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Abstract
Denoising an image is a heuristic and objective process. Still, underlying noise that is predominant in the images reduces 
the quality. Additive white Gaussian noise (AWGN) and impulse noise are the most exploited types of noise. For a speci-
fied amount of density, a combination of AWGN and impulse noise may distract the entire signal causing a loss in the 
magnitude. This paper presents a denoising model by exploiting such a combination that uses an overcomplete dic-
tionary by sparse based denoising scheme with suitable regularization terms. A weight matrix is defined to optimize 
the operation at specific locations of the image. Finally, the use of non-local similarity features improves the quality of 
reconstructed images. The weight matrix maps the regions where the effect of multiple noise sources is present. The 
results proved the superiority of the proposed technique. Simulation of the proposed technique on many images with 
different quantities of noise produced an improvement of up to 2 dB when the noise effect is more when compared to 
the state-of-the-art techniques.
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1  Introduction

Image denoising has become vital as noise may get intro-
duced at any stage between input and output. There exist 
several techniques to denoise that are heuristic in nature. 
The computational complexity of such techniques should 
be considered before deploying. The development of a 
noise model is crucial for any denoising algorithm. But in 
many cases, the exact model of noise is not available. The 
prime sources of noise in images are due to the sensors’ 
electron sensitivity to thermal excitation [1], related hard-
ware components of the sensor [2], and improper assign-
ment of intensity values due to an operator effect.

Sensor noise is characterized as Gaussian and the 
remaining as impulse noise, which degrades the quality of 
the image. In the literature, many schemes exist focusing 
either Gaussian [3–7] or impulse noise [8–12]. The latter 

corrupts the image in such a way that only a few pixels 
are modified. The change in pixel value is to be either 0 or 
255, resulting in salt-and-pepper noise, or a random value. 
Nonlinear filtering methods, viz. median filtering [13], are 
used predominantly to handle impulse noise. The pixels 
are not affected by the noise change if you use the median 
filter, hence making the process in vain. To eliminate the 
drawback of the median filter, adaptive median filtering, 
multistate median filtering and weighted median filtering 
are proposed, which proved to have better noise removal 
but fail for a mixture of noise [11, 14, 15].

Gaussian noise, in contrast to impulsive noise, cor-
rupts each pixel value in the image, which randomly 
chosen from the Gaussian distribution. Hence, there is a 
stringent requirement to process the entire image. Linear 
filtering performs better in Gaussian noise, resulting in 
smooth edges. Bilateral filtering is one of the fundamental 
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solutions to Gaussian noise [3]. Such a filter finds an opti-
mum value for a pixel by calculating the weighted average 
of neighboring pixels. But similar pixels may be distributed 
in the image, not only at neighboring locations but also 
at any location in the image. Many modifications to the 
bilateral filter exist in the literature, and a notable scheme 
of those is non-local means filtering [11]. The weighted 
average of many pixels provides an estimate of the original 
pixel value, which is lost during the error mechanism. In 
non-local mean filtering, the selection of weights to differ-
ent pixels depends on the similarity of the region, where 
the pixel values need to be estimated and to that of differ-
ent parts of the image.

Collection of similar parts or more clearly patches, over 
the image along with the respective weights, leads to a 
benchmark called block matching and 3D filtering (BM3D) 
[16]. 2D blocks are 2D image fragments. The collection of 
these blocks forms a 3D group. The use of these groups 
restores images in the transform domain [17, 18] and is 
introduced in regularization terms of sparse coding to 
exploit structural properties with fewer reference frames. 
Sparse representation models can be used to code a patch 
of an image. But such a representation tends to be less 
accurate. Hence, the sparse coding noise is exploited [17]. 
The training process involves denoising based on approxi-
mation of the noisy patches using a sparse linear combi-
nation of elements taken from a dictionary [18]. But, the 
complexity of such dictionaries is very high with mixed 
noise. Yuanjie Shao et al. [19] proposed a joint deblurring 
and matching scheme with sparse representation prior. 
This scheme is computationally efficient by the use of 
pseudo-Zernike moment, which is having a much lower-
dimension-based representation than the original image 
feature. Rabha W. Ibrahim [20] proposed a scheme for 
denoising of multiplicative noise using fractional calcu-
lus. A convolution operational product of the input image 
pixels with a conformable fractional calculus mask window 
resulted in better denoising. Yehu Lv [21] presented a total 
variation method to tackle Poisson noise, which preserves 
edges while smoothing and has better staircase effect 
elimination. In a switching bilateral filter was proposed to 
remove mixed noise [22]. The filter parameters are com-
puted based on the identification of noisy pixels. Noise 
estimation was done using the domain weight pattern by 
which filter parameters are adaptively chosen to remove 
mixed noise. A fuzzy-based hybrid filter was proposed to 
remove the mixed noise [23]. A fuzzy metric-based filter is 
used to remove impulsive noise, while a fuzzy peer group 
method is used in the second stage to remove Gaussian 
noise.

In practice, the source of noise cannot be attributed 
to a single phenomenon. There exist multiple sources of 
noise, and correspondingly, in this paper, a mixed noise 

with Gaussian and impulse noise is considered. The mix 
of impulse and Gaussian makes the problem of denoising 
more difficult, as they possess entirely different properties. 
Few methods exist in the literature to remove this kind 
of mixed noise. But such schemes involve two sequential 
steps, i.e., detection of pixels that are corrupted due to 
impulsive noise and then remove the noise. Such schemes 
seem to be less effective when the noise is predominant. 
Hence, in this paper, a simple scheme is proposed to han-
dle such mixed noise. Experimental results proved it to be 
effective. A weight matrix is defined, which identifies the 
locations of the image that are undergoing the effect of 
specific kind of noise, and then the noise is removed using 
sparse coding.

2 � Background

As pointed out in the previous section, some of the pix-
els and patches of the noisy regions distribute over the 
entire image. The collection of similar pixels or the regions 
together is referred to as grouping. In general, the collec-
tion of say k-dimensional fragments forms k + 1-dimen-
sional groups. Hence, a group is a k + 1-dimensional object 
molded by grouping similar components of the image. 
The application of grouping enables the role of higher-
dimensional filters that detect similarity among the seg-
ments of the groups. Further, this provides an estimate 
of the accurate signal out of this collection. This process 
is collaborative filtering. K-means clustering is one of the 
fundamental clustering techniques [24] that forms groups, 
by identifying ‘k’ centroids and aligning each data compo-
nent of the signal to one of the centroids based on its simi-
larity to these centroids. A distance parameter is defined to 
measure the similarity. Neural network concepts like self-
organizing feature maps (SOFM) [25] are also in use for 
many years and mainly used to reduce the dimensionality 
of the signal. Fine-tuning of such networks to the number 
of levels results in clusters [26, 27]. These schemes perform 
clustering in such a way that a test segment belongs to 
one and only one cluster.

In contrast to this, matching-based grouping maps a 
test segment to multiple clusters based on its similarity 
to these clusters. Now, a series of clusters may be defined 
based on the level of similarity. Now, a higher threshold 
for similarity provides less number of segments in the 
cluster. As the threshold decreases, the size of the cluster 
increases. This kind of scheme is flexible in defining clus-
ters for a problem at hand.
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3 � Mixed noise

Let p be the image and pxy denote the pixel value of image 
p at the location specified by (x, y). Let the noisy version of 
the image p be q. In the presence of additive white Gauss-
ian noise, qxy, the pixel value of noisy observation at (x, y) 
can be modeled as

where ‘r’ is the noise component. The Gaussian noise can 
be of a different kind. Indeed, when more noise sources are 
present, the active noise can be modeled using Gaussian 
noise. It is true even when the noise sources are not identi-
cally distributed. Gaussian noise sources besides or in any 
other relation produce a noise which can be characterized 
by Gaussian distribution itself. Figure 1 shows the effect of 
Gaussian noise. The first row shows the actual images. The 
remaining rows show noisy effects from Gaussian noise 
with varying standard deviation of 25, 50, 75 and 100.

Impulsive noise, as mentioned in earlier sections, 
imposes a random value on the image at some locations 
specified by the parameters of impulsive noise. The impul-
sive noise is characterized by [cmin, cmax]. The difference 
between these extremes defines the dynamic range of 
the impulsive noise. A special case of impulsive noise is 
salt-and-pepper noise. In this case, either complete black 
or white pixels get added with the density defined by its 
parameter. Figure 2 shows noisy images with different 
densities of impulsive noise. The density is directly related 
to the amount of noise imposed and on the number of 
pixels affected by noise.

In practice, irrespective of noise sources, the noise can 
be attributed to the channel. Channel noise is not pure 
Gaussian or impulsive or any other kind of noise. In this 
paper, a mixture of Gaussian and impulsive noise is simu-
lated and applied to an image. Figure 3 shows the noisy 
images.

As can be verified from Fig. 1, 2, and 3, the effect of 
mixed noise is more effective than single noise. Table 1 
shows the PSNR values of the noisy image with different 
values of noise parameters of Gaussian and impulse noise.

4 � Proposed method

Let x be the image. The image x can be represented using 
sparse representation in terms of another image. For this, 
an overcomplete dictionary is to be built. The dictionary 
can be either a set of predefined functions or the one 
designed adaptively using a set of high-quality images. 
The former is a practical scheme only if the signal at hand 

qxy = pxy + rxy

is represented using the features of a predefined set 
of functions. In the latter case, the use of a set of high-
quality images gives a better solution by collecting all the 
needed fragments and reducing the number by a selection 
criterion.

Let xi be the fragment extracted out of x from the loca-
tion linked with i. Using the sparse representation [17], 
an overcomplete dictionary � =

[
�1,�2,… ,�n

]
 is built, by 

which xi can be coded. The segment xi can be generated 
using the dictionary

where �i is the coding vector. The least-square solution of 
x is given by

Equation (2) can be rewritten as

where � is the collection of all vectors �i . Under the pres-
ence of noise, y is the degraded version of image x. In 
the case of additive white Gaussian noise, the denoising 
model is characterized by

Here, λ is a regularization factor that scales the regulariza-
tion term R(α). Though this model is designed for AWGN, 
this applies to any kind of additive noise. In the mixed 
noise case, the fidelity term in Eq. (4) does not yield the 
maximum a posteriori solution.

In the case of mixed noise, particularly the mix of Gauss-
ian and impulse, there exist many pixels that are affected 
only by Gaussian noise. The remaining are affected by both 
the Gaussian and impulsive noise. The number of pixels 
affected by only Gaussian noise is directly related to the 
density of impulse noise.

Now, the pixels undergoing the effect of only Gauss-
ian noise need to be distinguished from that are being 
affected by both Gaussian and impulse noise. A param-
eter needs to be defined to discriminate the same. This 
parameter is defined and included in the standard sparse 
coding to remove the noise resulted from both Gaussian 
and impulse noise. This is accomplished by using a weight 
matrix. Equation (5) shows the modified model.

Here, W is the weight matrix.

(1)�i = ��i

(2)� =

(
∑

i

RT
i
R

)−1(∑

i

RT
i
��i

)

(3)� = ��

(4)𝛼̂ = arg min
𝛼

‖� −𝛷𝛼‖2
2
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Fig. 1   Effect of additive white Gaussian noise. First row: true images
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The quality of the reconstructed image improved to 
a great extent by considering non-local similarity. Many 
repetitive patches are present over the image. For each 
patch xi in the image, a similar patch is identified using 
the following relation.

where t  is a threshold. Now, xi is estimated using the 
weighted average of x

′

i
 . By fixing the appropriate weights, 

(6)ei =
‖‖‖xi − x

�

i

‖‖‖
2

2
≤ t

Fig. 2   Effect of impulsive noise (salt-and-pepper noise)
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Fig. 3   Effect of mixed noise—Gaussian and impulsive noise
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weighted average is calculated. Let b be the weights. 
The estimation is not always accurate, but gives a certain 
amount of error given by,

Using Eq.  (7), the denoising model in the presence of 
mixed noise can be modeled as

The proposed model exploited the non-local similarity 
present in the image. The inclusion of the weight matrix in 
sparse coding is the crucial contribution that enables the 
application of standard sparse based schemes on mixed 
noise. The standard regression models, along with sparse 
coding in image restoration, can be applied to this scheme 
also.

5 � Simulation results

This section presents the experimental results of the 
proposed scheme. The earlier sections discuss the 
effect of Gaussian noise, impulse noise and mixed noise 
with respective noise parameters and PSNR values. The 
effect of noise in the presence of mixed noise is more 
severe than that of individual noise. Figure  4 shows 
noisy images with different amounts of Gaussian and 
impulse noises along with individual noise. Figure 5 
shows denoised images with the respective PSNR values.

(7)
‖‖‖‖‖‖
xi −
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i=1
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�
i
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2
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In addition to the above combinations of Gaussian 
and impulse noise, several other combinations are sim-
ulated and found that the proposed method provides 
quality images even when the noise is intense. Table 2 
shows as many as 66 noise combinations. Table 3 shows 
the PSNR values of denoised images.

From Table 2, it is evident that the effect of impulse 
noise is vital in the overall noise quantity. The PSNR val-
ues without the presence of Gaussian noise are 18.3 dB, 
15.4 dB, 13.7 dB, 12.4 dB, 11.5 dB and 10.8 dB where the 
density of salt-and-pepper noise is 0.05, 0.1, 0.15, 0.2, 
0.25 and 0.3, respectively. The contamination of Gaussian 
noise with existing noisy images resulted in the degrada-
tion of image quality when the density of impulse noise 
is low. But, when the density of impulse noise increases, 
the effect of Gaussian noise is nominal. The complete set 
of PSNR values in Table 3 suggests that the operations 
involved in the proposed scheme results in restored 
images with a quality that is directly proportional to the 
noise content in the degraded image.

Table 4 shows the performance analysis of the pro-
posed technique in contrast to the state-of-the-art 
techniques and the resulting PSNR values for different 
quantities of standard deviation and impulse noise Den-
sity (ID). As the percentage of salt-and-pepper quantity 
increases, the number of pixels affected by noise also 
increases. From Table 4, it is evident that the proposed 
scheme outperforms the state-of-the-art techniques 
even in high noise conditions. The improvement in per-
formance is predominant when the noise is strongest. 
From Fig. 6, it is evident that there exists at least 2 dB 
improvement when the noise parameters sigma and 
density are 25 and 0.3.

Table 1   PSNR values of mixed noise

PSNR values (dB) Density of salt-and-pepper noise

0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Standard deviation of Gaussian noise 0 Inf 25.6 18.5 15.4 13.7 12.4 11.5 10.7 10.0 9.4 8.9 8.4
1 48.1 25.4 18.4 15.4 13.6 12.5 11.5 10.7 10.0 9.4 8.9 8.5
5 30.7 24.4 18.3 15.3 13.6 12.4 11.4 10.6 10.0 9.4 8.9 8.4
10 22.3 20.6 17.0 14.7 13.2 12.1 11.2 10.5 9.8 9.3 8.8 8.4
15 17.2 16.6 14.9 13.4 12.3 11.4 10.7 10.0 9.5 9.0 8.6 8.2
20 13.5 13.3 12.5 11.7 10.9 10.4 9.8 9.3 8.9 8.5 8.1 7.8
25 10.7 10.6 10.2 9.8 9.4 9.1 8.7 8.4 8.1 7.8 7.6 7.3
30 8.4 8.3 8.2 8.0 7.8 7.6 7.4 7.3 7.1 7.0 6.8 6.7
35 6.4 6.4 6.4 6.3 6.3 6.2 6.1 6.1 6.0 6.0 5.9 5.9
40 4.7 4.7 4.7 4.8 4.8 4.8 4.9 4.9 4.9 5.0 5.0 5.1
45 3.2 3.2 3.3 3.4 3.5 3.6 3.6 3.7 3.9 4.0 4.1 4.2
50 1.8 1.9 2.0 2.1 2.2 2.4 2.5 2.6 2.8 3.0 3.1 3.3
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Fig. 4   Noisy images with Gaussian and impulse noise
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Fig. 5   Denoised images
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6 � Conclusions

Denoising an image contaminated by both Gaussian and 
impulsive noise is performed using a sparse representa-
tion-based model with dictionary learning. The stand-
ard sparse-based scheme reduces the effect of Gauss-
ian noise, while the weight matrix models the denoising 

with mixed noise. The proposed method is analogous to 
hybrid filtering schemes where the filter parameters are 
chosen adaptively for specific noise types. In the hybrid 
filtering schemes, estimation models identify the noise 
type and effect of noise. In this paper, the weight matrix 
identifies the type of noise. Results show that the pro-
posed method performs well, even in higher noise cases. 
The proposed method produces a 2% improvement 

Table 2   PSNR values of 
noisy images with different 
combinations of Gaussian and 
impulse noises

PSNR values (dB) Density of salt-and-pepper noise

0 0.05 0.1 0.15 0.2 0.25 0.3

Standard deviation of Gaussian noise 0 – 18.3 15.4 13.7 12.4 11.5 10.8
5 34.1 18.4 15.4 13.6 12.4 11.4 10.7
10 28.1 18.0 15.2 13.5 13.3 11.4 10.7
15 24.6 17.5 15.0 13.4 12.2 11.3 10.6
20 22.1 17.0 14.6 13.2 12.1 11.2 10.5
25 20.2 16.3 14.3 12.9 11.9 11.0 10.4
30 18.6 15.6 13.9 12.6 11.7 10.9 10.3
35 17.3 14.9 13.4 12.3 11.4 10.7 10.1
40 16.1 14.2 12.9 12.0 11.1 10.5 9.9
45 15.1 13.6 12.5 11.6 10.9 10.2 9.6
50 14.1 12.9 12.0 11.2 10.6 10.0 9.4

Table 3   PSNR values of 
denoised images with different 
combinations given in Table 2

PSNR values (dB) Density of salt-and-pepper noise

0 0.05 0.1 0.15 0.2 0.25 0.3

Standard deviation of Gaussian noise 0 – 36.0 35.9 35.7 35.6 35.4 35.3
5 35.5 35.5 35.5 35.3 35.2 35.0 34.8
10 34.3 34.2 34.0 33.9 33.8 33.6 33.4
15 32.3 32.3 32.2 32.2 32.1 32.0 32.0
20 31.7 31.6 31.5 31.4 31.3 31.2 31.1
25 30.8 30.8 30.7 30.6 30.4 30.3 30.3
30 30.3 30.1 29.9 29.9 29.5 29.3 29.2
35 29.5 29.3 29.0 28.8 28.6 28.3 28.3
40 28.7 28.3 27.8 27.6 27.1 26.6 26.6
45 27.7 27.0 26.1 25.3 24.8 23.7 23.6
50 26.3 25.2 23.6 22.4 21.4 20.1 20.0

Table 4   Performance analysis 
of proposed technique (PSNR 
values)

Parameter, 
sigma/ID

CAI [28] WESNR [27] CAI [28] + BM3D 
[16]

CNN [29] Proposed

10/0.15 27.92 31.08 32.59 33.34 33.9
10/0.3 27.65 30.22 30.99 32.03 33.4
15/0.15 24.81 29.21 31.08 31.43 32.2
15/0.3 24.98 28.6 29.87 30.47 32
20/0.15 22.47 28.45 29.85 29.9 31.4
20/0.3 22.8 27.84 28.85 29.08 31.1
25/0.15 20.58 27.55 28.88 28.74 30.6
25/0.3 21.03 26.89 28 28.04 30.3
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when the noise quantity is less, and up to 8% when the 
noise parameters are high that seems to outperform in 
contrast to the state-of-the-art schemes.
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Fig. 6   Performance analysis of the proposed scheme
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