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9 Abstract

10 Bacterial species with large sequence diversity enable studies focused on comparative genomics, 

11 population genetics and pan-genome evolution. In such analyses it is key to determine whether 

12 sequences (e.g. genes) from different strains, are the same or different. This is often achieved by 

13 clustering orthologous genes based on sequence similarity. Importantly, one limitation of existing 

14 pan-genome clustering methods is that they do not assign a confidence score to the identified 

15 clusters. Given that clustering ground truth is unavailable when working with pan-genomes, the 

16 absence of confidence scores makes performance evaluation on real data an open challenge. 

17 Moreover, most pan-genome clustering solutions do not accommodate cluster augmentation, 

18 which is the addition of new sequences to an already clustered set of sequences. Finally, the pan-

19 genome size of many organisms prevents direct application of powerful clustering techniques that 

20 do not scale to large datasets. Here, we present Boundary-Forest Clustering (BFClust), a method 

21 that addresses these challenges in three main steps: 1) The approximate-nearest-neighbor retrieval 

22 method Boundary-Forest is used as a representative selection step; 2) Downstream clustering of 

23 the representatives is performed using Markov Clustering (MCL); 3) Consensus clustering is 

24 applied across the Boundary-Forest, improving clustering accuracy and enabling confidence score 

25 calculation. First, MCL is favorably benchmarked against 6 powerful clustering methods. To 

26 explore the strengths of the entire BFClust approach, it is applied to 4 different datasets of the 

27 bacterial pathogen Streptococcus pneumoniae, and compared against 4 other pan-genome 

28 clustering tools. Unlike existing approaches, BFClust is fast, accurate, robust to noise and allows 

29 augmentation. Moreover, BFClust uniquely identifies low-confidence clusters in each dataset, 

30 which can negatively impact downstream analyses and interpretation of pan-genomes. Being the 

31 first tool that outputs confidence scores both when clustering de novo, and during cluster 

32 augmentation, BFClust offers a way of automatically evaluating and eliminating ambiguity in pan-

33 genomes.

34

35
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36 Author Summary

37 Clustering of biological sequences is a critical step in studying bacterial species with large 

38 sequence diversity. Existing clustering approaches group sequences together based on similarity. 

39 However, these approaches do not offer a way of evaluating the confidence of their output. This 

40 makes it impossible to determine whether the clustering output reflect biologically relevant 

41 clusters. Most existing methods also do not allow cluster augmentation, which is the quick 

42 incorporation and clustering of newly available sequences with an already clustered set. We 

43 present Boundary-Forest Clustering (BFClust) as a method that can generate cluster confidence 

44 scores, as well as allow cluster augmentation. In addition to having these additional key 

45 functionalities and being scalable to large dataset sizes, BFClust matches and outperforms state-

46 of-the-art software in terms of accuracy, robustness to noise and speed. We show on 4 

47 Streptococcus pneumoniae datasets that the confidence scores uniquely generated by BFClust can 

48 indeed be used to identify ambiguous sequence clusters. These scores thereby serve as a quality 

49 control step before further analysis on the clustering output commences. BFClust is currently the 

50 only biological sequence clustering tool that allows augmentation and outputs confidence scores, 

51 which should benefit most pan-genome studies.

52
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53 Introduction 

54 Most bacterial species harbor large amounts of sequence diversity. For example, any given strain 

55 of the human respiratory bacterial pathogen Streptococcus pneumoniae has about 2,100 genes in 

56 its genome, but two strains can differ by the presence or absence of hundreds of genes. In fact, the 

57 core genome (the genes shared by all strains) is estimated to be anywhere between 15-50% of the 

58 pangenome (the entire genetic repertoire of the species, thought to contain between 5,000-10,000 

59 genes) (1–3). In species such as S. pneumoniae where there is a large amount of genetic diversity, 

60 phylogenetic studies or studies that compare multiple strains first necessitate identifying which 

61 genetic elements are the same across the different strains. 

62 Establishing gene correspondence is often achieved by orthologue clustering, which groups 

63 orthologues of the same gene based on sequence similarity. An ideal orthologue clustering method 

64 is scalable, accurate, allows cluster augmentation (the addition of new sequences to a clustered 

65 set, without changing the initial clustering), and assigns a confidence score to the clusters it 

66 outputs. Earlier approaches for orthologue clustering such as PanOCT (4) and PGAP (5), involve 

67 all-against-all sequence comparisons, which compares each sequence to all other sequences in the 

68 dataset, and uses all of these comparisons to cluster. With such an approach, the number of 

69 comparisons increase quadratically with the number of data points, making these methods 

70 inapplicable for large datasets. Other approaches such as CD-HIT (6) and Usearch UCLUST (7) 

71 require the user to choose a sequence similarity threshold for the clusters. These direct threshold 

72 methods ensure that sequences that are more dissimilar than the threshold do not appear in the 

73 same cluster, and are extremely fast. CD-HIT has been used for pan-genome clustering for 

74 different microbial species (3,8,9), while UCLUST is the default clustering algorithm in the 

75 Bacterial Pan Genome Analysis tool (BPGA) (10), which is also used for multiple species’ pan-

76 genome analysis (11–15). Importantly, when using direct-threshold methods, the correct value of 

77 the threshold may be difficult or impossible to determine, and an incorrectly chosen threshold 

78 value directly impacts clustering accuracy.

79 An alternative to direct-threshold methods are network-based methods, such as spectral clustering 

80 or Markov clustering (MCL) (16,17). These methods represent each sequence as a node in a 

81 network, and sequences are connected to one another according to how similar they are. The 

82 resulting network can then be partitioned into clusters based on its topology. Since generating the 
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83 network requires all-against-all comparisons, these methods also do not scale out-of-the-box. To 

84 overcome this challenge, the two software solutions for pan-genome clustering, PanX (18) and 

85 Roary (19), first use a representative selection step – which reduces the redundancy in, and the 

86 size of, the dataset by grouping extremely similar sequences together. For each group, a 

87 representative sequence is picked, and the representatives are then clustered using MCL. The 

88 cluster membership for the representatives is then extrapolated to all sequences.

89 There are multiple strategies for representative selection. For instance, PanX separates consecutive 

90 input sequences into groups, then performs clustering within each one of these groups, and finally, 

91 selects one representative from each cluster from each group. Alternatively, Roary uses CD-HIT 

92 as its representative selection method (19). In either case, only a single set of representatives is 

93 selected, and there is no guarantee that this set best represents the whole dataset, which is a critical 

94 limitation. 

95 Two additional challenges for pan-genome clustering are a lack of cluster augmentation, and a 

96 lack of confidence scores on the clustering output. Currently CD-HIT is the only clustering 

97 software that enables cluster augmentation, and no software produces confidence scores, which 

98 are critical in evaluating the ambiguity in the clustering results. 

99 To overcome these challenges, we developed BFClust. BFClust uses a Boundary-Forest as a 

100 representative selection step, resulting in multiple sets of representatives that are stored. Each set 

101 of representatives is then clustered using MCL, yielding a clustering ensemble. A final consensus 

102 clustering step yields a single clustering solution from the ensemble. This approach has 2 main 

103 advantages: 1) multiple sets of representatives and consensus clustering enable calculation of 

104 confidence scores; 2) storing the Boundary-Forest enables quick cluster augmentation. 

105 In this work, we evaluate the performance of 7 clustering methods (including hierarchical, K-

106 means, spectral and MCL), and show that network-based methods such as MCL outperform others. 

107 BFClust using MCL is then compared to UCLUST, CD-HIT, PanX and Roary, which highlights 

108 that BFClust and PanX have high accuracy and robustness to noise when evaluated on a synthetic 

109 dataset generated in silico with known cluster assignments. In real pan-genome datasets, BFClust 

110 identifies clusters with low confidence scores, even in the core genome. Since such clusters most 

111 likely do not represent real orthologues, the confidence score can thus serve as a means to filter 

112 clustering results, only retaining unambiguous clusters. To the best of our knowledge, BFClust is 
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113 the only clustering solution that produces the critical confidence scores, offers automatic cluster 

114 augmentation, and updates confidence scores during cluster augmentation. BFClust thereby is a 

115 unique method that enables quality control on the clusters it produces, while matching current gold 

116 standard tools in terms speed and performance. 
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117 Results

118 Algorithm Overview

119 Clustering of sequences using BFClust has three major steps: 1) representative selection i.e. 

120 reducing redundancy in the input data using Boundary-Forest; 2) clustering of each set of 

121 representatives associated with each Boundary-Tree into an ensemble of clustering solutions; and 

122 3) deriving a consensus clustering from this ensemble of solutions (Figure 1). Once a consensus 

123 clustering is obtained, each cluster is assigned a cluster confidence score, and each amino acid 

124 sequence is given an item consensus score, based on the agreement of the clustering produced 

125 using the different Boundary-Trees. 

126 A naïve way to cluster all sequences from many bacterial genomes would be to look at all-vs-all 

127 pairwise sequence comparisons. Since all-vs-all pairwise comparisons require a computational 

128 effort that scales quadratically (O(N2) comparisons) with the number of sequences (N), it is 

129 beneficial to apply a representative selection scheme such that a group of extremely similar 

130 sequences is represented by a single sequence. We achieve this by constructing a Boundary-Forest 

131 (see Supplementary Notes for pseudocode). In a Boundary-Forest, n Boundary-Trees are 

132 constructed, with n =10 as the default size of the forest. Before constructing each Boundary-Tree, 

133 the order of sequences is randomized. The Boundary-Tree is constructed by placing the first 

134 sequence as the root, and the second sequence as its child. Then, each subsequent sequence is 

135 compared to the root node and its children. If the Smith-Waterman distance (20) between the 

136 incoming sequence and a node in the Boundary-Tree is smaller than a pre-set threshold t, the 

137 incoming sequence is represented by this node, and omitted from the tree. If the incoming sequence 

138 is not within the threshold of the root node or its children, we select the node (among the parent 

139 and children being compared to the incoming sequence) with smallest distance to the incoming 

140 sequence. If the newly selected node also has children, we repeat the comparison, moving down 

141 the tree until a representative is found that is sufficiently close to the incoming sequence. If such 

142 a node is found, we assign this node as the representative of the incoming sequence, and start 

143 processing the next incoming sequence. If no node within distance t is found on the tree, the new 

144 sequence is added as a child of a leaf in the tree. To control the breadth of the tree, we also limit 

145 the maximum number of children allowed for each node (with the parameter “MaxChild”). Note 

146 that below, we explore the sensitivity of the approach to these parameters. Since any Boundary-
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147 Tree that is constructed is sensitive to the order in which the sequences are read, a single tree is 

148 not guaranteed to capture a set of representatives that leads to highly accurate downstream 

149 clustering. Therefore, multiple Boundary-Trees (the Boundary-Forest) are used, which can be 

150 thought of as multiple ‘opinions’ on what representative sequences should be chosen. Once the 

151 sequence set is reduced to n sets of representatives, stored as a forest of n trees, the pairwise 

152 distances are computed within each set of representatives, and well-established clustering 

153 algorithms are applied. 

154 After clustering the representatives, the cluster assignments of the representatives are extended to 

155 the full dataset. This is a necessary step for comparing the clustering output to the ground truth, 

156 comparing two clustering outputs to each other, and for consensus clustering, as these actions are 

157 performed on the full dataset, and not on the representatives. During the construction of each 

158 Boundary-Tree, each sequence is assigned a representative (or is itself a representative) based on 

159 sequence similarity. Cluster extension from the representatives to the full dataset is done by 

160 assigning each sequence the cluster of its representative.

161 The representatives of each Boundary-Tree are used to produce one clustering output, the whole 

162 Boundary-Forest thus leading to an ensemble of possible clustering outputs. Consensus clustering 

163 across the clustering ensemble is then applied, combining the clustering output obtained from each 

164 tree, to improve accuracy. Finally, BFClust compares how the different clustering outputs in the 

165 ensemble contribute to the consensus clustering, and using the differences in these contributions 

166 it assigns an item confidence score to the membership of each sequence to its consensus cluster, 

167 and a cluster confidence score to the existence of each cluster. 

168 Boundary-Forest reduces redundancy in the sequence set

169 In order to evaluate whether Boundary-Forest effectively reduces an input dataset into a small set 

170 of representatives by removing redundant sequences, we studied how much this step reduces the 

171 size of the dataset, how this reduction depends on the algorithm’s parameters, and how, in turn, 

172 this affects downstream clustering accuracy. We generated a small test dataset (‘minigenomes’), 

173 with 500 sequences of varying length (ranging from 65 to 1170 amino acids). This dataset has 50 

174 noisy copies of 10 genes, and therefore 10 inherent sequence clusters. The noise is independent, 

175 random changes in the nucleotide sequence with probability 0.01 per nucleotide. Since BFClust 

176 uses amino acid sequences by default, the perturbed nucleotide sequences were then translated into 
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177 perturbed amino acid sequences in silico. As the changes introduced to the sequences are random, 

178 10 replicate sequence sets with the same mutation probability were generated. Figure 2A shows 

179 how the size of the Boundary-Tree constructed from this dataset is robust to two parameters that 

180 are crucial in constructing the Boundary-Tree: MaxChild and the sequence similarity threshold t. 

181 A detailed description of all parameters used in BFClust is provided in S1 Appendix. While a 

182 drastically small threshold value (t = 0.01) results in larger trees (which is intuitive, since with a 

183 smaller similarity threshold, fewer sequences can be represented by the same node), the size of the 

184 tree is robust to a large range of t and MaxChild values. Once a tree is generated, applying 

185 downstream clustering still may require all pairwise comparisons on the representatives. However, 

186 the number of pairwise comparisons are now greatly reduced; for example, a tree generated with 

187 MaxChild = 10 and t = 0.1 has 15 nodes (Figure 2A), which requires only  pairwise (15
2 ) = 105

188 comparisons for clustering, versus 125,000 when clustering the entire dataset. Importantly, (500
2 )~

189 the construction of each Boundary-Tree also requires relatively few sequence comparisons itself: 

190 for example, 4500 comparisons are sufficient to generate the Boundary-Tree, when MaxChild > 2 

191 (Figure 2B). The trees constructed are also relatively shallow (Figure 2C), meaning that the 

192 addition of a new sequence to an existing forest will require very few sequence comparisons (the 

193 number of comparisons grows with the depth of the tree) and will thus be very fast, which is 

194 relevant when we later discuss clustering augmentation. This is in line with the results reported by 

195 the creators of Boundary-Forest, where the depth of Boundary-Trees was shown to depend 

196 logarithmically on the number of data points for multiple datasets (21). Importantly, applying the 

197 full BFClust pipeline with varying the parameters MaxChild and t did not alter the clustering 

198 output, and the recovered clusters using any combination of these parameters (in the ranges 

199 presented in Figure 2) were identical to the ground truth and resulted in no error in clustering 

200 output. 

201 There are alternatives to representative selection that involve simpler algorithms than Boundary-

202 Forest; two approaches we discuss here are a random sampling and a naïve sampling strategy. 

203 Random sampling is the selection of representatives randomly from the full set of sequences. This 

204 is not a viable strategy, as it does not guarantee that all clusters will be selected. For example, on 

205 the set of 500 sequences with 10 known clusters, a random selection is likely to include at least 

206 one representative from all 10 clusters only when a sufficiently large number of sequences (e.g. N 
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207 = 50) are randomly selected (Supplementary Figure 1). In this case, a 10-fold reduction in the 

208 number of representatives (compared to the full sequence set) may seem promising. However, in 

209 real pan-genome datasets, this reduction might result in hundreds of thousands of representative 

210 sequences, which would still be prohibitively numerous for downstream clustering. Moreover, in 

211 real sequence sets it is not clear how many sequence clusters are present, and random sampling 

212 risks missing smaller clusters. Thus, estimating the number of random samples to be selected such 

213 that all clusters will be represented is difficult, if not impossible.

214 In the second, naïve sampling scheme, sequences are read in a random order, and the first sequence 

215 is placed into a ‘representatives’ group. Each incoming sequence is then compared to the existing 

216 representatives, and if no representative closer than a threshold t is found, the incoming sequence 

217 is added to the representatives group. Both CD-HIT and UCLUST apply this naïve sampling 

218 strategy. On the small 500-sequence minigenomes dataset, the number of representatives selected 

219 by the naïve sampling and Boundary-Tree are similar (Table 1). However, cluster augmentation, 

220 which is a key advance we present below, requires the comparison of new sequences to all of the 

221 representatives in the case of naïve sampling, while in the Boundary-Tree, the traversal of a much 

222 smaller subset of representatives is required. The number of comparisons on a Boundary-Tree is 

223 dependent on the tree depth, and the number of children each node has, which is limited with the 

224 MaxChild parameter. With MaxChild = 10, the estimated number of possible comparisons in the 

225 Boundary-Tree for new sequences would be at worst 10 × (tree depth), whereas in the naïve 

226 scheme it would be equal to the current size of the representatives set. The advantage of the 

227 Boundary-Forest becomes apparent when a larger sequence set is considered. For instance, 20 S. 

228 pneumoniae strains were selected from the RefSeq database (Supplementary Table 1), and the 

229 coding sequences were subjected to naïve sampling and Boundary-Tree sampling. While the 

230 number of representatives in the Boundary-Tree is about twice as large as the representatives 

231 picked with naïve sampling, the trees are shallow. The number of comparisons needed to process 

232 a new sequence in the Boundary-Tree is ~90, which is about 35-fold smaller than the comparisons 

233 using the naïve representative set (~3265). Therefore, we conclude that the extra effort at the 

234 beginning of constructing the Boundary-Forest results in more efficient sample processing as the 

235 sequence dataset grows larger. 

236
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Dataset N Representatives 
(Naïve Sampling)

Representatives 
(Boundary-

Tree)
Tree depth

BT 
comparisons

minigenomes 500 15.5±5.6 13.2±2.0 4.5±0.8 45
RefSeq 42010 3264.7±5.4 6579.8±78.3 9±0.82 90

237 Table 1: Comparison of naïve sampling and Boundary-Trees as representative selection methods. Representatives 
238 were selected from two datasets (minigenomes, a synthetic small sequence set; and RefSeq, sequences from 20 S. 
239 pneumoniae strains present in the RefSeq database), using either naïve sampling or Boundary-Trees. N: number of 
240 sequences in the dataset. Representatives: number of representatives selected with naïve sampling or Boundary-Tree. 
241 Tree depth: depth of a Boundary-Tree. Mean±standard deviation of 10 replicate sets of representatives are reported. 
242 BT comparisons: expected number of comparisons that will be made during cluster augmentation using Boundary-
243 Trees (note this value is the same as tree depth multiplied by the number of children allowed, which is 10 by default). 

244 MCL outperforms other methods during clustering of the representative sequences.

245 We tested 4 commonly used clustering methods (a total of 7 variants of the 4 methods) for 

246 downstream clustering of the representative sequences obtained from the Boundary-Forest. These 

247 are 1) hierarchical clustering with ward linkage (‘Ward’), 2) K-means clustering of sequence 

248 distances (‘Kmeans’), 3) K-means clustering on vector-embeddings of amino acid sequences 

249 (‘Kmeans V’), 4) non-normalized spectral clustering (‘Spectral NN’), 5) spectral clustering with 

250 Shi-Malik normalization (‘Spectral SM’) (22), 6) spectral clustering with Jordan-Weiss-Ng 

251 normalization (‘Spectral JWN’) (23), and 7) Markov clustering (MCL) (24). With the exception 

252 of MCL, these methods do not automatically select the number of clusters to output, and rely on 

253 the user to specify this value. Given a set of biological sequences, it is not inherently evident how 

254 many sequence clusters there should be. To address this, each method is applied multiple times, 

255 each time generating partitions of the data with a different number of clusters. Then, a curve of the 

256 sum of squared errors (SSE) as a function of different cluster sizes is computed. SSE measures the 

257 scatter within each cluster and thus can be used as a quality metric (25). Finally, the most 

258 appropriate number of clusters, K is determined by finding the ‘elbow’ on the SSE curve. The 

259 elbow point is defined as the point where the second derivative of the SSE curve is maximized 

260 (see Methods, and Supplementary Figure 2).  Intuitively, the elbow point is the simplest model 

261 (i.e. smallest K) beyond which adding more complexity (increasing K) results in substantially 

262 lower gains in terms of SSE i.e. error is lowered much slower after the elbow point. Using this 

263 procedure, for each method, applied on representatives on each tree, the SSE curve is computed, 

264 and the elbow points are selected (Figure 3A, black points). As expected, with increasing number 

265 of clusters the total SSE decreases (Figure 3A). In the example in this figure, where the input 

266 sequences have 10 clusters, SSE is minimized at 0 for number of clusters K  10. In real genomic 
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267 datasets, it might not be the case that SSE is minimized to 0 when the correct K is selected. 

268 Therefore, the elbow method described above is preferable over selecting the K at which the SSE 

269 curve attains its minimum. 

270 The selected elbow on the SSE curve for each tree is often at the correct K, but not always (Figure 

271 3A). This is because the multiple Boundary-Trees are different, and their construction depends on 

272 the order in which the sequences are processed. Therefore, the same clustering method can result 

273 in different clustering partitions, depending on the Boundary-Tree used to reduce the data. If we 

274 compare the amount of disagreement among the trees for the same method, we see that different 

275 trees do indeed result in some inconsistencies (Figure 3B). Notably, MCL is the one downstream 

276 method that is extremely self-consistent. To reconcile the remaining inconsistencies, which 

277 improves the accuracy of the clustering, and to be able to report confidence scores, we add a 

278 consensus clustering step to BFClust. For this, we take the clustering assignments from the 

279 clustering obtained from each tree as a vector, and use a scalable clustering method (e.g. K-

280 medoids) to cluster these vectors (Supplementary Figure 3). The median of the elbow K values 

281 from each tree is used as the final number of clusters to be generated by the consensus. Figure 3C 

282 shows that after the consensus step, the errors against the known cluster assignments are reduced 

283 to 0 for most methods, despite the clustering from individual trees having higher error prior to 

284 consensus. 

285 BFClust can compute cluster confidence scores

286 The consensus clustering step across the Boundary-Forest not only reduces error, but it also allows 

287 confidence estimation for the existence of each cluster, and for the membership of each sequence 

288 in its consensus cluster. By comparing the clustering done using the representatives on each 

289 Boundary-Tree, it is possible to measure how frequently a cluster has the same members, and use 

290 this value as an estimate of cluster confidence. We define a cluster confidence score (for each 

291 cluster) and an item confidence score (for each sequence), and include both sets of values in the 

292 BFClust output. Both values depend on the consensus index (26). The consensus index of a pair of 

293 sequences i and j is the number of times that they appear together in the same cluster across n 

294 Boundary-Trees, divided by the total number n of Boundary-Trees used. The item confidence score 

295 for item i is the average consensus index between i and all other members of the same consensus 

296 cluster. The cluster confidence score is the average consensus index between all pairs of items 
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297 within the same consensus cluster (Supplementary Figure 3). Both scores take a value between 

298 0 and 1, and a score of 1 indicates perfect agreement of cluster memberships across the Boundary-

299 Forest. The cluster confidence score (Figure 3D) and the item confidence score (Figure 3E) was 

300 computed on the minigenomes dataset with a mutation rate = 0.1. Spectral clustering variants result 

301 in a few clusters with low confidence scores, whereas Ward and MCL clustering have the highest 

302 scores, indicating these methods have high agreement across the Boundary-Forest, and produce 

303 stable clusters even in the presence of noise.   

304 In Figures 3D and 3E, the cluster and item confidence scores are presented as a means to evaluate 

305 the self-consistency of each method. However, when clustering real pan-genome datasets, these 

306 confidence scores computed for each cluster or sequence serve as a confidence measure of the 

307 clustering output. This means that clusters with lower scores are those with higher uncertainty, and 

308 should be used with caution in further analysis and interpretation.  

309 Cluster augmentation: addition of new sequences to an existing clustering. 

310 A major advantage of the BFClust algorithm is that it stores the Boundary-Forest containing 

311 representatives from all previously processed input sequences. This allows BFClust to add new 

312 sequences to an existing clustering/partition while being able to update the confidence scores 

313 without much computational work. To achieve this, we implement a cluster augmentation method 

314 (see Figure 4A for a schematic overview). A set of incoming input sequences can either be used 

315 as-is, or optionally are reduced to a new set of representatives by constructing a new Boundary-

316 Tree. These new sequences (or representatives) are then run through each tree in the existing forest 

317 (corresponding to the already clustered set of sequences), and for each new representative, a close 

318 match on each of the 10 trees is identified. The cluster membership associated with each tree is 

319 extracted for these close matches from the previously computed clustering. Each new sequence is 

320 assigned the same clustering membership as that of the corresponding close match within each 

321 tree. This results in a vector of cluster assignments for each new sequence. Afterwards, the vectors 

322 composed of the cluster memberships for the new input representatives from each tree are turned 

323 into a consensus cluster assignment using a nearest neighbor search on the cluster assignments of 

324 the datapoints in the existing dataset. If an initial representative selection step was used, the 

325 consensus clustering on each input representative is then extended to the entire input set, using the 

326 same procedure of cluster extension during de novo clustering. 

.CC-BY 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted April 28, 2020. . https://doi.org/10.1101/2020.04.28.065870doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.28.065870
http://creativecommons.org/licenses/by/4.0/


14

327 The runtime of de novo clustering, and cluster augmentation scales tractably with increasing 

328 number of data points (Figure 4B). For de novo clustering, increasing numbers of replicates of the 

329 500-sequence dataset (with different random mutations) were included. For cluster augmentation, 

330 the last 500 sequences from the dataset was left out, the remaining N – 500 sequences were 

331 clustered de novo, and the remaining 500 sequences were added to the dataset using the procedure 

332 described above. Augmentation is much faster than clustering sequences de novo, even without 

333 the initial representative selection step (Figure 4B, green curve). When the optional representative 

334 selection step is included, there is an additional 5-fold increase in the runtime (Figure 4B, orange 

335 curve). Error on the final clustering, both for de novo, and for cluster augmentation was 0. 

336 Comparison and benchmarking with existing methods

337 We selected four existing sequence clustering methods to compare BFClust against. The first is 

338 Usearch UCLUST (7), a very fast and scalable algorithm that is also the basis of several other 

339 pangenome phylogenetic analysis pipelines such as SaturnV (27), PanPhlAn (28) and BPGA (10). 

340 Second, we consider CD-HIT, another scalable software that has been used directly in pan-genome 

341 analysis (8,9) and for representative selection in other pipelines such as Roary (19). Roary is also 

342 included, as it was one of the first popular software tools that allowed the pan-genome analysis of 

343 several hundred genomes at once, and therefore has been utilized in recent studies (29,30). Finally, 

344 PanX (18) is included, another recent software that can be used with hundreds of genomes.

345 First, the runtime of the four software tools was compared to BFClust (Figure 5A). The direct-

346 threshold methods UCLUST and CD-HIT are orders of magnitude faster than the other methods. 

347 On the other hand, methods that employ network-based clustering (MCL for BFClust, PanX and 

348 Roary) take far longer. With 25,000 input sequences, BFClust and Roary have similar runtimes, 

349 about 50x shorter than PanX (Figure 5A, Table 2). 

350 In order to compare the sensitivity to noise of our approach to existing methods for biological 

351 sequence clustering, we generated an extended set of test sequences. Here, we made 10 replicates 

352 of the 500-sequence minigenome set (with 10 known gene clusters) at given mutation rates, 

353 ranging from 0 to 0.4. We then computed the error against known clusters for each mutation rate. 

354 Both Roary and its representative selection method CD-HIT are very sensitive to low levels of 

355 noise in the sequence data (Figure 5B). In contrast, BFClust and PanX have 0 error when the 

356 mutation rate is less than or equal to 0.1 (Figure 5B, Table 2). Based on this, we recommend using 
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357 PanX or BFClust when a high amount of variation is expected in the sequence data, either due to 

358 genetic variation, or noise from error-prone sequencing technologies such as Oxford Nanopore 

359 (31). Error of BFClust when using other clustering methods is also low at mutation rates ≤ 0.1, 

360 however none of these methods outperform MCL (Supplementary Figure 4). In addition to being 

361 noise-insensitive, BFClust provides additional confidence scores, which are critical when 

362 clustering data with high sequence variability. An overall comparison of all 5 approaches are 

363 summarized in Table 2. BFClust and CD-HIT have the added advantage of allowing cluster 

364 augmentation. Importantly, BFClust is unique in the way it can output cluster and item confidence 

365 scores. In the application to real pan-genome clustering, these scores can be taken as a measure of 

366 cluster robustness.   

Method
Runtime 

(s)
Relative 

Error
Reference Representative 

selection
Cluster 

Augmentation
Confidence 

score

Network-
based 

clustering

BFClust 691.6 0 This work Yes Yes Yes Yes

PanX 37228.6 0 (18) Nob No No Yes

Roary 695.0 0.907 (19) Yes No No Yes

CD-HIT 2.4 0.894 (6) Yes Yes No No

USEARCH 1.5 0.975 (7) Yes No No No
367 Table 2: Comparison of software tools applied to pan-genome-wide orthologue clustering. Runtime: time it takes to 
368 run each method on 25,000 sequences (in seconds). Relative Error: Clustering error compared to ground truth on the 
369 minigenomes set with mutation rate = 0.1. Representative selection: whether the clustering strategy reduces the 
370 input dataset to a small set of representatives before/during clustering. Cluster augmentation: whether the method 
371 provides an automatic procedure for adding new sequences to an existing clustering partition. Confidence score: 
372 whether the clustering algorithm returns a clustering consensus score as an output. Network-based clustering: 
373 whether the method used network-based clustering strategies (MCL). b: PanX uses a divide-and-conquer strategy to 
374 process large datasets, where batches of 50 genomes are clustered at one time. Representatives from each cluster are 
375 selected in each batch. Since representative selection is done after clustering a relatively large set of sequences, we 
376 consider this strategy substantially different than other representative selection strategies.
377

378 Clustering of real pan-genomes 

379 To demonstrate the applicability of BFClust beyond synthetic datasets, i.e. on real pan-genomes, 

380 we explored several S. pneumoniae datasets. S. pneumoniae is a naturally competent, opportunistic 

381 human pathogen that is known to have a relatively large pan-genome, partially shaped by 

382 recombination events (1,2). Since in a real pan-genome, the ground truth for clustering is unknown, 

383 it is not possible to compute clustering error. Therefore, in this section we compare different 

384 clustering methods to each other and see whether they yield consistent outputs, in addition to 
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385 exploring the cluster confidence scores generated by BFClust. Previously, core and pan-genome 

386 analyses using Roary had revealed that across different datasets of pneumococcal isolates, the core 

387 genome is not conserved, and the size of the pan-genome is not the same across datasets (3). 

388 However, it is unclear whether this is a consequence of the datasets (which come from different 

389 types of populations that are also geographically separated) being different from one another, or 

390 an artifact of the clustering method used. In order to avoid any bias associated with a specific 

391 dataset, we compiled 4 datasets in this study: 1) RefSeq (closed, chromosomal genomes, n=20) 

392 (32) 2) Maela (annotated contigs from a Thai refugee camp, n=348)(33); 3) Nijmegen (annotated 

393 contigs from a Dutch hospital, n=350)(34); and 4) MA (annotated contigs from surveillance data 

394 from Massachusetts, n=616)(2). Despite being the smallest dataset, the RefSeq set is the most 

395 diverse, as these strains have collection dates and countries of origin that vary the most (see 

396 Supplementary Table 1 for a full list of strains). The Nijmegen dataset is comprised of 

397 pneumococcal isolates from invasive pneumococcal disease patients, whereas the MA and Maela 

398 datasets are collections of pneumococcal isolates from healthy individuals (i.e. carriage isolates). 

399 We evaluated whether the core and accessory genome profiles detected by each method are 

400 consistent. A reasonable expectation for a given tool is that it produces similar core and pan-

401 genome size estimates for the 3 larger datasets (MA, Maela, Nijmegen). This expectation is met 

402 by all methods but Roary, which shows a big discrepancy in the core and pan genome size across 

403 these datasets (Figure 6A, B). Relative to the other methods, it appears that Roary underestimates 

404 the core genome size, and over-estimates the pan-genome size (Figure 6A, B). In comparison, 

405 BFClust and PanX both find a larger core genome and a smaller accessory genome compared to 

406 the other methods, whereas UCLUST and CD-HIT find a similarly sized core genome, but a larger 

407 accessory genome compared to BFClust and PanX (Figure 6). 

408 In these analyses, BFClust is used with MCL. The alternative method were also tested within the 

409 BFClust pipeline, on each of the 4 datasets. The non-network methods Ward, Kmeans and 

410 Kmeans-V do not find elbows on the SSE curves (Supplementary Figure 5), indicating that these 

411 methods are not finding meaningful clusters in these datasets. In contrast, all 3 variants of network-

412 based Spectral clustering can find a clear elbow, and therefore may be more suitable for clustering 

413 of biological sequences
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414 In order to compare the agreement between clustering methods on a given dataset, we computed 

415 cluster overlap: the proportion of clusters generated by one method that are fully contained within 

416 another cluster generated by a second method (note that this measure is sensitive to the direction 

417 of comparison; agreement of method A with B is not necessarily the same as the agreement of B 

418 with A; see Methods). Interestingly, on the same datasets, CD-HIT and UCLUST had the highest 

419 agreement, as determined by cluster overlap (Figure 6C). BFClust and PanX were also in high 

420 agreement. Roary appears to have poor agreement with other methods in one direction, which 

421 could be attributed to the fact that it is producing too many clusters, fewer of which end up in the 

422 core genome. This is potentially a consequence of Roary using CD-HIT for the first step of 

423 selecting representative sequences, as both were sensitive to noise. 

424 Clustering of pan-genome sequences can be the first step of phylogenetic analyses. For instance, 

425 the SNPs within the core genome can be used to generate phylogenetic trees and make conclusions 

426 on population structure (2). In these analyses, it is essential that the clustering is unambiguous; 

427 incorrect clustering would potentially lead to misleading conclusions. We therefore computed the 

428 cluster confidence scores for each cluster obtained using BFClust, on each of the 4 S. pneumoniae 

429 datasets. The majority of the clusters had a score near 1, indicating very little ambiguity in the 

430 clustering output (Figure 7). Specifically, we observe high-confidence clustering in the core 

431 genome; the mean score for core genome clusters is > 0.999 (and the median score = 1) in all 4 

432 datasets. In the 3 larger datasets (Maela, MA and Nijmegen), we observe that the lower scoring 

433 clusters are mainly in the accessory genome, shared by less than a third of the strains included. In 

434 all datasets, there exists a single cluster with a much lower score than the average, present in the 

435 majority (and in some datasets all) of the strains included (marked in red in Figure 7). This cluster 

436 is comprised mostly of sequences of very short length (~30 amino acids), annotated as hypothetical 

437 genes. It is unclear whether these short sequences are artifacts of sequencing errors, annotation 

438 errors, incomplete genome assembly or a combination of these factors. In any case, exclusion of 

439 such low-scoring clusters from downstream pan-genome/phylogenetic analyses would potentially 

440 increase confidence in those results. By providing a cluster confidence score, BFClust allows for 

441 screening clusters, and including only high-confidence ones in downstream analyses.  

442
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443 Discussion

444 When clustering a set of sequences from a bacterial pan-genome, there are multiple options 

445 regarding the software/algorithm to choose from. We observed that direct-threshold methods, 

446 which are extremely fast (UCLUST and CD-HIT), have the advantage of scalability, but they often 

447 do poorly in terms of accuracy and sensitivity to noise (Figure 5). They also require the user to 

448 select a sequence similarity threshold, assuming all sequence clusters have similar sequence 

449 diversity, which is not always true. Different genetic elements are subject to different selective 

450 pressures, and therefore sequence conservation/diversification may be associated with multiple 

451 factors, e.g. essentiality (35), rendering the use of a single threshold problematic. Therefore, it is 

452 more advisable to first reduce the dataset into a smaller representative set (potentially using these 

453 faster methods) and then applying a more rigorous clustering method. 

454 For the selection of representative sequences, we propose the use of Boundary-Forest, which is 

455 supported by existing numerical experiments showing the improved accuracy and speed of 

456 Boundary-Forest compared to other algorithms (21). Its implementation is also very simple (see 

457 pseudocode in Supplementary Appendix). The inclusion of multiple trees in the forest, and 

458 downstream application of consensus clustering also reduces errors, and results in BFClust being 

459 highly tolerant to noise, especially when BFClust is used with network-based downstream methods 

460 such as MCL. Furthermore, the use of multiple Boundary-Trees makes it possible to compute 

461 confidence scores. Saving a copy of the shallow Boundary-Trees allows rapid cluster 

462 augmentation, without having to alter the existing clustering assignments, which is highly 

463 desirable for consistency. Moreover, augmentation can be done while updating the clustering 

464 confidence scores. This makes BFClust the only pan-genome clustering method that can generate 

465 such a cluster confidence score, both during de novo clustering and during cluster augmentation. 

466 The cluster augmentation strategy implemented in BFClust (and in CD-HIT) is distinct from 

467 online clustering methods. An online method updates the clustering, as new data points become 

468 available. This can potentially change the cluster memberships of the already-clustered dataset. 

469 BFClust on the other hand performs cluster augmentation by using a K-nearest neighbor search to 

470 find a cluster in the existing dataset that is a close match of the incoming sequence, without altering 

471 the existing clustering. This K-nearest neighbors search could potentially be replaced by a K-means 

472 or K-medioids clustering on the full set of already-clustered and incoming sequences together, in 
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473 order to make BFClust more similar to an online method. However, it is not clear whether the same 

474 K value (total number of clusters, which was used in the initial clustering) would apply to the full 

475 set with the incoming sequences included. BIRCH (36) and stream clustering (37) are two 

476 examples of online clustering algorithms, however it is not likely that they would apply well to 

477 biological sequences, as they are online versions of hierarchical and K-means clustering 

478 respectively. We have shown in this work that these non-network-based algorithms fail to find a 

479 clear elbow point on real pan-genome sequence sets when clustering (Supplementary Figure 5). 

480 This suggests that non-network-based methods perform well in a simple case, where clusters are 

481 generated synthetically by accumulating random mutations; whereas real sequences are subject to 

482 different selective pressures and may not diverge from each other as uniformly as in the synthetic 

483 case. We therefore advocate the use of network-based methods, specifically MCL, for clustering 

484 of biological sequences. 

485 The BFClust strategy has a number of advantageous features that can be explored further. Since 

486 each of the trees generated in BFClust has a small depth, the number of comparisons one needs to 

487 make for a new sequence set is relatively small (tree depth × 10 trees). Thus, this method offers a 

488 framework that makes the rapid integration of new clinically important isolates and their sequences 

489 possible. In the same vein, it is possible to quickly compare the clustering results of two different 

490 datasets (e.g. isolates of the same species of bacteria, collected from different geographical 

491 locations) by running one set through the Boundary-Forest of the other. Moreover, the networks 

492 that are generated as intermediate steps in clustering may harbor novel data that remains 

493 unexplored in this work. For instance, it may be possible to extract additional information from 

494 the network connectivity of sequences, and infer evolutionary trajectories of different genes under 

495 differing selective pressures (38). 

496 In conclusion, UCLUST and CD-HIT may not be best suited for pan-genome clustering, as they 

497 depend on a user-supplied similarity threshold. CD-HIT and Roary (which uses CD-HIT) are 

498 especially sensitive to noise in the data. Nevertheless, the speed of UCLUST and CD-HIT make 

499 these methods attractive alternatives to BLAST when querying large datasets. Overall, BFClust 

500 and PanX are pan-genome orthologue clustering methods that are in high agreement, and can 

501 tolerate noise in the sequence dataset, although PanX has a higher runtime than BFClust. PanX 

502 has the advantage of informative and interactive visualizations, whereas BFClust has the added 
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503 features of estimating confidence scores. Moreover, most pan-genome clustering methods (with 

504 the exception of CD-HIT) do not readily allow cluster augmentation, and to the best of our 

505 knowledge, no previous clustering method enables cluster augmentation while being able to output 

506 confidence scores. Confidence scores are crucial in pan-genome clustering, as they allow the 

507 researcher to avoid using ambiguous clusters (i.e. clusters with a low score) in downstream 

508 analyses and interpretation. With the confidence score of BFClust, such clusters can automatically 

509 be detected and excluded from further analysis. 

510
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511 Materials and Methods

512 Minigenome sequence sets

513 Nucleotide sequences spanning the first 10 annotated CDS sequences from S. pneumoniae strain 

514 TIGR4 were selected (nucleotides 1-27310, spanning locus tags: SP0001-SP0010) and used as an 

515 initial synthetic “minigenome”. Each of the minigenomes dataset contains 50 copies of these 10 

516 genes, where random independent nucleotide mutations are allowed at a rate r. The mutation rate 

517 r is equal to the probability that one nucleotide is replaced with a different random nucleotide. We 

518 generated 100 such nucleotide-based “minigenomes” datasets, namely, 10 datasets for each of 10 

519 different values of r, ranging from r = 0 to r = 0.4. As BFClust uses amino acid sequences by 

520 default, the nucleotide sequences for each gene were translated into amino acid sequences. To use 

521 Roary and panX, the nucleotide sequences and CDS annotations were converted into GFF3 and 

522 genbank files respectively. 

523 Streptococcus pneumoniae datasets

524 The full list of isolates used for clustering can be found in (Supplementary Table 1).  The 

525 “RefSeq” dataset (N = 23) contains 21 annotated chromosome sequences from the RefSeq database 

526 (O’Leary et al, 2016) and 2 strains our lab uses in its studies: BHN97 (39) and 22F-CT (CDC 

527 Pneumococcal surveillance isolate). The “MA” dataset (N = 616) is a set of isolates from (2), 

528 collected from children between 2000-2007 from Massachusetts. The “Nijmegen” dataset (N = 

529 350) includes isolates from invasive pneumococcal disease (IPD) patients in Nijmegen, 

530 Netherlands, collected between 2001-2011 (34). The “Maela” dataset (N = 348) include a random 

531 subset of carriage isolates collected from the Maela refugee camp in Thailand between 2007-2010 

532 (33).

533 For strains BHN97 and 22F-CT , and the Nijmegen and MA datasets, unannotated contigs were 

534 assembled into closed, circular chromosomes, and annotated using the PATRIC-RAST annotation 

535 server (40). The genomes were then converted to genbank format, with dnaA as the first coding 

536 sequence using custom in-house scripts. The translated sequences of all CDS annotations were 

537 then extracted into a fasta file for each dataset using Biopython (41). When necessary, the genbank 

538 files were converted to GFF3 for use with Roary. 

539 Boundary-Forest
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540 Within BFClust, a large sequence dataset is reduced to a set of representative sequences using 

541 Boundary-Forests. For each input dataset, 10 randomized read orders are generated. The sequences 

542 are read in these orders and 10 different Boundary-Trees are constructed as described in (21). 

543 Briefly, the first sequence that is read is placed as the root node, and the second as its child. For 

544 each subsequent sequence read, it is compared to the root node, and all its children using Smith-

545 Waterman distance (20). If the sequence being processed is within a pre-determined distance 

546 similarity threshold t of a node already on the tree, then this node on the tree becomes its 

547 representative. This means that the sequence being processed is marked with the identity of the 

548 representative, and is not included in the tree. Otherwise, the sequence is compared to the current 

549 node, and all its children, and added to the tree as a child of the node that it is closest to. Most of 

550 the input sequences are not included in the tree and are simply associated with a representative on 

551 the tree. Boundary-Trees contain ~2% of the original input sequences, making the clustering of 

552 large numbers of (e.g. ~1 million) sequences possible. By default, the sequence distance similarity 

553 threshold is 0.1 and each node is allowed up to 10 children. We found that the clustering results 

554 on the minigenomes dataset were not altered when these parameters were changed.  

555 Clustering

556 An all-against-all pairwise comparison is done on the representative sequences obtained from each 

557 Boundary-Tree to construct a distance matrix S. For each of the following methods, excluding 

558 MCL, and each of the 10 replicate trees, a custom range number of clusters K is considered. In the 

559 clustering of S. pneumoniae pangenomes, a range of K=3000, 3200, 3400, …, 6000 clusters is 

560 used. 

561 Hierarchical Clustering: an agglomerative hierarchical cluster tree is generated using Ward’s 

562 linkage (42) on S. Then, the representative sequences are split into K clusters. 

563 K-means Clustering: S is clustered using Lloyd’s algorithm (43), with K-means++ for cluster 

564 center initialization (44). This is an approach to partition sequences into K clusters, by iteratively 

565 selecting K cluster centroids, assigning points to their closest centroids, and updating the centroids 

566 based on the new cluster assignments. 

567 K-means Vectorized: Since K-means is commonly applied to vector data in Euclidean space, we 

568 extract from S, vectors in Euclidean space. For this, we first generate the symmetric matrix M, 
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569 where . Then, the eigenvalue decomposition  is computed, where U is 𝑀𝑖𝑗 =
𝑆 2

1𝑗 + 𝑆 2
𝑖1 ‒ 𝑆2

𝑖𝑗

2 𝑀 = 𝑈 𝑉 𝑈𝑇

570 orthogonal and V is diagonal. The product gives Euclidean coordinates for all data points. For 𝑈 𝑉 

571 the vectorized K-means algorithm, we use the same kmeans function, but with as input instead 𝑈 𝑉

572 of S. 

573 Spectral Clustering: The distance matrix S is transformed into an unweighted adjacency matrix W 

574 by applying a Gaussian kernel, and thresholding. Then, the graph Laplacian (L) and L’s eigenvalue 

575 decomposition is computed. The top eigenvectors are then clustered using the standard kmeans 

576 function. We consider three variants of spectral clustering. One just as described before, which we 

577 call SpectralNN, one where L is normalized as in in (22), which we call SpectralSM (for Shi-

578 Malik), and one where L is normalized as in (23), which we call SpectralNJW (for Ng-Jordan-

579 Weiss).

580 Markov Clustering (MCL): Similar to Spectral clustering, MCL also uses the adjacency matrix W. 

581 W is column-normalized to yield a stochastic matrix. Then a series of expansion (taking matrix 

582 power)-inflation (taking element-wise power)-renormalization steps are applied iteratively on this 

583 matrix until the resulting matrix does not change. The nonzero elements of the diagonal correspond 

584 to attractor nodes. Each attractor, together with all its neighbors in W form a cluster (45). 

585  

586 Error and selection of best number of clusters

587 In cases where the ground truth is not known, we use the sum of squared errors (SSE) as a measure 

588 of clustering quality. SSE is defined as follows: 

589 𝑆𝑆𝐸(𝐾) =  
𝐾

∑
𝑖 = 1

 
|𝑐𝑖|

∑
𝑗 = 1

|𝑥𝑗 ‒ 𝑚𝑖|2

590 Where K is the total number of clusters, is the i'th cluster, and   is the number of elements in 𝑐𝑖  |𝑐𝑖| 

591 .  is the medioid (sequence that has the smallest total distance to all other points within the 𝑐𝑖 𝑚𝑖  

592 cluster), and  is the j’th element in  . 𝑥𝑗 𝑐𝑖

593 We compute SSE for a user-defined range of K values. The most appropriate number of clusters 

594 is determined to be the elbow point, or the point of maximal curvature, of the SSE vs K curve. We 
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595 detect this point by finding the value of K where the second derivative of SSE(K) is maximized 

596 (Supplementary Figure 2). 

597 Consensus clustering

598 In order to aggregate the replicate Boundary-Forest clustering results, consensus clustering is used 

599 (46). First the cluster assignments are extended such that each point that was excluded from the 

600 Boundary-Tree gets the cluster assignment of its representative on the tree. This is done for the 10 

601 Boundary-Trees, generating a feature vector of 10 clustering assignments for each sequence, for 

602 each clustering method. We then use K-medioids clustering, a scalable method, to cluster these 

603 feature vectors. For the number of clusters, we use the mode of the best number of clusters from 

604 each tree. The feature vectors associated with each sequence is stored for later use, in cluster 

605 augmentation.  

606 Cluster augmentation

607 Given an existing set of clustered sequences, and a new set of sequences, cluster augmentation 

608 assigns the new sequences to the closest existing cluster. The new sequences can be processed 

609 directly, or the used can choose to do a round of representative selection to reduce the size of the 

610 new dataset. A set of representatives is selected from the input sequences by constructing a 

611 Boundary-Tree. The representative sequences are then run through the existing Boundary-Forest 

612 that was generated when the first set of sequences were clustered. Each representative sequence in 

613 the new set traverses each tree in the Boundary-Forest, starting from the root node, by moving to 

614 the closest child node. In each tree, the representative is assigned the same cluster as the node it 

615 has the smallest Smith-Waterman distance to. This results in as many cluster assignments as the 

616 number of trees in the forest. These cluster assignments are taken as a vector, having the same 

617 length as the existing feature vector of clustering assignments prior to consensus clustering. The 

618 closest existing cluster for each new sequence is determined by 1) finding the vector v in the list 

619 of stored feature vectors that is closest to the new cluster assignment vector, and 2) assigning to 

620 the new sequence the same cluster as that of vector v.

621 Matching of two clustering partitions

622 In order to compare two clustering results, or to compare the misclustering error against a known 

623 ground truth, we apply the Hungarian matching algorithm (47). Briefly, for clustering A and 
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624 clustering B, if we have n and m clusters respectively, we generate an empty cost matrix M: a 

625  matrix of zeros, with each row representing a cluster in A, and each column (𝑛 + 𝑚) × (𝑛 + 𝑚)

626 representing a cluster in B. The (i, j)th entry in this matrix is the dissimilarity cost between cluster 

627 i from clustering A and cluster j from clustering B.  The entries on the upper left section of 𝑛 × 𝑚 

628 M, i.e. M(1 : n, 1 : m), are populated with the total number of mismatches between clusters i and j 

629 from clustering A and B respectively. That is, the sum , where |S| denotes the size |𝐴𝑖\𝐵𝑗| + |𝐵𝑗\𝐴𝑖|

630 of a set S. The block M(n+1 : n+m, 1 : m) represents the costs of clusters in B having no 

631 representatives in A. Each column in this block is populated with   for cluster j. Similarly, M(1 |𝐵𝑗|

632 : n, 1+m : n+m) is populated with . Finally, M(n+1 : n+m, 1+m : n+m) only has 0 cost. We use |𝐴𝑖|

633 this sum of costs to be the error between two clusterings (or a clustering and the ground truth, 

634 when the ground truth is known). 

635 Overlap of two clustering partitions

636 We define the overlap between clustering partitions C1 and C2 on the same dataset as the fraction 

637 of clusters in C1 that are conserved in C2. In other words, if a cluster in C1 has all its members in 

638 the same cluster in C2 (with possibly other sequences included in this cluster in C2), it counts 

639 towards the overlap. Note that this overlap measure is not symmetrical (i.e. Overlap(C1, C2) is not 

640 necessarily the same as Overlap(C2, C1)). 

641 Confidence scores

642 We use definitions of item and cluster confidence scores similar to those defined by Monti et al. 

643 (26). For a dataset of size N, that has been clustered on T Boundary-Trees, we define a consensus 

644 matrix M which is a  matrix, where M(i,j) is the proportion of times that items i and j have 𝑁 × 𝑁

645 appeared in the same cluster. The item consensus for item i belonging to cluster k is defined as 𝑐𝑖

646  i.e. the average consensus between i and other items belonging to the same (𝑘) =  
1

|𝑘|∑𝑗 ∈ 𝑘𝑀(𝑖,𝑗)

647 cluster. Similarly, the cluster consensus for cluster k is defined as  i.e. the 𝑐𝑘 =  
1

|𝑘|2∑𝑖,𝑗 ∈ 𝑘𝑀(𝑖,𝑗)

648 average consensus between all pairs of items in custer k.

649
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655 Figure 1: Algorithm overview. From the input sequences, multiple sets of representatives are 

656 selected using Boundary-Forest. Each set of representatives is stored as a Boundary-Tree. This 

657 reduces a large input dataset to a small set of representative sequences in the forest. Then, 

658 representatives on each tree are clustered using MCL. For comparison purposes, the following 

659 alternative algorithms were tested: Hierarchical, 2 variants of K-means, and 3 variants of Spectral 

660 clustering. Once representative sequences on each tree are clustered, the cluster assignments are 

661 extended to the full input sequence set, producing a clustering ensemble i.e. one clustering output 

662 associated with each set of representatives. A consensus clustering step is then used to take the 

663 clustering ensemble across the trees and produce a single clustering solution, as well as confidence 

664 scores. Cluster consensus scores are calculated for each cluster, and item consensus scores are 

665 calculated for each sequence within each cluster.
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666

667  

668

669 Figure 2: Boundary-Forest reduces redundancy in the sequence set. Boundary-Trees were 

670 generated from a 500-sequence dataset, in order to select representatives. The trees are small, 

671 shallow and quickly constructed. MaxChild: maximum number of children allowed for one node. 

672 Threshold: sequence similarity threshold, below which a sequence is assigned the tree node as a 

673 representative. A. The size (number of nodes) of the Boundary-Tree B. Number of calls made to 

674 the sequence comparison function C. The depth of the resulting tree, dependent on MaxChild and 

675 Threshold. Overall, the tree depth/size/number of calls made to construct the tree are robust to user 

676 defined parameters MaxChild and threshold. Points are the mean ± standard deviation for 10 

677 replicates. 

678  

679
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680
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681 Figure 3: Evaluation of downstream methods of clustering on the reduced data. A. Sum of squared 

682 errors (SSE) is the metric used to detect the number of clusters for methods other than MCL. Each 

683 trace is a clustering output applied to representatives on a different Boundary-Tree, scanning 

684 increasing number of clusters. Black dots: automatically detected elbow points on each trace (note 

685 that these elbow points are often overlapping). B. Self-consistency of each downstream method. 

686 The clustering output for the elbow points were compared across 10 different trees for the same 

687 method. C. Error against real cluster assignments of each individual tree (black dots) and the 

688 consensus (red squares) among the forest, for each method. Relative error: error divided by 

689 maximum possible error. D. Cluster confidence score for each recovered cluster (n = 10 clusters). 

690 E. Item confidence score for each clustered sequence (with n=500 sequences) 

691
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692

693  

694 Figure 4: BFClust allows cluster augmentation. A. Cluster augmentation method 

695 overview/schematic. The incoming sequences are either processed as-is, or they can be reduced to 

696 a small set of representatives using a Boundary-Tree. The new sequences (or representatives) are 

697 compared to the existing Boundary-Forest associated with the already clustered dataset. A close 

698 match in each tree, for each input sequence is found (red nodes). The cluster assignments of these 

699 closest matches are retrieved, and a consensus cluster assignment is computed using a nearest 

700 neighbor search. If representative selection is used, the consensus clusters assigned to the new 

701 representatives are extended to the full input dataset. The cluster assignments of the new 

702 sequences, as well as updated confidence scores for both the existing and new sequences are 

703 produced as the output.  B. Cluster augmentation is faster than clustering de novo. Runtime of 

704 clustering sequences de novo (blue), or cluster augmentation onto an already clustered set (orange, 

705 green). For augmentation, N-500 sequences were clustered de novo, and the runtime for the 

706 augmentation of the remaining 500 sequences is reported. The runtime with and without an 

707 optional representative selection step is shown as orange and green lines respectively. The 

708 additional representative selection step improves runtime further. 

709
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710

711    

712 Figure 5: Comparison of BFClust to existing methods. A. Runtime in seconds of each method, as 

713 a function of dataset size (number of input sequences). B. Sensitivity to noise of each method. 

714 Relative error against known clusters increases for all methods with increasing amount of 

715 mutations in the data. BFClust and PanX have 0 error when mutation rate is ≤ 0.1. Mutation rate: 

716 the probability that each nucleotide is replaced by a random one. Mean ± standard error of 10 

717 replicates are shown by the error bars. 

718
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719

720 Figure 6: Clustering of real pan-genome sequences reveals differences across methods as well as 

721 datasets. A. Pan-genome size (total number of genes in the pan-genome) as a function of number 

722 of strains considered. B. Core genome size (total number of genes common across strains) as a 

723 function of strains considered. C. Cluster overlap (see methods) between different methods for 

724 each dataset. For A. and B. mean ± standard error of 10 replicates are shown by the line and error 

725 bands.

726
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727

728 Figure 7: Cluster confidence scores for each cluster found using BFClust for 4 S. pneumoniae 

729 datasets, plotted against the number of strains that share the cluster. In general, the clusters with 

730 lower scores appear in the accessory genomes, and are not shared by many strains. There is one 

731 cluster within the core genome of each dataset with a low score (red clusters). 

732

733

734
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735 Supporting Information Legends

736 S1 Table. List of strains used in all 4 S. pneumoniae datasets.

737 S1 Appendix. Contains glossary of terms, pseudocode for Boundary-Tree construction, 

738 discussion of threshold selection, and Supplementary Figures 1-5. 
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