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Abstract

Deep sleep and anesthesia have contrasting effects on memory, yet at the microscopic
scale they appear to produce similar neural network dynamics consisting of slow waves
associated with alternating transients of high activity (UP states) and silence (DOWN
states). Here, UP and DOWN state dynamics are analyzed in cortical recordings from
human, monkey, and rat and found to be robustly different between deep sleep and
anesthesia. We found that the temporal statistics of UP and DOWN states is robustly
different in natural slow-wave sleep compared to the slow-waves of anesthesia.
Computational models predict that an interplay between noise and spike-frequency
adaptation can yield a transition from sleep-like to anesthesia-like slow-wave dynamics.
These predictions were confirmed by pharmacological manipulations in vitro, inducing a
switch between the two types of slow-waves. The results show that the strong
adaptation found in anesthesia, but not in sleep, can produce a different type of slow
oscillations, less sensitive to external inputs, that may prevent memory formation.

Introduction 1

In both natural sleep and anesthesia, cortical dynamics are characterized by slow, 2

irregular oscillations (<1 Hz) [1], ubiquitous in unconscious brain states. However, 3

certain cognitive processes, such as those involved in memory formation [2–4], are 4

specific to deep sleep (also known as Slow-Wave Sleep, SWS), but not to anesthesia. 5

Indeed, different networks are involved in slow oscillatory dynamics during sleep [5] as 6

compared to under anesthetics [6, 7]. While such contrasts between sleep and anesthesia 7

are relatively well-studied at the whole-brain scale, any underlying differences in the 8

microscopic dynamics of cortical neural networks and their potential mechanisms 9

remain to be identified. 10

At the neural population level, in both sleep and anesthesia, slow oscillations emerge 11

from the alternation of transients of high neural firing (UP states) and transients of 12

near silence (DOWN states) [1]. While certain regimes of anesthesia present very 13

regular UP and DOWN states [8–10], in obvious contrast with the irregular patterns 14

observed during sleep slow waves [7], irregular regimes also exist under 15

anesthesia [10–12], and appear to present more ’sleep-like’ dynamics. Additionally, 16
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UP-DOWN state activity has also been obtained in slice preparations in vitro [13]. Due 17

to their general similarity in collective dynamics, slices and anesthesia, where direct 18

pharmacological manipulation is possible, have often been used as models of natural 19

sleep, paving the way to investigating mechanisms underlying UP-DOWN state activity. 20

Following the increasing electrophysiological detail available on single neuron 21

dynamics, computational models of spiking neurons have been employed to explain 22

UP-DOWN state dynamics [14–16]. Recently, comparison of models with neural 23

recordings in irregular regimes of anesthesia has uncovered a mechanistic interpretation 24

for the emergence of UP and DOWN states, where background noise and spike-frequency 25

adaptation can account for the transitions between UP states and DOWN states [11]. 26

While background noise is able to trigger a transition from a DOWN to UP state, 27

spike-frequency adaptation on excitatory cells produces a self-inhibition that, 28

destabilizing the UP state, causes a reset to the DOWN state [15]. Since adaptation 29

builds up as the neurons spike, i.e. during UP states, and decays exponentially in time 30

when neurons are silent, i.e. in DOWN states, both UP states and DOWN states are 31

seldom long. This explains empirical findings that UP and DOWN state durations in 32

irregular regimes of anesthesia follow long-tailed, exponential distributions [10,11]. 33

Moreover, after long DOWN states, adaptation has completely decayed, such that the 34

noise-triggered onset of the next UP state, no longer self-inhibited by adaptation, 35

presents a high firing rate that can sustain a long UP state. This tendency for long UP 36

states to follow long DOWN states leads to a positive correlation between consecutive 37

DOWN and UP state durations that has also been observed empirically [11]. 38

An interaction between noise and adaptation can successfully explain transitions 39

between UP and DOWN states in anesthesia [11], and therefore may also account for 40

the existence of UP-DOWN state dynamics in sleep. However, it remains possible that 41

sleep and anesthesia display different slow-wave dynamics characteristic of distinctive 42

mechanisms. In fact, as anesthesia is characterized by lower concentrations of 43

acetylcholine (ACh) as compared to in sleep [17, 18], the net effect is an enhancement of 44

spike-frequency adaptation driven by K+ channels [19]. It is plausible that subtle 45

mechanistic particularities at the microscopic scale could be expressed as differences in 46

the collective network dynamics that underlie distinct computational properties of sleep 47

and anesthesia. 48

In the present paper, we investigate the statistics of neural activity during 49

slow-waves, comparing anesthetized states with natural sleep. Our aim is to find 50

whether fundamental differences exist in the UP-DOWN state dynamics between the 51

two brain states. We also investigate computational models to search for plausible 52

mechanisms underlying these differences. These mechanisms will be subsequently tested 53

in in vitro preparations displaying UP-DOWN state dynamics, and where 54

pharmacological manipulation is possible. We will show in which ways slow-wave 55

dynamics differ between anesthesia and slow-wave sleep, possible mechanisms, and 56

possible consequences of these differences. 57

Results 58

UP and DOWN state dynamics in empirical data 59

To compare with previous anesthesia results [10,11], we consider the activity of a 60

population of 102 neurons recorded from the temporal cortex of a human patient (Fig. 61

1) during sleep. The dynamics is characterized by alternation of low (DOWN) and high 62

(UP) activity periods (Fig. 1B), as evident from both local field potential (LFP) and 63

spiking activity, where neurons, especially inhibitory, tend to fire at higher rates. In all 64

our analyses UP and DOWN states are defined based on neuron spiking activity (see 65
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methods). The time duration of both DOWN and UP states are variable, following an 66

exponential, long-tailed distribution (Fig. 1B,C), similar to what has been reported for 67

anesthesia recordings [11]. 68

While the probability distributions of UP and DOWN state durations found in sleep 69

and anesthesia are similar, surprisingly, the temporal distribution of UP and DOWN 70

state durations is different in sleep compared to anesthesia. In anesthesia, previous UP 71

and next DOWN state durations are positively correlated, whereas, we find in sleep, UP 72

and DOWN state durations are negatively correlated. In other words, in anesthesia 73

data, long DOWN states are followed by long UP states [11], but the opposite is found 74

in sleep data, where long DOWN states are followed by short UP states (Fig. 1D). 75

Indeed, during sleep, while long UP states can occur after short DOWN states, UP 76

states following long DOWN states are consistently short. 77

Because a difference in temporal correlation was found for adjacent UP and DOWN 78

epochs between sleep and anesthesia, we next explored whether the network retains a 79

memory of previous epochs further in time. To this end, correlations between the n-th 80

DOWN state and the (n+k)-th UP state duration were explored. Here, k = 0 denotes 81

the UP state following the nth DOWN state, as studied so far, while k = −1 denotes 82

the UP state preceding the nth DOWN state in time. As shown in Fig.1F, the length of 83

time correlations remain between DOWN and UP states lag k remains significantly 84

negative up to a separation on the order of five UP/DOWN cycles in sleep data. In 85

contrast, the correlations at lag k decay to zero immediately after one UP/DOWN state 86

cycle in anesthesia [11]. Thus, the network retains a memory of previous cycles 87

significantly longer in SWS than anesthesia. 88

In order to investigate whether the correlation between UP-DOWN state duration 89

and its memory through time are specific to brain states across species and regions of 90

cortex, data from primary visual cortex of animals under different anesthetics (monkey 91

under sufentanil, rat under ketamine and medetomidine), and several animals sleeping 92

(human temporal cortex, monkey premotor cortex, and rat prefrontal cortex) was 93

analyzed. 94

The results of these analyses are reported in Fig.2 where in panels A-E we show the 95

scatter plot of DOWN against following UP state duration. In all the sleep recordings a 96

banana-shaped distribution is observed, indicating a robust negative UP-DOWN state 97

correlation (for sleeping rats, 5/5 of animals analyzed showed a negative correlation, 98

both before and after a navigation task). 99

Conversely, in anesthetized recordings the results are very similar to previously 100

published results [11], an either positive or non-significant correlation is recorded (for 101

anesthetized monkeys, 5/6 recordings presented a significant correlation and 1/6 a 102

non-significant correlation; for anesthetized rats, 4/7 animals showed a significant 103

positive correlation, 2/7 showed a positive non-significant correlation and the remaining 104

1/7 showed a slightly negative significant correlation.) 105

Moreover, comparing within the same species (Fig.2F), the lag-correlation is verified 106

to be different between sleep and anesthesia (we compare here the same species for the 107

sake of coherence), with a much longer memory during sleep. 108

These observations suggest a clear difference in the correlation structure of the 109

network dynamics during sleep and anesthesia, revealing fundamental differences in the 110

dynamical mechanisms determining UP-DOWN state activity. 111

Spiking network model of UP and DOWN state dynamics 112

In order to investigate the mechanisms behind the UP and DOWN state duration 113

correlations, we use a network of spiking neurons with conductance-based (COBA) 114

synapses. The network is composed of 80% of RS (regular spiking) excitatory and 20% 115

of fast spiking (FS) inhibitory neurons. Every neuron is modeled as an Adaptive 116
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Fig 1. Long DOWN states are followed by short UP states in human deep
sleep. (A) LFP (top panel) and spiking data (bottom) recorded by multi-electrode
array implanted into a human patient’s temporal cortex. Slow oscillations (¡1 Hz) visible
in the LFP correspond to an alternation between transients of high and low firing rate,
i.e. UP and DOWN state dynamics, evident in the spiking activity (grayed: UP state
detection based on population spike count, see methods). (B-C) Both UP and DOWN
state durations follow exponential long-tailed, distributions. (D) Averaged population
firing rate, aligned to UP state onset, after short (top) or long (bottom) DOWN state
durations. UP states following very long DOWN states, > 0.8s, are always short, while
UP states following the shortest DOWN states, < 0.3s, can be up to around three times
longer. (E) UP state duration against previous DOWN state duration, showing a clear
negative correlation (Pearson correlation and p-value reported). (F) Bar plot of Pearson
correlation C(Dn+k, Un) as a function of lag k, showing the obtained negative
correlation between DOWN state and next UP state durations (lag k = 0) is
consistently conserved for several following DOWN states (k > 0) as well as for several
preceding ones (k < 0). Two standard deviations of the Pearson correlations when
shuffling state durations (dashed lines) provide an interval of confidence outside of
which empirical correlations may be considered non-trivial (see Methods).
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Fig 2. Across species and brain regions, correlations between UP and
DOWN state durations are consistently negative and long-memory in deep
sleep, but not in anesthesia. UP state durations are plotted against previous
DOWN state durations in deep sleep in the monkey premotor cortex (A), and rat
pre-frontal cortex (C), as well as in anesthesia in the monkey (B) and rat V1 (D). A
very significant negative correlation is consistently found in the sleep recordings, while
the correlation is positive or non-significant in anesthesia recordings. As in Fig. 2, the
bar plot of Pearson correlation C(Dn+k, Un) as a function of lag k, for the rat
recordings during sleep (E) and anesthesia (F) are shown. The dashed lines, as before,
delimits the confidence interval obtained by shuffling durations (see Methods). While
only consecutive UP and DOWN states are significantly correlated in anesthesia, the
negative correlation even for larger lags denotes a longer memory process during sleep,
consistently with the human results (Fig. 2C).
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Exponential integrate-and-fire cell (AdExp) [20]. In absence of adaptation the system is 117

characterized by two stable states: a near-silent state (DOWN state) and a relatively 118

high-activity state (UP state). 119

To allow for transitions between the two states, every neuron receives an 120

independently distributed (i.i.d.) zero-mean noise of amplitude σ that permits a jump 121

from the DOWN to the UP state. The presence of spike-frequency adaptation of 122

strength b (see Methods) for RS neurons [21] allows the system to transition back to the 123

DOWN state. Indeed, RS neuron adaptation builds up as the neuron spikes, i.e. during 124

UP states, and consequently reduces the firing rate of the excitatory population, which 125

may cause the transition to a DOWN state. Adaptation decays exponentially 126

throughout time when the neuron is silent, for instance during DOWN states (see 127

Methods for equations). 128

While such mechanisms for the emergence of UP and DOWN state dynamics has 129

been so far established [11,22], the model introduced here takes into account 130

voltage-dependent synapses and a different gain between excitatory and inhibitory cells 131

following experimental insights. In Fig.3, an example of a simulation obtained with this 132

model is reported where we observe the alternation between UP and DOWN states 133

whose duration is distributed according to an exponential distribution, in accordance 134

with the data (see Fig 1C). We then verified that excitatory and inhibitory 135

conductances have a biologically realistic value [23], as compared to well-known models 136

of spiking networks where neurons interaction is mediated by voltage-dependent 137

synapses [24]. For a fixed value of noise amplitude σ we observe a positive correlation 138

between UP-DOWN dynamics, where the adaptation strength b changes the UP-DOWN 139

duration, with no obvious effect on their correlation. The correlation between UP and 140

DOWN state duration remains positive or non-significant over the all range of b values 141

here investigated. This is consistent with adaptation having decayed after long DOWN 142

states: following noise-triggered onset, the following UP state displays a high rate of 143

activity that may sustain a long UP state. Consequently, long DOWN states tend to be 144

followed by long UP states, hence the positive correlation. Exploring the parameter 145

space by varying other parameters such as neurons’ excitability or synapses’ quantal 146

conductances, positive or non-significant correlations were also always obtained. 147

In accordance with previously reported results [11], the model discussed here is 148

suitable for UP-DOWN dynamics during anesthesia but not for sleep, where we have 149

shown a clear and robust inverse relationship. This shows additional elements are 150

needed to accurately model the empirical UP-DOWN state dynamics during sleep. 151

Interplay between external fluctuation and adaptation strength 152

Additionally to adaptation strength, another natural candidate parameter for affecting 153

UP-DOWN state durations is the amount of noise σ. Indeed, the higher the fluctuations 154

in the system, the shorter the DOWN states and the longer the UP states (Fig. 4A), 155

implying that UP state and DOWN state durations vary in an anti-correlated fashion 156

with σ. In other terms, if σ were to vary throughout time, a negative correlation could 157

be observed between consecutive DOWN and UP state durations. 158

It is important to note, at this point, that our analyses are performed on relatively 159

long recordings (from 30 minutes to several hours), and therefore one could assume that 160

the properties of the system may change throughout the time of the recordings. The 161

time scale T over which such changes occur seems relatively slow as compared to that of 162

UP-DOWN dynamics ( 1 s), i.e. in the range of tens of seconds. 163

To account for correlation inversion in our model, we introduce a parameter ∆ 164

describing the variability of noise amplitude σ throughout time. Here, the noise σ takes 165

successive values within a range ∆ of amplitudes σ (see Methods), where each value is 166

held constant over a time interval of duration T , as demonstrated in the inset of Fig5B. 167
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adaptation on RS cells (blue, dashed line) exhibits UP-DOWN state dynamics (grayed:
UP state detection). (B) UP and DOWN state durations are exponentially distributed,
consistently with empirical data in both sleep and anesthesia. (C) UP state against
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confidence obtained by shuffling, see Methods). This is therefore a good model for
anesthesia, but not deep sleep.
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It should be noted that the resulting UP-DOWN correlations do not depend on the 168

specific choice of T , as far as it is long enough to contain a sufficient number of 169

UP-DOWN transitions in order to obtain well-defined UP DOWN statistics (in the 170

plots shown in Fig 4 T = 100s). 171

By introducing variation of noise amplitude in time, a banana shape is observed in 172

the scatter plot of UP and DOWN state duration, that disappears as the adaptation 173

strength b is increased (Fig. 4B). Accordingly, a negative correlation between UP and 174

DOWN state durations emerges increasing the range ∆ of variation of the noise 175

amplitude σ. Moreover, for sufficiently high ∆, an increase in the adaptation strength b 176

is able to induce a transition from negative (sleep-like) to positive (anesthesia-like) 177

correlation. In other words, adaptation is able to filter out noise variability, thus 178

determining a positive correlation. 179

Apparent in the scatter plots of panel Fig.5B, when adaptation is low, various values 180

of noise amplitude σ (indicated by colors) cluster together in the scatter plot, altogether 181

yielding a banana shape. Conversely, for high adaptation strength, data representing 182

different values of noise amplitude overlap in the scatter plot, resulting in a 183

non-significant or positive correlation. This can be understood as strong adaptation 184

limiting the duration of UP states (green line in Fig. 4, right), even in the presence of 185

strong noise, and more generally controlling the transitions between UP and DOWN 186

states. In sum, the model highlights the dominant mechanisms at work in each brain 187

state, with the system being strongly adaptation driven in anesthesia, and noise 188

fluctuation driven in sleep. 189

To further investigate network sensitivity to external inputs in sleep-like and 190

anesthesia-like conditions, we study to what extent a stimulus affects collective 191

dynamics. As shown in Fig. 5, the stimulus is simulated by delivering a Poissonian 192

spike train to all neurons, and the spike count after the stimulation is compared in the 193

presence and in the absence of the stimulus (see Methods). Immediately after the 194

stimulation, anesthesia-like network is more responsive: as higher adaptation makes the 195

network more silent, more spikes are evoked by the stimulus, relative to spontaneous 196

firing rates. However, in the sleep-like network the difference between stimulated and 197

unstimulated dynamics diverges significantly faster, as lower adaptation makes the 198

dynamics more sensitive to a stimulus. After tens of seconds, we therefore find that the 199

difference between stimulated and unstimulated networks is larger for low adaptation, 200

suggesting a longer memory of the stimulus in the sleep-like case. This confirms that 201

low adaptation strength renders sleep-like networks more sensitive to external noise and 202

stimulations, thus allowing more encoding and memory of external inputs than in 203

anesthesia-like networks. 204

Model prediction on non-stationarity in UP and DOWN 205

durations 206

A crucial ingredient of our model is the variability ∆ in noise amplitude, especially in 207

the sleep-like regime. Indeed, for lower adaptation strength, such as in SWS, noise 208

fluctuations may play a larger role in shaping UP-DOWN dynamics. Accordingly, we 209

expect to observe a higher variability in UP and DOWN state durations (as a direct 210

outcome of noise variability, see Fig. 2) under sleep with respect to anesthesia. In Fig. 211

6A, the mean empirical values of UP and DOWN duration are shown over relatively 212

long time windows of 100 UP-DOWN cycles, corresponding to an order of 100 s. As 213

predicted by the model, we observe a much higher variability (of the order of 200%, see 214

panel B) under sleep with respect to under anesthesia. 215

To further characterize the time scale of noise fluctuations, the time window size was 216

varied, and the correlations across windows were studied. 217
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Fig 6. Non-stationarity in UP-DOWN state dynamics is more evident in
sleep than anesthesia, at a time scale of a few seconds. (A) Mean UP and
DOWN state durations in 100 UP-DOWN-cycle windows in time, normalized by the
mean duration over the whole recording, highlight larger fluctuations across windows in
sleep (human data, left) than anesthesia (rat data, right). The mean in each window is
represented by a full line, while the standard error in the mean is represented by the
shaded area. (B) Standard deviation of normalized UP and DOWN state durations
across the time windows is near double in SWS compared to anesthesia. (C) In deep
sleep (left) and anesthesia (right), significant UP and previous DOWN state duration
correlation in each window plotted against window size. Note that the majority of
correlations are positive for short windows, while they become negative for long enough
windows only in sleep, confirming that variability throughout time is responsible for the
observed negative correlations in SWS.
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By collecting UP and DOWN durations in each window during sleep, we observe 218

that, just as in our model, UP-DOWN state durations belonging to different windows 219

have different correlation values. For short time windows (up to the order of 50 cycles), 220

the Pearson coefficient is positive in the majority of windows, but becomes negative 221

when computed over longer windows (see Fig. 6C). This suggests that fluctuations take 222

place at a time scale T that can be as fast as the order of 101 seconds. 223

It can be noted this confirms the previous assumption that the time scale T of 224

fluctuations is longer than the UP-DOWN cycle duration (of the order of 1 second). 225

Conversely, T is much shorter than the duration of all our recordings (12 minutes to 3 226

hours) for either sleep or anesthesia, such that the absence of a negative correlation 227

during anesthesia cannot be explained by too short recordings (unless T in anesthesia is 228

not the same as in sleep, but much longer than the duration of the recordings studied 229

here). 230

Additionally, the presence of background fluctuations at time scale T during sleep 231

and not anesthesia is consistent with the apparent long memory of the UP-DOWN state 232

duration correlation in SWS. Indeed, one may consider a period of time T over which 233

background noise may be approximated as constant. During that period, if noise 234

amplitude is high, UP states are long, and DOWN states short, and conversely if noise 235

amplitude is low. Then whatever the lag, UP state durations are negatively correlated 236

to the durations of DOWN states before or after them, provided that they occur within 237

the same period of duration T . It is verified that the order of magnitude of T matches 238

that of the time scale of the memory in sleep (a few UP-DOWN cycles, Fig. 1C and 2E). 239

Effect of in vitro modulation of adaptation strength on 240

UP/DOWN correlation 241

Another strong prediction of our model is the ability of adaptation strength to modulate 242

the correlations in UP and DOWN state durations. Spike-frequency adaptation models 243

an effective action of activity-dependent potassium conductances, which in turn can be 244

affected by neuromodulators [19]. 245

It has been observed that neuromodulation is depressed during anesthesia [17], and 246

thus the strength of adaptation should be increased [19]. This is consistent with our 247

model prediction, where a transition to anesthesia (higher adaptation) yields a positive 248

correlation between UP and DOWN states. 249

Nevertheless, a more direct experiment is preferable in order to validate our 250

prediction. To this purpose we performed extracellular recordings of neural activity in 251

acute slices of entorhinal cortex from wild type juvenile mice. 252

In control conditions, a certain variability was observed in both UP and DOWN 253

state duration, sufficient to measure UP-DOWN states duration correlation. 254

The great advantage of in vitro preparations is the possibility to pharmacologically 255

modulate adaptation [19] by dissolving neuromodulators in the Artificial CerebroSpinal 256

Fluid (ACSF) in which the slice is recorded. 257

To stimulate an effective decrease of adaptation strength, carbachol (CCh), an 258

agonist of both nicotinic and muscarinic acetylcholine (ACh) receptors is used [19]. 259

By increasing concentrations of carbachol (0, 0.025, 0.05 µM), we observe 260

lengthening UP states and shortening DOWN states, Fig. 7, in accordance with a lower 261

amount of spike-frequency adaptation, as in the model. 262

Finally, we report a clear tendency to more negatively correlated, sleep-like UP and 263

DOWN states durations at higher carbachol doses. This confirms the predictions of our 264

model, where an increase of adaptation strength permits a more positive correlation 265

between UP and DOWN states durations. 266
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Fig 7. Blocking adaptation by addition of carbachol in mouse slice
preparations produces a transition from anesthesia-like, positively
correlated UP-DOWN state durations to sleep-like, negatively correlated
state durations. (A) Multi-Unit Activity throughout time, recorded for different
carbachol concentrations (c) for an example slice (shaded: UP state detection). UP
state frequency is shown to increase with carbachol concentration, and variability in
durations is present in all recordings. (B) For the same example slice, UP state against
previous DOWN state duration for different carbachol concentrations, showing a
positive correlation (r = 0.64, p ¡ 0.05) in the control condition (c = 0µM),
non-correlated for an intermediary concentration (c = 0.025µM , r = 0.00), and a
negative correlation (c = 0.05µM , r = -0.37, p ¡ 0.05) when the highest carbachol
concentration is added. (C) For all recorded slices, correlation between UP state and
previous DOWN state duration as a function of carbachol concentration. Consistently
with model predictions as to the effect of adaptation strength, all slices exhibit a
positive or non-significant, ’anesthesia-like’ correlation in the control condition
(c = 0µM) and a negative, ’sleep-like’ correlation for the highest carbachol
concentration (c = 0.05µM), when adaptation is blocked (markers: significant
correlations, colors: different slices, dashed lines: shuffles, see Methods).
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Discussion 267

While anesthesia has been used as a model for sleep in various contexts, our results 268

show robust differences in the neural network dynamics underlying the two brain states, 269

across several species and brain regions. This holds for slow waves produced by two 270

different anesthetics, by contrast to natural slow waves observed in sleep. We discuss 271

below the differences between the two types of slow waves, and the perspectives for 272

future work. 273

A larger effect of noise fluctuations throughout time on the network dynamics is 274

observed during sleep, yielding a negative, long-memory correlation between UP and 275

DOWN state durations. Conversely, during anesthesia the dynamics is more stable and 276

characterized by short-memory and positive correlation between state durations. 277

Employing a computational model revealed that during anesthesia such noise 278

fluctuations produce much smaller effects on population dynamics, as the fluctuations 279

are filtered out by a strong modulatory effect (e.g. spike-frequency adaptation). For the 280

sake of simplicity, external noise was chosen to be the only effective source of variability 281

in the model. Nevertheless, this is not the only possible choice: one could also consider 282

variability in other parameters in time, that can be tuned to produce longer UP states 283

and shorter DOWN states, like inhibitory conductance [25] or even adaptation strength 284

(Fig. 4E). In sum, adaptation filters out time variation in the system’s parameters, in 285

anesthesia but not in sleep. This produces a different sensitivity to fluctuations of the 286

two states, as well as a different correlation in time, much longer during sleep (a few 287

seconds) than anesthesia. 288

These results may have far-reaching functional consequences, as key cognitive 289

processes, such as memory consolidation, can take place during sleep [2–4], while 290

anesthesia causes amnesia and memory impairment [26–28]. Our observation of two 291

types of slow-waves suggests that slow-wave dynamics may be important to explain 292

these differences. For example, for memory consolidation to occur, the cortex should 293

encode information by changing its dynamics upon receiving external information from 294

the hippocampus. This implies that a non-trivial change in external input should be 295

able to modulate the statistics of cortical activity. We showed (Fig. 5) that in 296

anesthesia, unlike in sleep, strong adaptation filters out the effects of external 297

stimulations on UP-DOWN state dynamics, so that any information encoded in the 298

amplitude of inputs to the neural assembly does not affect the network dynamics, and 299

consequently will not be encoded. 300

Understanding the role of adaptation in filtering out external variability may also 301

shed light on pathological conditions where adaptation is disturbed. For example, the 302

cholinergic system, that modulates spike-frequency adaptation [19], breaks down with 303

Alzheimer’s disease [32]. A slowing down of slow oscillatory patterns during 304

SWS [33,34] and a loss of memory [35] are both biomarkers of the disease. With 305

acetylcholine breakdown, spike-frequency adaptation will be increased, similarly to 306

under anesthesia, and it is conceivable that the cortex of Alzheimer’s patients cannot 307

encode fluctuating inputs from the hippocampus during sleep due to anesthesia-like 308

slow-wave dynamics. This mechanism might contribute to explaining why new 309

memories cannot be formed, and to better comprehending and how treatments restoring 310

acetylcholine levels alleviate Alzheimer’s sleep and memory symptoms [36]. Our study 311

directly predicts that the anesthesia-type slow-wave dynamics should be observed in 312

Alzheimer’s patients during their natural sleep, and provides an approach to modulating 313

and quantifying the restoration of sleep-like type slow waves, an interesting direction to 314

explore in the design of new therapies. 315
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Materials and methods 316

Neural recordings 317

Human temporal cortex in deep sleep 318

The data was recorded with intra-cranial multi-electrode array recordings of 92 neurons 319

in the temporal cortex of an epileptic patient, the same data-set used by [37–41]. The 320

record of interest spans across approximately 12 hours, including periods of wakefulness 321

as well as several stages of sleep. Recordings were performed in layer II/III of the 322

middle temporal gyrus, in an epileptic patient (even though far from the epileptic focus 323

and therefore not recording epileptic activity outside of generalized seizures). Data 324

acquisition in that region was enabled by implanting a multi-electrode array, of 325

dimensions 1 mm in thickness and 4x4 mm in area, with 96 micro-electrodes separated 326

by 400 µm spacings. The array was originally implanted for medical purposes. A 327

30-kHz sampling frequency was employed for recording. Switches in brain state 328

(wakefulness, SWS, REM, seizure, ...) throughout the recording were noted from the 329

patient’s behavioural and physiological parameters, yielding one hour of SWS on which 330

our analyses were focused. Using spike sorting methods on the obtained data, 92 331

neurons have been identified. Analysis of the spike waveforms for each of these neurons 332

allowed their classification as putative excitatory (E) and inhibitory (I) neurons. Using 333

the spike times of each neuron, cross-correlograms for all pairs of neurons were also 334

computed to determine whether each neuron’s spikes had an excitatory (positive 335

correlation) or an inhibitory (negative correlation) effect on other neurons through 336

putative monosynaptic connections. It should be noted that neurons found to be 337

excitatory exactly corresponded to those classified as RS, while all inhibitory neurons 338

were also FS. We only retained neurons spiking all throughout the recording for our 339

analyses, amounting to 71 neurons of which 21 were I neurons. Spikes were binned into 340

1 ms wide time bins for all subsequent analyses. 341

Monkey premotor cortex in deep sleep 342

Spiking activity (the same data-set as used in [38–41]) in layer III/IV of the premotor 343

cortex of a macaque monkey was recorded by multi-electrode arrays throughout a night. 344

A 10-kHz sampling frequency was employed for recording. Classification of brain states, 345

for extraction of SWS periods, was performed by visual inspection of the Local Field 346

Potential (LFP), over time periods of 5 s, by identifying as SWS periods presenting 347

large-amplitude oscillations in the 1-2 Hz frequency range [41], of which 141 spiked 348

throughout the whole recording, yielding three hours of SWS data for subsequent 349

analyses. All analyses in this work were performed with spikes binned into 1 ms time 350

bins. 351

Rat prefrontal cortex in deep sleep 352

The analysis was performed on the dataset of single unit activities previously employed 353

in [4, 42, 43]. Here we provide a short description only. Five Long-Evans male rats were 354

chronically implanted with tetrodes in the prelimbic subdivision of the medial prefrontal 355

cortex and in the intermediate-ventral hippocampus. Tetrodes in the hippocampus were 356

used for identification of non-REM sleep periods, through a clustering analysis of the 357

LFP power within the cortical delta band (1− 4Hz), hippocampal theta (5− 10Hz) 358

and cortical spindles (10− 20Hz) together with estimates of the speed of head 359

movements. Tetrodes in the cortex were used for single unit recording. Spike sorting 360

has been performed using KlustaKwik [44]. Recordings were organized in daily sessions, 361

where the rat undergoes a first sleeping epoch, then a task learning epoch, in which the 362
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rat performs an attentional set shift task on a Y shaped maze, and finally a second 363

sleeping epoch, each epoch lasting 30 mins. In general, the neurons recorded differed 364

from a session to another, with the number of cells recorded per session varying between 365

10 and 50. For the analysis of up/down state duration, the results from all session from 366

the same rat were joined together, but pre-task and post-task sleep were kept separated. 367

Monkey primary visual cortex in sufentanil anesthesia 368

The data-set may be found at [45], as described in [46]. Four adult macaque monkeys 369

were recorded using a total of six multielectrode arrays implanted in the primary visual 370

cortex. Sufentanil (4-18 microg/kg/hr) was used for anesthesia. Recordings were 371

obtained while animals viewed a uniform gray screen, over periods of between 20 and 30 372

minutes long. Spontaneous spiking activity from 70 – 100 neurons was recorded and 373

spike-sorted for each array. Spikes were binned into 1 ms time bins for subsequent 374

analyses. 375

Rat primary visual cortex in ketamine anesthesia 376

7 adult male Wistar rats weighting 211 ± 58 g (mean ± s.d.) were anesthetized via 377

intraperitoneal injection of ketamine (120 mg/kg) and medetomidine (0.5 mg/kg). 378

Atropine (0.05 mg/kg) was injected subcutaneously to prevent respiratory secretions. 379

Rectal temperature was maintained at 37ºC. A craniotomy was performed to access the 380

primary visual (V1) cortex (7.3 mm AP, 3.5 mm ML) of the right hemisphere [47]. 381

Recordings of cortical activity under anesthesia were obtained with a 16-channel 382

silicon probe (1 shank with 16 linearly spaced sites at 100µm increments with 383

impedances of 0.6− 1MΩ at 1kHz (NeuroNexus Technologies, Ann Arbor, MI)) 384

introduced perpendicularly in V1 under visual guidance until the most superficial 385

recording site was aligned with the cortical surface. Signals were amplified (Multi 386

Channel Systems), digitized at 10kHz and acquired with a CED acquisition board and 387

Spike 2 software (Cambridge Electronic Design, UK). Recordings had an average length 388

of 951.46 +/-219.30 seconds. UP and DOWN states were singled out by thresholding 389

the multi-unit activity (MUA), which was estimated as the power of the Fourier 390

components at high frequencies (200-1500 Hz) of the extracellular recordings 391

(LFP) [12,25,48–50]. For each experiment, we selected the channel with maximum MUA 392

during the Up state, whose location in depth corresponds to cortical layer 5 [12,50]. 393

All experiments were supervised and approved by the local Ethics Committee and 394

were carried out in accordance with the present laws of animal care, EU guidelines on 395

protection of vertebrates used for experimentation (Strasbourg 3/18/1986) and the local 396

law of animal care established by the Generalitat of Catalonia (Decree 214/97, 20 July). 397

Mouse entorhinal cortex slice preparations 398

We prepared brain slices exhibiting spontaneous slow waves in entorhinal cortex using a 399

method described in [51]. The mice were of wild-type (C57BL/6J) and 11-18 days old. 400

The dissection and slice cutting were performed in an ice-cold cutting solution 401

containing (in mM): 85 NaCl, 75 sucrose, 3 KCl, 26 NaHCO3, 1.25 NaH2PO4, 3.5 402

MgSO4, 0.5 CaCl2, 10 glucose, 3 myo-inositol, 3 Na-pyruvate, 0.5 L-ascorbic acid and 403

aerated with 95% O2 and 5% CO2. A lower concentrations of Na+ and Ca2+, and a 404

higher concentration of Mg2+ in the cutting solution, compared to a standard ACSF, 405

are applied to minimize neuronal damage during cutting. 406

We cut slices at 15° angle off the horizontal plane with the thickness of 310 µm. 407

After cutting, slices were placed in a cutting solution at temperature of 35° C for 30 min. 408
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The slices were then kept at room temperature in a storing solution containing (in 409

mM): 126 NaCl, 3 KCl, 26 NaHCO3, 1.25 NaH2PO4, 2 MgSO4, 2 CaCl2, 10 glucose, 3 410

myo-inositol, 3 Na-pyruvate, 0.5 L-ascorbic acid. 411

For recording purposes, the slices were transfered to a submersion chamber and 412

placed between nylon nets. The well oxygenated recording solution was flowing with the 413

speed of 4ml/min. The recording solution was similar to storing solution, with only 414

CaCl2 and MgSO4 concentrations were reduced to 1.2 and 1 mM respectively. The 415

extracellular field was recorded with glass electrodes with a resistance of 2-3 MΩ. The 416

electrode was placed in layer 2/3 of the entorhinal cortex. 417

Electrophysiological data was acquired using the ELPHY software [52]. The 418

multi-unit activity was obtained from the signal by calculating the time-averaged power 419

of the signal in the frequency range (0.3 - 2 kHz). 420

Spiking network model 421

We consider a population of N = 104 neurons connected over a random directed network 422

with probability of connection p = 5%. We consider excitatory and inhibitory neurons, 423

with 20% inhibitory neurons. The dynamics of each of the two types of neurons is based 424

on the adaptive integrate and fire model, described by the following equations 425

cm
dvi
dt

= gL(EL − vi) + gLkae
vi−vthr

ka − wi + Isyn + σξi(t) (1)

dwi

dt
= −wi

τw
+ b

∑
tsp(i)

δ(t− tsp(i)) + a(vi − EL), (2)

where cm is the membrane capacity, vi is the voltage of neuron i and whenever 426

vi > vthr at time tsp(i) , vi is reset to the resting voltage vrest and fixed to that value 427

for a refractory time τr. The exponential term mimics activation of sodium channels 428

and parameter ka describes its sharpness. Inhibitory neurons are modeled according to 429

physiological insights [53] as fast spiking FS neurons with no adaptation while the 430

strength b of spike-frequency adaptation in excitatory regular spiking RS neurons is 431

varied. The synaptic current Isyn received by neuron i is the result of the spiking 432

activity of all pre-synaptic neurons j ∈ pre(i) of neuron i. This current can be 433

decomposed in the result received from excitatory E and inhibitory I pre-synaptic spikes 434

Isyn = (Ee − vi)Iesyn + (EI − vi)IIsyn. Notice that we consider voltage dependent 435

conductances. Finally, we model Ixsyn as a decaying exponential function that takes 436

kicks of amount Qx at each pre-synaptic spike, i.e.: 437

Ixsyn(t) = Qx

∑
exc.pre

δ(t− txsp(i))e−
t−txsp(i)

τx , (3)

where x represents the population type (x = e, I), τx is the synaptic decay time scale 438

and Qx the quantal conductance. We will have the same equation with E → I for 439

inhibitory neurons. Every neuron i receives an identically distributed white noise ξ(t) of 440

zero mean and instantaneously decaying autocorrelation 〈ξi〉 = 0, 441

〈ξi(t)ξj(t+ s)〉 = δi,jδ(t− s). The noise amplitude σ is a piecewise constant function of 442

time, i.e. its value stays constant for a time window of length T and is extracted from a 443

uniform distribution of amplitude ∆. In our simulations ∆ varies and we use T = 100s, 444

in accordance to the observed variability of UP-DOWN states duration during sleep. 445

A transient of 1s after simulation onset is discarded from all analyses. 446

To deliver a stimulus to the network, each neuron receives an external Poissonian 447

spike train of frequency 0.05 Hz for a duration of 50 ms. Stimuli are delivered halfway 448

through the first UP state after the discarded transient. To directly compare network 449
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Table 1. Model parameters

Neuron type Parameter name Symbol value
RS & FS Membrane Capacity Cm 150pF
RS & FS Leakage Conductance gL 10nS
RS & FS Excitatory quantal conductance QE 1nS
RS & FS Inhibitory quantal conductance QI 5nS
RS & FS Spiking threshold vthr -50mV
RS & FS Resting voltage vrest -65mV
RS & FS Excitatory synapses time decay τE 5ms
RS & FS Inhibitory synapses time decay τI 5ms
RS & FS Refractory time τr 5ms
RS Sodium sharpness ka 2mV
RS Leakage reversal EL -60mV
RS adaptation current increment b varies
RS adaptation conductance a 0nS
RS adaptation time constant τw 500ms
FS Sodium sharpness ka 0.5mV
FS Leakage reversal EL -65mV
FS adaptation current increment b 0nS
FS adaptation conductance a 0nS

dynamics in the presence and absence of a stimulus, the network connectivity matrix 450

and initial conditions are the same in both simulations, such that dynamics before the 451

stimulus onset are identical, and differences in dynamics following the onset are only 452

due to the stimulation. The cumulative spike count is computed in each case, at each 453

point in time. The normalized distance between the spike counts with and without 454

stimulus is defined by: 455

D =
|s′ − s|
< s >

, (4)

where s is the spike count for the unstimulated network, s′ is the spike count for the 456

stimulated network, and < · > denotes time averaging. Each simulation lasts 30s, and 457

the procedure is repeated 50 times, each time with different connectivity realization and 458

initial condition set. In Fig 4D we report the average value of D over different 459

realizations, together with its standard deviation. 460

Measures and UP DOWN states detection 461

The method to detect UP states ( [54], Section 1.3.3. of Suppl Mat.) considers the sum 462

of all cells’ spike trains (bin size of 1 ms), K(t) =
∑

i σi(t). The instantaneous 463

population activity m(t) is the smoothed K(t), by convolution with a Gaussian density 464

with width α = 10 ms. Any period of time for which the instantaneous population 465

activity 466

m(t) > θmax(m(t)) is considered an UP state, where the threshold θ was chosen in 467

terms of the sparseness and non-stationarity of each data-set (θ = 0.2 for most data-sets, 468

as in [54], except human SWS and the spiking model, where θ = 0.02, and slice 469

preparations, for which θ = 0.5.). States lasting less than 50 ms were excluded by 470

considering it a part of the previous sufficiently long state. States longer than 5 s are 471

discarded from the analysis. Parameters used for detection were determined by visual 472

inspection of the detection quality. It was also verified that slight variation of these 473

parameters did not qualitatively affect the results presented in this work. 474

This method was tested against a different method where UP and DOWN states 475

were singled out by setting a minimum state duration of 80ms and a threshold in 476
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log(MUA) values at 1/3 of the interval between the peaks of the bimodal distribution of 477

log(MUA) corresponding to the Up and Down states. The algorithm, adapted 478

from [12,15,31,49], yielded qualitatively identical results. 479

The Pearson correlation was then employed to evaluate how strong and significant 480

the correlation between UP state and previous DOWN state durations are. As a further 481

test for significance, the information present in time structure was destroyed by 482

shuffling all DOWN state durations, while leaving UP state durations in their empirical 483

order, and computing the Pearson correlation again. This procedure is repeated 1,000 484

times, and the mean and standard deviation of the Pearson correlations obtained each 485

time are calculated. The interval contained within two standard deviations above and 486

below the mean of correlations obtained from shuffled is considered as a confidence 487

interval. Indeed, a correlation well outside of this interval is highly unlikely to have 488

been produced by a chance arrangement of UP and DOWN states in time, given the 489

empirical distribution of their durations, and implies a non-trivial structure in time. 490

This procedure is used to evaluate the correlation between each UP state and the 491

DOWN states surrounding it, C(Dn+k, Un), with k = 0 denoting the previous DOWN 492

state to the considered UP state, negative k denoting previous DOWN states more 493

distant in time, and positive k denoting DOWN states following the UP state of interest. 494
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