on numbers process the bits from least to most significant, so
the least significant bits should come first in the list.

The {1, 2}-notation is interesting in that it not only avoids the problem
of leading zeroes but actually forces a unique representation:

0123 456 7 8 9
€e1211211222111211121 ...

Note that if n corresponds to the string x = z;_1...29 = X3, then
according to equivalent {1, 2}—n0tation7
-1
n=>Y (z;+1)2 ZQl—l—ZxZZ—Ql—l—l—X
=0

Hence, n + 1 = 2! + X which reconfirms the 2nd correspondence above.

14.4.5. Prefix codes

Another way to tie the natural numbers and binary strings together is the
binary natural tree shown in Figure [[4.] It has the set of natural numbers
as vertices, and the set of binary strings as edges, such that the 2" length-n
strings are the edges leading from vertex n. Edge w leads from vertex |w|
to w + 1, which in binary is lw.

Consider the concatenated edges on the path from 0 to n, which we’ll
denote by p(n). The importance of the binary natural tree lies in the
observation that the set of all p(n) is almost prefiz-free. In a prefix-free set,
no string is a proper prefix of another, which is the same as saying that
the strings in the set are self-delimiting. Prefix-free sets satisfy the Kraft
inequality: Y, 2711 < 1. We've already seen two important examples
of prefix-free sets, namely the set of A\ term encodings M and the set of
combinator encodings M. To turn p(n) into a prefix code, it suffices to
prepend the depth of vertex n in the tree, i.e. the number of times we have
to map n to |[n — 1| before we get to e. Denoting this depth as I*(n), we
obtain the prefix code

=10 p(n),
or, equivalently,
0=0 nt+1=11(n)n
This satisfies the following nice properties:

e prefix-free and complete: >, ., 277 = 1.
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e simple to encode and decode
e cfficient in that for every k: 0| < I(n)+1(I(n))+---+I*"1(n)+O0(1%(n)),
where [(s) denotes the length of a string s.

Figure 14.1. binary natural tree

Figure 14.2. codes on the unit interval; 0 = 0,1 = 10,2 = 110 0,3 = 110 1,4 =
1110 0 00,5 = 1110 0 10,6 = 1110 0 01,7 = 1110 0 11,8 = 1110 1 000, etc..

Figure shows the codes as segments of the unit interval, where code
z covers all the real numbers whose binary expansion starts as 0.x.

14.5. Upper bounds on complexity

Having provided concrete definitions of all key ingredients of algorithmic
information theory, it is time to prove some concrete results about the
complexity of strings.

The simple complexity of a string is upper bounded by its length:

KS(z) <1 +1(z) =(z) + 4

The prefix complexity of a string is upper bounded by the length of its
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delimited version:
KP(z) < |delimit| + I(F) = I(F) + 413.

where delimit is a straightforward translation of the following Haskell
code into A calculus:

delimit = do bit <- readBit
if bit then return []
else do len <- delimit
n <- readbits len
return (inc n)
where
readbits [] = return []
readbits len = do bit <- readBit
x <- readbits (dec len)
return (bit:x)
dec [True] = []
dec (True:rest) = False:(dec rest)
dec (False:rest) = True:rest

inc [1 = [Truel
inc (True:rest) = False:rest
inc (False:rest) = True: (inc rest)

The ‘do’ notation is syntactic sugar for the binding operator >>=, as ex-
emplified by the following de-sugared version of readbits:

readbits len = readBit >>= (\bit ->
readbits (dec len) >>= (\x —>
return (bit:x)))

The prefix complexity of a pair is upper bounded by the sum of individ-
ual prefix complexities, one of which is conditional on the shortest program
of the other:

K(z,y) < K(x) + K(y|z*) + 1876.

This is the easy side of the fundamental “Symmetry of information”
theorem K(z) — K(z|y*) = K(y) — K(y|z*) + O(1), which says that y
contains as much information about = as z does about y.
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Chaitin [3] proves the same theorem using a resource bounded evaluator,
which in his version of LISP comes as a primitive called ”try”. His proof is
embodied in the program gamma:

((° (lambda (loop) ((’(lambda (x*) ((’(lambda (x) ((’(lambda
(y) (cons x (cons y nil)))) (eval (cons (’(read-exp)) (cons
(cons ’(cons x* nil)) nil)))))) (car (cdr (try no-time-limit
(’ (eval (read-exp))) x*)))))) (loop nil)))) (’(lambda (p)
(if (= success (car (try no-time-limit (’(eval (read-exp)))
p))) p (loop (append p (cons (read-bit) nil)))))))

of length 2872 bits.

We constructed an equivalent of ”try” from scratch. The constant
1876 is the size of the term pairup defined below, containing a symbolic
lambda calculus normal form reducer (which due to space restrictions is
only sparsely commented):

—-- identity
I =\xx

-- ‘bool x y’ represents ‘if bool then x else y’
true = \x\y x
false = \x\y y

-- allows for list processing as: list (\head\taill\x case-non-nil)
case-nil nil = false

—-- unary number representation
zero = false

one = \s s zero

succ = \n\s s n

pred = \nn I

-- binary Lambda Calculus interpreter
intL = \cont\list list (\bitO\listl listl (\bitl bit0

(intL (\exp bitl (cont (\args\arg exp (\z z arg args)))

(intL (\exp2 cont (\args exp args (exp2 args))))))
(bitl (cont (\args args bitl))
(\1list2 intL (\var cont (\args var (args bit1))) list1))))

-- binary Lambda Calculus universal machine allowing open programs
unil’ = intL (\x x x)

readvar = \cont\list list (\bitO bitO
(cont (\suff \z z bitO suff)nil )
(readvar (\pref\v cont (\suff \z z bit0 (pref suff)) (\s s v))))

-- binary Lambda Calculus parser
readc = \cont\list list (\bitO bit0
(\list1l list1l (\bitl readc (\prefl\expl bitil
(cont (\suff \z z bit0 (\z z bitl (prefl suff))) (\1l\a\v 1 expl))
(readc (\pr2\exp2 cont (\suff \z z bit0 (\z z bitl (prl (pr2 suff))))
(\1\a\v a expl exp2) )))))
(readvar (\pref\var cont (\suff \z z bit0 (pref suff)) (\l\a\v v var))))
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-- apply (\var (succ”i k) var var) to variables in lam at depth i
shift = \k\lam lam

(\lam \1\a\v 1 (shift (\s s k) lam))

(\t1\t2 \1\a\v a (shift k t1) (shift k t2))

(\var \1\a\v v (k var var))
-- ‘k var’ will be one of succ, pred or identity

-- used in place of zero for variables to be substituted
eqnil = \z z I z

-- substitute e for free variable i (of the form k = succ”i eqnil) in term
subst = \e\k\term term

(\lam \1l\a\v 1 (subst (shft (\z succ) e) (\s s k) lam))

(\t1\t2 \1\a\v a (subst e k t1) (subst e k t2))

(\var k var (\x term) e)

shdec = shft (\z pred)
shinc = shft (\z succ)

whnfreduce = \term term
(\body term)
(\termi\term2 (\whnfl (\nfterm whnfil

(\body whnfreduce ((\shft shdec (subst (shinc term2) eqnil body)) shift))

(\t1 nfterm)
nfterm) (\x\1\a\v a whnfl term2)) (whnfreduce terml))
(\var term)

readbits = \k\list\fun k (\ki\tail list (\bit\listl
fun bit (readbits k1 listl fun tail)))
pair = \x\y\z z x y
symprebit = \x\y \1\a\v 1 (\1\a\v a (\1\a\v a (\1\a\v v zero)
(\1\a\v 1 (\1\a\v 1 (\1\a\v v (x one zero))))) y)
symfalse = (\1\a\v 1 (\1\a\v 1 (\1\a\v v zero)))

-- minp returns the smallest prefix of at least k bits of data that prog
-- will ‘read’ from it to produce a pair <_,restofdata>
-- it does so by symbolically reducing prog applied to data’ applied to
false
-- where data’ is the first k bits of data terminated with de Bruijn
variable k
-- the solitary rdbits is a dummy; the reduction should never yield a
lambda minp = \prog\data\k (\rdbits
whnfreduce (\1\a\v a (\1\a\v a
prog (rdbits k data symprebit (\1l\a\v v k))) symfalse)

rdbits

(\t1\t2 (minp prog data (\s s k)))

(\v rdbits k data pair nil)) readbits

—-- program list returns the program at the start of binary stream list
program = readc (\pref\prog\data pref (minp prog data zero))

-- pairup listpq returns <<x,y>,z> if the binary stream listpq
-- starts with a program p for x, followed by a program q for
-- computing y given p, followed by the remainder stream z
pairup = \listpq (\uni uni listpq
(\x\listq uni listq (program listpq)
(\y\list \z z (\z z x y) list))
) unil’

Although seemingly much more complex, our program is
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actually

shorter when measured in bits! Chaitin also offered a program of size only
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2104 bits, at the cost of introducing yet another primitive into his language.
Our program is 996 bits shorter than his first, and 228 bits shorter than
his second.

14.6. Future Research

It would be nice to have an objective measure of the simplicity and ex-
pressiveness of a universal machine. Sizes of constants in fundamental the-
orems are an indication, but one that is all too easily abused. Perhaps
diophantine equations can serve as a non-arbitrary language into which to
express the computations underlying a proposed definition of algorithmic
complexity, as Chaitin has demonstrated for relating the existence of in-
finitely many solutions to the random halting probability 2. Speaking of €2,
our model provides a well-defined notion of halting as well, namely when
U (p:z) = (M,z) for any term M (we might as well allow M without
normal form). Computing upper and lower bounds on the value of Qy, as
Chaitin did for his LISP-based 2, and Calude et al. for various other lan-
guages, should be of interest as well. A big task remains in finding a good
constant for the other direction of the ‘Symmetry of Information’ theorem,
for which Chaitin has sketched a program. That constant is bigger by an
order of magnitude, making its optimization an everlasting challenge.

14.7. Conclusion

The A-calculus is a surprisingly versatile and concise language, in which not
only standard programming constructs like bits, tests, recursion, pairs and
lists, but also reflection, reification, and marshalling are readily defined,
offering an elegant concrete foundation of algorithmic information theory.

An implementation of Lambda Calculus, Combinatory Logic, along
with their binary and universal versions, written in Haskell, is available
at Tromp’s website [24].
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Chapter 15

Where Do New Ideas Come From? How Do They Emerge?
Epistemology as Computation (Information Processing)
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gordana. dodig-crnkovic@mdh. se

This essay presents arguments for the claim that in the best of all possible
worlds (Leibniz) there are sources of unpredictability and creativity for
us humans, even given a pancomputational stance. A suggested answer
to Chaitin’s questions: “Where do new mathematical and biological ideas
come from? How do they emerge?” is that they come from the world
and emerge from basic physical (computational) laws. For humans as a
tiny subset of the universe, a part of the new ideas comes as the result
of the re-configuration and reshaping of already existing elements and
another part comes from the outside as a consequence of openness and
interactivity of the system. For the universe at large it is randomness
that is the source of unpredictability on the fundamental level. In order
to be able to completely predict the Universe-computer we would need
the Universe-computer itself to compute its next state; as Chaitin al-
ready demonstrated there are incompressible truths which means truths
that cannot be computed by any other computer but the universe itself.

15.1. Introduction

The previous century had logical positivism and all that emphasis on the
philosophy of language, and completely shunned speculative metaphysics,
but a number of us think that it is time to start again. There is an emerg-
ing digital philosophy and digital physics, a new metaphysics associated
with names like Edward Fredkin and Stephen Wolfram and a handful of
like-minded individuals, among whom I include myself.

It was in June 2005 I first met Greg Chaitin at the E-CAP 2005 confer-
ence in Sweden, where he delivered the Alan Turing Lecture, and presented
his book Meta Math! Tt was a remarkable lecture and a remarkable book
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that has left me wondering, reading and thinking since thenEI

The overwhelming effect was a feeling of liberation: we were again al-
lowed to think big, think systéme du monde, and the one Chaitin suggested
was constructed as digital philosophy — something I as a computer scientist
and physicist found extremely appealing. God is a computer programmer,
Chaitin claims, and to understand the world amounts to be able to program
it!

Under these premises the theory of information, specifically Chaitin’s
algorithmic theory of information becomes a very elegant and natural way
to reconstruct epistemology, as demonstrated in Chaitin (2006). The epis-
temological model that is according to Chaitin central to algorithmic in-
formation theory is that a scientific or mathematical theory is a computer
program for calculating the facts, and the smaller the program, the better
the theory. In other words, understanding is compression of informationEI

In exploring epistemology as information theory, Chaitin addresses the
question of the nature of mathematics as our most reliable knowledge, il-
lustrated by Hilbert’s program for its formalization and automatization.
Based on algorithmic information theory Chaitin comes to this enlighten-
ing conclusion:

In other words, the normal, Hilbertian view of math is that all of math-
ematical truth, an infinite number of truths, can be compressed into a
finite number of axioms. But there are an infinity of mathematical truths
that cannot be compressed at all, not one bit!

This is a very important result, which sheds a new light on epistemol-
ogy. It sheds a new light on the meaning of Godel’s and Turing’s negative
responses to Hilbert’s program. What is scientific truth today after aHE| if
not even mathematics is able to prove every true statement within its own
domain? Chaitin offers a new and encouraging suggestion — mathematics
may be not as monolithic and a priori as Hilbert believed.

But we have seen that the world of mathematical ideas has infinite com-
plexity; it cannot be explained with any theory having a finite number of

T had the privilege to discuss the Turing Lecture article with Chaitin, while editing
the forthcoming book Dodig-Crnkovic G. and Stuart S., eds. (2007), Computation,
Information, Cognition — The Nexus and The Liminal, Cambridge Scholars Publishing.
The present paper is meant as a continuation of that dialog.

2For a detailed implementation of the idea of information compression, see Wolff (2006).
3Tasic, in his Mathematics and the Roots of Postmodern Thought gives an eloquent
answer to this question in the context of human knowledge in general.
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bits, which from a sufficiently abstract point of view seems much more like
biology, the domain of the complex, than like physics, where simple equa-
tions reign supreme.

The consequence is that the ambition of having one grand unified the-
ory of mathematics must be abandoned. The domain of mathematics is
more like an archipelago consisting of islands of truths in an ocean of in-
comprehensible and uncompressible information. Chaitin, in an interview
in September 2003 says:

You see, you have all of mathematical truth, this ocean of mathematical
truth. And this ocean has islands. An island here, algebraic truths. An
island there, arithmetic truths. An island here, the calculus. And these
are different fields of mathematics where all the ideas are interconnected
in ways that mathematicians love; they fall into nice, interconnected
patterns. But what I’ve discovered is all this sea around the islands.

So, it seems that apart from Leibniz bewildering question quoted by
Chaitin (2006): “Why is there something rather than nothing? For nothing
is simpler and easier than something.” (Leibniz, Section 7 of Principles of
Nature and Grace), there is the following, equally puzzling one:

Why is that something which exists made of parts rather than in one
single piece?

For there are two significant aspects of the world which we observe: the
world exists, and it appears to us as divisible, made of parts. The parts,
however, are not totally unrelated universes in a perfectly empty Vacuumﬁ
On the contrary, physical objects constitute myriads of intricate complex
structures on many different scales, and as we view them through various
optics we find distinct characteristic complex structures.

Starting from the constatation that our understanding of the world
is fragmented, it is easy to adopt a biological paradigm and see human
knowledge as an eco-system with many sub-systems with different inter-
acting parts that behave like organisms. Even though an organism is an
autonomous individual it is not an isolated system but a part of a whole
interconnected living network.

4 Here the interesting question of the nature of a vacuum is worth mentioning. A vacuum
in modern physics is anything but empty — it is simmering with continuous activity, with
virtual particles popping up from it and disappearing into it. Chaitin’s ocean of the
unknown can be imagined as a vacuum full of the activity of virtual particles.
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Contrary to the common model of a computing mechanism, in which the
computer given a suitable procedure and an input, sequentially processes
the data until the procedure ends (i.e. the program halts) or a model of
a physical system which is assumed to be hermetically isolated with all
possible conservation laws in effect, a model of a biological system must
necessarily be open. A biological system is critically reliant on its environ-
ment for survival. Separate parts of an ecological system communicate and
are vitally dependent on each other.

To sum up, extremely briefly, Chaitin’s informational take on episte-
mology, the world is for a human effectively an infinite resource of truths,
many of them incompressible and incomprehensible. Mathematics is not a
monolithic, perfect, eternal crystal of the definite true essence of the world.
It is rather, like other sciences, a fragmented and open structure, living and
growing as a complex biological adaptive eco-system.

In the conclusion of Epistemology as Information Theory: From Leibniz
To Q, Chaitin leaves us with the following assignment:

In fact, I believe that this is actually the central question in biology
as well as in mathematics; it’s the mystery of creation, of creativity:
Where do new mathematical and biological ideas come from? How do
they emerge?

Normally one equates a new biological idea with a new species, but in
fact every time a child is born, that’s actually a new idea incarnating; it’s
reinventing the notion of “human being,” which changes constantly.

“I have no idea how to answer this extremely important question; I wish
I could. Maybe you will be able to do it. Just try! You might have to keep
it cooking on a back burner while concentrating on other things, but don’t
give up! All it takes is a new idea! Somebody has to come up with it. Why
not you?” (Chaitin 2006)

That is where I want to start. After reading Meta Math! and a number
of Chaitin’s philosophical articlesﬁ and after having written a thesis based
on the philosophy of computationalism/informationalism (Dodig-Crnkovic,
2006) I dare to present my modest attempt to answer the big question
above, as a part of a Socratic dialogue. My thinking is deeply rooted in
pancomputationalism, characterized by Chaitin in the following way:

5A goldmine of articles may be found on Chaitin’s web page. See especially www.cs.
auckland.ac.nz/~chaitin/g.pdf, Thinking About Gédel & Turing.
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And how about the entire universe, can it be considered to be a com-
puter? Yes, it certainly can, it is constantly computing its future state
from its current state, it’s constantly computing its own time-evolution!
And as I believe Tom Toffoli pointed out, actual computers like your PC
just hitch a ride on this universal computation! (Chaitin 2006)

If computation is seen as information processing, pancomputationalism
turns to paninformationalism. Historically, within the field of computing
and philosophy, two distinct branches have been established: informational-
ism, in which the focus is on information as the stuff of the universe; (Floridi
2002, 2003 and 2004) and computationalism, where the universe is seen as
a computer. Chaitin (2006) mentions the cellular automata researchers
and computer scientists Fredkin, Wolfram, Toffoli, and Margolus, and the
physicists Wheeler, Zeilinger, 't Hooft, Smolin, Lloyd, Zizzi, Makel&, and
Jacobson, as the most prominent computationalists. In Dodig-Crnkovic
(2006) I put forward a dual-aspect info-computationalism, in which the
universe is viewed as a structure (information) in a permanent process of
change (computation). According to this view, information and compu-
tation constitute two aspects of reality, and like the particle and wave,
or matter and energy, capture different facets of the same physical world.
Computation may be either discrete or continuousﬁ (digital or analogue).
The present approach offers a generalization of traditional computational-
ism in the sense that “computation” is understood as the process governing
the dynamics of the physical universe.

Digital philosophy is fundamentally neo-Pythagorean especially in its
focusing on software aspects of the physical universe (either code or a pro-
cess). Starting from the pancomputationalist version of digital philosophy,
epistemology can be naturalized so that knowledge generation can be ex-
plained in pure computationalist terms (Dodig-Crnkovic, 2006). This will
enable us to suggest a mechanism that produces meaningful behavior and
knowledge in biological matter and that will also help us understand what
we might need in order to be able to construct intelligent artifacts.

6The universe is a network of computing processes and its phenomena are info-
computational. Both continuous as discrete, analogue as digital computing are parts
of the computing universe. (Dodig-Crnkovic, 2006). For the discussion about the neces-
sity of both computational modes on the quantum mechanical level see Lloyd (2006).
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15.2. Epistemology Naturalized by Info-Computation

Naturalized epistemology is an idea that the subject matter of epistemology
is not our concept of knowledge, but knowledge as a natural phenomenon
(Feldman, Kornblith, Stich, Dennett). In what follows I will try to present
knowledge generation as natural computation, i.e. information processing.
One of the reasons to taking this approach is that info-computationalism
provides a unifying framework which makes it possible for different research
fields such as philosophy, computer science, neuroscience, cognitive science,
biology, and a number of others to communicate within a common frame-
work.

In this account naturalized epistemology is based on the computational
understanding of cognition and agency. This entails evolutionary under-
standing of cognition (Lorenz 1977, Popper 1978, Toulmin 1972 and Camp-
bell et al. 1989, Harms 2004, Dawkins 1976, Dennett 1991). Knowledge is
a result of the structuring of input data (data — information — knowl-
edge) (Stonier, 1997) by an interactive computational process going on in
the nervous system during the adaptive interplay of an agent with the
environment, which increases agents’ ability to cope with the world and
its dynamics. The mind is seen as a computational process on an informa-
tional structure that, both in its digital and analogue forms, occurs through
changes in the structures of our brains and bodies as a consequence of in-
teraction with the physical universe. This approach leads to a naturalized,
evolutionary epistemology that understands cognition as a phenomenon of
interactive information processing which can be ascribed even to the sim-
plest living organisms (Maturana and Varela) and likewise to artificial life.

In order to be able to comprehend cognitive systems we can learn from
the historical development of biological cognitive functions and structures
from the simple ones upward. A very interesting account of developmental
ascendancy, from bottom-up to top-down control, is given by Coffman 2006.
Among others this article addresses the question of the origin of complexity
in biological organisms, including the analysis of the relationship between
the parts and the whole.

15.3. Natural Computation beyond the Turing Limit

As a direct consequence of the computationalist view that every natural
process is computation in a computing universe, “computation” must be
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generalized to mean natural computation. MacLennan 2004 defines “natu-
ral computation” as “computation occurring in nature or inspired by that
in nature”, which besides classical computation also includes quantum com-
puting and molecular computation, and may be represented by either dis-
crete or continuous models. Examples of computation occurring in nature
encompass information processing in evolution by natural selection, in the
brain, in the immune system, in the self-organized collective behavior of
groups of animals such as ant colonies, and in particle swarms. Computa-
tion inspired by nature includes genetic algorithms, artificial neural nets,
simulated immune systems, and so forth. There is a considerable synergy
gain in relating human-designed computing with the computing in nature.
Here we can illustrate Chaitin’s claim that “we only understand something
if we can program it”: In the iterative course of modeling and computa-
tionally simulating (programming) natural processes, we learn to reproduce
and predict more and more of the characteristic features of the natural sys-
tems.

Classical ideal theoretical computers are mathematical objects and are
equivalent to algorithms, abstract automata (Turing machines or “logical
machines” as Turing called them), effective procedures, recursive functions,
or formal languages. Contrary to traditional Turing computation, in which
the computer is an isolated box provided with a suitable algorithm and
an input, left alone to compute until the algorithm terminated, interactive
computation (Wegner 1988, Goldin et al. 2006) presupposes interaction
i.e. communication of the computing process with the environment during
computation. Interaction consequently provides a new conceptualization
of computational phenomena which involves communication and informa-
tion processing. Compared with new emerging computing paradigms, in
particular with interactive computing and natural computing, Turing ma-
chines form the proper subset of the set of information processing devices.
(Dodig-Crnkovic, 2006, paper B)

The Wegner-Goldin interactive computer is conceived as an open sys-
tem in communication with the environment, the boundary of which is
dynamic, as in living biological systems and thus particularly suitable to
model natural computation. In a computationalist view, organisms may
be seen as constituted by computational processes; they are “living com-
puters”. In the living cell an info-computational process takes place using
DNA, in an open system exchanging information, matter and energy with
the environment.
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Burgin (2005) in his book explores computing beyond the Turing limit
and identifies three distinct components of information processing systems:
hardware (physical devices), software (programs that regulate its function-
ing and sometimes can be identical with hardware, as in biological com-
puting), and infoware (information processed by the system). Infoware is
a shell built around the software-hardware core, which is the traditional
domain of automata and algorithm theory. Semantic Web is an example of
infoware that is adding a semantic component to the information present
on the web (Berners-Lee, Hendler and Lassila, 2001).

For the implementations of computationalism, interactive computing
is the most appropriate general model of natural computing, as it suits
the purpose of modeling a network of mutually communicating processes
(Dodig-Crnkovic 2006). It will be of particular interest to computational
accounts of epistemology, as a cognizing agent interacts with the environ-
ment in order to gain experience and knowledge. It also provides a unifying
framework for the reconciliation of classical and connectionist views of cog-
nition.

15.4. Cognitive Agents Processing Data — Information —
Knowledge

Our specific interest is in how the structuring from data to information
and knowledge develops on a phenomenological level in a cognitive agent
(biological or artificial) in its interaction with the environment. The central
role of interaction is expressed by Gorzel (1994) in the following way:

Today, more and more biologists are waking up to the sensitive
environment-dependence of fitness, to the fact that the properties which
make an organism fit may not even be present in the organism, but may
be emergent between the organism and its environment.

One can say that living organisms are “about” the environment, that
they have developed adaptive strategies to survive by internalizing environ-
mental constraints. The interaction between an organism and its environ-
ment is realized through the exchange of physical signals that might be seen
as data, or when structured, as information. Organizing and mutually re-
lating different pieces of information results in knowledge. In that context,
computationalism appears as the most suitable framework for naturalizing
epistemology.
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Maturana and Varela (1980) presented a very interesting idea that even
the simplest organisms possess cognition and that their meaning-production
apparatus is contained in their metabolism. Of course, there are also non-
metabolic interactions with the environment, such as locomotion, that also
generates meaning for an organism by changing its environment and pro-
viding new input data. We will take Maturana and Varelas’ theory as the
basis for a computationalist account of evolutionary epistemology.

At the physical level, living beings are open complex computational
systems in a regime on the edge of chaosm characterized by maximal infor-
mational content. Complexity is found between orderly systems with high
information compressibility and low information content and random sys-
tems with low compressibility and high information content. Living systems
are “open, coherent, space-time structures maintained far from thermody-
namic equilibrium by a flow of energy”. (Chaisson, 2002)

Langton has compared these different regions to the different states of
matter. Fixed points are like crystals in that they are for the most part
static and orderly. Chaotic dynamics are similar to gases, which can be
described only statistically. Periodic behavior is similar to a non-crystal
solid, and complexity is like a liquid that is close to both the solid and
the gaseous states. In this way, we can once again view complexity and
computation as existing on the edge of chaos and simplicity. (Flake 1998)

Artificial agents may be treated analogously with animals in terms of
different degrees of complexity; they may range from software agents with
no sensory inputs at all to cognitive robots with varying degrees of sophis-
tication of sensors and varying bodily architecture.

The question is: how does information acquire meaning naturally in the
process of an organism’s interaction with its environment? A straightfor-
ward approach to naturalized epistemology attempts to answer this ques-
tion via study of evolution and its impact on the cognitive, linguistic, and
social structures of living beings, from the simplest ones to those at highest
levels of organizational complexity (Bates 2005).

"Bertschinger N. and Natschliger T. (2004) claim “Employing a recently developed
framework for analyzing real-time computations we show that only near the critical
boundary such networks can perform complex computations on time series. Hence, this
result strongly supports conjectures that dynamical systems which are capable of doing
complex computational tasks should operate near the edge of chaos, i.e. the transition
from ordered to chaotic dynamics.”
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Various animals are equipped with varying physical hardware, sets of
sensory apparatuses goals and behaviors. For different animals, the “about-
ness” concerning the same physical reality is different in terms of causes and
their effects.

Indeed, cognitive ethologists find the only way to make sense of the
cognitive equipment in animal is to treat it as an information processing
system, including equipment for perception, as well as the storage and in-
tegration of information; that is, after all, the point of calling it cognitive
equipment. That equipment which can play such a role confers selective
advantage over animals lacking such equipment no longer requires any ar-
gument. (Kornblith 1999)

An agent receives inputs from the physical environment (data) and in-
terprets these in terms of its own earlier experiences, comparing them with
stored data in a feedback loop. Through that interaction between the en-
vironmental data and the inner structure of an agent, a dynamical state is
obtained in which the agent has established a representation of the situa-
tion. The next step in the loop is to match the present state with goals
and preferences (saved in an associative memory). This process results in
the anticipation of what various actions from the given state might have
for consequences (Goertzel 1994). Compare with Dennett’s (1991) Multiple
Drafts Model. Here is an alternative formulation:

This approach is not a hybrid dynamic/symbolic one, but interplay be-
tween analogue and digital information spaces, in an attempt to model
the representational behavior of a system. The focus on the explicitly
referential covariation of information between system and environment
is shifted towards the interactive modulation of implicit internal con-
tent and therefore, the resulting pragmatic adaptation of the system
via its interaction with the environment. The basic components of the
framework, its nodal points and their dynamic relations are analyzed,
alming at providing a functional framework for the complex realm of
autonomous information systems (Arnellos et al. 2005)

Very close to the above ideas is the interactivist approach of Bickhard
(2004), and Kulakov & Stojanov (2002). On the ontological level, it involves
naturalism, which means that the physical world (matter) and mind are in-
tegrated, mind being an emergent property of a physical process, closely
related to the process metaphysics of Whitehead (1978).
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15.5. Evolutionary Development of Cognition

Evolutionary development is the best known explanatory model for life on
earth. If we want to understand the functional characteristics of life, it is
helpful to reveal its paths of development.

One cannot account for the functional architecture, reliability, and goals
of a nervous system without understanding its adaptive history. Conse-
quently, a successful science of knowledge must include standard techniques
for modeling the interaction between evolution and learning. (Harms, 2005)

A central question is thus what the mechanism is of the evolutionary
development of cognitive abilities in organisms. Critics of the evolution-
ary approach mention the impossibility of “blind chance” to produce such
highly complex structures as intelligent living organisms. Proverbial mon-
keys typing Shakespeare are often used as an illustration. However, Lloyd
2006 mentions a following, first-rate counter argument, originally due to
Chaitin and Bennet. The “typing monkeys” argument does not take into
account the physical laws of the universe, which dramatically limit what
can be typed. The universe is not a typewriter, but a computer, so a mon-
key types random input into a computer.

Quantum mechanics supplies the universe with “monkeys” in the form
of random fluctuations, such as those that seeded the locations of galaxies.
The computer into which they type is the universe itself. From a simple
initial state, obeying simple physical laws, the universe has systematically
processed and amplified the bits of information embodied in those quan-
tum fluctuations. The result of this information processing is the diverse,
information-packed universe we see around us: programmed by quanta,
physics give rise first to chemistry and then to life; programmed by mu-
tation and recombination, life gave rise to Shakespeare; programmed by
experience and imagination, Shakespeare gave rise to Hamlet. You might
say that the difference between a monkey at a typewriter and a monkey at
a computer is all the difference in the world. (Lloyd 2006)

Allow me to add one comment on Lloyd’s computationalist claim. The
universe/ computer on which a monkey types is at the same time the hard-
ware and the program, in a way similar to the Turing machine. An example
from biological computing is the DNA where the hardware (the molecule)
is at the same time the software (the program, the code). In general,
each new input restructures the computational universe and changes the
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preconditions for future inputs. Those processes are interactive and self-
organizing. That makes the essential speed-up for the process of getting
more and more complex structures.

15.6. Informational Complexity of Cognitive Structures

Dynamics lead to statics, statics leads to dynamics, and the simultaneous
analysis of the two provides the beginning of an understanding of that mys-
terious process called mind. (Gortzel 1994)

In the info-computationalist vocabulary, “statics” (structure) corre-
sponds to “information” and “dynamics” corresponds to “computation”.

One question which may be asked is: why doesn’t an organism exclu-
sively react to data as it is received from the world/environment? Why
is information used as building blocks, and why is knowledge constructed?
In principle, one could imagine a reactive agent that responds directly to
input data without building an informational structure out of raw input.

The reason may be found in the computational efficiency of the com-
putation concerned. Storage of data that are constant or are often reused
saves huge amounts of time. So, for instance, if instead of dealing with each
individual pixel in a picture, we can make use of symbols or patterns that
can be identified with similar memorized symbols or patterns, the picture
can be handled much more quickly.

Studies of vision show that cognition focuses on that part of the scene
which is variable and dynamic, and uses memorized data for the rest that is
static (this is the notorious frame problem of AI). Based on the same mech-
anism, we use ideas already existing to recognize, classify, and characterize
phenomena. Our cognition is thus an emergent phenomenon, resulting
from both memorized (static) and observed (dynamic) streams. Forming
chunks of structured data into building blocks, instead of performing time-
consuming computations on those data sets in real time, is an enormously
powerful acceleration mechanism. With each higher level of organization,
the computing capacity of an organism’s cognitive apparatus is further in-
creased. The efficiency of meta-levels is becoming evident in computational
implementations. Goertzel illustrates this multilevel control structure by
means of the three-level “pyramidal” vision processing parallel computer
developed by Levitan and his colleagues at the University of Massachusetts.
The bottom level deals with sensory data and with low-level processing such
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as segmentation into components. The intermediate level handles group-
ing, shape detection and such; and the top level processes this information
“symbolically”, constructing an overall interpretation of the scene. This
three-level perceptual hierarchy appears to be an exceptionally effective
approach to computer vision.

We look for those objects that we expect to see and we look for those
shapes that we are used to seeing. If a level 5 process corresponds to an
expected object, then it will tell its children [i. e. sub-processes| to look
for the parts corresponding to that object, and its children will tell their
children to look for the complex geometrical forms making up the parts to
which they refer, et cetera. (Gortzel 1994)

Human intelligence is indivisible from its presence in a body (Dreyfus
1972, Gérdenfors 2000, 2005, Stuart 2003). When we observe, act and rea-
son, we relate different ideas in a way that resembles the relation of our
body with various external objects. Cognitive structures of living organisms
are complex systems with evolutionary history (Gell-Mann 1995) evolved
in the interaction between first proto-organisms with the environment, and
evolving towards more and more complex structures which is in a com-
plete agreement with the info-computational view, and the understanding
of human cognition as a part of this overall picture.

15.7. Conclusions

This essay attempts to address the question posed by Chaitin (2006)
about the origin of creativity and novelty in a computational universe.
For that end, an info-computationalist framework was assumed within
which information is the stuff of the universe while computation is its
dynamics. Based on the understanding of natural phenomena as info-
computational, the computer in general is conceived as an open interactive
system, and the Classical Turing machine is understood as a subset of a
general interactive/adaptive/self-organizing universal natural computer. In
a computationalist view, organisms are constituted by computational pro-
cesses, implementing computation in vivo.

All cognizing beings are physical (informational) systems in constant in-
teraction with their environment. The essential feature of cognizing living
organisms is their ability to manage complexity, and to handle complicated
environmental conditions with a variety of responses that are results of
adaptation, variation, selection, learning, and/or reasoning. Increasingly
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complex living organisms arise as a consequence of evolution. They are
able to register inputs (data) from the environment, to structure those into
information, and, in more developed organisms, into knowledge. The evolu-
tionary advantage of using structured, component-based approaches (data
— information — knowledge) is improving response time and the compu-
tational efficiency of cognitive processes.

The main reason for choosing an info-computationalist view for natural-
izing epistemology is that it presents a unifying framework which enables
research fields of philosophy, computer science, neuroscience, cognitive sci-
ence, biology, artificial intelligence and number of others to communicate,
exchange their results and build a common knowledge. It also provides the
natural solution to the old problem of the role of representation, a discussion
about two seemingly incompatible views: a symbolic, explicit and static
notion of representation versus implicit and dynamic (interactive, neural-
network-type) one. Within info-computational framework, those classical
(Turing-machine type) and connectionist views are reconciled and used to
describe different levels or aspects of cognition.

So where do new mathematical and biological ideas come from? How
do they emerge?

It seems to me that as a conclusion we can confidently say that they

come from the world. Humans, just as other biological organisms, are just
a tiny subset of the universe, and the universe has definitely an impact on
us. A part of the new ideas is the consequence of the re-configuration and
reshaping of already existing elements in the biosphere, like in component-
based engineering. Life learns from both, from already existing elements
and from something that comes from the outside of our horizon.
Even if the universe is a huge (quantum mechanical) computer for us it is
an infinite reservoir of new discoveries and surprises. For even if the uni-
verse as a whole would be a totally deterministic mechanism, for humans
to know its functioning and predict its behavior would take infinite time,
as Chaitin already demonstrated that there are incompressible truths. In
short, in order to be able to predict the Universe-computer we would need
the Universe-computer itself to compute its next state.

That was my attempt to argue that in the best of all possible worlds ( “le
meilleur des mondes possibles” — Leibniz 1710) there are sources of creativ-
ity and unpredictability, for us humans, even given a pancomputational
stance. I have done my homework.
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Chapter 16

The Dilemma Destiny /Free—Will

F. Walter Meyerstein
Calle Tavern 45, 08006 Barcelona, Spain;|fuwm@ filnet. es

The following brief considerations intend to relate the headline terms
of this volume, namely randomness and complezity, with a dilemma that
has occupied a central place in many philosophical systems throughout the
ages. Admitting that the fate (destiny) of the world, at least in that part
of it inhabited by conscious humans, is rigidly predetermined from its in-
ception, what role, if any, is left for human freely decided actions?

And what is the alternative to a causally structured world, if not chaotic
randomness making its development entirely unpredictable? As shown here,
philosophers such as Leibniz have never found a valid escape-route to these
rather unpalatable options. Surprisingly, however, Chaitin’s work casts a
brilliant new light on this conundrum!

Randomness and complexity are terms defining a situation in the world
that has been quite difficult to admit by humans: the ideal of humanity
seems to have always been to live in a predictable world, one in which the
past could be comprehended, at least in part, and the future would not lie
entirely beyond its capabilities. Of course, there was always the recourse
to God: His infinite wisdom does oversee the complex development of the
world, from its inception until its end. This rather easy escape did not
satisfy most philosophers, who tried to find and establish laws and rules;
mathematical if at all possible, that would allow a partial insight into the
working of the universe. The universe, then, would not be random for God
— of course — but neither might it be entirely random for humans.

One of the most famous of these rules was put forward by G. W. Leibniz
at the end of the XVII century: roughly stated, it says that in the world
nothing happens without a sufficient reason, that is, if some entity pos-
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sessed the necessary knowledge it would be able to give a reason sufficient
to determine why things are as they are and not different and, interestingly,
would enable that entity to answer the question: ‘why is there something
rather than nothing?’, why is the world complex — something — rather than
simple — i.e., nothing” Note that a complex world may still be a ‘good’
world, wherein everything is disposed for the best — see below-, but in a
random world anything can happen, the good as well as the evil. Conse-
quently, to evict randomness from the creation is fundamental.

Leibniz was a strict believer. Thus, for him, the world is God’s cre-
ation. In the infinity of causal chains that constitute the world, entangled
as these chains may be, Leibniz distinguishes those that follow necessary
connections and those that are contingent. The former are such that their
opposite implies a contradiction; the latter can exist or not exist. But,
in Leibniz’ system, according the principle of sufficient reason, contingent
causes owe their existence to the principle of what is best, the best then
being the sufficient reason of things. God can do everything that is pos-
sible, but He will do only what is best. The result: the world, as it is, is
the best of all possible worlds! Voltaire, in Candide, made imperishable
fun of Leibniz’ optimistic effort to justify God’s creation, to evict, if not
complexity, but randomness from His creation.

For each of the infinity of causal chains that constitute the universe,
two further principles apply. They can be considered to be consequences of
the principle of sufficient reason, although their justification by Leibniz is
a rather involved affair. They are the ‘law of the identity of indiscernibles’
and the ‘law of continuity’. The law of the identity of indiscernibles states
that either a thing is wholly meaningless, and in that case cannot be distin-
guished from any other, or it is the sum of all or some of the predicates that
can be supposed to be applicable to this subject. Thus, two things which
are materially diverse always differ as to their predicates. However, these
predicates may be infinite in number, as in this system the present state of
a thing has a relation to all past and future states. Whereas the analysis of
necessary connections, such as in the number system, comes to an end, as
the analysis of numbers ends with unity, this is not the case of contingents
or existents, that can be or cannot be. Here the analysis, Leibniz assures,
goes to infinity without ever reaching primitive elements: necessary and
contingent truths differ as rational numbers and surds. In fact, as is the
case with surd ratios, their reduction to commensurable numbers involves
an infinite process, and yet approaches a common measure, obtaining a
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definite but unending series. It follows that the world of contingents, the
world of what can possibly exist or not exist, involves infinity. Note further
that for Leibniz space and time have not real existence: indeed, on this
principle he bases his assertion that space and time are distinguished only
by means of the predicates of things and not the other way around. The
final result is encapsulated in Leibniz’ dictum that there are no two drops
of water perfectly alike. The law of continuity, on the other hand, asserts
that the causal chains of things form a series, so that every possible inter-
mediate between the first and the last term is filled once, and only once.

Philosophers who have endeavored to establish the strict rules by which
the world is governed always had to face a vexing problem: how to accom-
modate human free-will in their world-system, that is, how can humans,
uniquely in the entire creation, interfere with the pre-established (by God?)
causal chains and start, so to say ex nihilo, a brand-new sequence of world-
events? And how did Leibniz reconcile his thorough-going causal determin-
ism with human free-will? His solution does not appear to be very brilliant:
he proposes that God has communicated to us a certain degree of his per-
fection and of his liberty. But how then, in this best of all possible worlds,
in this ‘pre-established harmony’, do some obviously evil actions of free
humans fit? Note that admitting a free-will, if it is really free, is equivalent
to introducing randomness into the world, as freedom of decision implies
previous indetermination of the choices. In fact, the unsolved problem of
conciliating a deterministic world that imposes a pre-established destiny on
humans with a free-will is a very old one as I will now briefly show.

In around 44 BC, probably after the assassination of Caesar, and shortly
before he himself was murdered, M. T. Cicero wrote an essay with the title
De Fato (On Fate) from which only a part has come down to us. The sub-
ject of this essay constitutes the analysis of the relation of human free-will
with a rigid destiny as resulting from universal causation a la Leibniz. To
show how this embarrassing contradiction was understood in the first cen-
tury BC, I here cite a few passages from this work, using the translation of
H. Rackham in the Loeb Classical Library.

The essay is written as a dialogue between different parties, who in turn
quote previous philosophers to bolster their respective argumentations. Cit-
ing Carneades, head of the Platonic Academy in the second century BC,
we read: “If everything takes place with antecedent causes, all events take
place in a closely knit web of natural interconnections; if this is true, all
things are caused by necessity; if this is true, nothing is in our power. But
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something is in our power. Yet if all events take place by fate, there are
antecedent causes of all events. Therefore it is not the case that whatever
events take place take place by fate (XIV 31)”. But we read further on:
“Even if it is admitted that nothing can happen without an antecedent
cause, what good would that be unless it be maintained that the cause in
question is a link in an eternal chain of causation? But a cause is that
which makes the thing of which it is the cause come about”. However,
absurd situations result: “For on these lines a well-dressed traveller also
will be said to have been the cause of the highwayman’s robbing him of his
clothes (XIV 34)”.

From the extant fragments it rather clearly transpires that the problem
of destiny and free-will also escaped Cicero. A later philosopher, A.. Gel-
lius (second century AD), wrote this comment in his Noctes Atticae: “In
the book that he wrote on the subject of fate Marcus Cicero says that thlis
question] is very obscure and involved, and he remarks that the philoso-
pher Chrysippu (Stoic philosopher of the third century BC), finding himself
quite at sea in the difficulty of how to explain his combination of universal
fatalism with human free-will, ties himself up in a knot.”

These very succinct brushstrokes may give you an idea of how, through-
out the centuries, philosophers have struggled to unravel the mystery posed
by the randomness and complexity of the world, how they have endeav-
oured to reintroduce order, purpose, even a design into it, and how they
have tried to make mutually compatible the visibly contradictory concepts
of fate (destiny) and human free-will. Amazingly, but in fact not so sur-
prising, the fascinating work of G. S. Chaitin, as exposed in many of his
books, but particularly in his 2006 META MATH!, directly impinge on
these questions, as I will now try to show.

First of all, let me remark that causality is an extremely difficult idea
as is corroborated by the many books and papers on this subject by recent
philosophers. However, here I assume causality to be a clear term, intu-
itively understood. Further, note that the causal chains determining destiny
are supposed to be continuous, each individual link connected uniquely to
a past and a future event: prior links are assumed to be the sufficient cause
of all posterior links. Apparently, only in this way these philosophers have
understood a rigidly pre-determined fate (¢f. Leibniz’ law of continuity).
It is obvious that any different ‘solution’ introduces randomness into the
world making a rigid destiny an impossibility. Also note that cross-linking
or other interactions of the causal chains are not taken into consideration.
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If it is assumed that a cause uniquely engenders its consequences or
its effects, it might also be admitted that such a cause, now taken as the
input to a suitable computer, results in that computer outputting all the
effects of said cause. And thus, right away, we are in Chaitin’s territory!
Instead of a causal chain we can now speak of a Formal Axiomatic System
(FAS), the axioms of which describe the cause(s) at hand and the theorems
of which correspond to its possible consequences. An immediate corollary
of this consideration is: the starting link(s), the shortest expression of the
primary cause(s) that generates all these causal chains is of irreducible
complexity; not unexpected, as it is equivalent to God.

The idea of the philosophers postulating a fate or destiny is basically
encapsulated in Leibniz’ idea of a sufficient reason for everything that hap-
pens. In other words, as back in time (and, theoretically, as beyond in the
future) as is possible for humans to consider, the causal destiny chain works
as a FAS. However, in META MATH! Chaitin writes: “...formal axiomatic
systems are a failure! Theorems proving algorithms do not work”. Because
what makes no sense is “mindlessly and mechanically grinding away deduc-
ing all the possible consequences of a fixed set of rules and ideas” (pagel46).
These remarks by Chaitin are made in a totally different context from the
subject here treated: destiny and free-will. But they strongly support the
view that the idea of ‘mechanically deducing’ the effects of an antecedent
cause leads nowhere. Why?

The main reason is this: these immensely long causal chains correspond
to equally long binary sequences when one admits their being equivalent
to the output of a suitable computer. Consequently, with probability ap-
proaching 1, i.e., certainty, they are irreducible random sequences, not com-
pressible into any system of axioms substantially shorter than themselves.
To make all causal chains determining the destiny of some human being to
show such an order, to make them such that they can be algorithmically
compressed into a short axiom system, is out of the question. Imagine now
the same dream as applied to the causal chains affecting, for all times, all
humanity! And note that not even God can disentangle this fabulous mess.
This is one of the most surprising results that springs from the analysis
of Chaitin’s marvellous number Omega. The binary sequence constitut-
ing Omega, resulting from a neat mathematical definition, are such that,
assuming you could determine the first N bits of that sequence, you will
never be in a position to predict whether the bit N 4+ 1isa 0 or a 1 with a
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probability better thanl/2. And this corresponds to the probability of the
outcome of a toss of a fair coin, the paradigm of randomness: the bits of
Omega constitute a maximally random sequence.

But to what corresponds free-will in this approach? A human’s entirely
free decision only exists between two equally probable alternatives and
thus can only be accomplished by tossing a fair coin! (Unless he or she
chooses to starve like Buridan’s ass!). Of course, if the probabilities of two
choices facing some individual are unequal, the freedom of the will of this
individual is compromised and cannot anymore said to be entirely free. On
the other hand, assuming that humans make entirely free decisions which
in every case start a brand-new causal chain, we run again into trouble, as
the set of all these free coin tosses constitute — by definition as it were — an
irreducible random collection. In other words, it would not be possible to
express the free decisions of humans by means of a compact, simple axiom
system. In sum, the old dilemma of the assumption of human free-will in
a world subject to a rigid causal destiny cannot be resolved: the world is
just too complex, randomness cannot be evicted, this may be a habitable
world, but probably it is not the best.
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Introduction

In order to examine some philosophical consequences of Gregory Chaitin’s
quest for Q this paper comes in five sections. First of all (first section),
I consider Chaitin’s interpretation of Leibniz’s thought and how Chaitin’s
halting probability 2 invalidates Leibniz’s principle of sufficient reason.
Then (second section), I compare this analysis with a classic reading of
Leibniz, namely what Heidegger states in The Principle of Reason. Once
we have grasped Heidegger’s criticism to the principle nihil est sine ratione
(section 3), I will stress some paramount differences between Heidegger’s
thesis and Chaitin’s theorems (section 4). By showing some flaws in the
German scholar’s viewpoint, what I would like to lay emphasis on is the
impact of Chaitin’s results in contemporary philosophical debate (section
5).

17.1. Leibniz’s legacy

It is not so hard to understand why Chaitin has paid so much attention
to Leibniz’s philosophy in the last years. The German philosopher can be
considered the father—at least, the grandfather—of contemporary digital
philosophy. Leibniz invented binary arithmetic and in the early 1670s, be-
fore he had to go back to Germany as counsellor of princes, built some of
the first calculating machines that he personally displayed in Paris and at
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the Royal Society in London. As a kind of PythagoreanEI Leibniz conceived
the world mathematically as a peculiar “progression” of Os and 1s in order
to represent the world according to the simplest hypothesis: Omnibus ex
nihil ducendis sufficit unumﬂ This position is much stronger than, say,
Occam’s razor as far as Leibniz’s key idea somehow anticipates Chaitin’s
perspective on complexity, that is the outlook “in which at the same time
the hypotheses are as simple as possible, and the phenomena are as rich as
possible.”|

However, this sort of simplification is fruitful when we bring facts back
to “truths of reason:” that is, when we deal with the dominion of logic
and mathematics—Leibniz would add metaphysics—so that truth can be
reduced to a finite set of principles or axioms considered “eternal truths.”ﬁ

But what about daily life where we—the “informavores”—are designed
by evolution to be “epistemically hungry seekers of information, in an end-
less quest to improve our purchase on the world”? EI In other words, what
about “contingent truths” as Leibniz would have said?

According to Chaitin, “Leibniz’s solution to the problem is to claim
that contingent events are also true for a reason, but in such cases there
is in fact an infinite series of reasons, an infinite claim of cause and effect,
that while utterly beyond the power of human comprehension is not at all
beyond the power of comprehension of the divine mind.”EI Hence, from
a metaphysical standpoint, Leibniz claimed that contingent propositions,
although not necessary, should also be thought of a priori: In fact, every-
thing that happens in the world must have its reason. While it is easy
to imagine what stroke “the great Arnauld” when the French scholar read
Leibniz’s letters on free will and human destinym it is the principle of reason
that would enable us to consider even contingent events as comprehensible,
logical, and determinable. Leibniz’s suggests that God created the best of
all possible worlds and, in doing so, He selected an infinite series of “hy-

IRemember Leibniz’s maestro Erhard Weigel in Jena and the portrait by Pietro
della Vecchia now at the Chrysler Museum in Washington. Further details in U.
Pagallo [2005, 39—-40].

2Leibniz’s phrase in G. Chaitin [2005, 61].

3 Again, Leibniz’s quotation (and translation) in G. Chaitin [2005, 63].

4This idea is sponsored by Leibniz since his first legal works: See for example § 83 of De
Arte combinatoria (1666).

51 am quoting D.C. Dennett [2003, 93] whose thesis are discussed infra § 4.

6G. Chaitin [2005, 120].

7T comment these letters in U. Pagallo [2005, 111-122].
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pothetical necessities” which let us free to choose between, say, a 0 or a
1. As in Leibniz’s favourite example of Julius Caesar crossing the Rubicon
river, this is a sound fact—as the Roman Senate fully understood—so that
it also represents a (historical) truth and, therefore, should be thought of
as demonstrable. (By the way, this idea is shared by many contemporary
scholars. In a nutshell, if the universe appears to be “fort composée,” it is
still determined by evolutionEI but it is so complex that leaves Man with
his “free will.”

Nonetheless, how can we decide if we have rendered sufficient reasons
for something?” How can we measure the complexity of the universe and,
in particular, its contingent truths?

When Leibniz discusses in sections V and VI of the Discours de
métaphysique how to tell apart a world in which science works from one
where it does not, he considers the case of a mathematical equation for
any given finite set of points on a paper. It allows you to define when you
have a proper scientific law, that is when the law itself appears “simple.”
Yet, it would still not be possible to distinguish random from rule bound
points because there is always a formula in order to “pass through” those
very points. So, what Chaitin’s algorithmic theory of information aims to
do is precisely to refine such ideas by adding two new elements: “First, we
measure complexity in terms of bits of information, i.e., Os and 1s. Sec-
ond, instead of mathematical equations, we use binary computer programs.
Crucially, this enables us to compare the complexity of a scientific theory
(the computer program) with the complexity of the data it explains (the
output of the computer program).”m

The well-known result is Chaitin’s halting probability €2: By linking the
complexity of the law to the data it attempts to explain, it is possible to
prove facts—mnamely the independent mathematical facts of 2—that are
“true for no reason.”E Indeed, from a simple mathematical definition you
get what is both logically and computably irreducible, maximally unknow-
able. Randomness is what Leibniz was wrong about in, at least, the realm
of mathematical truths, for we cannot think of all of them as demonstra-
ble. (Here, Chaitin deepens and updates an aspect of Leibniz’s thought

8Cf. for example S. Wolfram [2002], whose thesis Chaitin have frequently discussed in
recent work.

9See again D.C. Dennett [2003].

10G. Chaitin [2004, 2].

ILCf. G. Chaitin [2004, 3] and [2004, 133].
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that Godel’s theorems of incompleteness should have made easier to under-
stand.)

But, again, what about contingent truths? Leibniz’s problem on de-
ciding when sufficient reasons have been given appears quite similar to
Chaitin’s question about how to decide if a computer program is “elegant.”
In order to shed some further light on this connection, let us proceed with
a strange German misunderstanding: Heidegger’s, not Hilbert’s!

17.2. A German misunderstanding

Martin Heidegger, one of the most influential philosophers of the 20t" Cen-
tury, dedicated his 1955-1956 course at the University of Freiburg to Leib-
niz’s principle nihil est sine mtioneE These lectures are of great impor-
tance not only because they offer a canonical reading of Leibniz, but also
because they focus on the Principle of Sufficient Reason, i.e., as Leibniz
himself explained to Arnauld in a letter on July 14" 1686: “nothing hap-
pens without a reason that one can always render as to why the matter has
run its course this way rather than that.”E|

Heidegger portrays Leibniz in a twofold way. On the one hand, Leibniz
is presented as a milestone in the development of modern logic into logistics:
“Only through looking back on what Leibniz thought can we characterise
the present age—an age one calls the atomic age—as an age pervasively
bepowered by the power of the principium rationis suﬂicientis.”E On the
other hand, Leibniz should be understood at the light of German idealism
and of its metaphysical credo on the infinite self-knowing of the absolute
spiritE While Heidegger links the principle of reason to something he
calls “the Destiny of Being”H it would not be a mere coincidence if Leib-
niz, a German thinker, expressly posited that “nothing is without reason”
only 23 centuries after incessant Western philosophical tradition. Indeed,
metaphysics would be complete and philosophy accomplished at the very
moment in which nothing escapes from the quest for reason as in the case of
German idealism (from Leibniz to Hegel, so to say). “What is mighty about
the principle of reason displays its power in that the principium reddendae
rationis—to all appearances only a Principle of cognition—also counts, pre-

121 will refer to Reginald Lilly’s edition as M. Heidegger [1991].
13The letter quoted in M. Heidegger [1991, 119].

14M. Heidegger [1991, 33].

153ee for example M. Heidegger [1991, 65].

16 Geschick in German. We will give further details in section 3.
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cisely in being the fundamental principle of cognition, as the Principle for
everything that is.”E

Yet, there is a fundamental paradox in Leibniz’s principle: either the
principle according to which everything-has-a-reason has itself a reason, or
we are dealing with the only principle which is not affected by what the
principle says. The way out of the problem could be assume it as an axiom
for axiomata sunt propositiones, quae ab ommnibus pro manifestis habentur,
i.e., axioms are principles that are held by everyone to be obvious. We can
in fact say that nothing is without a reason since it is equivalent to affirm
that nothing happens without a cause or, from a logical standpoint, any
demonstration that tries to avoid the principle of sufficient reason would fall
in contradiction. All in all, the paradox is also present in Chaitin’s quest
for 2 because you will always need reasons in any critique of the principle
of reason!

However, according to Heidegger, the axiomatic method suggested by
Leibniz does not tell us anything about the meaning of Reason and, worst
of all, it leads directly to the realm of mere prudential calculus. “It would
be both short-sighted and presumptuous if we wanted to disparage modern
axiomatic thinking. But it would also be a childish and pathetic notion if
we were to believe that this modern thinking would let itself be bent back
upon its great and open origin in the thinking of the Greeks.”ﬁ What Hei-
degger claims is that modern science responds to the demand of rendering
reasons without the capacity of mediating such a demand. Reflective think-
ing shrinks into instrumental reasoning because the principle of providing
sufficient reasons reduces beings to simple objects of calculation. Since it
would not be possible to think of the world and Man outside of the com-
plete technicizing of the atomic era, the key word that sums up the entire
process is information. lLe., “information at one and the same time means
the appraisal that as quickly, comprehensively, and profitably as possible
acquaints contemporary humanity with the securing of its necessities, its
requirements, and their satisfaction.”ﬁ To be our first computer scientist—
as Leibniz might be understood today—would mean to forget the principle
of being that grounds the principle of reason, that is, in Heidegger’s jar-
gon, the direction from whence the principle of reason “speaks” in both
axiomatic and informational way.

7M. Heidegger [1991, 23].
18M. Heidegger [1991, 20].
L9M. Heidegger [1991,124].
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Of course, there are lots of misunderstandings in Heidegger’s remarks:
Ad instance, he speaks as if, fifty years ago, neither the limits of formal ax-
iomatic systems nor the polysemy of the very concept of information were

clear 9]

But what I want to stress is something else. When Heidegger states
that “the unique unleashing of the demand to render reasons threatens
everything of humans’ being-at-home and robs them of the roots of their
substance,”@ he is really trying to show the limits of axiomatic thinking and
calculability, limits that can be seen only from the perspective of “Being.”
From this viewpoint, what Heidegger discovers seems to be very similar
to what Chaitin proves, namely the Principle of Insufficient reason. But
the way Heidegger gets there is quite different. Before comparing their
conclusions, let us look at the reasons Heidegger gives in order to show the
limits of the very principle of reason.

17.3. The darkest of modern thoughts

According to Heidegger, we can think outside or beyond the realm of Leib-
niz’s principle thanks to a “leap.” This would come from an understanding
of the Principle “nothing is without reason” in which the connection of the
words ‘is’ and ‘reason’ is more important than the link between ‘nothing’
and ‘without.” Heidegger distinguishes in fact between beings and Being:
The first—beings — is assimilated with the connection between ‘nothing’
and ‘without.” The second category—Being—is considered to represent
the other couple: ‘is’/‘reason’. Heidegger holds as “obvious” or “neces-
sary” that “all beings have a ground/ reason,”lﬂ so the leap occurs in the
case of Being. According to the German philosopher, this way we get the
ground /reason itself, i.e., the reason of the foundation that grounds but
has no ground as “Being reigns from out of the essence of ground/reason.
(...) Therefore being can never first have a ground/reason which would
supposedly ground it. (...) To the extent that being as such grounds, it
remains groundless. ‘Being’ does not fall within the orbit of the principle
of reason, rather only beings do.”ﬁ

20For example, Claude Shannon’s tripartite approach claims it would be necessary to
distinguish the technical problems regarding the quantification of communication from
the semantic issues concerning meaning and truth, let alone the impact and effectiveness
of information on human behaviour.

21M. Heidegger [1991, 31].

22Cf. M. Heidegger [1991, 110 and 125].

23M. Heidegger [1991, 51].
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Leibniz’s principle of reason therefore would not fully pass the test that
the other basic principle we use in any demonstration passes, that is Aris-
totle’s principle of contradiction which is presented in the fourth book of
Metaphysics as a “not hypothetical principle” (I' 3, 1005 b 14). Again,
the motive depends on the leap that occurs from the principle of reason as
foundation of beings (nothing/without) to being qua being “that is, qua
ground/reason.”@ We do not search for the ground/reason of the very
principle of reason and, hence, we avoid the regressio ad infinitum, only if
we admit a principle that gives us measures but still remains immeasurable.
We are dealing with a principle that grounds without having itself a ground
and that let you calculate and provide reasons while remaining itself incal-
culable. The more you try to provide reasons for everything—including
Being— the less you understand that the very principle of reason is noth-
ing but “an uttering of being.”ﬁ By reversing the perspective, Heidegger
thus speaks about the groundless “abyss” of what is necessarily incalcu-
lable, immeasurable, groundless, otherwise it would not be possible to get
any grounds, reasons, measures, or computations of scientific reasoning. To
be explicit: “Being, as what grounds, has no ground; as the abyss it plays
the play that, as Geschick, passes being and ground /reason to us.”lﬂ

On this very basis, the aim of the German philosopher is to represent
our era as the outcome and triumph of Western philosophical tradition.
The first attempt to quantify relations between words, signs, and things—
namely Leibniz’s research on the characteristica universalis—has led to a
world in which individuality vanishes at breakneck speed into total unifor-
mity and all depends on the provision of atomic energy to establish Man’s
domination over the World. The overall idea is that “for the first time a
realm is opened up which is expressly oriented toward the possibility of ren-
dering the ground of beings. (...) This epoch characterises the innermost
essence of the age we call modernity.”E] Heidegger’s critique of modernity
and of its “granddaughter,” i.e., contemporary technology in the atomic
era, is thus grounded on the limits of “the Mighty Principle” for it was this
very principle (is/reason) that turned out to guarantee calculability of ob-
jects (nothing/without) for instrumental cognition. The diagnosis is hence
complete: While the perfection of technology is only a simple echo of the

24M. Heidegger [1991, 53)].
251 M. Heidegger [1991, 49].
26 M. Heidegger [1991, 113].
2"M. Heidegger [1991, 55].
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required completeness of rendering reasons, this very completeness (noth-
ing/without) ends up in the oblivion of aliguid, namely Being, which est
sine ratione (ground/reason). In Heidegger’s phrase: “only beings have—
and indeed necessarily—a ground/reason. A being is a being only when
grounded. However, being, since it is itself ground /reason, remains without
ground/reason.”@ That is why ‘something’ is but has no reason: aliquid
sine ratione. Q.E.D.

17.4. A Post-modern turning point?

Heidegger has become the well-known hero of the contemporary philosoph-
ical approach which insists on the limits of instrumental reasoning and the
end of metaphysics. Somehow this does not sound all too foreign from
Chaitin’s own speculation. For example, in the conclusions of his Meta
Math! we read that formal axiomatic systems are a failure for coping with
creativity since “no mechanical process (rules of the game) can be really
creative, because in a sense anything that ever comes out was already con-
tained in your starting point.”@ Furthermore, with the case of the flip of
a coin Chaitin highlights what rationalism violently opposes. Indeed, for a
rationalist everything happens for a reason in the physical world and in the
world of mathematics everything is true for a reason. But, an infinite series
of independent tosses of a fair coin represents “a horrible nightmare for any
attempt to formulate a rational world view (...) because each outcome
is a fact that is true for no reason, that’s true only by accident!”lﬂ (By
the way, before exploring any connection between the halting probability
Q and, say, quantum mechanics@ this very idea was exploited in order to
prove that determinism would be perfectly compatible with the principle
that some things have no reason at all. In a nutshell, the idea of flipping
a coin “accomplishes just the opposite of digitising in computers: Instead
of absorbing all the micro-variation in the universe, it amplifies it, guaran-
teeing that the unimaginably large sum of forces acting at the moment will
tip the digitiser into one of two states, heads or tails, but with no salient
necessary conditions for either state.”)ﬁ

However, there is a paramount difference between Heidegger’s idea of

28M. Heidegger [1991, 125].

29G. Chaitin [2005, 142].

30G. Chaitin [2005, 119].

31See ad instance C. Calude [2002], and with M.A. Stay [2005].
32D.C. Dennett [2003, 85].
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something without a reason and Chaitin’s theorems. While the German
philosopher posits “something” as Principle, Chaitin presents it as facts re-
lated to ‘beings:’ This, of course, offers a much stronger position than, say,
Occam’s Razor or Leibniz’s idea of simplicity, for this perspective avoids
the slippery field of ‘is/reason’ by showing the flaws of ‘nothing/without.’
In particular, by proving that there are things without reason—namely the
independent mathematical facts of 2—Chaitin shows why Heidegger was
wrong in conceding that all beings have necessarily a ground /reason. There
is no need to accept this in order to preserve the exception of the ground-
less Principle! Indeed, ‘is/reason’ may vary: You could grasp it in a Dao
Wayﬂ or define it more precisely as axioms that “are exactly equal in size
to the body of interesting theorems.”@ At any rate, it is as if the foggy
realm of metaphysical principles would have contaminated the beings in the
world. What still remains metaphorical in Heidegger’s jargon on ‘is/reason’
as what is deprived of ground, becomes scientific with Chaitin’s definition
of randomness. He has in fact picked out from “the infinitely dark black-
ness of random reals” a single one which is properly ‘something/without’

reasonF_gl

Needless to say that this version of the principle of Insufficient reason—
what mathematicians call incompleteness—prevent us from some exaggera-
tions of most post-modern philosophers who, in the wake of Heidegger’s the-
sis, pretend “to leap-into-the-abyss.” In spite of the German philosopher,
Chaitin’s post-modern thesis, namely his “quasi-empirical” approach in
Maths shows how axiomatic thinking “let[s] itself be bent back upon its ori-
gin in the cosmos of the Greeks.”m In fact, contrarily to most post-modern
philosophers, Chaitin uses sound reasoning, namely meta-mathematics, in
order to demonstrate the limits of reason when it is forced to approach what
is both logically and computably irreducible, maximally unknowable. This
version of the principle of Insufficient reason, however, suggests a further
question: As far as Chaitin’s proofs concern the world of pure Maths, how
are they connected to the real world? Does God really play dice?

Here we have to distinguish between two fields: One has been ade-
quately studied by Chaitin and concerns physics and even biology. The
other is given by social sciences and contemporary debate on, for example,

33For this peculiar connection see G. Parkes [1987]. Further theoretical details in U.
Pagallo [2005Db].

34G. Chaitin [2005, 118].

35Cf. G. Chaitin [2005, 140].

36 Consider again M. Heidegger [1999, 20].
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determinism and free Will@ In both cases, however, you have the problem
of pointing out, so to speak, ‘something/without’ reason in the real world:
is that possible?

17.5. Hyper-modernity and some concluding remarks

Let me introduce you to the conclusions of this paper by summing up the re-
sults we have already got: Leibniz’s principle of reason is untenable because
Chaitin shows something that is true for no reason simpler than itself. Con-
trarily to Heidegger and to part of the contemporary philosophical thought
the mistake is not then in ‘is/reason,” namely scientific reasoning, but in
‘nothing /without’ related to beings. That would automatically mean for
Leibniz that some contingent events are groundless or without reason: for
Chaitin, “this mean[s] that physical randomness, coin tossing, something
non-mechanical, is the only possible source of creativity.”@ This version
of the principle of Insufficient reason as ‘something/without’ has emerged
in contemporary debate on true randomness in the sense of indeterminism.
On the one hand, Chaitin recalls Karl Svozil’s opinion “that some new,
deeper, hidden-variable theory will eventually restore determinacy and law
to physics.”ﬁ On the other, some scholars like Daniel Dennett would add
that you do not really need indeterminism, that is real randomness, in order
to vouchsafe free will and get ‘something/without’ cause@

Chaitin has explained his viewpoint on what is ‘something/without’ rea-
son in physics and why he interprets unpredictability and chaos—that is:
real intrinsic randomness—of quantum mechanics in a digital Way@ How-
ever, by adopting this perspective of Os and 1s as a measure of complexity
and information we shed further light on a significant issue in the traditional
philosophical debate as well as in social sciences. If determinism is to be
compatible with ‘something/without’ cause, you do not have to grasp the
complexity of social institutions as infinite—as occurs in mathematics—in
order to get the same results of incompleteness@ In particular, it is pretty
clear that truth can be represented as a sub-set of environmental complex-
ity also in social sciences. This is the case of legal systems with textbook

37See for example the essays edited by R. Kane [2002].
38G. Chaitin [2005, 142].

39G. Chaitin [2005, 120].

40D.C. Dennett [2003, 90].

41Cf. G. Chaitin [2005, 91-93].

42Full details in U. Pagallo [2006b].
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examples of fons extra ordinem like revolutions or “illegal customs” in Eu-
ropean civil law or like the Bill of Indemnity-tradition in UK’s common law.
As suggested by Hayek’s ideas and contemporary research on social evo-
lution, the principle of Insufficient reason states that ‘something/without’
cause does exist in human interaction for, otherwise, there would be no
third fruitful way between mere chaos and old historical determinism such
as Marx’s social laws or Hegel’s philosophy of historylEI

However, to admit that some things have no reason, is by no way to
admit a sort of narrative post-modern reasoning. Again, the mistake is not
in ‘is/reason’ as a demand of ground: The point is how to construe the
connection between ‘ground/reason’ and ‘something/without’ in a digital
way. If Heidegger presented Leibniz as responsible of the evils of moder-
nity, Chaitin thinks of Leibniz as the main precursor of Today’s digital
philosophy-paradigm and, indeed, it took more than two centuries to grasp
all of his hints! Once we have stressed the difference between Heideg-
ger’s version of the principle of insufficient reason—that is Being without
ground—and Chaitin’s version of ‘something/without,” it is hereby clear
why one should follow the second path. Instead of traditional metaphysics
or pure speculations, we get truths that are such for no reason simpler
than themselves. So, to be aware of the limits which the principle of rea-
son encounters and, hence, to understand the strength of the principle of
Insufficient reason through computable irreducibility and the maximally
unknowable—both in Maths and social sciences—does not lead to post-
modernism but to what I would like to call “Hyper-modernity.” Indeed,
Heidegger was right when he claimed that it is reason as scientific reason,
namely modernity which unveils the core of contemporary E-revolution and
technology. However, the German thinker failed to comprehend that it is
only through scientific reason that we focus on the very limits of reason
itself. After Chaitin’s analysis on both digital ontology and digital episte-
mology, it is then time to apply his theorems to metaphysics. The quest
for € is correlated to the traditional inquiry of ‘being qua being:” Aliquid
est sine ratione

431 analyse Chaitin’s contribution to contemporary debate in adaptive systems (as in
Murray Gell-Mann’s work), or in social complex systems (as in Mark C. Taylor’s re-
search), in G. Chaitin [2006, 87-92].

44Tt is noteworthy that there is no such contribution in an introduction like Loux-
Zimmerman [2003]. As far as I know the first work on “digital metaphysics” is by
E. Steinhart, Digital metaphysics, in The Digital Phoenix: How Computers are Chang-
ing Philosophy, edited by T. Bynum and J. Moor, Basil Blackwell: New York 1998, pp.
117-134.
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There is a strong analogy between proving theorems in mathematics and
writing programs in computer science. This paper is devoted to an anal-
ysis, from the perspective of this analogy, of proof in mathematics. We
will argue that while the Hilbertian notion of proof has few chances to
change, future proofs will be of various types, will play different roles,
and their truth will be checked differently. Programming gives mathe-
matics a new form of understanding. The computer is the driving force
behind these changes.

18.1. Introduction

The current paper, a continuation of [12], is devoted to an analysis of
proof in mathematics from the perspective of the analogy between proving
theorems in mathematics and writing programs in computer science. We
will argue that:

(1) Theorems (in mathematics) correspond to algorithms and not programs
(in computer science); algorithms are subject to mathematical proofs
(for example for correctness).

(2) The role of proof in mathematical modelling is very small: adequacy is
the main issue.

(3) Programs (in computer science) correspond to mathematical models.
They are not subject to proofs, but to an adequacy and relevance anal-

LCorresponding author
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ysis; in this type of analysis, some proofs may appear. Correctness
proofs in computer science (if any) are not cost-effective.

(4) Rigour in programming is superior to rigour in mathematical proofs.

(5) Programming gives mathematics a new form of understanding.

(6) Although the Hilbertian notion of proof has few chances to change,
future proofs will be of various types and will play different roles, and
their truth will be checked differently.

18.2. Proving vs. programming: today

Aristotle introduced the concept of proof as an epistemological tool, to es-
tablish absolutely certain knowledge. The argument follows a sequence of
rigourously defined steps, starting from “first principles”, which are claimed
to be self-evident truths, using rules which are truth-preserving. The orig-
inal intention was to derive certain conclusions, but this goal seems to be
too ambitious.

In mathematics, the first principles are called axioms, and the rules are
referred to as deduction/inference rules. A proof is a series of steps based
on the (adopted) axioms and deduction rules which reaches a desired con-
clusion. Every step in a proof can be checked for correctness by examining
it to ensure that it is logically sound.

According to Hilbert:

The rules should be so clear, that if somebody gives you what they claim
is a proof, there is a mechanical procedure that will check whether the
proof is correct or not, whether it obeys the rules or not.

While ideally sound, this type of proof (called Hilbertian or mono-
lithic [21]) cannot be found in mathematical articles or books (except for a
few simple examples). However, most mathematicians believe that almost
all “real” proofs, published in articles and books, can, with tedious work,
be transformed into Hilbertian proofs. Why? Because real proofs look
convincing for the mathematical community [21]. Going further, DeMillo,
Lipton and Perlis argued that real proofs should be highly non-monolithic
because they aim to be heard, read, assimilated, discussed, used and gen-
eralised by mathematicians—they are part of a social process.

Deductive rules are truth-preserving, but although the conclusion,

generically termed as theorem, yields knowledgfﬂ there is no claim that
it yields certain knowledge. The reason is simple: nothing certifies the

2We may called this deductive knowledge.
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truth of the axioms. The epistemic status of axioms is an interesting and
troubling question. Relativity appears in many instances, from the plural-
ity of geometries (Euclidean and non-Euclidean), to Godel’s incompleteness
theorem and various independence results (Continuum Hypothesis). Math-
ematically, there is no most preferred geometry neither the true set theory.
If there are no self-evident truths, then there is no certain knowledge. For
Thurston [54]

...the foundations of mathematics are much shakier than the mathe-
matics that we do.

Programming is the activity of solving problems with computers. It
includes the following steps: a) developing the algorithm to solve the prob-
lem, b) writing the algorithm in a specific programming language (that
is, coding the algorithm into a program), c) assembling or compiling the
program to turn it into machine language, d) testing and debugging the
program, e) preparing the necessary documentation.

Ideally, at d) one should have written: proving the correctness of the
algorithm, testing and debugging the program. We said, “ideally”, because
correctness, although desired, is only practised in very few instances (for ex-
ample, the programs involved in the proof of the Four-Color Theorem were
not proved correct.)ﬂ In programming practice (in a commercial/industrial
environment), correctness is seldom required and much less proved. Some
reasons include: a) the fact that, in general, correctness is undecidable [11],
so failure to prove correctness has little meaning, b) for most non-trivial
cases, correctness is a monumental task which gives an added confidence
at a disproportionate cost. There are many projects and products dedi-
cated to automated testing of program correctness, for example, VIPER
or the more recent TestEra (automated testing of Java programs). The
current approach in software and hardware design involves a combination
of empirical and formal methods aiming to get better and better programs.

18.3. Mathematical examples

We will analyse three mathematical problems which reflect the current evo-
lution of mathematical proofs.

3See the proof [10, 53].
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18.3.1. The twin prime conjecture

The twin prime conjecture states that there are infinitely many pairs of
twin primes (i.e. pairs (p, p+2), where p and p+ 2 are primes). To date, all
attempts to solve the problem have failed. (Recently, Arenstorf’s proof [2]
had a serious error and the paper was retracted.) In 2005, Goldston, Pintz
and Yildirim [29] proved that there are infinitely many primes for which the
gap to the next prime is as small as possible when compared with the av-
erage gap between consecutive primes. This spectacular result comes very
close to the twin prime conjecture, which asserts that, apart from the case
of 2 and 3, the gap is the smallest possible, i.e. 2. The Goldston—Pintz—
Yildirimir proof is explained in a recent paper by Soundararajan [52]. Here
are the main questions discussed: Can we say anything about the statis-
tical distribution of gaps between consecutive primes? Does every even
numbelﬂ occur infinitely many times as a gap between consecutive primes?
How frequently do twin primes occur? Interesting for our discussion is the
following comment [52] (p. 2):

Number theorists believe they know the answers to all these questions
but cannot always prove that the answers are correct.

Earlier, in 2003, Goldston and Yildirim announced that there are in-
finitely many primes such that the gap to the next prime is very small.
The proof looked convincing till A. Granville and K. Soundararajan dis-
covered a tiny flaw which looked fatal (see [23] for the story). The flaw was
discovered not by carefully checking Goldston and Yildirim’s proof, but by
extending it to show that there are infinitely many primes such that the gap
to the next prime is less than 12 (the gap-12 theorem), a result which was
too close to the twin prime conjecture to be true: they didn’t believe it!
B. Conrey, the director of the American Institute of Mathematics, which
was close to this work, is quoted by Devlin [23] by saying that, without the
“unbelievable” Granville and Soundararajan gap-12 theorem,

the Goldston-Yildirim proof would in all probability have been published
and the mistake likely not found for some years.

How many proofs are wrong? Although many (most?) proofs are prob-
ably “incomplete or benignly wrong”—that is, they can be in principle
fixed—it is almost impossible to make an educated guess about how many
proofs are wrong. One reason is that many proofs are only superficially
checked, because either they have limited interest or they never come to be
used (or both).

4Every gap between primes is even except for 3 and 2.
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18.3.2. The Kepler conjecture

In 1997, Thomas Hales [31] published a detailed plan—a mixture of
mathematical proofs and extensive computer calculations (see also [55])—
describing a new strategy for attacking the Kepler conjecture. Hales’ full
proof appears in a series of papers taking up more than 250 pages and
gigabytes of computer programs and data [15], all posted on the Internet.
The proof cannot be checked without running his programs. In the end,
his paper [32] was published in Annals of Mathematics, in spite of the in-
conclusive verdict given by the panel of 12 referees (see more in [14]).

The semi-failure of the correctness-checking process motivated Hales to
start the project Flyspeck [27] whose purpose is to produce a formal proof
of the Kepler Conjecture. Hales estimates that the project will run for 20
years before reaching a final conclusion.

We are motivated to join T. Anderson [9] (p. 2389) in asking the ques-
tion: must we consign mathematics to the dustbin until computers have
confirmed the validity of the theorems and proofs?

18.3.3. The Poincaré conjecture

The Poincaré conjecture was stated in 1904 by Henri Poincaré [43]. Col-
loquially, it states that the three-dimensional sphere is the only type of
bounded three-dimensional space possible that contains no holes. The first
solution carries a $1 million prize, as one of the Millennium Problems of
the Clay Mathematical Foundation [20][]

The most significant scientific achievement of 2006, the Breakthrough of
the Year, was, according to Science magazine, the solution of the Poincaré
conjecture by Grigory Perelman [35]:

This year’s Breakthrough salutes the work of a lone, publicity-shy Rus-
sian mathematician named Grigori Perelman, who was at the Steklov
Institute of Mathematics of the Russian Academy of Sciences until 2005.
The work is very technical but has received unusual public attention
because Perelman appears to have proven the Poincaré Conjecture, a
problem in topology whose solution will earn a $1 million prize from the
Clay Mathematics Institute. That’s only if Perelman survives what’s left
of a 2-year gauntlet of critical attack required by the Clay prize rulesﬂ

5If you think that this is a lot of money, then refer to the BBC announcement—broadcast
as we are writing this paper—confirming that “David Beckham will leave Real Madrid
and join Major League Soccer side LA Galaxy at the end of the season”; he will be paid
$1 million per week [4].

6Most mathematicians think he will.
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Perelman’s solution appears in a series of papers he circulated and posted
on the Internet (not published yet?) in 2003 [40-42]. In 2006, his solution
was officially recognised: Perelman was offered the Fields Medal. As is
well-known (and publicised), Perelman declined the Fields Medal. Rumour
has it that he has expressed little interest in the Clay prize too.

Beyond obvious journalistic aspects, the story is significant in at least
two directions: a) it reinforces the social aspect of the process of doing
mathematics, as the Clay prize rules stipulate that an acceptable solution
has to resist the critical analysis of the mathematical community for no less
than two years, and b) the community accepted a result which was only
posted on the Internet. While a) is not surprising in the least, we may ask
whether b) is the starting of a new pattern in mathematical communication.

18.4. Computer science examples

We continue with three examples from computer science.

18.4.1. Intel’s bug
According to Wikipedia,

A software bug is an error, flaw, mistake, failure, or fault in a computer
program that prevents it from behaving as intended (e.g., producing an
incorrect result).

“Flaw Reported in New Intel Chip” made the headlines of the Technol-
ogy/Cybertimes section of the New York Times on May 6, 1997:

The Intel Corp. will not formally introduce its Pentium II microproces-
sor until Wednesday, but the World Wide Web is already buzzing with
reports of a bug that causes the new chip to make errors in some complex
mathematical calculations.

Only three years earlier, on December 20, 1994, Intel recalled its popular
Pentium processor due to an “FDIV” bug discovered by Thomas Nicely,
who was working on, guess what? He was calculating Brun’s sum [38], the
series formed with the reciprocal of twin primes:

O I (T [ (LI Y IR I
375 57 1113 17 19 oo

Nicely worked with five PC’s using Intel’s 80486 microprocessor and a
Pentium [37]. Comparing the results obtained with the old machines and



Proving and Programming 307

the new Pentium, he observed a discrepancy in the calculation of the re-
ciprocals of the twin primes 824,633,702,441 and 824,633,702,443. Running
various tests, he identified the source of error in the floating point hard-
ware unit of the Pentium CPU. Twenty three other errors were found by
Andreas Kaiser, while Tim Coe arrived at the simplest error instance: the
division 4,195,835/3,145,727—which evaluates to 1.33382044 - - - —appears
on the Pentium to be 1.33373906- - - Coe’s ultra-simple example moved the
whole story from the Internet to New York Times.

In contrast with errors found in mathematical proofs, which remain
within the realm of mathematical experts, computer bugs attract the at-
tention of a larger audience. For example, on January 17, 1995, Intel an-
nounced that it will spend $475 million to cover the recall of its Pentium
chip to fix the problem discussed above, a problem that may affect only a
few users.

Can bugs be avoided? More to the point of this article, can the use of
rigorous mathematical proofs guarantee that software and hardware perform
as expected?

18.4.2. From algorithms to programs

Bloch [6] identifies a bug in the Java implementation of a standard binary
searcll] Here is Bloch’s code:

1: public static int binarySearch(int[] a, int key) {
2: int low = 0;

3: int high = a.length - 1;

4:

5: while (low <= high) {

6: int mid = (low + high) / 2;
7: int midVal = a[mid];

8:

9: if (midVal < key)

10: low = mid + 1;

11: else if (midVal > key)

12: high = mid - 1;

13: else

14: return mid; // key found
15: }

7 Apparently was only recently reported to Sun, persisting for nine years.
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16: return -(low + 1); // key not found.
17: }

The bug is identified in line 6
6: int mid =(low + high) / 2;

with the explanation that the average value is truncated down to the near-
est integer, a statement which is ¢rue for integers, but false for “bounded
integers”. If the sum of low + high is higher than 23! — 1, then the value
overflows to a negative value and stays negative by division to 2. How fre-
quently can this situation appear? For arrays longer in length than 23°—not
uncommon for Google applications—the bug appears. Bloch [6] offers some
fixes and an implicit complaint: how come that the bug persisted so long
when he, as a PhD student, was taught a correctness proof [5] of the binary
search algorithm? Finally, he asks the crucial question: “and now we know
the binary search is bug-free, right?”

18.4.3. Bugs everywhere and Hoare’s question

Computer bugs are, literally, everywhere and they may affect many users.
Most important software companies maintain bug databases: bugs.sun.
com/bugdatabase/index. jsp, bugs.kde.org, MySQLBugs, bugzilla.
mozilla.org, bugs.apache.org, etc. Here is a model of how to report
bugs at Sun:

If we don’t know about your problem, we can’t fix it. If you’ve isolated a
problem that you think we’re causing, and you can’t find it here, submit
a bug! Make sure you include all the relevant information including all
the details needed to reproduce the problem. Submissions will be verified
and prioritized. (Please note that bug fizes are not guamnteed.)EI

Bugs can be of different types, hence producing varying levels of in-
convenience to the user of the program. The costs of some bugs may be
almost incalculable. A bug in the code controlling the Therac-25 radiation
therapy machine led to at least six deaths between 1985 and 1987 [60]. The
European Space Agency’s $1 billion prototype Ariane 5’s first test flight
on June 4, 1996, failed, with the rocket self-destructing 37 seconds after
launch [3]; the reason was a software bug, arguably one of the most expen-
sive bugs in history. More recently, a security flaw in PayPal was exploited
by fraudsters to steal credit card numbers and other personal information

8Qur Italics.
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belonging to PayPal users (June 16, 2006); and the Y2K7 bug (January 3,
2007) affected Microsoft’s preview version of Expression Design. Finally, a
bug discovered by M. Schwartz [50] found no interest in the community, so
he had to write a small script showing how to use it to get all the email
addresses from members subscribing to a Google group; Google fixed the
problem on January 5, 2007. Improperly coded software seems to have
caused the Mars Global Surveyor failure in November 2006; in January
2007, NASA launched an investigation [62].

The list can easily be continued. Wired magazine maintains a history
of the worst software bugs [28].

In spite of all the examples discussed above, bugs and faulty software
have killed remarkably few people. They caused more embarrassment, nui-
sance, inconvenience, but many fewer catastrophes. Early in January 2007,
a 6.7 earthquake in Taiwan produced serious interruptions in the internet
in Asia [58]; this showed that the internet is far from shockproof, but conse-
quences were, again, not catastrophic. Finally, one more example: Boeing
777, one of the most automatic fly-by-wire air-planes, has flown since 1995
without any crashes or serious problems. So, we can ask with Hoare [34]
the question: how did software get so reliable without proof?

18.5. Proving vs. programming: tomorrow

18.5.1. Theorems and programs

The practice of programming, by and large, produces “discoursive knowl-
edge”, a knowledge resulting from computing. “Deductive knowledge”,
complementary to discoursive knowledge, can be obtained by the mathe-
matical analysis of the program (in some given context). These notions
of knowledge correspond to Dijkstra’s approaches (see [24]) to programs:
postulational and operational. Under the postulational approach, the pro-
gram text is considered a mathematical object. The semantic equivalence
of two programs means that they meet the same specification. According
to the operational approach, reasoning about programs means building a
computational model with respect to which the program text is interpreted
as executable code.

According to Dijkstra:

The tragedy of today’s world of programming is that, to the extent that it
reasons about programs at all, it does so almost exclusively operationally.
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The argument? “With growing size or sophistication of the program, the
operational argument quickly becomes impossible to carry through, and
the general adherence to operational reasoning has to be considered one
of the main causes of the persistence of the software crisis”. Dijkstra be-
lieves that, ultimately, real programmers don’t reason about their programs,
“they rather get their substitute for intellectual satisfaction from not quite
understanding what they are doing in their daring irresponsibility and from
the subsequent excitement of choosing the bugs they should not have in-
troduced in the first place”.

The last quotation reminds us what Bertrand Russell said about math-
ematics and what Martin Heidegger wrote about science: “Wissenschaft
denkt nicht” (Science does not think). For Dijkstra, the analoguous situ-
ation in mathematics is the distinction between formal and informal; per-
haps, he had in mind situations such as the distinction between axiomatic
and naive set theory.

It makes sense to prove the correctness of an algorithm, but not the
correctness of a program as various authors have argued [21, 26]. Programs
are analogues of mathematical models; they may be more or less adequate
to code algorithms. Adequacy is a property which depends on many factors,
from pure formal/coding ones to physical and engineering ones. One can
even argue that a “correctness proof” for a program, if one could imagine

such a thing, adds very little to one’s confidence in the program. In Knuth’s
[36] words:

Beware of bugs in the above code: I have only proved it correct, not
tried it.

The computer science analogy of the operational-postulational distinc-
tion corresponds to the difference—considered already at the beginning
of the 19th century—between mathematics understood as calculation and
mathematics as qualitative conceptual reasoning. In the analogy between
proving and programming, theorems correspond to algorithms not programs;
programs correspond to mathematical models.

18.5.2. Mathematics = proof?

The role of proof in mathematical modelling is very small: adequacy is the
main issue! As mathematical modelling is closer to coding algorithms into
programs, selecting algorithms to code, designing specifications to imple-
ment, one can re-phrase the arguments against the idea of proof of cor-
rectness of programs [21, 26] as arguments against the idea of proof of
correctness of mathematical models. Models evolve and become more and
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more adequate to the reality they model: however, they are never true.
Here is an illuminating description by Schwartz [49]:

...it may come as a shock to the mathematician to learn that the
Schrédinger equation for the hydrogen atom ... is not a literally correct
description of this atom, but only an approximation to a somewhat more
correct equation taking account of spin, magnetic dipole, and relativistic
effects; that this corrected equation is itself only an ill-understood ap-
proximation to an infinite set of quantum field-theoretical equations; and
finally that the quantum filed theory besides diverging, neglects a myriad
of strange-particle interactions whose strength and form are largely un-
known. ... The physicist, looking at the original Schrédinger equation,
learns to sense it ... and this sense inspires ...

For example, engineers use theorems by “plugging in” values and relying
on some (physical) interpretations of the conclusion. This is what makes
planes fly and bridges stand.

The modelling component of mathematics appears not only in appli-
cations, but also in the way mathematics develops new concepts. Many
important notions in mathematics reached an accepted definition only after
a long process of modelling, from an intuitive, pre-mathematical notion to
a more precisely defined, formal one. In the end, the accepted definition is
adopted as a thesis claiming its adequacy [51]. For example, “Weierstrass’s
thesis” is the statement that the intuitive notion of continuity is exten-
sionally equivalent to the notions yielded by the now standard definitions
of “continuous function”. Other examples include: the “function thesis”
(identification of a function with a set of ordered pairs), “Tarski’s thesis”
(identification of Tarski’s definition of truth in a formalised language with
the intuitive notion of truth), “the Church-Turing thesis”, etc. None of
these theses can be proved, but various analyses can conclude their degrees
of plausibility/adequacy /applicability. Mathematics in both its practice
and development is an “open-texture” [51].

18.5.3. Checking proofs

There are many new types of proofs: probabilistic, experimental or hybrid
proofs [7, 8] (computation plus theoretical arguments). Reflecting some-
how Jean-Francois Lyotard’s “No truth without money”, Zeilberger [56]
has argued in favour of the transition from rigorous proofs to an “age of
semi-rigorous mathematics, in which identities (and perhaps other kinds
of theorems) will carry price tags” measured in the computer and human
resources necessary to prove them with a certain degree of confidence.
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Zeilberger [57] sees the evolution of mathematics as follows:

The real work of us mathematicians, from now until, roughly, fifty years
from now, when computers won’t need us anymore, is to make the tran-
sition from human-centric math to machine-centric math as smooth and
efficient as possible.

Let’s do the following mental experiment: apply literally to mathemati-
cal practice Hilbert’s requirement for proof stated in Section (in logical
terms, the proofs of a theory form a computable set). Then Anderson’s ques-
tion, posed at the end of Subsection is not only not surprising, but
should be answered in an affirmative way. This could be a reasonable mo-
tivation for the project Flyspeck.

Probabilistically checkable proofs are mathematical arguments that can
be checked probabilistically by reading just a few of their bits. In the early
1990’s it was proved that every proof can be effectively transformed into a
probabilistically checkable proof with only a modest increase in the original
proof length. However, the transformation itself was complex. Recently, a
very simple procedure was discovered by Dinur; see the presentation [48].

Now, feeling a loss of certitude, we should remember that Thales was the
first to stimulate his disciples to criticise his assertions. This tradition was
later lost, but recovered with Galilei. With Thales and Galilei we learned
that human knowledge is essentially conjectural (see also [45]). Should
mathematics and computer science accept being guided by this slogan, or
is it adequate only for the natural and social sciences?

18.5.4. Communication and understanding

Of course, no theorem is validated before it is communicated to the math-
ematical community (orally and, eventually, in writing). Manin states it
clearly:

Proof is not just an argument convincing an imaginary opponent. Not
at all. Proof is the way we communicate mathematical truth.

However, as Rota [46] pointed out:

One must guard, however, against confusing the presentation of mathe-
matics with the content of mathematics.

Proofs have to be written on paper, which means proofs are physical.
From this perspective, proofs depend upon the physical universe (see more
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in [13]). We already have to cope with existing, extremely long proofs.
What about proofs that are too long to be written down? They may exist
in principle, but they are impossible to readﬂ

In order to be able to amplify human intelligence and prove more com-
plicated theorems than we can now imagine, we may be forced to accept in-
comprehensible or only partially comprehensible proofs. We may be forced
to accept the help of machines for mental, as well as physical, tasks.

If mathematics depends on physics and mathematics is the main tool to
understand physics, don’t we have some kind of circularity? One explana-
tion is that, in Lakatos’s words, “mathematics is quasi-empirical”, as has
been extensively discussed by Chaitin (see [16, 17]).

Does physical interference combined with the use of computers destroy
the understanding of mathematical facts? One could know that a theorem

is true, but not really understand it! For Chaitin [18] (p. xiii) this is not
the case:

To me, you understand something only if you can program it. (You, not
someone else!)

Why? Because [19] (p. 30):

... programming something forces you to understand it better, it forces
you to really understand it, since you are explaining it to a machine.

18.5.5. Rigour: operational vs. conceptual

Standards of rigour have changed throughout the history of mathematics,
and not necessarily from less rigour to more rigour. For Bertrand Russell,
certainty has to match in power religious faith: “I wanted certainty in the
kind of way in which people want religious faith”.

Serre was quoted [47] saying that mathematics is the only producer of
“totally reliable and verifiable” truths. This opinion seems to be contra-
dicted by both Knuth [36]:

...programming demands a significantly higher standard of accuracy.
Things don’t simply have to make sense to another human being, they
must make sense to a computer.

and Thurston [54]:

9 An exponentially long quantum proof cannot be written down, since that would require
an exponential amount of “classical” paper, but a quantum mind could directly perceive
the proof, [13].
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The standard of correctness and completeness necessary to get a pro-
gram to work at all is a couple of orders of magnitude higher than the
mathematical community’s standard of valid proofs.

When one considers how hard it is to write a computer program even
approaching the intellectual scope of a good mathematical paper, and
how much greater time and effort have to be put into it to make it
“almost” formally correct, it is preposterous to claim that mathematics
as we practice it is anywhere near formally correct.

But we can go further into the past. Old Greek mathematics, with
Pythagoras, Plato and Euclid, was essentially conceptual and this is the
reason why they were able to invent what we call today a mathematical
proof. Babylonian mathematics was exclusively operational. The move
from an operational to a conceptual attitude in computer programming is
similar to the evolution from Babylonian to Greek mathematics.

Coming to more recent periods in the history of mathematics, we observe
the strong operational aspect of calculus in the 18th century, in contrast
with the move to the predominantly conceptual aspect of mathematical
analysis in the 19th century. Euler is a king of operational mathematics;
Riemann and Weierstrass express per excellence the conceptual attitude.
The transition from the former to the latter is represented by giants such
as Abel and Cauchy. When Cauchy believed that he had proved the con-
tinuity of the limit of a convergent sequence of continuous functions, Abel,
with no ironical intention, wrote: “Il semble que le théoreme de Monsieur
Cauchy admet des exceptions.”E But, at that moment, neither of them
was able to invent the notion of uniform convergence and, as a matter of
fact, neither convergence nor continuity was effectively clarified. Only the
second half of the 19th century brought their full understanding, together
with the idea of uniformity, either with respect to convergence or with re-
spect to continuity. We see here all characteristic features of a transition
period, the transition from the operational to the conceptual attitude.

To stress the two facets of Cauchy’s mathematics, one belonging to the
intuitive-operational, the other to the rigourous-conceptual attitude, let us
recall that, despite the fact that Cauchy is undoubtedly the founder of the
exact differential calculus in the modern sense, he is also the mathemati-
cian who was convinced that the continuity of a function implies its dif-
ferentiability and hence that any continuous function can be geometrically
represented. We had to wait for Weierstrass and Riemann to understand

10Tt seems that the theorem of Mr Cauchy admits exceptions.
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the gap existing between some mathematical concepts and their intuitive
representation.

However, this evolution does not concern only calculus and analysis. It
can be observed in all fields of mathematics, although the periods in which
the transition took place may be different for various fields. For instance,
in algebraic geometry it took place only in the 20th century, with the work
of Oscar Zarisky. In fact, any conceptual period reaches its maturity under
the form of an operational one, which, in its turn, is looking for a new
level of conceptual attitude. The whole treatise of Bourbaki is a conceptual
reaction to an operational approach. Dirichlet’s slogan asking to replace
calculations with ideas should be supplemented with another, complemen-
tary slogan, requiring us to detect an algorithmic level of concepts.

Can we expect a similar alternation of attitudes in respect to program-
ming? Perhaps it is too early to answer, taking into account that the whole
field is still too young. The question is not only academic, as the project
Flyspeck reminds us.

18.5.6. Is it meaningful to speak about the truth of axioms?

In Section we argued that mathematical proofs do not produce cer-
tain knowledge; they produce rational belief. The epistemological value of
a proof reside in the degree of belief of its axioms. What is then the value
of proof? Is it meaningful to speak about the truth of axioms?

First, a few more words should be said about axioms and primitive
terms. Euclid avoids reference to primitive terms, but they exist in his
Elements, hidden by pseudo-definitions such as “We call point what has no
parts”. Only modern axiomatic systems make explicit reference to primi-
tive terms. Obviously, programs too could not be conceived in the absence
of some primitive terms. A similar remark is in order about axioms. To
what extent is it meaningful to raise the question about the truth of some
axioms? Semantics is a matter of interpretation of a formal system, which,
in its turn, has some primitive terms and some axioms among its bricks.
Circularity is obvious. Godel’s (true) statements that cannot be proved
could not be conceived in the absence of the respective formal system,
which in its turn has among its bricks some primitive terms and some ax-
ioms. Maybe we can refer to another way to understand meaning, a way
avoiding Hilbert’s itinerary? For instance, the way it is understood in C.
S. Peirce’s semiotics or in modern linguistics. But do they have the rigour
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we expect from a mathematical approach?

The whole idea of a formal proof is strictly dependent of the idea of a
formal system. Is it meaningful to raise the question whether the Zermelo—
Fraenkel axioms for set theory are or not true? We adopt a convention and
it is proved by Godel that if these axioms are consistent, then they remain
consistent by adding the choice axiom or the continuum hypothesis.

It is interesting to observe that some authors have supplemented the
Zermelo-Fraenkel axioms with the foundation axiom (aiming to inter-
dict Russell’s sets which are elements of themselves), while more recently
Aczel and Barwise [1] have replaced the foundation axiom with the anti-
foundation axiom, where hypersets are allowed. An object A is a hyperset
if there exists an infinite sequence A(n) such that A(1) = A and for each
n, A(n + 1) is an element belonging to A(n). In the particular case when
A(n) = A for each n, we get the Russell sets. So, an axiom was replaced
by its negation and the resulting theory proved to be very interesting. It
has applications in mathematics (non-standard analysis), computer science
(data bases, logical modelling of non-terminating computational processes),
linguistics and natural language semantics (situation theory), and philoso-
phy (the Liar Paradox). The well-known scenario of non-Euclidean geome-
tries proves to be once more valid.
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Chapter 19

God’s Number: Where Can We Find the Secret of the
Universe? In a Single Number!

Marcus Chownll]

New Scientist, London, UK; MChown@ compuserve. com

Computers are useless. They can only give you answers.
Pablo Picasso

There is hardly any paradox without utility.

Gottfried Leibniz

Some time ago a group of hyper-intelligent pan-dimensional beings de-
cided to answer the great question of Life, The Universe and Everything.
To this end they built an incredibly powerful computer, Deep Thought. Af-
ter the great computer program had run for a few million years, the answer
was announced. And the answer was ...

.000000100000010000100000100001110111001100100111100010010011100.. . .

Come again? Surely, it was 427 Well, in Douglas Adams’ novel The
Hitch Hiker’s Guide to the Galazy it certainly was. But, in the real world,
rather than the world of Arthur Dent, Zaphod Beeblebrox and Ford Prefect,
the answer to the question of Life, The Universe and Everything is very
definitely. ..

.000000100000010000100000100001110111001100100111100010010011100.. . .

The number is called Omega and, remarkably, if you knew its first few
thousand digits, you would know the answers to more mathematical ques-
tions than can ever be posed. What is more, the very existence of Omega
is a demonstration that most mathematics cannot be discovered simply by

1This article was first published in the book Marcus Chown. The Never-Ending Days
of Being Dead (Faber, London, 2007). It is re-published here with the kind permission
of Faber.
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applying logic and reasoning. The fact that mathematicians have little dif-
ficulty in discovering new mathematics may therefore mean that they are
doing something—employing “intuition” perhaps—that no computer can
do. It is tantalising evidence that the human brain is more than a jelly-
and-water version of the PC on sitting on your desktop.

Omega () actually crops up in a field of mathematics invented by an
Argentinian-American called Gregory Chaitin. Algorithmic Information
Theory attempts to define “complexity” E|

This is a very difficult concept to pin down precisely yet a precise defi-
nition is extremely important in many fields. How else, for instance, can a
biologist studying evolution objectively say that a human is more complex
than a chimpanzee or even a jellyfish?

Chaitin invented AIT when he was 15, the same age Wolfram was when
he began publishing papers in physics journals. His principal concern at
the time was with numbers. But, in fact, AIT applies to much more. After
all, as we all know today, information describing everything—from words
to pictures to music—can ultimately be expressed in the form of numbers.
We are living in a “digital” world.

Chaitin’s key idea was that the complexity of a number can be measured
by the length of the shortest computer program that can generate it. Take,
for instance, a number which goes on forever such as 919191. .. Although
it contains an extremely large number of digits—it goes on forever after
all—it can be generated by a very short program:

Step 1: Write “91”
Step 2: Repeat step 1

According to Chaitin’s measure, therefore, the number 919191. . .is not
very complex at all. The information it contains can be reduced, or
“compressed”, into a much more concise form than the number itself—
specifically, the two-line program above.

Actually, Chaitin is a bit more precise about what he means by the
“shortest computer program”. He is a mathematician, after all. He means
the “shortest computer program encoded in binary that can generate a par-

<

ticular number, itself expressed in binary “.

2Many of the ideas of AIT were invented independently by the Russian Andrei Kol-
mMogorov.
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Binary means a string of Os and 1s and is pretty much synonymous with
the word digitalﬂ All computer programs—including Microsoft Windows—
are ultimately encoded in binary. So it is not hard to imagine a computer
program with strings of Os and 1s representing both numbers and com-
mands such as “Repeat step 17. It is the length of just such a program
that Chaitin equates with the complexity of a number.

According to AIT, if there are two numbers and generating the first
requires a program of length 37 binary digits, or bits, while generating the
second requires one 25 bits long, the first number is the more complex.

Pattern is the key. If the digits of a number have some kind of pattern—
like the pattern of 919191...—the pattern can be used as a shortcut to
generate the number. Consequently, the binary program necessary to gen-
erate the number is relatively short—it has fewer bits than the number
itself. Such a number is said to contain reducible information because it
can be reduced, or compressed, into a more compact form—the form of the
computer program.

Most numbers have no discernible pattern, however. Unlike 919191. . .,
their digits are entirely unrelated to each other. The only way for a com-
puter program to generate such a number is to write it out in full. This is
no compression at all. The program is as long as the number itself. Such
a number is said to contain irreducible information because it cannot be
squeezed into a more compact form. This is where Omega, “the jewel in
the crown of AIT”, comes in. It takes the idea of irreducible information
to its insane, logical extreme.

Omega, which was first defined by Chaitin in the 1970s, is an infinitely
long number whose digits are without the slightest trace of pattern. Con-
sequently, there is no way to generate its first 10 digits with a program less
than 10 digits long; no way to create its first 511 digits with a program
shorter than 511 digits in length; and so on. Omega’s never-ending se-
quence of Os and 1s can be generated only with an infinitely long computer

3Binary was invented by the 17th-century mathematician Gottfried Leibniz. It is a way
of representing numbers as a strings of Os and 1s. In everyday life, we use decimal, or
base 10. The right-hand digit represents the 1s, the next digit the 10s, the next the 10 x
10s, and so on. For instance, 9217 means 741 X 10+2 x (10 x 10) +9 x (10 x 10 x 10). In
binary, or base 2, the right-hand digit represents the 1s, the next digit the 2s, the next
the 2 x 2s, and so on. So, for instance, 1101 means 1+0Xx2+1x (2Xx2)+1X (2x2x2),
which in decimal is 13.
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program. There is no shortcut, no way to compress it into a more compact
form. It is the ultimate in irreducible information 4

Chaitin calls it a “very dangerous number”. “On the one hand, it has
a simple, straightforward mathematical definition,” he says. “On the other
hand, its actual numerical value is maximally unknowable.” People often
think of pi—the ratio of the circumference to a diameter of the circle—
as complex. After all, its digits—3.415926...—go on forever and do not
appear to repeat. However, it turns out that pi can be generated by a
relatively simple computer program and so, by Chaitin’s measure, is not
very complex at all. “By comparison, Omega is infinitely more complex,”
says Chaitin.

Omega is like an infinite series of coin tosses—with the “heads” equiva-
lent to Os and the “tails” to 1s. The outcome of each toss in such a series is
entirely unrelated to that of the previous toss. The only one way to discover
the sequence of “heads” and “tails” in an infinite series of coin tosses is to
toss a coin an infinite number of times. There is no shortcut. “And this is
exactly the way it is with the digits of Omega,” says Chaitin.

But Omega, it turns out, is more—much more—than simply an in-
finitely random, infinitely complex, infinitely incompressible number. Un-
expectedly, it turns out to have a deep connection with the ultimate limi-
tations of computers—what they can and cannot compute.

19.1. Uncomputability

The question of what computers can and cannot do was an obsession of
the English mathematician Alan Turing. During the Second World War,
Turing was stationed at Britain’s top secret code-breaking establishment at
Bletchley Park in Buckinghamshire. There he helped break the fiendishly
complex “Enigma” and “Fish” codes with which the Nazis encoded their
most secret radio transmissions. The intelligence gathered enabled Winston
Churchill and the Allies to anticipate German actions, saving countless lives
by shortening the war, some say by up to two years.

Turing’s code-breaking success relied on “Colossus”, the world’s first
programmable electronic computer, more than 10 of which were in oper-

4 Actually, there is not one Omega but a whole class of Omegas. This is because Omega
depends on the particular type of computer language used to generate a number. It
would not be the same, for instance, in two languages that used a different string of Os
and 1s to code for a task like “Repeat step 17.
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ation at Bletchley Park and Cheltenham by the end of the war. But his
enduring fame rests on work he carried out earlier, in the 1930s, on a far
more theoretical type of computer—one he invented with the specific pur-
pose of figuring out the limits of computers.

A “Turing machine” is simply a box. A 1-dimensional tape with a series
of 0s and 1s inscribed on it is fed into the box and the same tape emerges
from the box with a different series of 0s and 1s on it. The “input” is
transformed into the “output” by a read/write head in the box. As the
tape passes the head, one digit at a time, the head either leaves the digit
unchanged or erases it, replacing a 0 by a 1, and vice versa. Exactly what
the head does to each digit is determined by the “internal state” of the box
at the time—what, in today’s jargon, we would call a computer program.

With its input and output written in binary on a 1-dimensional tape, a
Turing machine is a wildly impractical device. Practicality, however, was
not the point. The point was that, with the Turing machine, Turing had
invented—on paper, at least—a machine that could simulate the operation
of absolutely any other machineﬂ

Nowadays, a machine that can simulate any other machine—a “univer-
sal machine” —is not considered remarkable at all. Such devices—capable
of carrying out not one specialised task but any conceivable task—are ubig-
uitous features of the world. They are called computers. In the 1930s, how-
ever, the universal Turing machine appeared to be straight from the pages
of science fiction. The only way computing machines of the day could carry
out different tasks was if they were painstakingly rewired. Turing’s ge-
nius was to see that this was unnecessary. With a universal machine—a
general-purpose computer—it was possible to simulate any other machine
simply by giving it a description of the other machine plus the computer
program for the other machine. There was no need to change the wiring—
the hardware—only the software.

Turing imagined the software for his universal Turing machine inscribed
as a long series of Os and 1s on a cumbersome 1-dimensional tape. Fortu-
nately, today’s computers are a bit more sophisticated than Turing’s vision
and their software comes in a considerably more user-friendly form!

In the universal Turing machine, however, Alan Turing can in fact be

5And it could do this using only seven basic commands! (i) Read tape, (ii) Move tape
left, (iii) Move tape right, (iv) Write 0 on tape, (v) Write 1 on tape, (vi) Jump to another
command, and (vii) Halt.
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said to have invented the modern general-purpose computer, a machine
whose unprecedented flexibility is guaranteed by infinitely re-writable soft-
ware.

Turing’s genius was to recognise that, in the final analysis, all a com-
puter really is is a device for shuffling symbols. One sequences of symbols
is fed in. And another sequence of symbols is spat out which depends on
its computer program. This is all any computer does. Take, for instance,
the computer that flies a plane. It is fed sequences of symbols which tell
it the position of the plane, its speed, the engine temperature, and so on.
The program then acts on this information, telling the computer what se-
quences of symbols it should spit out in order to control engine revs, rudder
direction and so on.

A universal Turing machine similarly was a symbol shuffler. But the key
thing for Turing was that it could simulate the operation of any conceivable
machine. This meant that it could compute anything that was computable,
and, recall, he was interested in what could and could not be computed.
All he had to do, therefore, was find a task that would flummox a universal
Turing machine. Remarkably, he stumbled on one immediately. Even more
remarkably, the task was fantastically simple.

The impossible task was to take a computer program—any computer
program—and determine whether or not it ever stops.

What exactly does this mean? Well, people who write computer pro-
grams for a living know that such programs sometimes get stuck in endless
loops, going round and round the same set of instructions like a demented
hamster in a wheel. The task Turing set his universal Turing machine was
to take a program and compute whether or not this will happen—=Spitting
out, say a 0 if the answer is, yes, and a 1 if it is, no.

At first sight, this “halting problem” seems ridiculously simple to solve.
The easiest way to check whether a particular program halts or not is sim-
ply to run it on a computer and see. This is certainly feasible if the program
comes to a halt after a minute or an hour or even after a year. But what if
it halts only after 1000 years or a trillion trillion years? Nobody can wait
that long. Now, perhaps, the deceptive trickiness of the halting problem
is apparent. It is about taking a program and computing in advance of
actually running it whether it will “eventually” stop.

And the remarkable thing that Turing discovered was that this appar-
ently simple task is impossible. Though it is easy to state, no conceivable
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computer, no matter how powerful, can ever compute itEI

The halting problem would appear to have nothing whatsoever to do
with Omega (though, like the halting problem, Omega is simple to de-
fine but impossible to compute). However, the two are very deeply con-
nected. Omega, it turns out, is more than irreducible information, naked
randomness. Omega is the “probability” that a randomly chosen computer
program—one picked blindly from all possible computer programs—will
eventually halt.

Probabilities are conventionally written as fractions between 0 and 1,
with a probability of 0.5 corresponding to a 50 per cent chance of something
happening, a probability of 0.99 to 99 per cent and so on. Since Omega is
defined as a probability, there is in fact a decimal point before its first digit,
as can be seen in the Omega written out at the beginning of this chapter.

But what does it mean that Omega is the probability that a randomly
chosen computer program halts? Well, think of generating a string of Os
and 1s by repeatedly tossing a coin. Such a string can encode the instruc-
tions of a computer program just as easily as it can encode the bars of a
piece of music or the picture elements of a family photo. Well, Omega is
the probability that a computer program generated in a random manner
like this will eventually halt.

Put it another way. Omega is what you get when take all possible com-
puter programs that can exist, one at a time. You see whether or not each
halts, giving a 0 for one possibility and a 1 for the other. Because there are
an infinite number of possible programs, there will be an infinite number
of 0s and 1s. Well, you take the average of all the Os and 1s. And that is
Omega.

6The halting problem is uncomputable because, if there was a program that could com-
pute it—one that could take another program and spit out, say, a 0 if it never halts
and a 1 if it eventually halts—this “halting program” could be used to do something
impossible: construct a program which stops if it doesn’t stop and doesn’t stops if it
stops!

How? Such a program would have to incorporate the halting program as sub-program,
or subroutine, and apply it to itself. This sounds tricky but actually is not. Just engineer
the program to output itself—a string of Os and 1s identical to the binary code of the
program—and then get the halting program to check whether the output halts or not.
If it does halt, the program has instructions not to halt; and if it does not halt, the
program has instructions to halt.

What has been concocted is an impossibility, a contradiction—all made possible by the
existence of the halting program. For the sanity of the Universe, therefore, the halting
program cannot exist.
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Put it another way. Omega is the concentrated distillation of all con-
ceivable halting problems. It contains the answer not to just one halting
problems but to an infinite number!

Of course, individual cases of the halting problem are uncomputable.
This was Turing’s big discovery, after all. Consequently, Omega too is un-
computable. This is in fact not very surprising. Recall that it takes an
infinitely long computer program to generate Omega, which is hardly a
practical proposition!

Omega is maximally uncomputable, maximally unknowable. “Techni-
cally, this is because the first n bits would in theory enable us to answer
Turing’s infamous halting problem for all programs up to n bits in size—and
this is impossible,” says Chaitin. “However, crudely speaking, the reason
Omega is unknowable is that it’s the probability of something happening—
a computer program halting—which itself is unknowable!”

The deep an unexpected connection between Omega and all conceivable
halting problems has an astonishing consequence. “It comes about because
of the remarkable fact that most of the interesting problems in mathematics
can be written as halting problems,” says Cristian Calude of the University
of Auckland.

Take, for example, the problem of finding a whole number that is not
the sum of three square numbers. The number 6, for instance, fails. It can
be written as 12 4+ 22 4 12 and so is the sum of three square numbers. The
first number that is not a sum of three squares is in fact 7.

A brute force program to find numbers that are not the sum of three
squares would simply step through the whole numbers, one at a time, stop-
ping when it finds a number that cannot be written as the sum of three
squares. Or, if all numbers can be written as the sum of three squares, it
will keep going forever. “Does this ring any bells?” says Calude. “It’s a
halting problem!”

The amazing thing is that a host of other mathematical questions can
also be re-cast as halting problems—if a particular program halts, the an-
swer to the question is, yes; if it doesn’t halt, it is no. The consequence
of this fact is scarcely believable. “The first few thousand digits of Omega
contain the answers to more mathematical questions than could be written
down in the entire universe!” says Charles Bennett of IBM in New York.

An example of such a question is whether “Fermat’s last theorem” is
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correct. This was inserted in the margin of a book by Pierre de Fermat
in 1642 and finally proved three centuries later by Andrew Wiles in 1995.
It asserts that there no positive whole numbers 2™ 4+ y™ = 2™, if n is big-
ger than 2. There are, for instance, no whole numbers z3 + y3 = 23 or
29 4+ 4% = 299, Another example of a mathematical question is whether
the “Goldbach conjecture” is correct. This states that every even number
greater than 2 is the sum of two prime numbers (A prime number being a
number, like 3 or 111, which is divisible only by itself and 1). Though the
conjecture was stated by Goldbach in a letter to the great Swiss mathemati-
cian Leonhard Euler in 1742, it has defied all attempts of mathematicians
to prove it right or wrong.

The question of whether the Goldbach conjecture is correct can be
couched as a halting problem. So too can the matter of whether or Fer-
mat’s last theorem is right. “To solve these important problems—and many
other—it is therefore necessary only to know the bits of Omegal” says
Calude.

Omega, it appears, is so much more than a maximally unknowable,
maximally uncomputable, maximally random number. It is so much more
than the distillation of all conceivable halting problems. As Chaitin puts
it: “Omega is also the diamond-hard distilled and crystallised essence of
mathematical truth.”

Bennett is even more lyrical. “Throughout history mystics and philoso-
phers have sought a compact key to universal wisdom, a finite formula or
text which, when known and understood, would provide the answer to every
question,” he says. “The Bible, the Koran, the I Ching and the medieval
Jewish Cabala exemplify this hope. Omega is in many senses a cabalistic
number. It can be known of, but not known through human reason. To
know it in detail, one would have to accept its uncomputable digit sequence
on faith, like words of a sacred text.”

There you have it. Omega is a “compact key to universal wisdom”. It
provides the answer to every question—at least, every mathematical ques-
tion.

John Casti of the Technical University of Vienna goes one step farther.
“Omega’s digits encode ‘the secret of the universe’,” he says. “Almost every
unsolved problem in mathematics and many in physics and elsewhere could
be settled by knowing enough digits of Omega.” |Z|

7Actually, the early 20th-century French mathematician Emil Borel was the first to
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Of course, Omega may contain the “secret of the universe” but it is un-
knowable. In fact, it is worse than this. “Even if, by some kind of miracle,
we get the first 10,000 digits of Omega, the task of solving the problems
whose answers are embodied in these bits is computable but unrealistically
difficult,” says Calude. “Technically, the time it takes to find all halting
programs of length less than n grows faster than any computable function
of n.”

In other words, we will be in the position of the characters in Adams’
The Hitch Hiker’s Guide to the Galazy. They knew the answer to Life, the
Universe and Everything is 42. Unfortunately, the hard part was knowing
the question.

Determining all the digits of Omega is clearly an impossibility for lowly
human beings. The number in its entirety is really knowable only by God.
Incredibly, however, Calude has managed to calculate the first 64 digits of
Omega—or at least an Omega. Those digits are the ones shown at the
beginning of this chapter.

Calude was able to calculate 64 bits of a nominally uncomputable num-
ber because, contrary to everything that has been said up to now, the
computing barrier discovered by Turing can actually be broken. This is be-
cause Turing defined the halting problem for a classical Turing machine—a
familiar general-purpose computer. However, nature permits types of ma-
chines that Turing did not anticipate such as “quantum computers”. These
are “accelerated Turing machines”. It may be possible to use them solve
the halting problem and compute other apparently uncomputable things.

show how a number could encapsulate the answers to all conceivable questions. Take
the French alphabet, he said, including blanks, digits, punctuation marks, upper case,
lower case, letters with accents, and everything. Then start making a list. Start off
with all possible 1-character sequences, then all possible 2-character sequences, and so
on. Eventually, you will get all possible successions of characters of any length, in
alphabetical order. Most will of course be nonsense. Nevertheless, in the list, you will
find every conceivable question in French—in fact, everything you can write in French.
Next, said Borel, number the sequences you have created. Then imagine a number
0.d1dads ... whose nth digit d, is a 1 if the nth element of the list is a valid yes/no
question in French whose answer is, yes, and whose nth digit is 2 if the nth element is a
valid yes/no question whose answer is, no. If the nth element of the list is garbage, not
valid French, or valid French but not a yes/no question, then the nth digit is 0.

So Borel had a number that gives the answer to every yes/no question you can ask in
French—about religion, about maths, about physics—and it is all in one number! Of
course, such a number would contain an infinite amount of information, which would
make actually ever knowing it a bit unrealistic. It would be just like Omega. In fact,
Borel’s number is actually related to Omega.
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Calude himself used ingenious mathematical tricks to partially circumvent
the Turing barrier and compute 64 bits of Omega—a feat even Chaitin, the
inventor of Omega, had believed impossible.

Calude’s demonstration that it is possible to know at least some of the
digits of Omega has left a strong impression on Chaitin. He has gone so
far as to suggest that knowledge of Omega could be used to characterise
the level of development of human civilisation. Chaitin points out that, in
the 17th-century, the mathematician Gottfried Leibniz observed that, at
any particular time, we may know all the interesting mathematical theo-
rems with proofs of up to any given size, and that this knowledge could
be used to measure human progress. “Instead, I would propose that hu-
man progress—purely intellectual not moral—be measured by the number
of bits of Omega that we have been able to determine,” says Chaitin.

“What you don’t know is also a kind of knowledge,” said Jostein Gaarder
in Sophie’s World.

Calude has even suggested that, if we wish to signal our existence to the
stars, the way to impress an extraterrestrial civilisation and show ourselves
worthy of contact may be to broadcast as many digits as we can of Omega.

But Omega, in addition to being related to what computers can and
cannot do, and distilling the answers to all mathematical questions, has
yet more miraculous properties (There appear to be no end to them!). To
understand what those properties are, it is necessary to appreciate a major
crisis which occurred in mathematics in the late 19th century. The crisis
was triggered by a field of mathematics called “set theory”.

19.2. Undecidability

Set theory is concerned with groups of objects known—not surprisingly—as
“sets”. Examples include the set of all countries beginning with the letter
“A” ; the set of all odd numbers; and the set of all mammals. Sets can
be related to each other. For instance, one set can be contained within
another set. The set of all marsupials, for instance, is a “subset” of the set
of all mammals which, in turn, is a subset of the set of all animals.

Although the basic idea of a set is straightforward, it turns out that
set theory permits the existence of a particularly catastrophic set—the set
of all sets that are not members of themselves. Why is this catastrophic?
Well, try asking whether this set is a member of itself? Immediately, it is
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apparent that the set is a member of itself only if it is not a member of
itself! “It’s like the paradox of the village barber who shaves every man
in a village who doesn’t shave himself,” says Chaitin. “Who shaves the
barber? He shaves himself if and only if he doesn’t shave himself. It is a
contradiction.”

This set paradox is closely related to an even older paradox: the dec-
laration by the Greek philosopher Epimenides “This statement is false!”.
Since the statement is true only if it is false, it is neither true nor false. And
Epimenides’ paradox is in turn just another form of the “liar’s paradox” :
the assertion by someone: “I am a liar.”

For mathematicians of the late 19th century the contradiction in set
theory was the stuff of nightmares. The very foundation of mathematics
was logical reasoning. Yet here was a case where logical reasoning led to an
absurdity. Mathematics was widely regarded as a realm of pure, clear-cut
truths, a lofty ethereal domain far removed from the messiness of the ev-
eryday world. After all, it dealt with things which were true, demonstrably
and beyond any possible doubt, not simply at this moment but throughout
all eternity. Yet now the mathematicians’ sanctuary of beauty and perfec-
tion was under mortal threat. At all costs the contradiction in set theory
must be eradicated. And the man took on the task of eradicating it was
the greatest mathematician of his day, the German David Hilbert.

There are thousands of fields of mathematics, many of which are in-
terconnected. However, each has the same basic structure. On top of a
bedrock of “axioms” mathematicians erect a scaffolding of “theorems”. The
axioms are self-evident truths, simple assertions on which all mathemati-
cians can agree (no progress in mathematics is possible without assuming
some things). The theorems are the logical consequences of the axioms.
For instance, Euclidian, or flat-paper, geometry consists of a handful of
axioms about straight lines and the angles between them—for example,
“parallel lines never meet”—plus the theorems that can be deduced from
such axioms—for example, “the internal angles of a triangle always add up
to 180 degrees”.

Hilbert’s big idea was to first identify a small group of axioms as the
bedrock of all of mathematics. Once this was done, the next step was to
spell out in gory, painstaking detail the logical rules for getting from the
axioms to theorems (or vice versa). This would make it possible to “prove”
any mathematical statement—that is, show that it can be obtained by log-
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ical steps from the bedrock axioms and so is a bona fide theorem.

In short, what Hilbert had in mind was finding a proof-checking “algo-
rithm” —a procedure for checking that each step in a given proof is logically
watertight. If mathematicians possessed such a procedure they would in
theory be able to run through all possible proofs, starting with the simple
ones and progressing to more complex ones; check whether they are cor-
rect; and see what theorems they led to. In this way they would be able to
generate an infinite list of all provable mathematical statements—that is,
all theorems.

If a mathematical statement is true, Hilbert’s mindless approach would
therefore eventually find the proof. If a statement cannot be proved,
Hilbert’s mindless method would go on forever, unless a proof that the
statement is false was found.

The mechanical nature of Hilbert’s proof-checking procedure was cru-
cially important. After all, if it could be applied mindlessly, without any
need to know how mathematics worked, then it would be something ab-
solutely everyone could agree on. Hilbert would have taken the process
of doing mathematics and set it in stone. He would have removed from
the subject all the ambiguities of everyday language and reasoning. There
would be no room left for contradictions such as the one that appeared to
have cropped up in set theory.

Hilbert did not know it—could not have known it—but the mechanical
proof-checking procedure he envisaged was nothing less than a computer
program running on a computer! “How many people realise that the com-
puter was actually conceived and born in the abstract field of pure mathe-
matics?” says Chaitin.

Hilbert’s programme to weed out the paradoxes from mathematics was
hugely ambitious. He fully expected it to take decades to carry out. But
what he did not realise—and nor did anyone else—was that the programme
was impossible!

In 1931, an obscure Austrian mathematician called Kurt Gédel showed
that, no matter what set of axioms you select as the ultimate bedrock
of all mathematics, there will always be theorems—perfectly legitimate
theorems—that you can never deduce from the axioms. Contrary to all
expectations, the perfect world of mathematics is plagued by “undecid-
able” theorems—things which are true but which can never be proved to
be true by logical, rational reasoning.
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Godel proved his result in the most ingenious way. He managed to em-
bed in arithmetic—one of the most basic fields of mathematics—the self-
referential declaration “this statement is unprovable”. Since this required
him to make a piece of arithmetic actually refer to itself, it was an im-
mensely difficult task. However, by embedding the troublesome statement
in arithmetic, Gédel had buried an atomic bomb in the very fabric of math-
ematics. “This statement is unprovable” is, after all, the “liar’s paradox”
in another guise. If it is true, mathematics admits false statements that
cannot be proved—it is inconsistent. If it is false, it admits undecidable
statements that can never be settled—it is incomplete.

Incompleteness is very bad for mathematics but inconsistency is truly
terrible. False statements would be like a plague of moths gnawing at its
very fabric. There was no choice for mathematicians but to accept the
lesser of Godel’s two evils. Mathematics must be terminally incomplete.
To everyone’s profound shock, it contained theorems that could never be
proved to be true.

“All theorems rest on premises,” declared Aristotle. Gdédel’s “incom-
pleteness theorem” shows that the great man was sorely mistaken. High
above the mathematical bedrock there are pieces of mathematical scaffold-
ing floating impossibly in mid-air.

The obvious way to reach these free-floating theorems is by building
up the bedrock—that is, adding more axioms. However, this will not help.
According to Godel’s incompleteness theorem, no matter how many axioms
are added, there will always be theorems floating in the sky, perpetually
out of reach. There will always be theorems that are true but that can
never be proved to be true, at least by logical, rational reasoning.

To say that Godel’s discovery was deeply distressing to mathematicians
is a bit of an understatement. As pointed out, mathematicians had believed
mathematics was a realm of certain truths, far from the messy uncertainty
of the everyday life. This is precisely what had attracted many of them
to the field in the first place. But, contrary to expectations, mathematics
turned out to be a realm where many things are up in the air, many things
are messy, many things are uncertairﬁ Some mathematician could not hide

8By an odd coincidence, physicists were having a similarly shocking experience at about
the same time. The microscopic realm of atoms, they discovered, was a place of unpre-
dictability and uncertainty. Not only do things such as the disintegration of an atom
occur for no reason at all, it is not even possible to be 100 per cent certain of basic things
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their despair at this unhappy revelation. “Godel’s result has been a con-
stant drain on my enthusiasm and determination,” wrote Hermann Weyl.

No matter how unpalatable it might be, however, Godel’s result was
incontrovertible. Mathematicians had no choice but get used to it—even
to revere it. Many now consider the publication of Godel’s incomplete-
ness theorem to be the most significant event in the whole of 20th century
mathematics. “Godel’s incompleteness theorem has the same scientific sta-
tus as Einstein’s principle of relativity, Heisenberg’s uncertainty principle
and Watson and Crick’s double helix model of DNA,” says Calude.

But, if things were bad in the world of mathematics after Godel dis-
covered incompleteness, they got a whole lot worse five years later. That
was when Turing discovered uncomputabilityﬂ Not only did mathematics
contain things that were undecidable, it also contained things such as the
halting problem that were uncomputable.

Undecidability is in fact deeply connected to the uncomputabilitym Not
only that but both undecidability and uncomputability are also deeply con-
nected to Chaitin’s idea that the complexity of a number is synonymous
with the shortest program that can generate the number.

This is not obvious at all. However, recall that Omega is the ultimate in
irreducible information. This means it cannot be generated by a program
shorter than itself, which is the same as saying it cannot be compressed into
a shorter string of bits than itself. Now think of one of those free-floating
theorems that Godel discovered are an inevitable feature of mathematics.
It cannot be reached by logical deduction from any axioms, which is the
same as saying it cannot be deduced from any principles simpler than itself,

like the position and speed of atoms. This uncertainty was quantified in “Heisenberg’s
uncertainty principle”. If Godel dropped a bombshell in mathematics, Heisenberg can
be said to have dropped one in physics.

9The 29 March 1999 issue of Time magazine included both Goédel and Turing among
the their 20 greatest scientists and thinkers of the 20th century.

101n fact, undecidability is a consequence of uncomputability. If it were always possible to
start with some axioms and “prove” that a given program halts or that it never does, that
will give you a way to “compute” in advance whether a program halts or not, How? You
simply run through all possible proofs, starting with the simplest ones, checking which
ones are correct, until either you find a proof the program will halt eventually or you find
a proof that it is never going to halt. Since Turing showed that computing in advance
whether or not a program will halt is impossible, it follows that this procedure too is
impossible. It follows that there must be proofs—such as the proof that a given program
will halt—that cannot be found by this logical, step-by-step process. In other words,
there are proofs that cannot be deduced from any conceivable axioms and mathematics
is incomplete.
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compressed into any set of axioms. See the parallel?

19.3. Compressibility and what scientists do

Here is another interesting thing. Reducing theorems to a small number of
axioms turns out to be deeply reminiscent of what scientists do. The mark
of a good scientific theory, after all, is that it describes a large number of
observations of the world while making only a small number of assump-
tions. In the words of the Nobel-prize-winning American physicist Richard
Feynman: “When you get it right, it is obvious it is right—at least if you
have any experience—because usually what happens is that more comes
out than goes in.”

Chaitin, as the inventor of AIT, has a unique take on this idea. “A
scientific theory is really just a computer program that calculates observa-
tions,” he says. “The smaller and more concise the computer program the
better the theory.”

Scientists have long known that, if there are two competing theories,
both of which explain the same phenomenon, the one that makes the least
assumptions is invariably the true one. This rule of thumb, known as
“Ockham’s razor”, was first noted by William of Ockham, a Franciscan
friar living in the 14th century.

By the criterion of Okham’s razor, for instance, Creationism is inferior
to the scientific view of the origin of the Universe because it requires many
more assumptions. What you get out is not much better than what you
put in. As Leibniz observed more than three centuries ago, a theory is
convincing only to the extent that it is substantially simpler than the facts
it attempts to explain.

According to Chaitin, AIT puts Ockham’s razor on a precise footing for
the first time. “Understanding is compression,” says Chaitin. “Okham’s ra-
zor is simply saying that the best scientific theory is the most compressible.”
He amplifies this. “A concise computer program for calculating something
is like an elegant theory that explains some phenomenon,” says Chaitin.
“And if no concise theory exists, the phenomenon has no explanation, no
pattern, there is nothing interesting about it—it is just what it is, that’s
all.”

In physics, the Holy Grail is a “Theory of Everything”, which distils
all the fundamental features of reality into one simple set of equations that
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could be written on the back of a postage stamp. “From the point of view
of AIT, the search for the Theory of Everything is the quest for an ultimate
compression of the world,” says Chaitin.

“The most incomprehensible thing about the universe,” Einstein fa-
mously said, “is that it is comprehensible.” Chaitin, who equates compre-
hension with compression, would rephrase this. The most incomprehensible
thing about the Universe is that it is compressible. This feature of the world
is the reason we have been able to divine universal laws of nature, which
apply in all places and at all times—laws which have enabled us to build
computers and nuclear reactors and gain some degree of mastery over na-
ture.

To Chaitin the compressibility of the Universe is a wonder. “For some
reason, God employed the least amount of stuff to build the world,” he
says. “For some reason, the laws of physics are as simple and beautiful as
they can be and allow us, intelligent beings, to evolve.” This is a modern
version of something noted by Leibniz: “God has chosen the most perfect
world”, he wrote. “The one which is the most simple in hypotheses and
the most rich in phenomena.”

Though we do not know why the laws underpinning the Universe are
simple, the faith that they are is a powerful driving force of science. Ac-
cording to Feynman: “It is possible to now when you are right way ahead
of checking all the consequences. Truth is recognisable by its beauty and
simplicity.”

19.4. Randomness

Back to Godel. Although he had shocked and depressed mathematicians
by showing that mathematics contains theorems which are undecidable,
surprisingly his result did not make any difference to the day-to-day do-
ing of mathematics. Weyl’s pessimism was misplaced. “Mathematicians,
in their everyday work, simply do not come across results that state that
they themselves are unprovable,” says Chaitin. “Consequently, the places
in mathematics where you get into trouble seem too remote, too strange,
too atypical to matter.”

A more serious worry was Turing’s demonstration that there are things
in the world which were completely uncomputable. This is a very concrete
result. It refers, after all, to computer programs, which actually calculate
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things. On the other hand, the program Turing considered merely tried to
figure out whether another program halts or not. It is hardly typical of
today’s computer programs, which carry out word processing or surf the
Internet. Not surprisingly, therefore, none of these programs turn out to be
undermined in any discernible way by the uncomputability of the halting
problem.

It would seem that uncomputability and undecidability are too esoteric
to bother about, that they can be swept under the carpet and safely for-
gotten about. This is indeed how it appeared for a long while. All was
tranquil and quiet in the garden of pure mathematics. But then the gate
squeaked on its rusty hinges and in walked Chaitin.

From the time he had been a teenager, Chaitin had been convinced that
Godel and Turing’s results had far more serious implications for mathe-
matics than anyone guessed. And he had resolved to find out what those
implications were. It was this quest that had led him to invent AIT.

AIT is of course founded on the idea that the complexity, or information
content, of a number is synonymous with the shortest computer program
that can generate the number. However, at the core of AIT—just like at
the core of Turing and Goédel’s work—there is a paradox. It is actually
impossible to ever be sure you have found the shortest possible programﬂ

A shortest program, of course, exists. But this is not the point. The
point is that, although it exists, you can never be sure you have found it.
Determining whether you have turns out to be an uncomputable problem.

AIT is founded on uncomputability. The whole field is as riddled with
holes as a swiss cheese. Uncomputability in fact follows from AITE

And so does Godel’s incompleteness theorem. This turns out to be

1 Say, there is a program that can decide whether a given program, p, is the shortest
possible program capable of producing a given output. Now consider a program, P,
whose output is the output of the smallest program, p, bigger than P that is capable of
producing the given output. But P is too small a program to produce the same output
as p. There is a contradiction! Therefore, an algorithm for deciding if a program p is as
small as possible cannot exist.

12If you could always decide in advance whether a program halts or not, you could
systematically check whether each small program halts or not, and if it does halt, run
it and see what it computes, until you find the smallest program that computes a given
number. But this would contradict Chaitin’s result that you cannot ever be sure you
have the smallest program for generating a given number. Consequently, there can be
no general solution to the halting problem. It is uncomputable.
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equivalent to the fact that it is impossible to prove that a sequence of dig-
its is incompressible—that is, the shortest program has been found. “Ev-
erywhere you turn in my theory you find incompleteness,” says Chaitin.
“Why? Because the very first question you ask in my theory gets you into
trouble. You measure the complexity of something by the size of the small-
est computer program for calculating it. But how can you be sure that
what you have is the smallest computer program possible? The answer is
that you can’t!”

In Chaitin’s AIT, undecidability and uncomputability take centre stage.
Most mathematical problems turn out to be uncomputable. Most math-
ematical questions are not, even in principle, decidable. “Incompleteness
doesn’t just happen in very unusual, pathological circumstances, as many
people believed,” says Chaitin. “My discovery is that its tendrils are ev-
erywhere.”

In mathematics, the usual assumption is that, if something is true, it is
true for a reason. The reason something is true is called a proof, and the
object of mathematics is to find proofs, to find the reason things are true.
But the bits of Omega—AIT’s crowning jewel—are random. Omega cannot
be reduced to anything smaller than itself. Its Os and 1s are like mathe-
matical theorems that cannot be reduced or compressed down to simpler
axioms. They are like bits of scaffolding floating in mid-air high above the
axiomatic bedrock. They are like theorems which are true for no reason,
true entirely by accident. They are random truths. “I have shown that
God not only plays dice in physics but even in pure mathematics!” says
Chaitin[?]

Chaitin has shown that Goédel and Turing’s results were just the tip of
the iceberg. Most of mathematics is composed of random truths. “In a nut-
shell, Godel discovered incompleteness, Turing discovered uncomputability,
and I discovered randomness—that’s the amazing fact that some mathe-
matical statements are true for no reason, they’re true by accident,” says
Chaitin.

Randomness is the key new idea. “Randomness is where reason stops,
it’s a statement that things are accidental, meaningless, unpredictable and
happen for no reason,” says Chaitin.

13This is a reference to Einstein. Appalled by quantum theory, which maintained that
the world of atoms was ruled by random chance, he said: “God does not play dice with
the universe.” Unfortunately, he was wrong! As Stephen Hawking has wryly pointed
out: “Not only does God play dice, he throws them where we cannot see them.”
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Chaitin has even found places where randomness crops up in the very
foundation of pure mathematics—“number theory”. “If randomness is even
in something as basic as number theory, where else is it?” says Chaitin. “My
hunch is it’s everywhere.”

Chaitin sees the mathematics which mathematicians have discovered
so far as confined to a chain of small islands. On each of the islands are
provable truths, the things which are true for a reason. For instance, on
one island there are algebraic truths and arithmetic truths and calculus.
And everything on each island is connected to everything else by threads of
logic so it is possible to get from one thing to another simply by applying
reason. However, the island chain is lost in an unimaginably vast ocean.
The ocean is filled with random truths, theorems disconnected forever from
everything else, tiny “atoms” of mathematical truth.

Chaitin thinks that the Goldbach conjecture, which has stubbornly de-
fied all attempts to prove it true or false, may be just such a random truth.
We just happened to have stumbled on it by accident. If he is right, it will
never be proved right or wrong. There will be no way to deduce it from any
conceivable set of axioms. Sooner or later, in fact, the Goldbach conjecture
will have to be accepted as a shiny new axiom in its own right, a tiny atom
plucked from the vast ocean of random truths.

In this context, Calude asks an intriguing question: “Is the existence of
God an axiom or a theorem?” !

Chaitin is saying that the mathematical universe has infinite complex-
ity and is therefore not fully comprehensible to human beings. “There’s
this vast world of mathematical truth out there—an infinite amount of
information—but any given set of axioms only captures a tiny, finite amount
of this information,” says Chaitin. “This, in a nutshell, is why Godel’s in-
completeness is natural and inevitable rather than mysterious and compli-
cated.”

Not surprisingly, the idea that, in some areas of mathematics, mathe-
matical truth is completely random, unstructured, patternless and incom-
prehensible, is deeply upsetting to mathematicians. Some might close their
eyes, view randomness as a cancer eating away at mathematics which they
would rather not look at but Chaitin thinks that it is about time people
opened their eyes. And rather than seeing it as bad, he sees it as good.
“Randomness is the real foundation of mathematics,” he says. “It is a rev-
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olutionary change in our worldview.”

This is explosive stuff. But Chaitin is able to risk the ire of the math-
ematical community because he is an outsider. He works for IBM at its
Thomas J. Watson Research Center in Yorktown Heights, New York. In
fact, he helped to develop the company’s influential “Unix” work station,
the IBM RS/6000. Chaitin does not believe it is possible to break the mould
from within mathematics. “To be a revolutionary it may be necessary to
be on the outside,” he says.

Crucially, the language of physics turns out to be mathematics. The
equations which describe things such as the motion of baseballs through the
air and planets orbiting the Sun are mathematical equations. Many have
remarked on the unreasonable effectiveness of mathematics in physics. But,
if most truths in mathematics are random truths, things which are true for
no reason at all, what does this say about truths in physics? “Ultimately,
can the universe be comprehended—the physical universe as well as the
universe of mathematical experience?” says Chaitin.

It all depends on whether the physical universe, like the mathematical
universe, is infinitely complex. If, as most physicists believe, the world of
atoms is ruled by naked chance, the Universe does indeed contain random-
ness. Consequently, it is infinitely complex and unknowable in its entirety
by human beingsE

What this means is that physicists like Stephen Hawking, who fully ex-
pect the discovery of a Theory of Everything in the next decade or so, are
destined to be disappointed. Though we may acquire such a theory, we will
never know for sure whether we have the ultimate Theory of Everything.
We will never be able to prove the compression to be the ultimate one.
There will always be the possibility that there might be a yet deeper and
simpler theory with the same explanatory power, out there waiting to be
found. As the American physicist John Wheeler, famous for coining the
term “black hole”, has pointed out: “Even if physicists one day get their
hands on a Theory of Everything, they will still face the unanswerable ques-
tion: why does nature obey this set of equations and not another?”

14 It is possible, however, that the randomness in the Universe is only pseudorandomness.
This is the controversial view of Stephen Wolfram (see chapter “Cosmic Computer”). He
believes that the consequences of the simple laws of physics are extremely complicated
and so the Universe is only simulating randomness. If he is right, then the Universe
is ultimately comprehensible. It would not follow that, because the laws of physics are
mathematical and mathematics is incomplete, that physics is incomplete too.
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The Anglo-American physicist Freeman Dyson sees the impossibility of
finding a Theory of Everything as a good thing. Unlike the pessimistic
Weyl, who described incompleteness as a constant drain on his enthusiasm,
Dyson sees it as an insurance policy that science will go on forever. Though
a Theory of Everything may be elusive, the mundane, day-to-day practice
of doing physics will go on. The discoveries of Gddel and Turing do not
appear to limit them in any way. As Chaitin points out, we have no trouble
building and operating computers, far and away the most complicated ma-
chines ever constructed. “Here we have a case where the physical behaviour
of a big chunk of the universe is very understandable and very predictable
and follows definite laws,” says Chaitin.

Chaitin’s insights raise a fascinating and intriguing question about how
exactly mathematicians actually do mathematics, how they find new the-
orems. While step-by-step reasoning and logic enables them to from one
idea to another idea within an island in the great ocean of mathematical
theorems, it does not allow them to get from island to island. But this is
something they emphatically do do.

Reason and logic is insufficient. Chaitin therefore thinks that mathe-
maticians discover mathematics using insights which go beyond reason and
logic. He thinks they use the kind of flashes of inspiration and intuition
artists talk about. “Mathematics isn’t about the consequences of rules,
it’s about creativity and imagination,” says Chaitin. “For this reason it
is possible to argue that the incompleteness theorems does not limit what
mathematicians do.”

“Mathematical proof is an essentially creative activity,” said Emil Post,
who came up with the idea of a Turing machine independently of Turing.
The brain is doing something more than any mere computer. Many people
have suggested this before. “You can know much more than you can ever
prove,” said Feynman. But who would have thought the idea would receive
support from a field as abstract and esoteric as pure mathematics?
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Omega numbers are disconcerting: they are both well defined and
uncomputable. Yet the closer you look, the more remarkable they ap-
pear.

A little more than 20 years ago—in 1979—Martin Gardner and Charles
Bennett published an article on a new number whose properties were so
peculiar that it was considered a paradox. Discovered by Gregory Chaitin,
the number was called Omega and denoted 2. Up to then, the symbol {2
had been used in mathematics for a variety of purposes. But increasingly it
was reserved for Chaitin’s number, just as m came exclusively to represent
Archimedes’ constant at the beginning of the 18th century.

Q belongs to an infinite family of numbers, that is, Chaitin’s omega
numbers. These numbers are perplexing, for each represents an improbable
assortment of strangenesses. A subclass of Chaitin’s omega numbers, the
Solovay omega numbers, complicate the picture further. These classes of
curious numbers are as important as rational, algebraic, or transcendantal
numbers. But they are exceedingly abstract, bordering on the absurd;
indeed, they call into question the nature of mathematical knowledge.

1This paper has first appeared in French in Pour la Science, Mai 2002, n0 295, pp.
98-103. Re-published with the kind permission of Pour la Science.
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20.1. Computable numbers

Let us proceed step by step through the universe of real numbers, to exam-
ine the definition and properties of omega numbers and to get a feeling for
all their eccentricities.

Real numbers are numbers that, written in base 10, for example, can
continue indefinitely (such as e = 2.7182818284590. ..). Those that cannot
continue indefinitely (like the famous 6.55957—the value of a euro in French
francs at the launch of the single currency in 2002) are decimal fractions.
Of those that do go on indefinitely, some do it in a periodic manner, for
instance, 24/110 = 0.21818181818... In addition, numbers that become
periodic at a certain point in their expansion are the quotients of two whole
numbers (called rational numbers). Irrational numbers such as the v/2 are
not quotients of whole numbers, and their decimals are not periodic.

Because the number of decimal places for real numbers is infinite, they
subtly introduce logical difficulties greater than we can imagine, and these
difficulties are shared by the omega numbers. Let us consider them.

First, the infinite number of decimal places means that real numbers
are not countable: there is no numbering system rg,71, ..., 7y, ... that con-
stitutes the complete list of real numbers (we have Cantor to thank for
this proof). Thus, the set of real numbers constitutes an infinite set larger
than the infinite sets of whole numbers and rational numbers (since, thanks
again to Cantor, this set of rational numbers is the same size as the set of
whole numbers).

A sometimes neglected consequence of this uncountability is that we
cannot compute all the real numbers: computable real numbers are by def-
inition those for which there is a computer program that, allowed to run in-
definitely, produces a string of the digits for the number one after the other.
But the number of programs is denumerable: we can, for example, count all
of them if we consider the sets of programs that have 1,2,3,...n,n+1,...
symbols. Each set contains a finite number of programs, which makes the
set finitely countable and, accordingly, the entire set of all programs count-
able. We will use this numbering of programs later. It follows that there
are not enough programs to compute all the real numbers. Of course, every
rational number is computable, as are the familiar constants of classical
mathematics: ,elog2, e+ m,sin(1), and so on. In each case, their defini-
tion (for example, the series e = 1+ 1/114+1/21+1/3!'+ ...) dictates the
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program for calculating their digits one by one.

Do we really have to take uncomputable real numbers seriously? Can’t
we just ignore them? Actually, no, we can’t, because computability the-
ory, developed in the 1930s by Kurt Gédel, Alan Turing, and several other
logicians, not only demonstrated such numbers theoretically (building on
arguments of uncountability). The theory also defined uncomputable num-
bers with such exquisite precision that they now enjoy a mathematical
status comparable to 7 and e.

A simple idea for defining an uncomputable number will bring us close to
omega numbers. It is based on the so-called halting problem. The question
of whether a program halts has both theoretical and practical importance:
we have all written programs that go into infinite loops. Take, for example,
the program

c: =1;
while ¢ > 0 do c: = c + 1;
end

A program has only one option: once launched, it can stop after a finite
time; or it can run forever.

Let us draw up the list of all the possible programs Py, Pi,..., P,,...
written, for example, in Java (a ubiquitous programming language) and
classify them by size as described above. Now let us consider the real num-
ber whose decimal expansion is 7 = 0.agay .. .ay,, ... where each a,, equals
1 if the program P, stops, and 0 if it continues indefinitely.

The undecidability of the halting problem (“it is impossible to write a
program A that, examining any other program—here program P,—returns
in finite time whether P, halts or whether it runs indefinitely”), demon-
strated in 1936 by Turing, determined that the real number 7 is not com-
putable.

Thus certain numbers, such as 7, are not computable, but they are
known, for they can be defined without the least ambiguity. Yet they are
unknowable, because no program can produce their string of digits. That
is the way the mathematical world works: some of its numbers can be seen
(defined), but not touched (computed).
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20.2. Omega numbers are much worse

Omega numbers are like 7, but worse. Note that there are many programs
(an enumerable infinity) that we know either will halt, for example, the pro-
grams PRINT O, PRINT 1, PRINT 2, PRINT 3, and so on, or won't halt.
Thus we can know an infinity of digits of the number 7 (even if it is still not
computable in the general sense). On the other hand, for Chaitin’s omega
numbers, we can only know a finite number of digits.

What do we mean by “know”? In mathematics, ever since logic formal-
ized strong theories at the beginning of the 20th century, mathematicians
have adopted the habit of suggesting (at least implicitly) which theory
governs their thinking, and in which formalized language they may write
the detailed version of the proofs they propose. ZFC set theory (that is,
Zermelo-Fraenkel, with the axiom of choice) is a satisfactory theory for
practically all mathematicians. It also serves as a basis for Nicolas Bour-
baki’s comprehensive treatise “Elements of Mathematics.” The proofs that
we mention here are proofs that can be formulated in ZFC. We need only
remember that when we say “we can know P” or “we prove P,” it means
that there exists a proof in ZFC that demonstrates P. This remark having
been made, we won’t repeat it. When we assert that such a property can
be demonstrated, we mean “using ZFC axioms.”

Chaitin’s omega numbers are well-defined real numbers that, as we will
see below, are not only not computable (no program can produce their dig-
its one by one, as we have already seen for 7), but we can know only a finite
number of their digits. Any mathematical theory is incapable of calculating
the digits of the omega numbers, which it nonetheless defines perfectly!

If Q is a given Chaitin omega number, and if n is a specified integer,
one of the following statements is true:

e the nth bit of Q is a 0,
e the nth bit of 2 is a 1.

Yet as soon as n becomes sufficiently large, neither of these two state-
ments can be proven. Briefly stated, if €2 is a Chaitin number, the €2 digits,
except for a finite number of them, are undecidable.
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20.3. Pure extract of undecidability

Mathematicians of the 1970s were astonished to realize how unknowable de-
fined objects could be. Yet this quintessence of undecidability, represented
by Chaitin’s omega numbers, has just been surpassed!

Indeed, while studying Chaitin’s omega numbers and using an old the-
orem demonstrated by Stephen Kleene in 1952 (the recursion theorem),
the mathematician Robert Solovay discovered that several of them (which
we will call Solovay omega numbers), though well defined, were completely
unknowable. In other words, if €2 is a Solovay omega number, none of its
digits can be known. Note that Solovay had already acquired a certain
celebrity in 1970 for having solved an important problem of logic. Thirty
years later, he was the hero of a new feat that contradicts the stubborn
idea that a mathematician’s productivity declines rapidly with age.

This essential undecidability posed by the Solovay omega numbers shows
how the apparently innocuous introduction of numbers with an infinity of
decimal places can—once all their consequences are considered—Ilead to
situations bordering on the absurd. At the very least, they can plunge any
sensible person into an abyss of perplexity: How can something that is so
well defined be perfectly and absolutely unknowable?

20.4. Is there a practical definition of omega numbers?

Chaitin’s omega number is “the halting probability of a self-delimiting uni-
versal machine.” Argh! Let’s unpack this definition.

A universal machine U is a machine that is capable of calculating any
function defined by a valid program. All modern computers are universal
machines; the concept was introduced by Turing in 1936. The requirement
that the programs be self-delimiting means that the beginning of any valid
program for U cannot itself be a valid program for U. One way to ensure
this property is to equip the programming language of the machine with
a string indicating the end. For example, we agree to end all U programs
with the string of four characters “E” “N” “D” “.” which can only be used
once in the same program. DNA contains analogous sequences of bases
that indicate the end of a gene.

The fact that programs are self-delimiting (something within them sig-
nals their termination) makes it possible to assign a probability to each
program P of machine U. To do that, we systematically construct a pro-
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A hierarchy of incalculabilities

René Daumal (a French poet, 1908-1944) imagined Mount Analog, a mys-
terious mountain symbolizing research, whose summit is by definition un-
reachable despite an accessible base. The various numbers evoked in this
article are all comparable to the summit of Mount Analog. Rational num-
bers are computable and periodic, but their decimal places are infinite.

Transcendantal numbers like m and e are computable: we can never know
all their digits, but the difference between these numbers and their approx-
imations is as small as one could wish.

The number 7, whose bits are 0 when the program associated with its nth
digit halts, and 1 when it doesn’t. We know how to compute an infinite
number of these bits, but an infinity of others are unknowable.

The Chaitin 2 numbers, which indicate the probability that a program run-
ning on a universal machine will come to a halt: we know how to compute
only a finite number of their digits.

The Solovay numbers, for which we cannot compute a single digit, although
the numbers are well defined.

Figure 1.

gram P until reaching a string that corresponds to the binary transcription
of “E” “N” “D” “”., A program P will be a sequence of n bits such as
0110101101001. The probability of obtaining such a string, thus program
P, is 2™, for each bit has a probability of 1/2 of being the right one. We
really are speaking of probability, for one can actually choose programs at
random by a process that gives P with the probability 27" (see Figure 2).

Now imagine that you use this process to randomly generate programs
for the universal machine U, and that each time you find a valid program
for U, you activate it. Either the program runs forever, or it eventually
halts. The sequence of “coin tosses” thus sometimes leads to the program
stopping and sometimes to an infinite loop (either because you never find
any program that will run or because the programs that run don’t stop).
On implementing this well-defined process, the probability of U coming to
a halt is Chaitin’s omega number for the universal machine U, which we
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A mandala

The symbol € is repeated four times in the structure of this graphic symbol
of the universe, called a mandala. The symbol appears in many other
mandalas, and represents a fitting artistic rendition of the {2 numbers.

Figure 2.

denote ;. For each universal machine, the number €y is well defined.
Moreover, it is as well characterized as the numbers 7 or e.

For each self-delimiting universal machine U there corresponds a Chaitin
omega number; and because there is a countable infinity of such machines
U, there is a countable infinity of Chaitin omega numbers ;.
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The Solovay omega numbers are defined based on a particular class of
universal machines specially concocted so that they get round ZFC theory.
The technique for defining Solovay omega numbers consists in transforming
a universal machine Qy by modifying the initial digits so that ZFC cannot
predict a single bit for such a number. This definition is a touch magical,
but the details are technically too complicated to present here. That is
easily understandable: they have eluded mathematical solution for more
than 20 years.

Note that Chaitin’s number € is, by definition, a sum of numbers each
of which is equal to 27™. Specifically, Qy = > 27", the sum being carried
out over all n that are the length of U programs that come to a halt.

This definition indicates a practical procedure for approximating .
You take a certain number of programs (for example, all those whose length
1 is less than n), let them run for a certain time (for example, through n
computing steps), and add 2~¢ for all the programs that stopped. The in-
creasing sequence x,, thus defined converges to Q.

20.5. Surely you are joking?

You are feeling a little uneasy, and you might even suspect that I am pulling
your leg. On the one hand, I claim that {2y numbers are not computable
(and in the case of the Solovay numbers, even totally unknowable). At
the same time, I propose a foolproof method for approximating these Qg
numbers, in other words, for computing them!

Rest assured: I am not putting you on. Indeed, in this apparent contra-
diction lies all the subtlety of the omega numbers. If U is a self-delimiting
universal machine, we really can construct an increasing sequence of ra-
tional numbers that converges to 2y, but the convergence happens very
slowly—so slowly that you will never be certain of obtaining more than a
few precise Q0 bits. In the case of Solovay numbers, you won’t reach even
a single digit with any certainty. The convergence to g is slower than the
convergence of any other computable increasing sequence to a computable
number (someone recently demonstrated the elegant finding that this ex-
aggerated slowness is a characteristic feature of omega numbers).

For ordinary mathematical constants like 7, several computing meth-
ods are generally known, each producing a sequence of numbers x, that
converges to the constant. Some techniques are fast (for example, you can
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Defining omega numbers

A Chaitin omega number is the halting probability of a self-delimiting uni-
versal machine.

A universal machine U is one capable of computing any function that is
computable by a program. The programs (assumed to be written in binary)
are called self-delimiting if the instruction to stop is contained within the
program itself. For example, the string 1111 indicates that the end of the
program has been reached.

Testing for success or failure

e Randomly select 0’s and 1’s using a random procedure, for example,
by tossing a coin.

e Continue until you have a program for U. In the case that you do not
get there (because you never obtain the string 1111), the result is a
failure.

e In the case where you do obtain 1111, you now have a program for
U that you submit to U for execution. If U halts while running the
program, that constitutes success; if not, consider the result a failure.

Completing the test results either in success or failure. The probability of
succeeding is, by definition, the omega number for U. To approximate 1,
repeat the test k times, adding up the number of successes m. Then m/k
is the approximation.

This definition is satisfying only in theory, for it presupposes that one can
continue indefinitely generating 0’s and 1’s and that it is possible to know
that a program will never stop (which constitutes an undecidable problem).

To actually approximate €17, you can make the test more realistic by doing
the following. Pick a number n. Generate a set of 0’s and 1’s, stopping only
when you have obtained 1111 or when you have generated n digits. If you
reach n digits without obtaining 1111, the test has failed. To determine
whether a program has stopped, run it for n seconds. If it has not stopped
at the end of these n seconds, the test has failed. By repeating the test (this
time totally realistic) k times, and by considering the number of successes
m over the number of tries k, you obtain an approximation of Q.

Figure 3.
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obtain several new digits in going from x,, to x,41. Other approaches can
be slower. Number crunchers of course prefer more rapid techniques; and
you could say that, faced with mathematical constants, their skill consists
in inventing fast methods of convergence. When you are dealing with a
Chaitin omega, you know definitely and absolutely that this approach is
useless. Not only will no method be fast, but no means of approxima-
tion will enable you to know how rapidly it can supply bits for the omega
constant computed.

20.6. The properties of omega numbers

It is possible to imagine all the universal machines and all the omega num-
bers associated with them. The infinite class of Chaitin omega numbers is
thus countable, as is that of Solovay omega numbers. Moreover, we know
a lot about them. There is no paradox in the fact that it is possible to
demonstrate specific properties of the omega numbers (including the Solo-
vay omega numbers), even though their bits are not computable. In the
real world, to have access to general knowledge — for example, “the average
weight of Americans is greater than the average weight of Europeans” —you
have to gather detailed information. In the mathematical world, that is not
always the case: it is possible to know something general about a number
Qu—for example, “the frequency of 1’s and 0’s is the same in 0y binary
notation”—and at the same time not know a single specific Q0 bit. Yet
another mathematical enigmal

Here are some of the known properties of omega numbers:

e All omega numbers are irrational and transcendantal (no polynomial
equation containing whole-number coefficients has an omega number
as its solution).

e The decimals of all omega numbers are uniformly distributed: the set of
their digits in base 10 carries a tenth of “0,” a tenth of “1,” ..., a tenth
of “9,” and there is an analogous property in every other numbering
system.

e Each omega number is a “universal number” in each base: every fi-
nite sequence of digits is present in it. One could even say that each
omega number contains every finite sequence of n decimal digits with
a frequency of 10™™ (of course, there is an analogous property in all
numbering systems). Consequently, for all omega numbers, we know
that somewhere there is a series of a billion consecutive 0’s (nothing
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like that has been demonstrated for constants such as 7 and e).

e All omega numbers are random in the strictest mathematical sense
(the technical term is “Martin-Lof random” in honor of the Swedish
mathematician who introduced this concept in 1966). That implies, in
particular, that (a) a program for predicting the nth bit of an omega
number based on n — 1 initial bits can never be better than chance;
(b) if we extract a subsequence of the sequence of digits of some omega
numbers using an algorithm (for example, by retaining only the digits
whose position number is a prime), this sequence will be that of digits of
an irrational, transcendental, uniformly distributed, random number,
and in fact even another Chaitin omega number.

e All omega numbers are uncompressible. Specifically, for each omega
number €y, there is a constant, ¢, such that the shortest program
giving the n first few bits of Qp is at least as long as n — ¢ (it is
not possible save more than c¢ bits of information when attempting to
compress an initial Qy string).

e All omega numbers are uncomputable, and yet each is the limit of
a computable increasing sequence of rational numbers (they are said
to be approximable; see Figure 4). This convergence is slower than
the convergence for any computable sequence of rational numbers to a
computable number.

e An omega number can begin with any finite string of digits. Thus there
is an omega number that begins with 3, 14, another that begins with
3, 1415, another that begins with 3, 141592, and so on. Note, however,
that universal machines that have those particular numbers for omega
numbers will be artificially constructed.

e If the sum of two omega numbers is less than 1, the sum is an omega
number; likewise for the product (these elegant properties are not true
for irrational numbers or for transcendental numbers [for example,

/44 (2 —m/4) =2]).

The fundamental principle common to all these properties is the fact
that knowing the first few digits n of the Chaitin number Qg associated
with the universal machine U makes it possible to know whether all U pro-
grams shorter than or equal to n stop (whereas it would take 2™ bits of the
number 7 for U to know the same thing). In other words, €y contains a
superconcentrated form of information about the undecidable halting prob-
lem of U programs. In theory, many conjectures could be resolved if we
knew the first 10,000 bits of a Q for a “natural” universal machine U (for
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example, that associated with the Java language that runs your computer).

A conjecture such as “Every even number greater than 2 can be written
as the sum of two primes” (Goldbach’s conjecture) is essentially equivalent
to a program searching endlessly for a counterexample, a program that is
only several hundred bits long. All conjectures of the form “ZFC enables
proof of P” if P is a fairly short statement could also be resolved (theoreti-
cally) by knowing a few hundred omega bits of a natural universal machine.

Thus omega numbers not only distill information about halting pro-
grams. They are also concentrates of mathematical information.

To console us for the fact that we will never know even 1,000 bits of a
“natural” omega number, we can tell ourselves that extracting information
from omega numbers is a finite but incredibly long job (hence my use of
“theoretically” in the preceding paragraph). Consequently, even if you
know 1,000 bits of a natural Chaitin omega number, you could never really
use it. As Martin Gardner and Charles Bennett have written: “Omega is in
many senses a cabalistic number. It can be known of through human reason,
but not known. To know it in detail, one must accept its uncomputable
sequence of digits on faith, like words of a sacred text.”
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Computable and approximable numbers

A. By definition, a real number x (between 0 and 1) is computable if
it is the limit of an increasing computable sequence of rational numbers
Xy = Pn/qn. Furthermore, this sequence must satisfy that for every integer
n:le, —of <277

Classical constants are all computable real numbers, since for each x, a se-
quence of rational numbers that converges to x is known, and it is possible
to bound the errors (for example, to stipulate that the error made by z,, is
less than 277).

The definition can be shown to be equivalent to:

e z can be written in binary in the form: z = 0.apajas ... with a function
n — a, (each a; equals 0 or 1) that is computable by a program (in
other words, there is a program that produces the bits of z);

e there is a program that produces all the rational numbers less than x,
and another that produces all the rational numbers greater than z.

B. A real number is approximable (computably enumerable, in mathemat-
ical jargon) if, by definition, it is the limit of an increasing computable
sequence of rational numbers z, = p, /g, (as for computing, but omitting
the second condition bearing on the importance of the error). An equivalent
definition is the following: there is a program that produces the rational
numbers less than the real number z in question.

The difference between approximable numbers and computable numbers
appears subtle. But in fact it is enormous, and the Chaitin omega numbers
are precisely numbers that are simultaneously approximable and uncom-
putable. The approximable numbers are all well defined (we know sequences
that converge to them), and yet some of them, like the omega numbers, are
not computable. Moreover, Solovay showed that certain omega numbers
have the characteristic that we cannot know any of their digits with cer-
tainty. They are well defined, yet absolutely unknowable.

Figure 4.
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Calculating some omega digits

There are processes based on self-delimiting universal machines that enable
construction of other machines (so-called artificial machines) that are also
universal. But the omega numbers of these machines begin with a few bi-
nary numbers determined in advance, for example, 01010101010101.

The omega numbers associated with this type of artificial universal machine
are themselves artificial, and their initial digits (chosen arbitrarily) carry
no information.

In contrast, knowing the digits of a particular self-delimiting universal ma-
chine U that has not been constructed with digits known in advance is
a very difficult task. For Qy contains compressed information about the
termination of U programs. Is it possible to compute a handful of bits for
such an Q7

Yes! and that is precisely what Cristian Calude, Michael Dinneen, and
Chi-Kou Shu recently did. First they defined the most natural universal
machine possible by considering the simplest instruction set possible and by
adopting the most concise notation they could. Next, they tried to predict
the behavior of a large number of short U programs. They succeeded in
analyzing all the programs whose length was shorter than 84 bits (some
programs halted; others did not). They were able to deduce with certitude
the first 64 bits of ;. These bits are:

0000001000000100000110001000011010001111110010111011101000010000

Their achievement represents the first attempt to precisely compute the
digits of a random number. Note that this is only a game, for in reality,
64 bits is hardly sufficient even to think of tackling conjectures of any
interest. One could try going beyond 64, but stumbling blocks arise quite
rapidly, and it is unlikely that such calculations could help in resolving open
mathematical problems.

Figure 5.
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2 holds the secret of all mathematical enigmas

If it were possible to know the omega number 2y of a universal machine,
for example, through transcendental meditation (or even if one succeeded
in discovering the first 10,000 bits), one could resolve the essence of all the
questions that puzzle mathematicians. Let me justify this assertion in two
steps:

A. Knowing m bits of 2y makes it possible to know whether any program
P of U that is shorter than m halts or not, using the following procedure.

Calculate the sequence of terms of an increasing sequence x,, that converges
to Qp. To determine x,, take all the programs whose length 4 is shorter
than n and run them for n computing steps. Next, sum the probabilities
277 of each of the programs that have halted, which gives z,,. At some
point, the number x, written in base 2 will have the same m initial bits
as Q. We assume we know these m bits, so we will be able to recognize
when it happens. Now, at this stage in the computation, either P has been
computed in x,, for the program has stopped (thus we know that P is a
program that terminates). Or it has not stopped, and we know that it will
never stop, for its probability 27 added to x,, will exceed Q.

B. All the open conjectures of mathematics can be expressed as follows:
“Can the formal system ZFC prove P?” For P, we take the statement ex-
pressing the conjecture. Each of these questions is equivalent to a U halting
problem, specifically, halting a U program that enumerates valid proofs of
ZFC until it finds a proof of P. Thus, if we know a number of Q digits
greater than the length of the computing program that corresponds to P,
we have a way of responding to the question, “Can the formal system ZFC
prove P?” Once implemented, this method will return a response in finite
time. Unfortunately, the computing time threatens to be very long and, in
any event, impossible to predict in advance.

Figure 6.
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Chapter 21

Chaitin and Civilization 2.0

Tor Ngrretranders

Strandvejen 413, DK-2930 Klampenborg, Denmark; tor@tor. dk

A short story on why stories have to be long: Why Chaitin did not meet
Godel or Leibniz or Plato during his random walk of life. Why he is to
become the hero of a new age, The Link Age where everything is being
connected to everything else.

21.1. Chaitin on the beach

“It snowed!” A sense of desperation darkens the otherwise childishly bright,
shining and smiling eyes beaming from Gregory Chaitin’s face. The red cap
on his head protects him from the burning hot August sunshine flooding
the beautiful long, sandy beaches of Fire Island, a few hours drive from
Manhattan where Chaitin picked me up at my hotel in the morning. It
was our first meeting, fifteen years ago. The despair is evident as Chaitin
answers my question on whether he ever met Kurt Godel, the German
mathematician who, in 1931, famously proved that one cannot prove ev-
erything. There are things we humans can know, but not prove, Godel
showed to the world.

Godel had been the hero of the young Chaitin. Already in college, in
the sixties, Chaitin had started showing that the results of Gédel were not,
in fact, a mathematical curiosity with limited scope. It was a basic fact
about the world (or at least our description of it): No formal description can
ever grasp everything, there will always be aspects of reality escaping our
description. A complete description cannot be consistent and a consistent
description cannot be complete. It is exactly like life as we know it, everyday
life right there as it is, but Godel showed that it is also the case for the
purest of the pure mathematical problems.

Life is full of contradictions, confusion and sticky ends. We all know
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that. We might have hoped for purity and majestic harmony in math and
pure science. But no! Godel has shown us that this is not the way it is, at
least in some extremely elegantly thought out cases that he studied back
in 1931. Greg Chaitin has shown us that this result is not a weird detail,
but the way things are—or at least the way our descriptions are. It is
the same wisdom that we find in quantum physics: We can never give a
description that is at the same time complete and without contradiction.
Danish physicist Niels Bohr coined the phrase complementarity to describe
the fact that when it comes to electrons and other sub-atomic entities, we
have to use more than one concept to catch all of their behaviour (like both
the concept of waves and particles). Yet at the same time we have to accept
that these two concepts contradict each other. We need them both, but
they exclude each other.

Quantum mechanics and Godel’s proof is certainly not the same thing,
but they are more related than we usually see them. Epistemologically,
they tell the same story: Any description is incomplete, we need more than
one description to grasp anything, but these different descriptions will never
be united, because they contradict each other.

And here was a guy with a red baseball cap walking a mile-long sandy
beach in the summer heat telling me about snow. “Snow is fantastic! Cross-
country skiing is just like a mathematical abstraction! There is only the
blue sky and the white, snow-covered mountain”, explained Chaitin, telling
me how a common friend has taught him to ski. The snow-covered land is
like pure math: The contours and general outline of the landscape is there,
but all the messy details like bushes and small trenches and streams are
evened out by the deep snow-cover. Snow abstracts away the landscape.
Chaitin likes that. But he didn’t like the snow 35 years ago. It meant that
he never met Gdédel, even though he did have an appointment.

“His secretary called and said that Godel was worried about his health
and wouldn’t go out into the snow.” Chaitin was to take the train from
New York to Princeton to meet the master. But there was snow. Soon
after he had to leave for Buenos Aires where his parents worked for the UN
and he worked for IBM.

That was the shortest answer, Chaitin could give to the question, if he
ever met Godel. The was no simpler structure to the story, it was a chain
of coincidences, not structured in a simpler way.
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21.2. Random walk

The snow-story on the beach is, of course, a miniature of Chaitin’s first
major result: That the elusive phenomenon of randomness is all about
how simple something is to describe. A structured and ordered thing is
simple and can be described in a short way. That is what we mean by
order. Something random, on the other hand, cannot be described in any
simple way. That is what we mean by randomness. In fact, if something is
totally random and has no structure or order at all, it is its own shortest
description. One cannot say it any simpler than it does itself. You have to
tell all the details to get anywhere. You have to tell about the snow.

Walking along the beaches of Fire Island was a surprise to a European.
Such beautiful beaches this close to the teeming megapolis at Manhattan.
And yet not a single sunbathing or swimming human being. Not one!
After maybe an hour of walking and talking about snow and the like, I
asked Chaitin: “Where is everyone?”

A few miles more of walking, and there they were, everyone. Hundreds
and hundreds of people crammed in a very small area on the beach. Ly-
ing side by side and diving into the ocean waves, almost hand in hand.
Crammed! Why this, why miles and miles of just sand with a few crab
shells, and then, suddenly, hundreds and hundreds of people packed into a
few hundred meters of coast line?

“Insurance,” Chaitin explained. There had to be a lifeguard wherever
people dipped into the ocean. So people were ordered to stay close to a
lifeguard post. Using the rest of the beach was simply not allowed.

Central surveillance and control doesn’t allow for a random scattering
of people at a beach. They have to be concentrated and packed so that
they can be saved more easily.

Simplicity is control. Randomness is messy and difficult to control.

21.3. Worldview

Let’s be honest for a moment. We don’t know a lot about the world. But
we know a lot about our description of the world. Whether the description
tells us a lot about the world, we don’t really know. Science is not about
the world, but about what we can say about the world, physicist Niels Bohr
said. About the world in which we speak.

Hence, there is room for quite a few models. I want to explore the sim-
plest possible model of the world: The world is random. It is fully linked.
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Everything is linked together in such a way that everything is connected
to everything else. Nothing can be described unless everything else is de-
scribed, because there are so many causal connections that you cannot omit
anything without leaving out something that could be of importance. Chaos
theory tells us that we can never allow ourselves to ignore even fine differ-
ences in initial conditions. Quantum mechanics tells us that everything is
entangled with everything else.

Yet, we see a world of things that are separate and often can be described
locally, that is without reference to the rest of the universe. How come there
exists a kind of local structure that is decoupled from the web of everything
being connected to everything? My table is stable, no matter what goes on
on Saturn.

How come that in a world of connections, a world of links, there is local
stability, things we can describe without describing everything else? I like
to think of it as a kind of boiling. In hot water, approaching the boiling
point, small pockets of vapour will form where ever the vapour pressure
of the steam is higher than the pressure from the water around it. Small
pockets of non-water arise in the water. Likewise, in a world of infinitely
many connections between all the ingredients, local bubbles of stability
arise.

When a macroscopic object is formed, it will be big enough that all the
odd quantum entanglements just vanish in importance. It may interact
with the outside world, but the interactions are so tiny and all equal out.
Therefore we can describe the chair with out referring to the weather on
Jupiter, or at least we think so—for any practical purpose. So everything
is really very random, but sometimes order bubbles out of the pot.

21.4. Leibniz

But why didn’t Chaitin meet Leibniz? Well, for starters Leibniz died 291
years ago. Another reason could be that Leibniz was a loner, and Chaitin
is another one.

But Leibniz had the very simple idea that whenever one could reduce
data to a simple theory and re-deduce the data from the simple theory,
it was a good (or even true) theory. This, of course, is very much like
Chaitin’s ideas.

So: The world is random and you cannot describe anything without
describing everything. But locally there is structure, simplicity in the mess
of links and connections, like bubbles in boiling water. Sometimes, we can
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take the simple structures and use them again and again, according to the
laws for their behaviour, and we can get the original random mess back! In
that case we feel we understand: We can take mess, reduce it to simplicity,
do some push-ups with the simplicity and get the mess back.

Let’s translate that into randomness and order: We take randomness,
find some structure in it, manipulate the structure and get randomness
back.

Let’s translate it into science: We have reality (what a mess!) and we
extract simple principles, manipulate them and get the mess back.

Let’s translate it into epistemology: We have a world with no structure,
we build structures in our head, and we can reconstruct the mess.

Chaitin meets Leibniz.

21.5. Abstractions?

Plato, the old Greek philosopher, insisted that there were ideas behind the
phenomena: All existing horses were the incarnation of the principle of the
horse. Ideas before phenomena. That is, order before randomness.

But Plato was wrong. The world is random and there are only approx-
imative concepts.

Or is it so? Most mathematicians (but not Chaitin) are closet-platonists.
They think mathematical objects exist before that messy and low world in
which we exist.

I am arguing here that the mess is the starting point, order evolved.
Some would argue that order was designed and came first.

But perhaps it was in fact designed: 10,000 years ago humans started
doing agriculture. Before that we lived a rich and long life as hunter-
gatherers, collecting a huge variety and self-grown, wild plants and fruits
and hunting down self-grown animals and fish.

But then, after a climate disaster at the end of the Last Ice Age, ocean
water level rose by 100 meters (!) and something new had to happen. Agri-
culture became the answer.

Agriculture is dull: No longer was there an almost infinite variety of
plants and animals (with hundreds of species being caught or collected every
day). It was all reduced to a few, high-yielding plants and domesticated
animals.

Look at the field and say “Wheat!” You don’t really have to say more.
Look at the wilderness and it will take you a long time to describe.

Agriculture introduces the abstraction. The idea of wheat is in fact
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primary to the wheat field. First was the idea, then came the reality. Idea
before phenomenon. Agriculture.

21.6. The Link Age

But now water levels are rising again and we have to rethink civilisation,
we have to invent a Civilisation 2.0, as I call it. We are entering what I
call The Link Age, the era of network links and everything being linked
to everything else. We are also leaving the starch-producing agricultural
era of a few grasses grown in huge quantities (grasses like wheat, barley,
rye, rice, corn, sugar cane, etc.) 10,000 years ago, a rich variety of different
individual plants in the self-grown wilderness of the hunter-gatherer culture
was transformed into a new reality of stereotypes of cultivated land.

Now, however, Civilisation 2.0 is on its way. It is being created these
days, by mostly unknowing wind mill farmers and Web 2.0 collectives of
co-operative software producers. The wilderness, the distributed control
and the sunshine is coming back.

Agriculture created Civilisation 1.0 with all its real abstractions like the
wheat field or the chickens in the barn.

We are now seeing the advent of a Civilisation 2.0 based on the link
as the "atom”: Networks, peer-to-peer on the net, social software, social
technology, keeping tracks of your relationships digitally; renewable energy,
recycling, environment. The age of the link, as opposed to the age of atoms
and substance. Not things but relationships between things; not individual
people, but links between people. The Link Age.

Not hierarchies, not central control, not life guards, but Web 2.0 - spon-
taneous collaboration. High information content, mediated by machines.
Green and hi tech at the same time.

Civilisation 2.0 is arising these days. The world is slowly understanding
the severity of the climate crisis and the fantastic opportunities offered by
the internet and new epistemology. Randomness will reign again.

Civilisation 2.0 will have theoretical heroes. Greg Chaitin will be the
leading one. He discovered the nature of randomness, non-order, non-
control, the world as it is in all its richness. Chaitin transcended the logic
of the agricultural mind—without even trying. He just did it. He didn’t
know he did it. He didn’t even try. We should all be thankful. You could
not give a shorter version of the story than telling about all that Chaitin
did. There was no plan. His career has not been centrally organised and
planned. It was a crooked, zigzag way, information rich and random. It
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was what it was. Never close to the life guard. High risk. High importance.
Greg Chaitin’s time is just about to come.
Congratulations, everyone.
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Chapter 22

Some Modern Perspectives on the Quest for Ultimate
Knowledge

Stephen Wolfram
Wolfram Research

Dedicated to Gregory Chaitin on the occasion of his sixtieth birthday,
these remarks attempt to capture some of the kinds of topics we have
discussed over the course of many enjoyable hours and days during the
past twenty-five years.

The spectacular growth of human knowledge is perhaps the single great-
est achievement in the history of civilization. But will we ever know every-
thing? Three centuries ago, Gottfried Leibniz had a plan. In the tradition
of Aristotle, but informed by two more millennia of mathematical develop-
ment, he wanted to collect and codify all human knowledge, then formalize
it so everything one could ever want to know could be derived by essen-
tially mathematical means. He even imagined that by forming all possible
combinations of statements, one could systematically generate all possible
knowledge. So what happened to this plan? And will it, or anything like
it, ever be achieved?

Two major things went wrong with Leibniz’s original idea. The first was
that human knowledge turned out to be a lot more difficult to formalize
than he expected. And the second was that it became clear that reducing
things to mathematics wasn’t enough. Godel’s Theorem, in particular, got
in the way, and showed that even if one could formulate something in terms
of mathematics, there might still be no procedure for figuring out whether
it was true.

Of course, some things have gone better than Leibniz might have
imagined. A notable example is that it’s become clear that all forms of
information—not just words—can be encoded in a uniform digital way.
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And—we think—all processes, either constructed or occurring in nature,
can be encoded as computations.

Science has gone OK since Leibniz’s time, but in some ways not great.
Descartes had thought that within a hundred years of his time there’d be
a complete theory of our universe, from which everything we might want
to know could be calculated. And in some areas—especially the traditional
physical sciences—there’s been excellent progress. And we’ve been able to
achieve immense amounts in engineering and technology on the basis of that
progress. But in other areas—mnotably the biological and social sciences—
there is still rather little that we can calculate. And even in physics, we of
course don’t have an ultimate theory of our universe.

What about mathematics? In some ways it’s hard to assess progress.
But I think we’d have to say that it’s been mixed. Some of the widely dis-
cussed mathematical problems of Leibniz’s day have firmly been solved. But
plenty have not. Just like the Pythagoreans, we still don’t know whether a
perfect number can be odd, for example.

So what happened with science and mathematics? Why did they turn
out to be difficult? Did we just not have enough clever ideas? Or put
enough effort into them? I don’t think so. I think there’s a fundamental
problem—a fundamental barrier to knowledge.

One can think about it as all being related to what I call computational
irreducibility. And it depends critically on what is probably the greatest
intellectual advance of the past century: the notion of universal computa-
tion.

Here’s the point of computational irreducibility. Imagine a system that
evolves in a certain way. Now ask the question: can we work out what
the system will do by spending less computational effort than it takes the
system itself? Can we find a shortcut that will determine what will happen
in the system without having to follow all the steps that the system itself
goes through?

The great triumphs of the traditional exact sciences have essentially all
been based on being able to do this. To work out where an idealized Earth
orbiting an idealized Sun will be a million years from now, we don’t have
to trace the Earth around a million orbits: we just have to fill a number
into a formula and immediately get a result.

But the question is: will this kind of approach always work? Look at



the second picture below.

Picture 1

Picture 2

Is there a way to shortcut what is happening here, to find the outcome
without explicitly following each step? In the first picture above, it’s obvi-
ous that there is. But in the second picture, I don’t think there is. I think
what is happening here is a fundamentally computationally irreducible pro-
cess.
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If one traces each step explicitly, there is no problem working out what
will happen. But the point is that there is no general shortcut: no way
to find the outcome without doing essentially as much work as the system
itself.

How can this be? We might have thought that as our methods of math-
ematics and science got better, we would always be able to do progressively
better. But in a sense what that would mean is that we, as computational
systems, must always be able to become progressively more powerful. And
this is where universal computation comes in. Because what it shows is that
there is an upper limit to computational capability: once one is a universal
computer, one can’t go any further. Because as a universal computer, one
can already emulate anything any other system can do. So if the system
one’s looking at is a universal computer, it’s inevitable that one can’t find
a shortcut for what it does.

But the question for science—and for knowledge in general—is how often
the systems one’s looking at are universal, and really behave in computa-
tionally sophisticated ways.

The traditional successes of the exact sciences are about cases where the
systems one’s looking at are computationally quite simple. And that’s pre-
cisely why traditional science has been able to do what it does with them.
They’re computationally reducible—and so what the science has done is
to find reductions. Find things like exact formulas that give the outcome
without working through the steps.

But the reason I think science hasn’t been able to make more progress is
precisely because there are lots of systems that aren’t computationally re-
ducible. There are lots of systems that can—and do—perform sophisticated
computations. And that are universal. And that are just as computation-
ally sophisticated as any of the methods we’re able to use to analyze them.
So that they inevitably seem to us “complex”—and we can’t work out what
they will do except with an irreducible amount of computational work.

It’s a very interesting question of basic science just how ubiquitous com-
putational irreducibility really is. It’s a little confusing for us, because we’re
so used to concentrating on cases that happen to be computationally re-
ducible. Most of our existing engineering is built on systems that happen
to behave in computationally reducible ways—so that we can readily work
out what they’ll do. Biological evolution, as well, tends to have an easier
time dealing with computationally reducible systems. And we as humans
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inevitably tend to notice those aspects of systems that are computationally
reducible—because that is what our powers of perception allow us to rec-
ognize.

But it is possible to do what amounts to a more unbiased study. The
basic idea is just to look at all possible simple computational systems—
say all possible small programs of a certain form. In effect, to do a new
kind of empirical science, and to look out into the computational universe,
and see what’s there. Well, this is something I have spent a great deal
of time doing. And one of the big things I've concluded is that in fact
computational sophistication—and computational irreducibility—is quite
ubiquitous. Indeed, I have formulated what I call the Principle of Com-
putational Equivalence, which in effect says that almost any time one sees
behavior that does not look obviously simple, it will turn out to be of equiv-
alent computational sophistication. And what this means is that in a sense
almost everywhere outside the places where the exact sciences have already
been able to make progress, there will be fundamental limits to progress.

Certainly progress is not impossible. In fact, as a matter of principle,
there must always be an infinite hierarchy of pockets of reducibility—an
endless frontier for traditional science. But there will also be lots of com-
putational irreducibility. Still, computational irreducibility certainly does
not prevent science from being done. It just says that the expectations for
what can be achieved should be different.

It puts pressure on having the simplest possible underlying models. Be-
cause it says that one has no choice but in effect just to follow every step in
their behavior. As a practical matter, though, it’s often perfectly possible
to do that: to find by simulation what a system will do. And that’s some-
thing that generates a lot of very useful knowledge. Indeed, it’s becoming
an increasingly critical element in all sorts of technology and other appli-
cations of science.

So what about mathematics? In the abstract, it’s not even obvious
why mathematics should be hard at all. We’ve known for a hundred years
that the axioms on which all our current mathematics is based are quite
simple to state. So we might have thought—as most mathematicians did
in the early twentieth century—that it’d just be a question of setting up
the appropriate machinery, and then we’d systematically be able to answer
any question we might pose in mathematics. But then along came Godel’s
Theorem. Which showed that there exist at least some questions that can
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be formulated in mathematical terms, but can never be answered from its
axioms. But while Goédel’s Theorem had a big effect on thinking about
the foundations of mathematics, I think it’s fair to say that it’s had almost
no effect on the actual practice of mathematics. And in a sense this isn’t
surprising. Because the actual question that Godel talked about in proving
his theorem is a weird logic-type thing. It isn’t a kind of question that
ordinary mathematicians would ever naturally ask.

But the real heart of Godel’s Theorem is the proof that standard math-
ematical axiom systems are computation universal. And a consequence of
this is that mathematics can in effect show computational irreducibility.
Which is, at a fundamental level, why it can be hard to do. And also why
there can be questions in it that are formally undecidable from its axioms.

But the question is: how common is something like undecidability?
Practicing mathematicians always tend to assume it’s rare. But is that re-
ally true? Or is it just that the mathematics that gets done is mathematics
that avoids undecidability? I firmly believe it’s the latter.

It’s often imagined that mathematics somehow covers all arbitrary ab-
stract systems. But that’s simply not true. And this becomes very obvi-
ous when one starts investigating the whole computational universe. Just
like one can enumerate possible programs, one can also enumerate “possi-
ble mathematicses”: possible axiom systems that might be used to define
mathematics. And if one does that, one finds lots and lots of axiom sys-
tems that seem just as rich as anything in our standard mathematics. But
they’re different. They’re alternative mathematicses. Now, in that space
of “possible mathematicses” we can find our ordinary mathematics. Logic—
Boolean algebra—turns out for example to be about the 50,000 “possible
mathematics” that we reach. But this kind of “sighting” makes it very clear
that what we call mathematics today is not some absolute thing. It’s just
a particular formal system that arose historically from the arithmetic and
geometry of ancient Babylon. And that happens to have grown into one of
the great cultural artifacts of our civilization.

And even within our standard mathematics, there is something else that
is going on: the questions that get asked in a sense always tend to keep
to the region of computational reducibility. Partly it has to do with the
way generalization is done in mathematics. The traditional methodology
of mathematics puts theorems at the center of things. So when it comes to
working out how to broaden mathematics, what tends to be done is to ask
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what broader class of things still satisfy some particular favorite theorem.
So that’s how one goes from integers to real numbers, complex numbers,
matrices, quaternions, and so on. But inevitably it’s the kind of general-
ization that still lets theorems be proved. And it’s not reaching anything
like all the kinds of questions that could be asked—or that one would find
just by systematically enumerating possible questions.

One knows that there are lots of famous unsolved problems in mathe-
matics. Particularly in areas like number theory, where it’s a bit easier to
formulate possible questions. But somehow there’s always been optimism
that as the centuries go by, more and more of the unsolved problems will
triumphantly be solved.

I doubt it. I actually suspect that we’re fairly close to the edge of
what’s possible in mathematics. And that quite close at hand—and al-
ready in the current inventory of unsolved problems—are plenty of unde-
cidable questions. Mathematics has tended to be rather like engineering:
one constructs things only when one can foresee how they will work. But
that doesn’t mean that that’s everything that’s there. And from what I've
seen in studying the computational universe, my intuition is that the lim-
its to mathematical knowledge are close at hand—and can successfully be
avoided only by carefully limiting the scope of mathematics.

In mathematics there has been a great emphasis on finding broad meth-
ods that in effect define whole swaths of computational reducibility. But
the point is that that computational reducibility is in many ways the ex-
ception, not the rule. So instead, one must investigate mathematics by
studying—in more specific terms—what particular systems do.

Sometimes it is argued that one can see the generality of mathematics
by the way in which it successfully captures what is needed in natural sci-
ence. But the only reason for this, I believe, is that natural science has
been limited too—in effect to just those kinds of phenomena that can suc-
cessfully be captured by traditional mathematics!

Sometimes it is also said that, yes, there are many other questions that
mathematics could study, but those questions would “not be interesting”.
But really, what this is saying is just that those questions would not fit into
the existing cultural framework of mathematics. And indeed this is pre-
cisely why—to use the title of my book—one needs a new kind of science
to provide the framework. And to see how the questions relate to questions
of undeniable practical interest in natural science and technology.
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But OK, one can argue about what might or might not count as math-
ematics. But in physics, it seems a bit more clear-cut. Physics should be
about how our universe works.

So the obvious question is: do we have a fundamental theory? Do we
have a theory that tells us exactly how our universe works?

WEell, physics has progressed a long way. But we still don’t have a fun-
damental theory. Will we ever have one? I think we will. And perhaps
even soon.

For the last little while, it hasn’t looked promising. In the nineteenth
century, it looked like everything was getting wrapped up, just with me-
chanics, electromagnetism and gravity. Then there were little cracks. They
ended up showing us quantum mechanics. Then quantum field theory. And
so on. In fact, at every stage when it looked like everything was wrapped
up, there’d be some little problem that ended up not being so little, and
inevitably making our theory of physics more complicated.

And that’s made people tend to think that there just can’t be a simple
fundamental theory. That somehow physics is a bottomless pit.

WEell, again, from studying the computational universe, my intuition
has ended up being rather different. Because I've seen so many cases where
simple rules end up generating immensely rich and complex behavior. And
that’s made me think it’s not nearly so implausible that our whole universe
could come from a simple rule.

It’s a big question, though, just how simple the rule might be. Is it
like one or two lines of Mathematica code? Or a hundred? Or a thousand?
We've got some reason to believe that it’s not incredibly complicated—
because in a sense then there wouldn’t be any order in the universe: every
particle would get to use a different part of the rule and do different things.
But is it simple enough that, say, we could search for it? I don’t know.
And I haven’t figured out any fundamental basis for knowing. But it’s
certainly not obvious that our universe isn’t quite easy to find out in the
computational universe of possible universes. There are lots of technical
issues. If there’s a simple rule for the universe, it—in a sense—can’t have
anything familiar already built in. There just “isn’t room” in the rule to,
say, have a parameter for the number of dimensions of space, or the mass
of the electron. Everything has to emerge. And that means the rule has to
be about very abstract things. In a sense below space, below time, and so
on.
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But I've got—I think—some decent ideas about ways to represent those
various abstract possible rules for universes. And I've been able to do a
little bit of “universe hunting”.

But, well, one quickly runs into a fundamental issue. Given a candidate
universe, it’s often very obvious what it’s like. Perhaps it has no notion of
time. Or some trivial exponential structure for all of space. Stuff that makes
it easy to reject as being not our universe. But then—quite quickly—one
runs into candidate universes that do very complicated things. And where
it’s really hard to tell if they’re our universe or not. As a practical mat-
ter, what one has to do is in a sense to recapitulate the whole history of
physics. To take a universe, and by doing experiments and theory, work
out the effective physical laws that govern it. But one has to do this auto-
matically, and quickly. And there’s a fundamental problem: computational
irreducibility.

It’s possible that in my inventory of candidate universe is our very own
universe. But we haven’t been able to tell. Because going from that under-
lying rule to the final behavior requires an irreducible amount of computa-
tional work.

The only hope is that there are enough pieces of computational re-
ducibility to be able to tell whether what we have actually is our universe.
It’s a peculiar situation: we could in a sense already have ultimate knowl-
edge about our universe, yet not know it.

One thing that often comes up in physics is the idea that somehow even-
tually one can’t ever know anything with definiteness: there always have to
be probabilities involved. Well, usually when one introduces probabilities
into a model, it’s just a way to represent the fact that there’s something
missing in the model—something one doesn’t know about, and is just go-
ing to assume is “random”. In quantum theory, probabilities get elevated
to something more fundamental, and we're supposed to believe that there
can never be definite predictions for what will happen. Somehow that fits
with some peoples’ beliefs. But I don’t think it scientifically has to be true.
There are all kinds of technical things—Ilike Bell’s inequality violations—
that have convinced people that this probabilistic idea is real. But actually
there are technical loopholes—that I increasingly think are what’s actually
going on. And in fact, I think it’s likely that there really is just a single,
definite, rule for our universe. That in a sense deterministically specifies
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how everything in our universe happens. It looks probabilistic because
there is a lot of complicated stuff going on that we’re not seeing—mnotably
in the very structure and connectivity of space and time. But really it’s all
completely deterministic. So that in some theoretical sense we could have
ultimate knowledge of what happens in the universe.

But there’s a serious problem: computational irreducibility. Even
though we might know an underlying deterministic rule, we’d have to go
through as much computational work as the universe to find out its conse-
quences. So if we’re restricted—as we inevitably are—to doing that com-
putational work within the universe, then we can’t expect to “outrun” the
universe, and derive knowledge any faster than just by watching what the
universe actually does. Of course, there are exceptions—patches of com-
putational reducibility. And it’s in those patches that essentially all of
our current physics lies. But how far can we expect the computational re-
ducibility to go? Could we for example answer questions like: “is warp drive
possible?” Some of them, probably yes. But some of them, I expect, will
be undecidable. They’ll end up—at least in their idealized form—boiling
down to asking whether there exists some set of masses that can have such
and such a property, that will turn out to be an undecidable question.

Normally when we do natural science, we have to be content with mak-
ing models that are approximations. And where we have to argue about
whether we’ve managed to capture all the features that are essential for
some particular purpose, or not. But when it comes to finding an ultimate
model for the universe, we get to do more than that. We get to find a
precise, exact, representation of the universe, with no approximations. So
that, in a sense, we successfully reduce all of physics to mathematics. So
that we would have, in a sense, achieved Leibniz’s objective—of turning
every question about the world into a question about mathematics. And
this would certainly be exciting. But at some level it would be a hollow
victory: for even knowing the ultimate rule, we are still confronted with
computational irreducibility. So even though in some sense we would have
achieved ultimate knowledge, our ability to use it would be fundamentally
limited.

Before one knew about computational irreducibility, one might have
imagined that knowing the ultimate laws of the universe would somehow
immediately give one deterministic knowledge of everything—mnot only in
natural science, but also in human affairs. That somehow knowing the laws
of the universe would tell us how humans would act—and give us a way
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to compute and predict human behavior. Of course, to many people this
always seemed implausible—because we feel that we have some form of free
will. And now, with computational irreducibility, we can see how this can
still be consistent with deterministic underlying laws. That even if we know
these laws, there’s still an irreducible distance—an irreducible amount of
computation—that separates our actual behavior from them.

At various times in the history of exact science, people have thought
there might be some complete predictive theory of human behavior. And
what we can now see is that in a sense there’s a fundamental reason why
there can’t be. So the result is that at some level to know what will happen,
we just have to watch and see history unfold.

Of course, as a practical matter, what we can “watch” is becoming more
and more extensive by the year. It used to be that very little of history was
recorded. A whole civilization might leave only a few megabytes, if that,
behind.

But digital electronics has changed all of that. And now we can sense,
probe and record immense details of many things. Whether it’s detailed
images of the Earth’s surface, or the content of some network of human
communications, or the electrical impulses inside a brain. We can store and
retrieve them all. Increasingly, we’ll even be able to go back and reproduce
the past. A few trace molecules in some archaeological site, extrapolated
DNA for distant ancestors and so on. I expect we’ll be able to read the past
of almost any solid surface. Every time we touch something, we disturb a
few atoms. If we repeat it enough, we’ll visibly wear the solid down. But
one day, we’ll be able to detect just that first touch by studying the whole
pattern of atoms on the surface.

There’s a lot one could imagine knowing about the world. And I think
it’s going to become increasingly possible to find it out, once one asks for
it. Yet just how the sensors and the systems they are able to sense will
relate is an interesting issue.

One of the consequences of my Principle of Computational Equivalence
is that sophisticated computation can happen in a tremendous range of
systems—not just brains and computers, but also all sorts of everyday
systems in nature. And no doubt our brains—and current computers—are
not especially efficient vehicles for achieving computation. And as our tech-
nology gets better, we’ll be able to do computation much better in other
media. Making computation happen, for example, at the level of individual
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molecules in materials.

So it’ll be a peculiar picture: the computations we want to do happen-
ing down at an atomic scale. With electrons whizzing around—pretty much
just like they do anyway in any material. But somehow in a pattern that
is meaningful with respect to the computations we want to do.

Now perhaps a lot of the time we may want to do “pure computation”—
in a sense just purely “think”. But sometimes we’ll want to interact with
the world—find out knowledge from the world. And this is where our sen-
sors come in. But if they too are operating at an atomic scale, it’ll be just
as if some clump of atoms somewhere in a material is affecting some clump
of atoms somewhere else—again pretty much just like they would anyway.

It’s in a sense a disappointing picture. At the end of all of our technol-
ogy development, we're operating just like the rest of the universe. And
from the outside, there’s nothing obvious we’ve achieved. You’d have to
know the history and the context to know that those electrons whizzing
around, and those atoms moving, were the result of the whole rich history
of human civilization, and its great technology achievements.

It’s a peculiar situation. But in a sense I think it reflects a core issue
about ultimate knowledge.

Right now, the web contains a few billion pages of knowledge that hu-
mans have collected with considerable effort. And one might have thought
that it’d be difficult to generate more knowledge.

But it isn’t. In a sense that’s what Leibniz found exciting about math-
ematics. It’s possible to use it systematically to generate new knowledge.
Working out new formulas, or new results, in an essentially mechanical way.

But now we can take that idea much further. We have the whole compu-
tational universe to explore—with all possible rules. Including, for example,
I believe, the rules for our physical universe. And out in the computational
universe, it’s easy to generate new knowledge. Just sampling the richness
of what even very simple programs can do. In fact, given the idea of com-
putation universality, and especially the Principle of Computational Equiv-
alence, there is a sense in which one can imagine systematically generating
all knowledge, subject only to the limitations of computational irreducibil-
ity.

But what would we do with all of this? Why would we care to have
knowledge about all those different programs out there in the computa-
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tional universe? Well, in the past we might have said the same thing about
different locations on the Earth. Or different materials. Or different chem-
icals. But of course, what has happened in human history is that we have
systematically found ways to harness these things for our various purposes.
And so, for example, over the course of time we have found ways to use a
tremendous diversity, say, of possible materials that we can “mine” from
the physical world. To find uses for magnetite, or amber, or liquid crystals,
or rare earths, or radioactive materials, or whatever. Well, so it will be with
the computational universe. It’s just starting now. Within Mathematica,
for example, many algorithms we use were “mined” from the computational
universe. Found by searching a large space of possible programs, and pick-
ing ones that happen to be useful for our particular purposes. In a sense
defining pieces of knowledge from the sea of possibilities that end up being
relevant to us as humans.

It will be interesting to watch the development of technology—as well
as art and civilization in general—and to see how it explores the computa-
tional universe of possible programs. I'm sure it’ll be not unlike the case of
physical materials. There’ll be techniques for mining, refining, combining.
There’ll be “gold rushes” as particular rich veins of programs are found.
And gradually the domain of what’s considered relevant for human purposes
will expand to encompass more and more of the computational universe.

But, OK, so there is all sorts of possible knowledge out there in the
computational universe. And gradually our civilization will make use of it.

But what about particular knowledge that we would like to have, today?
What about Leibniz’s goal of being able to answer all human questions by
somehow systematizing knowledge?

Our best way of summarizing and communicating knowledge tends to
be through language. And when mathematics became formalized, it did
so essentially by emulating the symbolic structure of traditional human
natural language. And so it’s interesting to see what’s happened in the
systematization of mathematics.

In the early 1900s, it seemed like the key thing one wanted to do was
to emulate the process of mathematical proof. That one wanted in effect
to find nuggets of truth in mathematics, represented by proofs. But actu-
ally, this really turned out not to be the point. Instead, what was really
important about the systematization of mathematics was that it let one
specify calculations. And that it let one systematically “do” mathematics
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automatically, by computer, as we do in Mathematica.

Well, I think the same kind of thing is going to be true for ordinary
language. For centuries, people have had the idea of somehow formalizing
language: nowadays, of making something like a computer language that
can talk about everyday issues. But the question is: what is supposed to
be its purpose? Is its purpose—like the formalizations of mathematical
proof—to represent true facts in the world? If so, then to derive useful
things one has to have some kind of inferencing mechanism—something
that lets one go from some facts, or some theorems, to others.

And as for proof-based mathematics, there is certainly something to be
done here. But I think the much more important direction is the analog of
calculation-based mathematics. Somehow to take a formalization of every-
day discourse, and calculate with it. What could this mean? What is the
analog of taking a mathematical expression like 242 and evaluating it?

In a sense it is to take a statement, and work out statements that are
somehow the result of it.

Out in the computational universe, there are lots of systems and pro-
cesses. And while computational irreducibility may force us to use explicit
simulation to work out their results, we have a definite procedure for doing
what we can do.

The issue, however, is to connect this “vast ocean of truth” with actual
everyday questions. The problem is not so much how to answer questions,
as how to ask them. As our ability to set up more and more elaborate net-
works of sensors increases, there will be a new approach. We will be able
to take “images” of the world, and directly map them onto systems and
processes in the computational universe. And then find out their results
not by watching the systems in nature, but by abstractly studying their
analogs in the computational universe.

Perhaps one day the analog of human discourse will operate more at
the level of such “images”. But for now traditional language is our primary
means of communicating ideas and questions. It is in a sense the “handle”
that we must use to specify aspects of the computational universe that we
want to talk about.

Of course, language evolves as different things become common to talk
about. In the past, we would have had no words for talking about nested
patterns. But now we just describe them as “nested” or “fractal”.
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But if we just take language as it is, it defines a tiny slice of the com-
putational universe. It is in many ways an atypical slice. For it is highly
weighted towards computational reducibility. For we, as humans, tend to
concentrate on things that make sense to us, and that we can readily sum-
marize and predict. So at least for now only a small part of our language
tends to be devoted to things we consider “random”, “complex”, or other-
wise hard for us to make sense of.

But if we restrict ourselves to those things that we can describe with
ordinary language, how far can we go in our knowledge of them? In most di-
rections, computational irreducibility is not far away—providing in a sense
a fundamental barrier to our knowledge. In general, everyday language is
a very imprecise way to specify questions or ideas, being full of ambiguities
and incomplete descriptions. But there is, I suspect, a curious phenomenon
that may be of great practical importance. If one chooses to restrict oneself
to computationally reducible issues, then this provides a constraint that
makes it much easier to find a precise interpretation of language. In other
words, a question asked in ordinary language may be hard to interpret in
general. But if one chooses to interpret it only in terms of what can be
computed—what can be calculated—from it, it becomes possible to make
a precise interpretation.

One is doing what I believe most of traditional science has done: choos-
ing to look only at those parts of the world on which particular methods
can make progress. But I believe we are fairly close to being able to build
technology that will let us do some version of what Leibniz hoped for. To
take issues in human discourse, and when they are computable, compute
them.

The web—and especially web search—has defined an important transi-
tion. It used to be that static human knowledge—while in principle acces-
sible through libraries and the like—was sufficiently difficult to access that
a typical person usually sampled it only very sparingly. But now it has
become straightforward to find “known facts”. Using the “handle” of lan-
guage, we just have to search the web for where those facts are described.

But what about facts that are not yet “known”? How can we access
those? We need to create the facts, by actual computation. Some will be
fraught with computational irreducibility, and in some fundamental sense
be inaccessible. But there will be others that we can access, at least if we
can find a realistic way for us humans to refer to them.
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Today there is a certain amount of computation about the world that we
routinely do. Most of it is somehow done automatically inside devices that
use their own sensors to find out about the world—automatic cameras, GPS
devices, and so on. And there is a small subset of people—physicists, en-
gineers, and the like—who fairly routinely actually do computations about
the world. But despite the celebrated history of exact science, few people
have direct access to the computations it implies can be done.

I think this will change. Part of the change is already made possible
with Mathematica as it is today. But another part is coming, with new
technology that we are working to build. And the consequence of it will
be something that I believe will be of quite fundamental importance. That
we will finally be able routinely to access what can be computed about our
everyday world. In a sense to have ultimate access to the knowledge which
it is possible to get.

Extrapolating from Leibniz, we might have hoped that we would be
able to get ultimate knowledge about everything. Somehow with our so-
phistication to be able to work out everything about the world, and what
can happen in it. But we now know that this will never be possible. And
indeed, from looking at the computational universe, it becomes clear that
there is a lot in the world that we will never be able to “unravel” in this
way. In some ways it would have been disappointing if this had been so. For
it would mean that our world could somehow be simplified. And that all
the richness of what we actually see—and the actual processes that go on
in nature—would be unnecessary. And that with our ultimate knowledge
we would be able to work out the true “results” of our universe, without
going through everything that actually happens in the universe.

As it is, we know that this is not the case. But increasingly we can expect
that whatever knowledge can in principle be obtained, we will actually
be able to obtain. To fully harness the concept of computation, and to
integrate it into the future of our civilization.
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23.1. The Arrogance of Science and Mathematics

Science and mathematics seem to be huge success stories. Hence it is not
surprising that most scientists and mathematicians think that science and
mathematics are the most secure ways of acquiring knowledge, and that all
knowledge could, at least in principle, be derived using either the scientific
method, using inductive reasoning, and in the case of mathematical knowl-
edge, using deductive reasoning.

In the 19th century, people were so impressed with science and mathe-
matics that, starting with Comte, a movement called positivism, that tried
to apply the so-called scientific method to all domains of inquiry, gained
prominence. But then the pendulum swung back, and many objected to
what they called the imperialism of science, and Comte’s empiric posi-
tivism gave way to Bergson’s and others’ metaphysico-spiritual movement,
that emphasized the heart rather than the brain, and intuition rather than
deduction. A century earlier, German Romanticism and Idealism were re-
actions against the rationalism of the Enlightment.

More recently, science came under attack by post-modern philosophers,
and that got some scientists, most notably Alan Sokal, to fight back by
making fun of them. Little did Alan know that the joke is on him, since
while some of the details of the philosophical critiques of science were indeed
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erroneous and sometimes pure gibberish, the spirit of the critiques were very
well-founded, since all that they were trying to say was that old standby,
that goes back at least to Socrates: We know that we don’t know.

23.2. Skeptics

I have always admired skeptics, from Pyrrho of Elis all the way to Jacques
Derrida. But my two favorite skeptics are David Hume and Gregory
Chaitin, who so beautifully and eloquently described the limits of sci-
ence and the limits of mathematics, respectively.

23.3. David Hume’s Critique of the Scientific Method

According to Bertrand Russell, there is a place in hell for philosophers who
believed that they solved Hume’s problem of induction. Of course, no one
has yet solved it, and Hume’s famous assertion that (physical) induction,
i.e. generalizing from finitely many cases, has no (logical) justification
whatsoever, has not yet been rebutted successfully.

Let’s cite his doubts about the sun rising tomorrow:

That the sun will not rise tomorrow is no less intelligible a proposition,
and implies no more contradiction, than the affirmation, that it will rise.

Another, more recent, attack on (physical) induction was launched by
Nelson Goodman, who coined the term grue for an object that is green
before Jan. 1, 2050, and is blue after it. So far all examined emeralds
turned out to be green, hence, by (physical, incomplete) induction it is
reasonable to state that “all emeralds are green”. But, by the same token,
so far all emeralds turned out to be grue, so stand by for Jan. 2, 2050, and
dear old Goodman predicts that all emeralds will be blue then, since then
grue would be blue, and we have such good empirical evidence that they
are always grue.

23.4. Greg Chaitin and the Limits of Mathematics
Standing on the shoulders of Godel, Turing (and Post, Church, Markov and

others), Greg Chaitin gave the most succinct, elegant, and witty expression
to the limits of our mathematical knowledge. It is his immortal Chaitin’s
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Constant, Q:

Q= Z 27"",

p halts

where the sum ranges over all self-delimiting programs run on some Uni-
versal Turing Machine. As Greg puts it so eloquently, €2 is the epitome of
mathematical randomness, and its digits are beautiful examples of random
mathematical facts, true for “no reason”. It also has the charming property
of being normal to all bases.

23.5. How Real Is Q7

There is only one problem with €2, it is a real number! As we all know, but
most of us refuse to admit, “real” numbers are not real, but purely fictional,
since they have infinitely many digits, and there is no such thing as in-
finity. Worse, (2 is uncomputable, since we know, thanks to Turing, that
there is no way of knowing, a priori, whether p halts or not. It is true that
many “real” numbers, for example v/2, ¢, e, 7 etc., can be deconstructed in
finite terms, by renaming them ‘algorithms’, and we do indeed know that
these are genuine algorithms since in each specific case, we can prove that
any particular digit can be computed in a finite, pre-determined, number
of steps. But if you believe in €2, then you believe in God. God does know
whether any program p will eventually halt or not, because God lives for
ever and ever (Amen), and also can predict the future, so for God, € is as
real as v/2 or even 2 is for us mere mortals. So indeed, if God exists, then
exists as well, and God knows all its digits. Just because we, lowly mortals,
will never know the digits of €2, is just a reflection on our own limitations.

But what if you don’t believe in God? Or, like myself, does not know
for sure, one way or the other?

23.6. Do I Believe in Q7

Regardless of whether or not God exists, God has no place in mathematics,
at least in my book. My God does not know (or care) whether a program
p eventually halts or not. So 2 does not exist in my, ultra-finitistic, world-
view. But, it does indeed exist as a symbol, and as a lovely metaphor,
so like enlightened ‘non-fundamentalist’ religious folks, we can still enjoy
and believe in the bible, even without taking it literally. I can still love and
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cherish and adore Chaitin’s constant, (2, the same way as I enjoy Adam and
Eve, or Harry Potter, and who cares whether they are ‘real’ or ‘fictional’.

23.7. Greg Chaitin’s Advice About Experimental Mathe-
matics

One interesting moral Greg Chaitin draws from his brainchild, Algorithmic
Information Theory, and its crown jewel, €, is the advice to pursue Exper-
imental Mathematics. Since so much of mathematical truth is inaccessible,
it is stupid to insist on finding a proof for every statement, since for one,
the proof may not exist (it may well be undecidable), or it may be too long
and complicated for us mere humans, and even for our computers. So Greg
suggests to take truths that we ‘feel” are right (on heuristic or experimental
grounds) and adopt them as new ‘axioms’, very much like physicist use
Conservation of Energy and the Uncertainty Principle as “axioms”. Two
of his favorites are P # NP and the Riemann Hypothesis. Of course, by
taking these as new ‘axioms’ we give up on one of the original meanings of
the word ‘axiom’, that it should be ‘self-evident’, but Hilbert already gave
this up by making mathematical deduction into a formal game.

23.8. Stephen Wolfram’s Vision

Another, even more extreme, advocate of Experimental Mathematics, is
guru Stephen Wolfram, whose New Kind of Science and New Kind of Math-
ematics are completely computer-simulation-centric. Let’s dump traditional
equation-centric science and deduction-centric mathematics in favor of do-
ing computer experiments, and watching the output.

23.9. Tweaking Chaitin’s and Wolfram’s Messages: The
Many Shades of Rigor

I admire both Chaitin and Wolfram, but like true visionary prophets, they
see the world as black and white. Since all truths that we humans can know
with old-time certainty are doomed to be trivial (or else we wouldn’t have
been able to prove them completely), and conversely, all the deep results
will never be able to be proved by us completely, with traditional stan-
dards, they advise us to abandon the old ways, and just learn how to ask
our computers good questions, and watch its numerical output, and gain
insight from it.
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Things do not have to be so polarized. First, computers can help us find
completely rigorous proofs, that we humans can never find by ourselves, for
example the Four Color Theorem, or the many computer-generated proofs
of WZ theory. Second, as I first suggested in my Oct. 1993 Notices man-
ifesto, “Theorems for a Price: Tomorrow’s Semi-Rigorous Mathematical
Culture”, one can try and prove things semi-rigorously.

So the great insight of Greg Chaitin and Stephen Wolfram can be fine-
tuned and instead of the “all or nothing” mentality regarding rigor, we can
introduce a whole spectrum of rigor and certainty.

23.10. The Greek Model for Mathematics and Meta-
Mathematics

Meta-mathematics, starting with Frege, continuing through Russell, White-
head and Hilbert, and culminating in Chaitin and others, has been using the
Euclidean model of mathematics, trying to emulate and formalize Euclid’s
paradigmatic Elements. Start with a set of axioms (originally required to
be self-evident but later considered arbitrary) and rules of deduction, and
a notion of formal proof and try to derive all theorems from the axioms.

Alas, Hilbert’s naive dream was shattered by Godel (and later by Tur-
ing, and beautifully explicated by Chaitin) who (allegedly) proved that:

“There exist true yet unprovable statements’.

Of course, you can meta-prove them, but then there would be new
statements that you could only meta-meta-prove ad infinitum.

23.11. Did Godel Really Prove That There Exist True yet
Unprovable Statements?

Of course not! All his “statements” were meaningless!

” or “there exists an

Every statement that starts : “for every integer n ...
integer n”, is completely meaningless, since it tacitly assumes that there are
infinitely many integers. Of course, there are only finitely many of them,

since our worlds, both the physical and the mathematical, are finite.

More specifically, the meta-statement:

“P has a proof of length < 1000000 characters” does make sense,
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and even the meta-statement

“P has a proof of length < googolplex characters” does make sense,
but the “statement”:

“P is unprovable”
is the same as the following “statement”:

“There does mot exist an integer t such that P has a proof of length t
characters”,

” is completely meaningless.

and this “statemen
Ditto for the Godel sentence that is “equivalent” to it, that contains
lots of quantifiers.

So, all that Godel meta-proved was the conditional statement:

If “P is unprovable” makes sense and if the Godel sentence makes sense,
then there exist true yet unprovable statements.

Godel, being a devout infinitarian platonist, believed in the premises,
but I, being a finitistic platonist, see Godel’s proof as a beautiful reductio
proof that all statements that contain quantifiers are a priori meaningless,
and only sometimes can be given an a posteriori meaning, when interpreted
symbolically.

Very often one can deconstruct a seemingly ‘infinitarian’ statement by
restating it symbolically.

The statement “n 4+ n = 2n for every integer n” is meaningless. It is
only true for every finite integer. It is also true for symbolic n.

The statement “every integer has a successor” is meaningless, but one
can say that n + 1 is the symbolic successor of n. Godel’s ‘true’ yet un-
provable statements are simply statements that may not be resurrected for
symbolic n. A priori, the statement “there are infinitely many twin primes’
makes no sense, and neither does “there are infinitely many primes’. A pos-
teriori the latter can be made to make sense, by showing the validity of the
algorithm implicit in Euclid’s 2300-year-old proof, that manufactures ‘yet
another prime’ (but symbolically!). T am sure that the twin-prime conjec-
ture is also true, since it would turn out to be true for symbolic n. If A(n)
is the number of twin-prime pairs < n, then, some future sieving inequality
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(that will be found by computer!), will imply that
n
An) > Ci———>
)2 i iogny
for symbolic n, and specific C7, that would contradict the symbolic inequal-
ity A(n) < Cq, C3 being a (symbolic!) constant.

23.12. The Chinese-Indian-Sumerian-Egyptian-Babylonian
Model for Doing Mathematics

Euclid ruined mathematics by introducing that pernicious aziomatic
method and making mathematics deduction-centric. But for thousands of
years before Euclid, mathematics has been pursued empirically and exper-
imentally and was induction-centric. It was what Richard Feynman called
Babylonian-style mathematics. The reason Feynman liked it so much is
that not only was it empirical, but it was also algorithmic.

23.13. Formalizing Algorithms: Turing Machines

Algorithms existed for at least five thousand years, but people did not know
that they were algorithmizing. Then came Turing (and Post and Church
and Markov and others) and formalized the notion. In the case of Turing,
he introduced Turing machines. Of course, given an algorithm, it is nice to
know that it is indeed an algorithm, and not just a Turing machine, in other
words, that it halts. But the question “does T halt” is also meaningless.
On the other hand: “does T halt in < 1000 years” does make sense. So,
by hindsight, just like in Gédel’s case, it is not at all surprising that there
in no decision algorithm for the halting problem. It was a stupid (in fact,
worse, meaningless) question to begin with, and Turing just meta-proved
that it was indeed very stupid to expect such an algorithm, and there is no
way to make sense of it even a posteriori.

23.14. The Problem with the Chaitin-Kolmogorov Defini-
tion of Program-Size Complexity and Randomness

Greg Chaitin, and independently Andrey Kolmogorov and Ray Solomonoff,
famously defined program-size complezxity of a (finite or infinite) string as
the length of its shortest description in some fixed description language.
Now, that description language could be taken to be English, French, He-
brew, Spanish, or Chinese. But naturallanguages are notoriously fuzzy, and
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may be good media for love songs, but not for mathematics and computer
science. The lingua-franca of theoretical computer science is the Turing
machine. There are also numerous equivalent models, that are sometimes
easier to work with. But even this is too vague, since we can’t tell, thanks
to Turing, whether our TM would halt or not, in other words whether it
is a genuine algorithm or just an algorithm wannabe. Furthermore, even if
it does halt, if my super-short computer program would take googolplex to
the power googolplex years to generate my sequence, it can’t do me much
good. It is true that for aesthetic reasons, Greg Chaitin refused to enter
time into his marvelous theory, and he preempted the criticism by the dis-
claimer that his theory is ‘useless for applications’. But, I, for one, being,
in part, a naturalist, find it hard to buy this nonchalance. Life is finite
(alas, way too finite), and it would be nice to reconcile time-complexity
with program-size complexity. Anyway, using Turing machines or any of
the other computational models, for which the halting program is undecid-
able, makes this notion meaningless. Of course it has a great metaphoric
and connotative meaning!

So the notion of Turing machine-computable is way too general. Besides
the Greek model, adopted by mathematicians and meta-mathematicians
alike does not represent how most of mathematics is done in practice.

Most of mathematics, even logic, is done within narrow computational
frameworks, sometimes explicit, but more often implicit. And what math-
ematicians do is symbol-crunching rather than logical deduction. Of course,
formal logic is just yet another such symbolic-computational framework,
and in principle all proofs can be phrased in that language, but this is un-
natural, inefficient, and worse, sooo boring.

Let’s call these computational frameworks ansatzes. In my humble
opinion, mathematics should abandon the Greek model, and should con-
sciously try to explicate more and more new ansatzes that formerly were
only implicit. Once they are made explicit, one can teach them to our
computers and do much more than any human.

23.15. The Ansatz Ansatz

Indeed, lots of mathematics, as it is actually practiced today, can be placed
within well-defined computational frameworks, that are provably algorith-
mic and, of course, decidable. Sometimes the practitioners are aware of
this, and in that case ‘new’ results are considered routine. For example,
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the theorem
198765487 - 198873987 = 39529284877686669,

is not very exciting today, since it belongs to the well-known class of ex-
plicit arithmetical identities.

On the other hand, the American Mathematical Monthly still publishes
papers today in FEuclidean Geometry, that, thanks to René Descartes, is
reducible to high-school algebra, that is also routinely provable, of course
in principle, but today also in practice, thanks to our powerful computer
algebra systems.

The fact that multiplication identities are routinely provable is at least
5000-years old, and the fact that theorems in Plane Geometry are routinely-
provable is at least 250-years old (and 40-year old in practice), but the fact
that an identity like

k:i_n<—1>k(n2fk)3 = B

discovered, and first proved in 1904 by Dixon, is also routinely provable, is
only about 16-years old, and is part of so-called Wilf-Zeilberger Theory.

In each of these cases it is nowadays routine to prove an identity of the
form A = B, since there is a canonical form algorithm A — ¢(A), and all
we have to do is check that ¢(A) = ¢(B). In fact, to prove that A = B, it
suffices to have a normal-form algorithm, checking that A — B is ‘equiva-
lent’ to 0.

But before we can prove a statement of the form A = B, we have to
find an appropriate ansatz to which they both belong.

At this time of writing, there are only a few explicitly known ansatzes.
Let’s first review one of my favorites.

23.16. The Polynomial Ansatz

David Hume is right that there is no formal, watertight, proof that the sun
will rise tomorrow, since the Boolean-valued function

f(t) :==evalb(The Sun Will Rise At Day t),

has not yet been proved to belong to any known ansatz. Indeed, we now
know, that for ¢ >> 0, f(t) is false, because the Sun will swallow Planet
Earth, so all we can prove are vague probabilistic statements for small ¢
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(e.g. for t = tomorrow).

The Clay Foundation is also right that there is not yet a formal, wa-
tertight, proof, of the Riemann Hypothesis, even though Andrew Odlyzko
and Herman te Riele proved that the first ten billion, or whatever, complex
zeros of ((s) lie on the critical line. This is because the sequence

f(n) := Re(zn),

where z, is the n'* complex root of ((s) = 0, has not yet been proved to
belong to any known ansatz.

However, the following proof of the lovely identity

is perfectly rigorous.

Proof: True for n =0,1,2,3,4 (check!), hence true for all n. QED

In order to turn this into a full-fledged proof, all you have to do is
mumble the following incantation:

Both sides are polynomials of degree < 4, hence it is enough to check
the identity at five distinct values.

23.17. An Ansatz-based Chaitin-Kolmogorov Complexity

So let’s define the complezity of an infinite (or finite) sequence always rel-
ative to a given ansatz, assuming that it indeed belongs to it. So our
descriptive language is much more modest, but we can always determine
its complexity, and everything is decidable. It does not have the transcen-
dental beauty and universal insight of Chaitin’s Algorithmic Information
Theory, but on the other hand, we can always decide things, and nothing
is unknowable (at least in principle).

23.18. It All Depends on the Data Structure

Even within a specific ansatz, there are many ways of representing our
objects. For example, since a polynomial P, of degree d is determined
by its values at any d + 1 values, we can represent it in terms of a finite
sequence [P(0),..., P(d)] that requires d + 1 “bits” (units of information).
Of course, we can also express it in the usual way, as a linear combination

2

of the powers {1,n,n2,...,n%}, or in terms of any other natural base, for
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example {(}),k = 0...d}. Each of these data structures require d + 1
“bits”, in general, but in specific cases we can sometimes compress in order
to get lower complexity. For example it is much shorter to write n'%%° then
to write [0,1,2000 . /100019%°] (without the “...”, and spelled-out).

23.19. The Strong Ny Property

An ansatz has the Strong N, property, if given any two sequences, A, B,
within that ansatz, in order to prove that A(n) = B(n) (for all n), there ex-
ists an easily computable (say polynomial-time in the maximal size of A and
B) number Ny = Ny(A, B) such that in order to prove that A(n) = B(n)
for all n, it suffices to prove it for any Ny distinct values of n.

The iconic example of an ansatz having the strong Ny property, already
mentioned above, is the set of polynomials. For polynomials P(z) of a single
variable, No(P(x)) is deg P + 1. For a polynomial P(zq,...,x,) of degree
d, No(P) is (“1™).

23.20. The Weak Ny Property

An ansatz has the Weak Ny property, if given any two sequences, A, B,
within that ansatz, in order to prove that A(n) = B(n) (for all n), there
exists an easily computable (say polynomial-time in the maximal size of
A and B) number Ny = Ny(A, B) such that in order to prove that
A(n) = B(n) for all n, it suffices to prove it for the first Ny values of
nn=1n=2,....,n= Np.

A simple example of an ansatz that has the weak, but not the strong,
Ny property, are periodic sequences. If two sequences are known a priori
to have periods d; and ds, then if they are equal for the first max(dy, d2)
values, then they are identically equal. But the two sequences f(n) := 1
and g(n) := (—1)™ coincide at infinitely many places (all the even integers),
yet the two sequences are not identically equal.

23.21. Back to Science: The PEL Model

In Hugh G. Gauch’s excellent book on the Scientific method “Scientific
Method in Practice”, he proposes the PEL model, PEL standing for “Pre-
supposition, Evidence, Logic”. So Hume’s objection disappears if we are
willing to concede that science is theory laden, and we have lots of presup-
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positions, both explicit and implicit.

Now the analog of presupposition in mathematics is ansatz. If we make
the reasonable presupposition that the function

f@) :=evalb(The Sun Will Rise At Day t) |,

belongs to the constant ansatz (at least for the next 100000 years), then
checking it in just one point, say t = today, proves that the sun will indeed
rise tomorrow.

On the other end, to prove that all emeralds are grue, presupposes that
the color of emeralds belong to the piece-wise constant ansatz, since the
notion of ‘grue’ belongs to it. In that case, Ny > 2050, so indeed checking
it for many cases but before 2050, does not suffice, even non-rigorously, to
prove that all emeralds are grue.

23.22. The Probabilistic Ny Property

Sometimes Ny is way too big, in other words, to get complete certainty will
take too long. Then you might want to consider settling for Ny(p).

An ansatz that has the probabilistic Ng-property, is one for which, in
order to prove that A = B, with probability p, there exists an easily com-
putable (say polynomial-time in the maximal size of A and B) number
No(p) = No(A, B,p) such that in order to prove that A(n) = B(n) for all
n with probability p, it suffices to prove it for any No(p) randomly chosen
values of n.

The celebrated Schwartz-Zippel theorem establishes that multi-variable
polynomials satisfy the Ny(p) property (in addition to having the Ny prop-
erty, of course), and that Ny(.9999999) is much smaller than Ny(1), so it is
stupid to pay for full certainty.

23.23. An Embarrassing Paper of Mine

Can you envision a professional mathematician publishing a paper entitled
“A bijective proof of 10 x 5 = 2 x 25”7, by concocting a nice bijection?
Of course not! Today, all explicit arithmetical identities are known to be
routinely provable.

Yet something analogous happened to me. In my web-journal, I pub-
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lished a paper that found an ‘elegant’ combinatorial proof of the identity

2n
2
> ( n>Fzz = 5"Fop,
izo \°

where F,, are the Fibonacci numbers defined by Fy = 0,F} = 1, F,, =
F,_1+ F,—2 (n > 2). Tt was in response to a challenge by Arthur Ben-
jamin and Jennifer Quinn, posed in their delightful books “Proofs that really
count”.

As “elegant” and “insightful” as my proof may have been, in Occam’s
and Chaitin’s sense, the following proof is much more elegant.

Proof: Both sides are sequences that are solutions of second-order lin-
ear recurrence equations with constant coefficients. Hence, to prove that
they coincide for all n > 0, it suffices to check that they coincide for
n=20,1,2,3. Now just check that indeed

n=0: 1-0=0,

n=1: 1-0+2-1+1-3=5-1

n=2: 1-04+4-14+6-3+4-8+1-21=52.3,

n=3: 1.-0+6-14+15-3+20-8+15-214+6-55+1-144 =53-8.

QED

Of course, we have to justify the claims that both sides are solutions

of linear recurrence equations with constant coefficients (by the way, such

sequences are called C-finite), of second order. But these follow from the

following easy claims, that can be proved once and for all, using elementary
linear algebra (you do it!).

Claim 1: If a,, is a solution of a linear recurrence equation with constant
coefficients of order d, then for any positive integer L

bn = anr,

is likewise a solution of a (different) linear recurrence equation with con-
stant coefficients of order d.

Claim 2: If a,, is a solution of a linear recurrence equation with constant
coefficients of order d, then its binomial transform,

by, = ; (?)ai,

is likewise a solution of a (different) linear recurrence equation with con-
stant coefficients of order d.
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Claim 3: if a,, satisfies such an order-d recurrence, so does k™ a,,.

Claim 4: The algebra of C-finite sequences has the weak Ny-property,
and two C-finite sequences of order < d are identical if they are identical
for0<n<2d-1.

For more complicated identities involving C-finite sequences the follow-
ing claim is need.

Claim 5: If a,, and b,, are C-finite sequences of orders d; and d, then
an + b, are a,b, are C-finite of orders < dy 4+ dy and < d; - do respectively.

Since any polynomial sequence is C-finite (a polynomial of degree d
satisfies the recurrence
(N —1)%*1f(n) = 0, where N is the forward-shift operator), it follows that
the ansatz of C-finite sequences is a superset of the polynomial ansatz. The
next ansatz is even bigger, and contains that of C-finite sequences.

23.24. The Schiitzenberger Ansatz

If the generating function of a sequence {a(n)}52,

then it is called an algebraic formal power series. I call it the Schiitzenberger
Ansatz, since it was Marco Schiitzenberger’s favorite ansatz, and has got-
ten lots of attention by his illustrious disciple Xavier Viennot and Viennot’s
disciple the brilliant Mireille Bousquet-Mélou, and numerous others at the
école bordelaise.

This is also an algebra, and every identity is decidable, and it, too, has
the weak Ny property.

23.25. Solving Functional Equations Empirically (Yet Rig-
orously!)

In many combinatorial problems, one is interested in a formal power series
F(z,y;t) that satisfies a functional equation of the form

Az, y,t)F(z,y;t) + B(w,y,t)F(0,y;t) + C(x,y,t) F(x,0;t)
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+D(x,y,t)F(0,0;t) = E(x,y,t) (FunEq)

where A, B,C, D, E are polynomials in (z,y,t). Such an equation can be
used to crank out the Maclaurin expansion of F(z,y;t) to any desired or-
der.

Often, we are really only interested in ¢(t) := F(0,0;t), that sometimes,
surprisingly, happens to satisfy some nice algebraic equation P(t, ¢(t)) = 0,
for no apparent reason, and the challenge is to prove that fact. (FunEq)
can’t be used directly, since it involves (z,y,t) not just ¢, and plugging-in
2z =0,y =0 in (FunEq) usually yields the fact 0 = 0, that while true, is
far from new, and does not help us with the conjecture at hand.

While we are not guaranteed, a priori, that this is the case, it is still
worthwhile to try to conjecture that not only ¢(t) is algebraic, but so is the
full F(z,y;t), i.e. there exists a polynomial @, Q(F,x,y,t) such that

Q(F(z,y:t),z,y,t) = 0. (AlgEq)

This @ can be found, empirically for now, by the method of undetermined
coefficients. Use (FunEq) to crank out the first 1000 or whatever terms
of F, call the truncated version F ; let @ be a generic polynomial of four
variables of a guessed degree d, with undetermined coefficients; ask the
computer to compute Q(ﬁ(w, y;t),x,y,t), set the first 1000 terms to 0, get
a huge system of equations for the undetermined coefficients, and solve
them. If there is a non-zero solution, then it is great news! Otherwise,
make d bigger, or give up.

Once we (or rather our computer) conjectured such a general algebraic

equation, how do we prove it rigorously?

We have to prove that (FunEq) implies (AlgEq). By uniqueness, we
can prove that (AlgEq) implies (FunFEq). Defining G(z,y;t) to be the
unique solution of

Q(G(z,y3t),2,y,t) =0, (AlgEq)
it follows that G(z,0;t), G(0,y;t), G(0,0;t) are all algebraic:

Q(G(z,0:t),2,0,t) =0, (AlgEq’)

Q(G(0,y;1),0,y,t) =0, (AlgEq")

Q(G(0,0;1),0,0,t) = 0. (AlgEq")
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Now

H(x,y,t) == A(z,y,t)G(z,y;t) + B(x,y,t)G(0,y;t) + C(w,y,t)G(x,0;1)

+D(1'7 Y, t)G(Oa Oa t) - E(:Ca Y, t)

is also algebraic and using the “Schiitzenberger calculator” one can find an
equation satisfied by it, and prove that H is identically 0, and by unique-
ness, F' = G.

Now plugging-in = = 0,y = 0, into the now-proved algebraic equation
Q(F(z,y,t),z,y,t) = 0, would yield a rigorous proof of the conjectured
algebraic equation for ¢(t) = F(0,0,t), namely Q((t),0,0,t) = 0.

The downside in the above empirical (yet a posteriori rigorous!) ap-
proach, is that the computations required to conjecture @ are very heavy,
and for all but the simplest problems, the above method is beyond today’s
computers. Also, in practice it is more efficient to first conjecture algebraic
equations for F(z,0;t) and F(0,y;t) and use the “calculator” to derive
what the algebraic equation for the F'(z,y;t) should be.

A yet more powerful ansatz, that contains all the preceding ones consid-
ered so far is the Holonomic Ansatz, that is my absolute personal favorite.

23.26. The Holonomic Ansatz

A sequence {a(n)} is holonomic if it satisfies a linear recurrence equa-
tion with polynomial coefficients. The sum and product of holonomic
sequences is again holonomic, and one has a ‘holonomic calculator’ (The
Salvy-Zimmerman Maple package Gfun).

Introducing the shift operator N f(n) := f(n+1), one can define a holo-
nomic sequence in terms of its annihilating operator P(N,n) and the initial
conditions.

A discrete function of several variables a(nq,...,nk) is holonomic if for
each variable n; there is an annihilating operator P;(nq,...,ng; N;). This
is the basis for so-called Wilf-Zeilberger theory and it is not only closed
with respect to addition and multiplication, but also with respect to sums.
For example, if F'(n, k) is holonomic, then a(n) := >, F(n, k) is holonomic
as well.
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23.27. Functional Equations and Holonomic Functions

Analogous remarks about the interface between functional equations and
algebraic formal power series apply for finding a possible holonomic rep-
resentation for a formal power series given as a solution of a functional
equation.

23.28. In Search of New Ansatzes

The above ansatzes are just some of those known today. I am sure that the
future will bring lots of new ansatzes that will trivialize and routinize large
parts of mathematics.

23.29. Pdlya’s Heuristic Applied to Computer Generated
Mathematics

One principle George Pdlya was very fond of was “finding the right gen-
eralization”. Suppose that you conjecture that A(n) = B(n) but you can
only prove it for 1 < n < 7, because it takes too much time and space to
verify it for n = 8 and beyond. Of course you can’t generalize from seven
cases! But if you can find two-parameter objects C(m,n) and D(m,n)
such that A(n) = C(n,n) and B(n) = D(n,n), and you can prove that
C(n,m) = D(n,m) for 1 <n <7, for all m > 0, then the conjecture C=D
is true for infinitely many cases, so C=D is very plausible, and hence A=B.

23.30. A Very Simple Toy Example

Let A(n) be the number of words in the alphabet {1,2} with exactly n 1’s
and exactly n 2’s.
By direct enumeration you find that

A(0) =1,A(1) =2, A(2) =6,
A(3) = 20, A(5) = 252, A(6) = 924,
and this leads you to conjecture that A(n) = B(n) where B(n) = (2n)!/n!?%.

How would you go about proving this conjecture?

Let’s consider the more general problem of finding C(m,n), the num-
ber of words in the alphabet {1,2} with exactly m 1’s and exactly n 2’s.
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Then C(m,0) = 1, and you have the following recurrence, easily derived by
looking at the number of 2’s to the left of the rightmost 1:

C(mvn) = Zc(m - ]-ai)a (1)

=0

from which you can easily deduce the following special cases:

cony=("T1) cm= ("7 comn= (")

that naturally leads to the conjecture C(m,n) = D(m,n), where D(m,n) =
(m:;n) It can be verified for n < 10 easily by using (1) with specific n but
general m, by only using polynomial summation. Now the more general
statement, C' = D, is much more plausible. Besides, this more general
conjecture is much easier to prove, since you have more elbow room, and
it is easy to prove that both X = C and X = D are solutions of the linear
partial recurrence boundary-value problem:

X(m,n)=X(m—-1,n)+X(m,n—-1), X(m,0)=1, X(0,n)=1.

So in this case finding the right generalization first made our conjecture
much more plausible, and then also made it easy to prove.

23.31. How to Do It the Hard Way

In order for you to appreciate how much trouble could be saved by intro-
ducing a more general conjecture, let’s do it, the hard way, sticking to the
original one-parameter conjecture.

Let b(n) be the number of words in {1,2} with exactly n 1’s and with
exactly n 2’s such that in addition , for any proper prefix, the number of
1’s always exceeds the number of 2’s. Analogously, Let &’(n) be the number
of words in {1,2} with exactly n 1’s and with exactly n 2’s such that in
addition the number of 2’s always exceeds the number of 1’s except at the
beginning and end. By symmetry b(n) = V'(n).

Then we have the non-linear recurrence

a(n) = i a(m)(b(n —m) +b'(n—m)) =2 Z a(m)b(n —m). (2)
m=0 m=0

obtained by looking at the longest prefix with the same number of 1’s and
2’s. Also, using a standard combinatorial argument, b(n) can be shown to
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satisfy a non-linear recurrence

from which you can crank out many values of b(n), that in turn, enable you
to crank out many values of a(n), and make your conjecture much more
plausible. Using the above non-linear recurrence, you can generate the first
few terms of the sequence {b(n)}>2;: 1,1,2,5,14,42,132,..., and easily
guess that b(n) = ((SEI)QIE:I, and to prove it rigorously, all you need is verify
the binomial coefficient identity

n—1

(2n—2)! Z (2m — 2)! (2n —2m — 2)!
(

(n—1)n! _m:l m—Dlm! (n—m— l)l(n—m)!’

that can be done automatically with the WZ method, and then prove the

identity
() =23 () o

m=0

that is likewise WZable.

Note: One can also do it, of course, with generating functions, staying
within the Schiitzenberger ansatz rather than the holonomic anstaz. But
it is still much harder than doing it via the 2-parameter generalization
discussed above.

23.32. Pdlya’s Ode to Incomplete Induction

In Polya’s masterpiece on the art of mathematical discovery, “Induction
and Analogy in Mathematics” he lauded the use of incomplete induc-
tion as a powerful heuristic for discovering mathematical conjectures, and
as a tool for discovering possible proofs. In particular he cites approvingly
the great Euler who conjectured, long before he had a formal proof, many
interesting results. For example:
—5 = —
—mn 6
that he verified numerically to six decimal places, noting that this implies
that the probability that the left side and right hand side coincide by ac-
cident is less than one in a million. Many years later he found a complete
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proof, but he first had a “cheating proof” that proceeded by pretending
that infinite products are like polynomials. Another notable example was
the pentagonal number theorem, that he conjectured, and deduced impor-
tant consequences from, based on expanding it to eighty terms. Only 25
years did he find a formal proof.

Undoubtedly, the greatest conjecturer of all time was Srinivasa Ramanu-
jan, who only needed very few special cases to formulate a conjecture, and
was very seldom wrong.

23.33. The Law of Small Numbers

The conventional wisdom against the use of incomplete induction is called
the law of small numbers, and there are many cases, many of them col-
lected by Richard Guy in his two Monthly papers about that “Law”, that
should be cautionary tales against having insufficient data and “jumping
to conclusions”.

We all know the joke about the mathematician, physicist, and engineer,
the mathematician saying “1 is a prime, 3 is a prime, 5 is a prime, 7 is a
prime”, hence all odd numbers are primes.

Deeper victims of the law of small numbers were Margie Readdy and
Richard Ehrenborg who conjectured that the number of up-down invo-
lutions of length 2k is k!, based on data for £k = 1,2,3,4,5. This was
disproved, by Shalosh B. Ekhad, for k¥ = 6 (and beyond). Later Richard
Stanley explained why the sequence starts out like that.

Sometimes even 9 terms do not suffice. Neil Sloane, the great master-
sequencer, pointed my attention to sequences A0060041 and A076912,
in his legendary database, that are known to be equal up to n = 9, but
are believed to disagree for n = 10.

But the greatest source of such horror stories is number theory.

We all know how the great Fermat goofed when he conjectured that
22" 41 is always prime, based on the five cases n = 0, 1,2, 3, 4.

Another scary story involves a stronger version of the Riemann Hypoth-
esis, due to Mertens. Recall that the Riemann Hypothesis is equivalent to
the statement that the partial sums of the Mobius function:

M(n) =Y i),



An Enquiry Concerning Human (and Computer!) [Mathematical] Understanding 403

satisfy
|M(n)] < C(e)nt/?+e.

Mertens, in 1897, conjectured the stronger conjecture that |M(n)| < n'/?,
and it was verified for n up to a very large number. Yet in 1985, Andrew
Odlyzko and Herman te Riele disproved it.

Another notorious example concerns the Skewes Number, that is the
smallest n for which 7(n), the number of prime numbers < n, is larger
than li(n), the logarithmic integral. No one knows its exact value, but it
seems to be very large.

23.34. Inequalities vs. Equalities

By hindsight, it is not surprising that both 7(n) < li(n) and |M(n)| < /n
turned out to be false, even though they are true for so many values of n.
First, prime numbers are very hazardous, and since often we have loglog
and log log log showing up, it is reasonable to suspect that what seems large
for us is really peanuts. But a better reason to distrust the ample empirical
evidence is that inequalities need much more evidence than equalities.

A trivial example is the following. To prove that P(xz) = 0 for a poly-
nomial P of degree < d (say given in some complicated way that is not
obviously 0, for example (z* + 1)(z + 1) — 2% — 2* — z — 1) it suffices to
check d + 1 special cases, but consider the “conjecture”

x
10000000000000

The left side is a polynomial of degree 1 in x, and the “conjecture” is true
for the first 10000000000000 integer values of z, yet, of course, it is false in
general.

1 <0.

23.35. The Art of Plausible Reasoning
Given a conjecture P(n), depending on an integer parameter n, that has
been verified for 1 < n < M, how plausible is it?

If it has the form A(n) < B(n), then no matter how big M, it would be
very stupid to jump to conclusions, as shown in the above examples.

From now we will assume that it can naturally be phrased in the form
A(n) = B(n). Granted, every assertion P(n), even an inequality like
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“IM(n)| < y/n”, is logically equivalent to an equality :
evalb(P(n)) = true,

where evalb(p) is true or false according to whether p is true or false. But
of course this is contrived.

The most secure scenario is when both A and B are known to belong to
a decidable ansatz with the strong or weak Ny property, and it is easy to
compute Ny, and it so happened that M > Ny. Then we immediately have
a rigorous proof.

Next in line is when A and B both belong to an ansatz with the Ny(p)
property and M > Ny(.999999) or whatever.

Next in line, as far as plausibility goes, is when there is a strong heuris-
tic evidence, inspired by analogy and past experience, that both A and B
belong to a known ansatz with an Ny property, M is fairly large, and both
A and B are not too complicated.

After that, in the certainty pecking-order, are cases where you have no
ansatz in mind to which A and B may possibly belong, but you can feel it
in your bones that there is a yet to be discovered ansatz that would have the
Ny property, and M is fairly large and A and B are not too complicated.

Finally, if the conjecture is so far-out or artificial, or A and B are so
different, so that you have no reason to hope that there is a yet-to-be-
discovered ansatz that would ‘trivialize’ A = B, and M is not that big,
then I wouldn’t even make a conjecture.

Also keep in mind the above remarks of finding the right generalization
from a one-parameter identity to a multiple-parameter one, that not only
can add plausibility to our conjecture, by verifying it for infinitely many
cases, but often also facilitates a formal proof.

23.36. Don’t Get Hung-Up on the Ny-Approach

In my eyes, an Ny proof is the most elegant. It is also the most fun, since it
defies that old and corny platitude, we mathematicians grew up with, that
“checking finitely many cases, no matter how many, does not
constitute a proof”.
But often the Ny is way too big, and it may not be the most efficient
way to prove identities. For example, for the identity

(nIOOOOOOO _ 1)(n10000000 + 1) n20000000 -1

)
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it would be stupid to verify it for 1 < n < 20000001. Just use the “usual”
algorithm for multiplying polynomials.

After all the Ny approach is just one algorithm for proving identities
within a given ansatz, and not necessarily always the most efficient one.

23.37. The Wilf-Zeilberger Algorithmic Proof Theory

A less trivial example of an ansatz that has the Ny property, but using it
is usually not feasible, is the WZ algorithmic proof theory, that can prove
any conjectured identity of the form

> F(nk)=> G(n,k),
k=0 k=0

whenever F(n,k) and G(n,k) are products of binomial coefficients. By
general nonsense we know that the sequence

a(n) ==Y F(n,k) = > G(n,k),

k=0 k=0

n

is holonomic, i.e. satisfies a homogeneous linear recurrence equation with
polynomial coefficients:

L
Zpi(n)a(n +1i) =0,
i=0

for some non-negative integer L and some polynomials po(n),...,pr(n). It

is fairly easy to find relatively small a priori upper bounds for L, without
actually finding the recurrence. If we knew beforehand that the leading
coefficient, pr,(n), has no positive integer zeros, then we could immediately
deduce that a(n) is identically 0 once it vanishes for 0 < n < L. Lily Yen,
in a 1993 Ph.D. thesis, written under the direction of Herb Wilf, found «a
priori bounds for the largest positive integer root of pr(n) = 0, but they
were enormous. It is possible that another approach could bring it down,
but why bother? Yen’s thesis was interesting theoretically, since it showed
that WZ theory has the (weak) Ny property, but as far as actually proving
specific identities, it is much more efficient to use the Zeilberger algorithm
to actually manufacture the recurrence, and then just look at pr(n) and
convince ourselves that it has no positive integer roots, and if it does find
them.
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23.38. What Is Mathematical Knowledge?; Reliablism

The standard definition of knowledge (see, e.g., Kwame Anthony Ap-
piah’s excellent introduction to contemporary philosophy, “Thinking it
Through”) is:

“justified true belief”.

The problem is then “how justified is justified”. In science one is willing
to take ample empirical evidence as sufficient justification, but in math-
ematics, traditionally, one insisted on a formal rigorous proof, proved by
human means, since a “proof by computer is only a physical experiment”,
and “you can’t trust a computer”, since programs have so many bugs.

Appiah talks about a movement in contemporary epistemology, co-
pioneered by my Rutgers colleague Alvin Goldman, called reliablism (see
also the Wiki entry), that modifies the definition of knowledge to be true
belief justified reliably. The problem then is to introduce reliability
standards.

I strongly believe that very soon most of serious mathematics will be
computer-generated, and all of it computer-assisted, so we do need to de-
velop quality-control to maximize the chances that the computer-generated
proofs are indeed valid.

One way to maximize reliability is to adopt what I call the method of
overlapping steps.

Suppose that you have to devise an algorithm to do S(n),n =0,1,2,...,
and you want to do it for as large n as possible. You should first write the
most naive program, easy to write, and easy to check. Then let the
computer output S(0),S(1),...,S(Lo), with Ly rather small.

Unfortunately, the naive approach can’t go very far. So you write a
more sophisticated program, good for n < Lq, and compare its output with
the output of the previous program for n < Ly. Then you write yet another,
even more sophisticated program, valid for n < Lo and check it against the
previous ones, and so on and so forth.

It can also help if you have two entirely different approaches to tackle
the same problem, and if the outputs match, then it is a great indication
that they are both indeed correct.

There are hardly any isolated facts. As already noticed by Quine, all
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knowledge, in particular science and mathematics, consist of intricate webs.
In the case of computer-generated mathematics, if all your programs are
working together without contradiction, this fact simultaneously testifies
that they are all OK. It is a little like the way computer scientists generate
random bits at a fraction of the normal cost by using expanders.

23.39. How Necessary is Necessary and How Contingent Is
Contingent

Many of the traditional philosophical dichotomies like analytic/synthetic, a
priori/a posteriori, induction/deduction, and especially necessary/ contin-
gent collapse once we realize that the mathematical universe is the same
as the physical universe, and that our unique universe is finite. Also
that everything is computation.

I will only dwell on the necessary/contingent dichotomy.

According to traditional thinking, the fact that the speed of light is
constant is contingent, while the fact that the 100" (decimal) digit of 7 is
9 is necessary. Nonsense. They are both necessary and both contingent.
As Greg Chaitin said so beautifully about the digits of 2, “they are true
for no particular reason”. But, even if you don’t believe in €2, lots of math-
ematical facts are, in some sense, contingent, and lots of efforts goes into
explaining identities of the form A = B by trying to ezplain them.

Alas, paraphrasing Greg, if the “explanation” is longer than the ex-
planandum, then it is not much of an explanation.

So, the statement

“Amongst any eleven consecutive digits of 7, two must be the same”
is much more necessary than the statement

“the 100" digit of 7 is 97 ,

since the former is a special case of a universal result called the pigeon-
hole principle, with two parameters m and n:

P(m,n): If m > n and m pigeons much be placed in n pigeon-holes,
then at least two pigeons must be pigeon-hole-mates.

So a numeric result a = b, with a and b both numbers (in other words,
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they depend on zero parameters), is contingent, even if you have a formal
proof. It is less contingent if it is a special case of A(n) = B(n) with n = ny.
It is even less contingent if it is a special case of A(m,n) = B(m,n) with
m = mg,n = Ng, and so on.

23.40. Depth vs. Elegance

The depth of a mathematical result is the smallest amount of computer-
time it takes to prove it (within our ansatz). The elegance of a statement
is how short is its statements.

Paul Erdos believed that God has a book with elegant (i.e. short) proofs
of all theorems. I hope that he is wrong. Theorems with short proofs are
shallow, and my favorite results are short statements that require long
proofs.

23.41. Towards a New Kind of Mathematical Aesthetics

Truth is Beauty and Beauty is Truth, or so goes the Keatsian cliche. If
Beauty is elegance, symmetry, and shortness, then Beauty is just trivial
Truth. But if you care about deep truth, then you have to give up on the
traditional standards of beauty.

23.42. Why Is the Computer-Generated Proof of the Four
Color Theorem so Beautiful in My Eyes?

Because the idea of the proof can be encapsulated in one short phrase:
There exists an unavoidable set of reducible configurations.
The rest are just details on how to teach the computer to construct such
a set, and verify that it is indeed what we want.

In this case, a major open problem was reduced to finding one object,
that can, and indeed was, searched for, and found, by computer. That one,
specific, object certified that the statement of the Four Color Theorem was
indeed true.

A proof of an identity in WZ theory also consists in displaying one,
finite, object, the WZ certificate, that certifies its correctness. Thereby,
apparently, proving “infinitely many cases”. Of course, these ‘infinitely’
many numerical facts are just trivial consequences of just one symbolic
fact.
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23.43. Towards an Ansatz Based Mathematics and Meta-
Mathematics

All thinking requires logic, but the informal logic of normal mathemati-
cal discourse is good enough. The reductionist attempt of logicism and
formalism to reduce mathematics, at least in principle, to formal logic
was unfortunate, even for human-generated mathematics, but especially
for computer-generated mathematics. I believe that the logic-based ap-
proach that predominates automatic theorem proving is not entirely
satisfactory.

Also the “abstract nonsense”, structuralist, approach, as preached by
Bourbaki, was not quite the right approach for humans, and is definitely
not suited for computers. Hopefully, the future will bring some synthesis,
but, at present, one should try to base mathematical research on ansatzes.
Major breakthroughs will come not by solving specific open problems, and
not even devising new human theories, but by finding new and powerful
ansatzes where the open problems can be embedded. It is much more
efficient to solve geometry problems using algebra, by using analytic ge-
ometry, rather than by logic, using synthetic geometry.

The traditional dichotomy between numerical, empirical, facts, and
general, theoretical results, is only illusionary. In the eyes of God, 242 =4
is just as interesting as Fermat’s Last Theorem. It is true that “242 =4”
has zero free parameters, while FLT has four [P(a, b, ¢,n) := a™+b"—c™ # 0
(if n > 2,abe # 0)], but this is a quantitative difference not a qualitative
one.

Traditionally (n 4+ 1)(n — 1) = n? — 1 is a “theorem”, true for infinitely
many n, while 3-5 = 42 — 1 is just one fact. However, viewed symbolically,
they are both facts, the former with one parameter, and the latter with
zero parameters.

To prove that 15 is not prime, all you have to do is come up with a
factorization: 3 -5 = 15. For large numbers, this is considered a difficult
computational problem, but “conceptually” it is trivial, or so the conven-
tional wisdom says.

To prove that
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requires a proof, since this is a general statement, valid for all n, but thanks
to WZ theory, there is just one object, a certain rational function R(n, k),
that certifies it. That certificate can be obtained empirically and algorith-
mically. So the ‘proof’ is just one object, like the pair (3,5) in the case of
the ‘theorem’ that 15 is composite.

If desired, it is always possible to convert a ‘certificate proof’ to a formal
logic proof, but this is very artificial, and unnecessary.

Let’s conclude this manifesto with:

Mathematicians and meta-mathematicians of the world unite,
you have nothing to lose but your logic chains! Let’s work
together to develop an ansatz-based mathematics and meta-
mathematics.



Reminiscences






Chapter 24

In the Company of Giants

Andreea S. Calude
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As the overcrowded bus huddles into the hustle and bustle of China-
town, after what feels more like a small lifetime than a four-hour journey,
you could be almost forgiven for thinking you are in Shanghai, but the signs
assure me it is indeed New York that I am finding myself in. Ten minutes
later, sitting in a Japanese café and sipping bubble Tapioca tea, I am act-
ing just like one of the locals, well, almost ...aside from my wide-eyed,
mesmerized expression.

So here I start my exploration of New York, the Big Apple, the city of
opportunities, the land of the yellow cabs, the finance hub, the temple of
the 9-11 pain, the house of fashion and art and theatre and music halls. 1
decide to scrap my NY guide book, and just walk around, absorbing the
city that way. I am choosing the skyscrapers as guides instead.

I am due to spend three days in the company of these stirring skyscrap-
ers and while my first visit to the Big Apple makes my heart skip a beat in
itself, I am really here for the chance to spend a weekend with a different
kind of giant: a self-taught mathematical prodigy who started on his quest
of exploring the limits of mathematics at the age of only fifteen, and who
discovered the famous Omega number: Greg Chaitin. Featured in count-
less popular science magazines, New Scientist, Scientific American, Pour
La Science, Chaitin published his ninth book in September this year. Enti-
tled Meta Math! | the book is printed by Random House—not an academic
press, but rather the publisher who gave us J. K. Rowling’s Harry Potter,
Dan Brown’s The Da Vinci Code and Mark Haddon’s The Curious Inci-
dent of the Dog in the Night-Time. Meta Math! is written for anyone with
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an interest in mathematical ideas and a curiosity for what it is like to be a
mathematician. Chaitin’s excitement at his latest creation is unmistakable.
Laid out on the small table by the window is the final version of Meta Math!
with the very last comments and corrections. He shows me the cover, the
font, the pagination and the review comments which are to appear on the
dust-jacket: “What do you think of them? Do you like them?”. Chaitin is
passionate about bringing mathematics into the living-rooms of everyday
people. He believes that there is a kind of beauty that truly perfect proofs
can present to the eye of the mathematician, but it need not be the profes-
sional mathematician alone. In his view, you and I can also appreciate it,
given the chance.

But if you imagine a mathematical genius to be a quiet, nerdy guy who
sits in the corner playing with his wooden abacus, you could not be more
wrong in Chaitin‘s case. As you walk into his house, you realize that “my
house, my castle” is a complete understatement for Chaitin, his house is
his world. It brims with various kinds of art, ranging from colourful Indian
prints, to tribal sculptures and statues (including a Maori one!), tasteful
female nude paintings and photographs (I spot my favourite among them:
Doisneau’s Kiss by the Hotel de Ville) and art pieces by Birdle, Enhérning
and Yeenize. One of the bookcases is filled with Bollywood DVDs, Chaitin’s
favourite collection. They co-habit in the same room with Rebecca Gold-
stein’s latest book on Incompleteness and Hardy’s classic A Mathemati-
cian’s Apology. Mathematics, art and beauty are three of Greg’s ardent
passions and he is the kind of person who will grab anything and every-
thing that reminds him of those things and immediately surround himself
by them. His strong personality reigns in every corner of his house.

While browsing Chaitin’s varied collections of books, art and DVDs, I
am taken back to the feeling of Soho and the shopping district earlier in the
day. The streets line up unbrushed and chaotic, pulling you into their tiny
chic boutiques, tempting you with various items: tribal and ethnic looking
clothes and jewellery, art new and antique, books, CDs, you name it, it’s
all there. It seems that New York is the ‘capital’ of the world, and not just
a corner of America.

“Grapefruit juice, mineral water and espresso coffee”, Chaitin enumer-
ates apologetically the contents of his fridge. He explains that he always
eats out, never cooks. So he takes me to an old-fashioned local diner close
to his house in Yorktown Heights (an hour outside New York City), where
the IBM hub for whom he works is located. As we drive there, I comment



In the Company of Giants 415

on the abundance of American flags displayed at what feels to be each and
every single house we pass. “Of course”, he tells me, “every town around
here had people who never came back that day”. Ground Zero is now fenced
off from the public, while the excavating and planning is taking place. As I
stood there this morning with my camera, trying to preserve a snapshot of
what most people are desperately trying to forget, it occurred to me that
even here, in the land of giants and skyscrapers, time and hearts can be
made to stop. Sometimes forever.

It turns out that the couch I am about to sleep on tonight is none other
than that where Stephen Wolfram himself has also slept in while visiting
Chaitin. Wolfram is the author of the celebrated A New Kind of Science,
the book which challenged existing views of the universe and science as a
whole. The Oxford educated physicist is the man behind Mathematica, a
world-leading software used to solve computer science and mathematical
problems, which he moulded in a tool for a series of experiments leading
to his credo that small programs can generate enormous complexity — the
main theme of his book. I look at the couch inquisitively, expecting it to
come alive and speak to me.

Later that Friday night, I ask Chaitin about his views on life, society
and the world in general, as we have one last drink. “The problem is that
men and women don’t like each other anymore” he tells me disheartened.
He feels that everything has become a second-hand routine, a kind of sport,
a gym membership; people no longer find time to enjoy each other’s com-
pany and enjoy life, they do not take pleasure in living and loving anymore.
Chaitin goes on to say that in spite of the vastness of our universe, there
is no place left for the individual; people in general, no longer matter. “I
am interested in small countries, like New Zealand, for instance” he adds
with noticeable spring in his voice. “It is small countries, and not empires
that I am interested in” he adds. There, the individual still matters, voices
can still be heard and they do not fade away so easily, ignored, dried up,
beaten.

Listening to all this takes me back to the sight of the Empire State
Building. It is a colossus, a clump of concrete shooting up into the sky. I
feel so small in comparison, a midget, and as I am trying in vain to convince
my camera to capture it all in one single shot, the coldness of the build-
ing breathes a chilling air onto my skin and suddenly I feel alone. Where
did the crowds of bustling people in Chinatown go? Where is everyone? I
notice that for the first time, there is no one around. It’s just this iceberg
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and me. Standing side by side, sizing each other up.

The next day, I am taken to the Hudson River Valley and the moun-
tains which Chaitin is so fond of climbing. Tramping is another one of his
many passions. It presents him with another kind of beauty: the beauty
of nature. The conversation comes back to mathematics and his work. I
ask him how he reacts to the usual criticisms and attacks that someone so
famous, working on groundbreaking theories that are bound to disturb a
few hairs is sure to endure. “Badly” he offers without a speck of indecision.
It seems that everyone who matters is hated somewhere, sometime. It’s
inescapable. But it is better to be hated than ignored. So when everything
goes wrong, there is always the Hudson River Valley and there is always
another mountain to climb. Maybe Benjamin Franklin was slightly off with
regard to certainty in the world: it is not just taxes and death that are
certain.

It’s already Sunday and I have one last chance to wonder through the
streets of New York. AsTam saying my goodbyes to Chaitin at the corner of
Central Park, I get distracted momentarily by the street sign “5th Avenue”,
and realize that there is one last giant I need to visit: The Statue of Liberty.
Making my way back to Manhattan and the Financial District, I steal
another look at the Empire State Building and smile to myself: it’s been
indeed a weekend in the company of many different giants.
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In 1990, I was working on the manuscript of my book Searching for Cer-
tainty (Morrow, New York, 1991), a volume addressing the degree to which
the science of today can effectively predict and/or explain various real-world
phenomena like weather and climate, the outbreak of warfare and the move-
ment of stock market prices. As part of this story, I wanted to include a
chapter on the prediction/explanation of mathematical theorems, in order
to open up a discussion of the philosophy of mathematics, especially what
we mean by mathematical “truth” and what really constitutes a “proof”.
Of special concern to me at the time was the question of the complezity of a
mathematical result, since it seemed clear that whatever limits might be in
place for how much science could tell us about the world should be greatly
affected by the complexity of the phenomena under consideration. In short,
are there phenomena that are simply “too complex” for the human mind
to grasp? In particular, are there theorems/mathematical truths that are
too complex for our axiomatic systems to actually prove or disprove. This
naturally raises the question of what do you mean by the “complexity” of
some observed event—including a mathematical proposition. Enter Greg
Chaitin.

As part of my background research for the book, I had run across Greg’s
papers on information theory and algorithmic complexity (later published
by World Scientific in his 1992 book, Information-Theoretic Incomplete-
ness). Since the whole issue of how much “juice” could you get out of a set
of axioms was totally tied up with the notion of incompleteness a la Godel,
Greg’s recasting of Godel’s results into the language of computing seemed
to be just what I needed to address the ‘How much complexity is too much
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complexity?’ question. So I sent an email to him and asked his view of the
matter. Not only did Greg reply (which many name-brand scientists did
not when I wrote them about other sections of the book), he generously sent
me a voluminous set of papers, references, and ideas about how to frame
and explain many of the ideas that ultimately appeared in that chapter.
Thus was set in motion an intellectual and personal friendship that is now
seventeen-years old and counting.

In this seventeen years, Greg and I have met dozens of times in almost
all the world’s time zones. And at each one of those meetings I've come
away with some bit of knowledge or snippet of information that has caused
me to see the world just a bit differently than before. Let me give a rather
eclectic account of just a few of those occasions.

Limits to Scientific Knowledge (Santa Fe, NM 1992): In the spring of
1992, Joseph Traub and I organized a two-day workshop at the Santa Fe
Institute on the theme, “Limits to Scientific Knowledge” under the spon-
sorship of the Alfred P. Sloan Foundation. Among the many luminaries
at this meeting were biologist Robert Rosen, computer theorist Rolf Lan-
dauer, chaologist Otto Rossler, economist Brian Arthur, and Sloan Foun-
dation President Ralph Gomory. But the person who contributed the most
to the discussion was, not surprisingly, Greg Chaitin! His booming voice
was heard regularly during the intense discussions, commenting on various
thoughts and presentations that were floating around the meeting room
like the seeds of pollen floating in the desert air of Santa Fe in those days.
Greg was a dynamic force that gave both substance and direction to that
meeting, and which ultimately led to a follow-up workshop on the same
theme in a venue about as far removed from Santa Fe as one can get and
still remain on the same planet.

Limits to Scientific Knowledge (Abisko, Sweden 1995): The village of
Abisko is located many kilometers north of the Arctic Circle, near the bor-
der between Norway and Sweden. For several years, the Swedish Council
for Planning and Coordination of Research sponsored an annual meeting
organized by Anders Karlqvist and myself on themes residing at the bound-
ary between the natural sciences, philosophy and the humanities. In 1995,
Anders and I chose the theme of limits to scientific knowledge, in order to
capitalize on the intense, but too short, discussion of these matters in Santa,
Fe two years earlier. In the Swedish environment, we had a full week of such
discussions in very intimate surroundings, as the venue for the meeting was
a research station of the Royal Swedish Academy of Sciences, in which all
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the participants lived, ate and, in general, spent most of each day together.

Some of the participants in this meeting were the same as in Santa Fe—
Greg, Bob Rosen, Joe Traub, Piet Hut, and myself—but several new faces
also appeared, including physicist Jim Hartle, biologist Harold Morowitz,
and astrophysicist John Barrow. The proceedings of these discussions were
published under the title Boundaries and Barriers: On the Limits to Sci-
entific Knowledge (Addison-Wesley, Reading, MA, 1996), so I won’t go into
them here.

What I most remember about this meeting is a conversation I had with
Greg Chaitin during a walk one afternoon in the breath-taking surroundings
of the research station. We were discussing the question of the complexity
of a mathematical theorem, and what one could possibly expect to get out
of a given set of consistent axioms. Greg had long before proved that there
must be theorems of arbitrarily great complexity, using the notion of algo-
rithmic complexity as the measure, which was already a major extension of
Godel’s incompleteness result. But he then went on to state that subject to
some technical conditions, it’s basically the case that the complexity of the
set of axioms sets an upper bound to the complexity of any theorem you
can prove within that axiomatic framework. In short, you can’t get more
out than what you put in.

While it seems self-evident in retrospect, I had never really considered
the world of mathematical truths from this perspective before. This re-
sult not only makes Godel’s results on the limitations of axiomatic systems
much more precise, the philosophical implication is enormous: mathemat-
ics is now both limited by the axiomatic system you employ, as well as
unlimited by the opportunity to cleverly introduce more axioms to create
bigger (i.e., more complex) systems that enable us to prove more complex
theorems. But no matter how complex the axiomatic system may be, no
single system will ever enable us to “get it all”. This is about as direct a
statement on the limits to knowledge as one will ever get.

The Infinite (Vienna, Austria, sometime later): During a visit to Vi-
enna, Greg had dinner one evening with myself and his Viennese host, Karl
Svozil, in the restaurant Ofenloch in the old center of the city. At one point
in the conversation, I posed the question: What would a world be like that
had no Gédel’s Theorem? Of course, this was a provocative question, whose
answer rests upon what you believe about the notion of infinity, since in a
totally finite world, where conceptually infinite objects like the number 7
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or the square root of 2, do not really exist, then there can be no such results
like those of Godel or Turing. These types of limitative results depend in
an essential way upon at least the potentially infinite, if not the actually
realized version. So what I was aiming at with this question was really to
enquire as to the “reality” of mathematical objects, a long and venerable
area of concern in the philosophy of mathematics.

After some deliberation on the question, happily lubricated by some of
Ofenloch’s fine selection of wines and designer beers, Greg made a remark
that I remember to this day. He turned to me and said, “John, you have
to remember that the infinite is very powerful!” Very powerful, indeed! So
powerful, in fact, that our entire view of the world would be turned upside
down if it could ever be proved that the universe is, in fact, strictly finite.

These are but a few of the many interactions I've had with Greg that
have impacted my intellectual and personal life in a major way. In the
end, the questions we have discussed and debated have all been much more
philosophical than mathematical. And though the world, at-large regards
Greg as a “mathematician”, when you read his autobiographical volume
Meta Math! (Pantheon, New York, 2005) it is impossible not to be struck
by the deeply philosophical—and emotional—content of Greg’s work.

So I salute you, Greg, on this the occasion of your 60" birthday. I'm
happy to have the privilege of knowing you and to have learned so much
from our interactions. May you have at least sixty years more to reach
many more minds with your wisdom, intelligence, and never-ending set of
novel and imaginative ideas.



(Euvre






Chapter 26

Algorithmic Information Theory: Some Recollections

Gregory Chaitin
IBM Research, Yorktown Heights, USA; chaitin@us. tbm. com

Introduction

AIT is a theory that uses the idea of the computer, particularly the size of
computer programs, to study the limits of knowledge, in other words, what
we can know, and how. This theory can be traced back to Leibniz in 1686,
and it features a place in pure mathematics where there is absolutely no
structure, none at all, namely the bits of the halting probability €.

There are related bodies of work by other people going in other di-
rections, but in my case the emphasis is on using the idea of algorithmic
complexity to obtain incompleteness results. I became interested in this as
a teenager and have worked on it ever since.

Let me tell you that story. History is extremely complicated, with many
different points of view. What will make my account simple is the unity of
purpose imposed on a field that is a personal creation, that has a central
spine, that pulls a single thread. What did it feel like to do that? In fact,
it’s not something I did. It’s as if the ideas wanted to be expressed through
me.

It is an overwhelming experience to feel possessed by promising new
ideas. This happened to me as a teenager, and I have spent the rest of my
life trying to develop the ideas that flooded my mind then. These ideas
were deep enough to merit 45 years of effort, and I feel that more work
is still needed. There are many connections with crucial concepts in other
fields: physics, biology, philosophy, theology, artificial intelligence. .. Let
me try to remember what happened to me. .. The history of a person’s life,
that’s just gossip. But the history of a person’s ideas, that is real, that is
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important, that is where you can see creativity at work. That is where you
can see new ideas springing into being.

AIT in a Nutshell

Godel discovered incompleteness in 1931 using a version of the liar paradox,
“This statement is unprovable.” 1 was fascinated by Godel’s work. T de-
voured Nagel and Newman, Gddel’s Proof, when it was published in 1958.

I was also fascinated by computers, and by the computer as a mathemat-
ical concept. In 1936 Turing derived incompleteness from uncomputability.
My work follows in Turing’s footsteps, not Godel’s, but adds the idea of
looking at the size of computer programs.

For example, let’s call a program @ “elegant” if no program written in
the same language that is smaller than @ produces the same output. Can
we prove that individual programs are elegant? In general, no. Any given
formal axiomatic system can only enable us to show that finitely many pro-
grams are elegant.

It’s easy to see that this must be so. Just consider a program P that
calculates the output of the first provably elegant program that is larger
than P. P runs through all the possible proofs in the formal axiomatic
system until it finds the first proof that an individual program @ larger
than P is elegant, and then P runs @ and returns @Q’s output as its (P’s)
output.

If you assume that only true theorems can be proved in your formal
axiomatic system, then P is too small to be able to produce the same out-
put as Q. If P actually succeeds in finding the program @, then we have a
contradiction. Therefore @ is never found, which means that no program
that is bigger than P can be proven to be elegant.

So how big is P? Well, it must include a big subroutine for running
through all the possible proofs of the formal axiomatic system. The rest
of P, the main program, is rather small; P is mostly that big subroutine.
That’s the key thing, to focus on the number of bits in that subroutine.

So let’s define the algorithmic complexity of a formal axiomatic system
to be the size in bits of the smallest program for running through all the
proofs and producing all the theorems. Then we can state what we just
proved like this: You can’t prove that a program is elegant if its size is sub-
stantially larger than the algorithmic complexity of the formal axiomatic
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system that you are using.

Instead of saying “a formal axiomatic system of algorithmic complexity
N,” T'll just say “N bits of axioms.” So if you have N bits of axioms, then
no program larger than N + ¢ bits in size can be proven to be elegant.
That’s the result we just proved.

A more sophisticated example is the number I call €2, which is the halting
probability of a computer running a program produced one bit at a time
by repeatedly tossing a coin. Because it is a probability, this number has
to be between zero and one. Imagine writing it out in binary:

Q =.011100...

These bits are peculiar, they are irreducible mathematical information.
This means that a formal axiomatic system with N bits of axioms can
enable you to determine at most N + ¢ bits of 2. Essentially the only way
to determine bits of € is to add that information directly to your axioms.
Even though 2 is a single well-defined real number (once you fix the pro-
gramming language), its bits have no structure, no pattern, none at all,
they are irredundant, irreducible mathematical information.

In other words, the bits of 2 are mathematical facts that are true for
no reason, no reason simpler than themselves.

So that’s the basic idea, and those are my two favorite results, but the
devil is in the details. You can spend your life on those details, and I did.

Chaitin Research Timeline

e 1947: Born in Chicago, child of Argentine immigrants. Family moves
to New York.

e 1956: Nagel and Newman’s article on “Godel’s proof” is published in
Scientific American. Article contains a photo by Arnold Newman of
Godel sitting in front of an empty blackboard at the Princeton Institute
for Advanced Study.

e 1958: Nagel and Newman’s book Gédel’s Proof is published by New
York University Press.

e 1959: Following directions in the Scientific American “Amateur Sci-
entist” department, I build a Van de Graaff generator for high-voltage
static electricity.
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1962: First year at Bronx High School of Science. While answering
an essay question on the entrance exam for the Columbia University
Science Honors Program for bright high school students, I get the idea
of defining randomness using program-size complexity.

The essay question is what do you conclude if you find a pin on the
moonE| My answer is that this means that somebody must have visited
before you, because a pin is not natural, it is artificial, the product of
intelligence. And, I remark, what this means is that there is a small
program to calculate it, to create it. That’s how we can tell that the
pin has structure and is artificial. And, contrariwise, something natu-
ral would not have a description that can be compressed into a small
program, because it was not designed.

And then, as a throw-away remark, I state that a random thing is one
that cannot be compressed into a smaller program. More precisely, I
am speaking about a digital description of an object, not about the
object itself. In other words, in 1962 I give the following

— Definition of Randomness R1: A random finite binary string
is one that cannot be compressed into a program smaller than
itself, that is, that is not the unique output of a program without
any input, a program whose size in bits is smaller than the size in
bits of its output.

However I quickly forget about this definition, because I am having so
much fun learning how to write, debug and run computer programs
in the Science Honors Program. And I am given the run of the math
stacks at Columbia University and can hold in my hands and study the
collected works of Euler and other priceless volumes.

1963: Shannon and McCarthy, Automata Studies, Princeton Univer-
sity Press, 1956, contains E. F. Moore’s paper “Gedanken-experiments
on sequential machines.”ﬂ Following Moore, I write a program for iden-
tifying a finite-state black box by putting in inputs and looking at the
outputs. My experiments suggest this is easier to do than Moore an-
ticipated. I prove this to be the case in a note “An improvement on a
theorem of E. F. Moore” (IEEE Transactions on Electronic Computers,
1965), my first publication.

1This was before the first lunar landing.
2] became aware of Shannon and McCarthy, perhaps the first book on the theory of
computation, because it was reviewed in Scientific American.
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e 1964: Summer vacation between high school and college, I try to find
an infinite set with no subset that is easier to generate than the entire
set. By easier I mean faster or simpler; at this point I am simultane-
ously exploring run-time complexity and program-size complexity. The
work goes well, but is not published until 1969 in the ACM Journal as
“On the simplicity and speed of programs for computing infinite sets
of natural numbers.”

Also that summer, I get the first incompleteness result that I will pub-
lish, UB1, an upper bound on the provable lower bounds on run-time
complexity in any given formal axiomatic system. This is published
in 1970 in a Rio de Janiero Pontificia Universidade Catdlica research
report, and only thereﬁ

Another discovery that summer, UB2, is that one can diagonalize
over the output of all programs that provably calculate total func-
tions f: N — N to obtain a faster growing computable total func-
tion F: N — N. That is to say, given any formal axiomatic system,
one can construct a computer program from it that calculates a total
function f: N — N, but the fact that this program calculates a to-
tal function f: N — N cannot be proved within the formal axiomatic
system, because f goes to infinity too quickly. “Calculates a total func-
tion f: N — N” merely means that every time we give the program
f a natural number n as input, it eventually outputs a single natural
number f(n) and then halts.

The result UBL1 is actually a corollary of UB2, since all lower bounds
on run-time complexity are computable total functions.

Now one would say that the proof of UB2 is an instance of Cantor
diagonalization, but in my opinion it’s really closer to Paul du Bois-
Reymond’s theorem on orders of infinity. His theorem is that for any
scale of rates of growth, any infinite list of functions that go to infinity
faster and faster, for example

fo(n) =27,
fi(n) =2%",
foln) =227 ..,

3While writing up that report in Rio, I realize I can also obtain an upper bound on the
provable lower bounds on program-size complexity.
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there is another function

fo(n) = max fi.(n)

k<n

that goes to infinity even more quickly. As far as I know, Paul du Bois-
Reymond’s work was independent of Cantor’s.

Note the Cantor ordinal number w as a subscript. We can then form

fw+1(n) = Qf“,(n)’
fw+2(n) = 2fw+1(n)’
Fura(n) = 2fes2m)

and then
fow (n) = I]?Sar}f Jotk (n)

Continuing in this manner, we get to

faw-e e faw- foz oo fun oo fuow oo frpwe oo
and onwards and upwards, incredibly fast-growing functions all.

I had read about Paul du Bois-Reymond’s work in a monograph by G.
H. Hardy called Orders of InﬁmtyEI

My point of view changes between 1964 and 1965. In my 1964 work,
only infinite computations are considered. In 1965, on the contrary,
only finite computations are considered, computations that produce a
single output. Furthermore, my interest shifts from run-time com-
plexity to program-size complexity.

e 1965: During the spring term of my first year at City College, CUNY,
I simultaneously study three books: von Neumann and Morgenstern,
Theory of Games and Economic Behavior, Shannon and Weaver, The
Mathematical Theory of Communication, and Turing’s 1936 paper “On
computable numbers. ..” in the anthology Davis, The Undecidable. The
1962 definition of randomness (R1) comes back to me; as I will now ex-
plain, all three books play a vital role. It all comes together as I am
reading a discussion in von Neumann and Morgenstern of the game of
matching pennies, for which their theory says that you should toss a

coinE|

4] learned the calculus from Hardy’s A Course of Pure Mathematics, and also enjoyed
A Mathematician’s Apology and Hardy and Wright, An Introduction to the Theory of
Numbers.

50ne of the players is trying to match the other player’s choice of head or tails.
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In a footnote they remark that the theory of games seems to require
a quantum-mechanical world in which God plays dice. Not really, I
say to myself. Another logical possibility would be that the theory of
games tells you to use a random sequence of choices, but you cannot
compute this sequence of choices from the theory.

You see, in the game of matching pennies, if a theory can tell you ex-
actly what to do, you can predict what your opponent will do and beat
him. The solution to the paradox is either that the theory asks you
to use physical randomness, which is unpredictable, or that you have
a theory that says you must make mathematically random or unstruc-
tured choices, and the contradiction is avoided because these are in fact
uncomputable (a notion taken from Turing).

The third leg of the stool comes from reading Shannon, who defines
a message to be random or have maximum entropy if it cannot be
compressed, if it cannot be encoded more compactly. Obviously the
most general possible decoder would be a universal Turing machine,
a general-purpose computer.

With my 1962 definition (R1), I have managed to connect game theory,
information theory and computability theory. Now all I have to do is
work out the details.

Now it’s the summer vacation between my first and second year at City
College, and I attempt to carry out the plan. At the beginning of the
summer, the road forward seems blocked, but I keep trying. Later in
the summer, ideas begin to flood into my mind. I write a single paper
that is the size of a small book. At the request of the editors, I later
divide it in two, and delete much material to save space.

This paper “On the length of programs for computing finite binary
sequences” —part one is published in 1966 and part two is published in
1969, both in the ACM Journal—presents three different theories of
program-size complexity (and embryonic versions of ideas that I would
explore for years):

— Complexity Theory (A): Counting the number of states in a
normal Turing machine with a fixed number of tape symbols. I
call this Turing machine state-complexity.

— Complexity Theory (B): The same as theory (A), but now
there’s a fixed upper bound on the size of transfers—jumps,
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branches—between states. You can only jump nearby. I call this
bounded-transfer Turing machine state-complexity.

— Complexity Theory (C): Counting the number of bits in a
binary program, a bit string. The program starts with a self-
delimiting prefix, indicating which computing machine to sim-
ulate, followed by the binary program for that machine. That’s
how we get what’s called a universal machineEI

Let’s define the complexity of a bit string to be the size of the smallest
program that computes it.

In each case, theory (A), (B) or (C), I show that most n-bit strings have
complexity close to the maximum possible, and I determine asymptotic
formulas for the maximum possible complexity of an n-bit string. These
maximum or near maximum complexity strings are defined to be ran-
dom. To show that this is reasonable, I prove, for example, that these
strings are “normal” in Borel’s sense. This means that all possible
blocks of bits of the same size occur in such strings approximately the
same number of times, an equi-distribution property.

I start with theory (A) because that seems the most straightforward
thing to do. The idea in theory (A) is to eliminate all the redundancy
in a real programming language. Then I switch to theory (B), in which
I don’t eliminate the redundancy, I live with it. The proofs are pret-
tier; more subtle, not so heavy-handed. However, in theories (A) and
(B) I cannot figure out how to show that a small amount of structure
in an n-bit string will force its complexity to dip below the maximum
possible complexity for n-bit strings.

To solve this, I switch from Turing machines to binary programs and
theory (C). Theory (C) solves the problem, but feels too easy, like steal-
ing candy from a baby. For example, in theory (C) it is trivial to show
that most n-bit strings have close to the maximum possible complex-
ity. And this maximum possible complexity is precisely n + 1, not an
asymptotic estimate as in theories (A) and (B)E]

61 call theory (C) “blank-endmarker” program-size complexity, to distinguish it from
“self-delimiting” program-size complexity, theory (D) below.

"To get (max complexity n-bit string) = n + 1, theory (C) has to be a bit more compli-
cated.

— Complexity Theory (C2): If the first bit of the program is a 0, then output the
rest of the program as is and halt. If the first bit of the program is a 1, process
the rest of the program as in theory (C).
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By the way, in theories (A) and (B), randomness definition (R1) does
not apply, because the size of programs is measured in states, not bits.
It is necessary to use a slightly different definition of randomness:

— Definition of Randomness R2: A random n-bit string is one
that has maximum or near maximum complexity. In other words,
an n-bit string is random if its complexity is approximately equal
to the maximum complexity of any n-bit string.

In theory (C), (R1) works fine (but so does (R2), which is more gen-
eral).

Theory (C) is essentially the same as the one independently proposed
by Kolmogorov at about the same time (1965)E|

However, I am dissatisfied with theory (C); the absence of subaddi-
tivity disturbs me. What is subadditivity? The usual definition is
that a function f is subadditive if f(z + y) < f(z) + f(y). I mean
something slightly different. Subadditivity holds if the complexity of
computing two objects together (also known as their joint complex-
ity) is bounded by the sum of their individual complexitiesﬂ In other
words, subadditivity means that you can combine subroutines by con-
catenating them, without having to add information to indicate where
the first subroutine ends and the second one begins. This makes it easy
to construct big programs. Complexity is subadditive in theories (A)
and (B), but not in theory (C).

Last but not least, “On the length of programs for computing finite bi-
nary sequences”’ contains what I would now call a Berry paradox proof
that program-size complexity is uncomputable. This seed was to grow
into my 1970 work on incompleteness, where I refer to the Berry para-
dox explicitly for the first time.

e 1966: Awarded by City College the Belden Mathematical Prize and
the Gitelson Medal “for the pursuit of truth.” Family moves back to
Buenos Aires.

e 1967: I join IBM Argentina, working as a computer programmer.

(C2) is the version of theory (C) given in “On the length of programs for computing
finite binary sequences: statistical considerations” (ACM Journal, 1969), the second of
the two papers put together from my 1965 randomness manuscript.

8Solomonoff was the first person to publish the idea of program-size complexity—in fact,
(C)—but he did not propose a definition of randomness.

9In the case of joint complexity the computer has two outputs, or outputs a pair of
objects, whatever you prefer.
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1969: Stimulated by von Neumann’s posthumous Theory of Self-
Reproducing Automata, I work on a mathematical definition of life using
program-size complexity. This is published in Spanish in Buenos Aires,
and the next year (1970) in English in the ACM SICACT News. This
is the first of what on the whole I regard as an unsuccessful series of
papers on theoretical biology@

1970: I visit Brazil and inspired by this tropical land, I realize that one
can get powerful incompleteness results using program-size arguments.
In fact, one can place upper bounds on the provable lower bounds on
run-time and program-size complexity in a formal axiomatic system.
And this provides a way to measure the power of that formal axiomatic
system.

This first information-theoretic incompleteness result is immediately
published in a Rio de Janiero Pontificia Universidade Catélica research
report and also as an AMS Notices abstract, and comes out the next
year (1971) as a note in the ACM SIGACT News.

I obtain a LISP 1.5 Programmer’s Manual in Brazil and start writing
LISP interpreters and inventing LISP dialectsﬂ

1971: I write a longer paper on incompleteness, “Information-theoretic
limitations of formal systems,” which is presented at the Courant In-
stitute Computational Complexity Symposium in New York City in
October 1971. A key idea in this paper is to measure the complexity
of a formal axiomatic system by the size in bits of the program that
generates all of the theorems by systematically running through the
tree of all possible proofs.

1973: I complete a greatly expanded version of “Information-theoretic
limitations of formal systems.” The expanded version appears in the
ACM Journal in 1974. A less technical paper on the same subject,
“Information-theoretic computational complexity,” is presented at the
IEEE International Symposium on Information Theory, in Ashkelon,
Israel, June 1973, and is published in 1974 as an invited paper in the
IEEFE Transactions on Information TheoryE

10The latest one is “Speculations on biology, information and complexity” (EATCS
Bulletin, February 2007).

1 Around 1973, 1 give courses on LISP and on computability and metamathematics at
the University of Buenos Aires.

12In 1974 I send a copy of this paper to Kurt Godel, leading to a pleasant, short phone
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e 1974: I am invited to visit the IBM Watson Lab in Yorktown Heights
for a few months. The visit goes well, with a number of major break-
throughs. I realize what to do to theory (C) to restore subadditivity,
and discover the halting probability Q.

— Complexity Theory (D): Counting the number of bits in a self-
delimiting binary program, a bit string with the property that you
can tell where it ends by reading it bit by bit without ever reading
a blank endmarker. Now a program starts with a self-delimiting
prefix as before, but the program to be simulated that follows the
prefix must also be self-delimiting. So the idea is that the whole
program must now have the same property the prefix already had
in theory (C).

(D) is the mature theory, I believe. I immediately put this out as an
IBM research report. I present this paper at the opening plenary ses-
sion of the IEEE International Symposium on Information Theory in
Notre Dame, Indiana, in October 1974. It is published in the ACM
Journal in 1975 as “A theory of program size formally identical to in-
formation theory.”

There are three key ideas in this paper: self-delimiting programs, a
new definition of relative complexity, and the idea of getting program-
size results indirectly from probabilistic, measure-theoretic arguments
involving the probability P(z) that a program will calculate z. I call
this the algorithmic probability of xE Summing P(z) over all possible
outputs x yields the halting probability Q:

0= %:P(x)

conversation with Godel and an appointment to meet him at the Princeton Institute for
Advanced Study, an appointment that Godel cancels at the last minute.

13S0lomonoff tried to define P(x) but could not get P(z) to converge since he wasn’t
working with self-delimiting programs.

14This definition is a bit abstract. Here are two other ways of defining an  number. As

a sum over programs p:
o= 3 ol

p halts

As a sum over all positive integers n:
Q' = Z 27H(n).
n

Here |p| is the size in bits of the program p, and H(n) is the size in bits of the smallest
program for calculating the positive integer n.
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And a key theorem
(x) H(z) = —log, P(z) + O(1)

permits us to translate complexities into probabilities and vice versa.
Here the complexity H(z) of x is the size in bits of the smallest program
for calculating z, and the O(1) indicates that the difference between
the two sides of the equation is bounded.

Incidentally, (*) implies that there are few minimum or near-minimum
size programs for calculating something, few minimal descriptions.
That is, an elegant program for calculating something is essentially
uniqueE

Where did the halting probability 2 come from? How did I come up
with it? Well, already in part two of my first paper on randomness,
“On the length of programs for computing finite binary sequences: sta-
tistical considerations” (ACM Journal, 1969), I use a Heine-Borel-style
algorithm to exhibit a specific example of a random infinite sequence
of bits. I think it is important to come up with specific examples.

The halting probability €2 is a natural example of a random infinite se-
quence of bits. Besides providing a connection with the work of Turing,
) makes randomness more concrete and more believable.

Furthermore, once you have a natural example of randomness, you im-
mediately get an incompleteness theorem from it, as I point out in
“Godel’s theorem and information” (International Journal of Theoreti-
cal Physics, 1982). My work in 1987 on 2 and its diophantine equation
makes this fully explicit. I had been aware of this opportunity for get-
ting a dramatic incompleteness result for some timeE

(*) is nice but it is only part of the story. The true reward for changing
from theory (C) to (D) is this spectacular result:

(xx) H(z,y) = H(z)+ H(ylz) + O(1).

In words, (the joint complexity of two objects) is equal to the sum of
(the absolute complexity of the first object) plus (the relative complex-
ity of the second object given the first object).

15For more on this, see my book Ezploring Randomness (2001). I had proven this result
in theory (C) in 1972, but that proof wasn’t published until 1976, in “Information-
theoretic characterizations of recursive infinite strings” in Theoretical Computer Science.
16See the end of the introductory section of “Information-theoretic limitations of formal
systems” (ACM Journal, 1974).
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To get (xx), self-delimiting programs aren’t enough, you also need the
right definition of relative complexityE I had used relative com-
plexity in my big 1965 randomness manuscript, but had eliminated it
to save space. In my 1975 ACM Journal paper I take up relative com-
plexity again, but define H (z|y), the complexity of  given y, to be the
size in bits of the smallest self-delimiting program for calculating x if
we are given for free, not y directly, but a minimum-size self-delimiting
program for y.

And (%) implies that the extent to which computing two things to-
gether is cheaper than computing them separately, also known as the
mutual information

is essentially the same, within O(1), of the extent to which knowing x
helps us to know y

H(y) — H(y|x),

and this in turn is essentially the same, within O(1), of the extent to
which knowing y helps us to know x

H(x) — H(z[y)-

This is so pretty that I decide never to use theory (C) again. For (D)
doesn’t just restore subadditivity to (C), it reveals an elegant new land-
scape with sharp results instead of messy error terms. From now on,
theory (D) only.

e 1975: My first Scientific American article, “Randomness and mathe-
matical proof,” appears. I move back to New York and join the IBM
Watson Lab.

In the paper “Algorithmic entropy of sets” (Computers & Mathemat-
ics with Applications, 1976, written at the end of 1975), I attempt to
extend the self-delimiting approach to programs for generating infinite
sets of output. Much remains to be done@

This topic is important, because I think of a formal axiomatic system as
a computation that produces theorems. My measure of the complexity

7Levin claims to have published theory (D) first. However he missed this vital part of
theory (D).

181f this interests you, please see the discussion of infinite computations in the last
chapter of Ezploring Randomness (2001).
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of a formal axiomatic system is therefore the size in bits of the smallest
self-delimiting program for generating the infinite set of theorems.

1976-1985: I concentrate on software and hardware engineering for
IBM’s RISC (Reduced Instruction Set Computer) project.

Even though I spend most of my time on this engineering project, in
1982 I publish “Godel’s theorem and information” in the International
Journal of Theoretical PhysicsE This is later included with my 1974
IEEE Transactions on Information Theory paper in the influential an-
thology Tymoczko, New Directions in the Philosophy of Mathematics,
Princeton University Press, 1998.

My 1985 publication “An APL2 gallery of mathematical physics: a
course outline” gives computational working models of physical phe-
nomena to be inserted between chapters of Einstein and Infeld, The
Evolution of Physics. This APL2 physics simulation software is ex-
tremely concise[”|

1986: My RISC engineering work stops because of an invitation by
Cambridge University Press to write the first volume in their series
Cambridge Tracts in Theoretical Computer Science. I start working
on the book, intending merely to collect previous results, but then the
flow of new ideas resumes.

Some of these new ideas are presented in the paper “Incompleteness
theorems for random reals” (1987). This paper contains a proof of the
basic result that an N-bit formal axiomatic system cannot enable you
to determine more than N + ¢ bits of €2, bits that may be scattered and
do not have to be together at the beginning of 2. This is the measure-
theoretic proof that I give in the Cambridge book. After writing this
paper, work on the book begins in earnest.

Using work by Jones and Matijasevic on Hilbert’s 10th problem, I cal-
culate a 200-page diophantine equation for QE This equation has
thousands of unknowns and a parameter k, and has finitely or infinitely
many whole-number solutions depending on whether the kth bit of 2
is, respectively, a 0 or a 1. To get this equation, I convert a register

19 At roughly the same time I fulfill a childhood dream by building my own telescope: I
join a telescope-making club and grind a 6 inch f/8 mirror for a Newtonian reflector in
a basement workshop at the Hayden Planetarium of the Museum of Natural History.
20Besides learning the physics and some numerical analysis, I wanted to get a feel for
the algorithmic complexity of the laws of physics.

21T¢’s actually what’s called an exponential diophantine equation.
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machine program for a LISP interpreter into a diophantine equation,
and then I plug into that equation a LISP program for computing lower
bounds on 2.

1987: Cambridge University Press publishes Algorithmic Information
Theory, which explains how to obtain the diophantine equation for
Q). This book also contains a result about random infinite binary se-
quences. I show that four definitions of this concept are equivalent:
two constructive measure-theoretic definitions due to Martin-Lof and
to Solovay, and two definitions of my own using program-size complex-
ity. Algorithmic Information Theory is my first publication in which
LISP appears.

Simultaneously, World Scientific publishes a collection of my papers,
Information, Randomness and Incompleteness.

1988: I write about the diophantine equation for €2 in my second Sci-
entific American article, “Randomness in arithmetic” (1988), and then
in New Scientist (1990), and after that in La Recherche (1991).

1991: I give a lecture on “Randomness in arithmetic” in the room
where Godel taught at the University of Vienna.

1992: In the 1992 paper on “Information-theoretic incompleteness,” 1
publish a program-size proof of the theorem that you cannot determine
the bits of 2. More precisely, an N-bit theory—a formal axiomatic sys-
tem with complexity N—can permit you to determine at most N + ¢
bits of 2. This program-size proof is better than the measure-theoretic
proof in the 1987 Cambridge book, and is the proof that I use in the
1998 book, The Limits of Mathematics.

I also publish four papers on LISP program-size complexity:

— Complexity Theory (L): Counting the number of characters
a LISP S-expression (that’s the program) must have, to have a
determined value (that’s the output).

In these four papers several different dialects of LISP are studied, and
appropriate versions of the halting probability Qysp are invented for
each of them, together with the corresponding incompleteness theo-
rems. The techniques developed in my complexity theories (A) and
(B) are put to good use here.

These LISP 2 numbers may not be as random as the fully random €2
number in theory (D), but, like the so-called random infinite sequences
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in my original 1965 randomness paper, they come close. For example,
they are Borel normal for blocks of all sizes in any base.

These 1992 papers are immediately included in my second World Sci-
entific volume, Information-Theoretic Incompleteness (1992).

I lecture at a meeting on reductionism at Cambridge University. The
transcript of that lecture, “Randomness in arithmetic and the decline
and fall of reductionism in pure mathematics,” appears later in Corn-
well, Nature’s Imagination, Oxford University Press, 1995.

1995: I discover how to convert theory (D) into a theory about the size
of real programs, programs that you can actually run on a computer
(universal Turing machine) that I simulate using a special version of
LISP.

— Complexity Theory (E): Counting the number of bits in a self-
delimiting binary program, a bit string with the property that you
can tell where it ends by reading it bit by bit without reading a
blank endmarker. The program starts with a self-delimiting prefix,
indicating which computing machine to simulate, followed by the
self-delimiting binary program for that machine, as in theory (D).
But in theory (E), (the prefix indicating the machine to simulate)
is a LISP S-expression, a program written in a high-level functional
programming language, that’s converted to a bit string. (E) isn’t
a new theory, it’s a special case of (D) selected because the prefix
indicating the machine to simulate is encoded in a particularly
convenient manner.

Now, 30 years after starting to work on program-size complexity, I can

finally run programs and measure their size.

Several years are needed to complete this concrete version of AIT and
to present it in my three Springer-Verlag volumes, The Limits of Math-
ematics (1998), The Unknowable (1999), and Ezxploring Randomness
(2001). These books come with LISP software and a LISP interpreter.

Honorary doctorate, University of Maine.

2000: Since this year, visiting professor, Computer Science Depart-
ment, University of Auckland, New Zealand.

2002: Honorary professor, University of Buenos Aires.

Springer-Verlag publishes Conversations with a Mathematician, a col-
lection of some of my lecture transcripts and interviews.
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I'm invited to present a paper at a philosophy congress in Bonn, Ger-
many, in September. For this purpose, I begin to study philosophy,
particularly Leibniz’s work on complexity, which I am led to by a hint
in a book by Hermann Weyl.

My paper appears two years later (2004) in a proceedings volume pub-
lished by the Academy Press of the Berlin Academy that was founded
by Leibniz. It is reprinted as the second appendix in my book Meta
Math! (2005).

e 2003: Lecture notes From Philosophy to Program Size published in
Estonia, based on a course I give there, winter 2003.

e 2004: Corresponding member, Académie Internationale de Philosophie
des Sciences.

Write Meta Math!, a high-level popularization of AIT, published the
following year by Pantheon Books (2005). This book is not just an
explanation of previous work; it presents a systeme du monde.

Meta Math! follows Emile Borel in questioning the existence of the bulk
of the real numbers,; a train of thought further developed in my paper
“How real are real numbers?” (International Journal of Bifurcation and

Chaos, 2006) 7]

e 2005: I summarize the systéme du monde of Meta Math! in the paper
“Epistemology as information theory: From Leibniz to 7 (Collapse:
Journal of Philosophical Research and Development, 2006).

Honorary president of the scientific committee of the Valparaiso Com-
plex Systems Institute in Chile. Member of the scientific advisory panel
of FQXi, devoted to Foundational Questions in Physics & Cosmology.

e 2006: The centenary of Godel’s birth. I publish my third Scientific
American article, on “The limits of reason,” celebrating Leibniz, whom
Godel also admired. This article is translated and published in about
a dozen other languages. I summarize my thoughts on incompleteness
in an Enriques lecture at the University of Milan, “The halting proba-

bility €: Irreducible complexity in pure mathematics” (Milan Journal
of Mathematics, 2007).

22Vladimir Tasi¢ pointed out to me that Borel has a know-it-all real number—a 1927
version of the 2 number. My paper on the ontological status of real numbers is dedicated
to Borel’s memory.
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A collection of some of my philosophy papers is published in Turin.
Full member, Académie Internationale de Philosophie des Sciences.

2007: World Scientific publishes a more complete collection of my phi-
losophy papers. I establish a connection between the bits of 2 and the
word problem for semigroups in my paper “An algebraic characteriza-
tion of the halting probability” (Fundamenta Informaticae, 2007). 60th
birthday.

To paraphrase Einstein, this timeline will have fulfilled its purpose if it
shows how the efforts of a lifetime hang together, and why they lead
to certain definite expectations@ In particular, I think it would be
fruitful to explore the following topics.

Challenges for the Future

On the technical side, many questions remain regarding the program-
size complexity and the algorithmic probability of computing infinite
sets of objects.

More difficult challenges:

To develop a model of mathematics that is biological, that is, that
evolves and develops, that’s dynamic, not static. Perhaps a time-
dependent formal axiomatic system?

To understand creativity in mathematics—where do new ideas come
from?—and also in biology—how do new, much more complicated or-
ganisms develop? Perhaps a life-as-evolving-software model has some
merit?

Q) = concentrated creativity? Each bit of {2 = one bit of creativity?
Can human intellectual progress be measured by the number of bits of
Q that we know, or are currently capable of knowing, as a function of
time?

Is the universe discrete or continuous? Can physical systems contain
an infinite or only a finite number of bits?

Make a model world in which you can prove life must develop with high
probability. It doesn’t matter if this world isn’t exactly like ours; how
can that be important?

Is the world built out of information, not matter? Is it built out of
thought? Is matter just an epiphenomenon, that is, secondary, not

23See the final sentence of Einstein’s Autobiographical Notes.
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primary? And what are thoughts?

Selected Publications by Chaitin

Non-Technical Books

e Meta Math!, Pantheon Books, New York, 2005 (hardcover); Vintage,
New York, 2006 (paperback).

e U.K. edition: Meta Maths, Atlantic Books, London, 2006@

e (Conversations with a Mathematician, Springer-Verlag, London, 2002@

Technical Books
Lecture Notes

e From Philosophy to Program Size, Institute of Cybernetics, Tallinn,
2003.

Monographs

o Algorithmic Information Theory, Cambridge University Press, 1987
(hardcover), 2004 (paperback).

e The Limits of Mathematics, Springer-Verlag, Singapore, 1998;
reprinted by Springer-Verlag, London, 2002@

e The Unknowable, Springer-Verlag, Singapore, 1999@

e Ezxploring Randomness, Springer-Verlag, London, 2001.

Collections of Papers

e Information, Randomness and Incompleteness, World Scientific, Singa-
pore, 1987, 2nd ed., Singapore, 1990.

o Information-Theoretic Incompleteness, World Scientific, Singapore,
1992.

o Teoria algoritmica della complessita, Giappichelli Editore, Turin, 2006.

o Thinking about Gédel and Turing, World Scientific, Singapore, 2007.

24 Also published in Greek.

25 Also published in Japanese and Portuguese.
26 Also published in Japanese.

27 Also published in Japanese.
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Chapter 27

Chaitin Celebration at the NKS2007 Conference

On 15 July 2007 the New Kind of Science 2007 Conference Conference
(Burlington)lﬂ hosted a special Chaitin celebration. It included a ses-
sion dedicated to the book “Randomness & Complexity, from Leibniz to
Chaitin”, a special lunch honouring Gregory Chaitin, and a panel discussion
on Randomness and Complexity with Cristian Calude, John Casti, Gregory
Chaitin, Paul Davies, Karl Svozil, and Stephen Wolfram.

The special session included the following presentations:

e Cristian Calude, Proving and Programming

e John Casti, Greg Chaitin: Twenty Years of Personal and Intellectual
Friendship

e Karl Svozil, The Randomness Information Paradoz: Recovering Infor-
mation in Complex Systems

e Paul Davies, The Implications of a Cosmological Information Bound
for Complezity, Quantum Information and the Nature of Physical Law

e Gordana Dodig-Crnkovic, Where Do New Ideas Come From? How Do
They Emerge? Epistemology as Computation (Information Processing)

e Ugo Pagallo, Chaitin’s Thin Line in the Sand. Information, Algo-
rithms, and the Role of Ignorance in Social Complex Networks

e Hector Zenil, On the Algorithmic Complezity for Short Sequences

e Gregory Chaitin, On the Principle of Sufficient Reason

Thttp://www.wolframscience.com/conference/2007/program.html.
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Stephen Wolfram presenting the Omega Medallion (photo by Cristian
Calude)



Special session contributors. From left to right: Hector Zenil, Stephen

Wolfram, Paul Davies, Ugo Pagallo, Gregory Chaitin, Cristian Calude,

Karl Svorzil, Gordana Dodig-Crnkovic, and John Casti (photo by Sally
McCay)



“Randomness and Complexity” panellists. From left to right: Paul
Davies, Gregory Chaitin, Stephen Wolfram, John Casti, Karl Svozil, and
Cristian Calude (photo by Jeff Grote)



Stephen Wolfram, Gregory Chaitin, and the Omega cake (photo by Jeff
Grote)

Omega cake approximation (photo by Karl Svozil)
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