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Abstract

Neural networks have been used prominently in several machine learning and
statistics applications. In general, the underlying optimization of neural networks
is non-convex which makes analyzing their performance challenging. In this
paper, we take another approach to this problem by constraining the network
such that the corresponding optimization landscape has good theoretical properties
without significantly compromising performance. In particular, for two-layer neural
networks we introduce Porcupine Neural Networks (PNNs) whose weight vectors
are constrained to lie over a finite set of lines. We show that most local optima
of PNN optimizations are global while we have a characterization of regions
where bad local optimizers may exist. Moreover, our theoretical and empirical
results suggest that an unconstrained neural network can be approximated using a
polynomially-large PNN.

1 Introduction

Neural networks have been used in several machine learning and statistical inference problems
including regression and classification tasks. Some successful applications of neural networks and
deep learning include speech recognition [1], natural language processing [2], and image classification
[3]. The underlying neural network optimization is non-convex in general which makes its training
NP-complete even for small networks [4]. In practice, however, different variants of local search
methods such as the gradient descent algorithm show excellent performance. Understanding the
reason behind the success of such local search methods is still an open problem in the general case.

There have been several recent works in the theoretical literature aiming to study risk landscapes of
neural networks and deep learning under various modeling assumptions. For example, references [5, 6,
7, 8] have studied the convergence of the local search algorithms for the neural network optimization
with zero hidden neurons and a single output. Other works have studied the risk landscapes of neural
network optimizations for more complex structures under various model assumptions [9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19]. In particular, references [13, 14, 15] consider a two-layer neural
network with Gaussian inputs under a matched (realizable) model where the output is generated from
a network with planted weights. Over-parameterized networks where the number of parameters are
larger than the number of training samples have been studied in [20, 21]. In addition, reference [22]
makes the argument (through a visualization scheme) that the loss landscape of reduced-capacity
networks such as resnets has fewer bad locals than that of unconstrained ones. Further, [23] presents
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conditions for a local minimum to be global in the case of having regularization on the network
weights.

We review these prior work in SM 1 Section 2. In this paper, we study a key question: can an
unconstrained neural network be approximated with a constrained one whose optimization landscape
has good theoretical properties? For two-layer neural networks, we provide an affirmative answer to
this question by introducing a family of constrained neural networks which we refer to as Porcupine
Neural Networks (PNNs) (Figure 1-a). In PNNs, incoming weight vectors to hidden neurons are
constrained to lie on a fixed set of lines. For example, a neural network with multiple inputs and
multiple neurons where each neuron is connected to one input is a PNN since input weight vectors to
neurons lie on lines parallel to the standard axes (SM Section 3).

Designing new objective functions with good landscape properties for non-convex problems has
been explored previously in [19, 15, 24]. Our work provides an alternative procedure to obtain a
new objective function for the underlying non-convex optimization. Our framework can be extended
naturally to deeper networks as well even though in our analysis in this paper, we focus on two-layer
networks. Moreover, a PNN can be viewed as a neural network whose feature vectors (i.e., input
weight vectors to neurons) are fixed up to scalings due to the PNN optimization. This view can relate
a random PNN (i.e., a PNN whose lines are random) to the application of random features in kernel
machines [25, 26, 27, 28, 29, 30, 6]. Although our results in Sections 4 and 5 are for general PNNs,
we study them for random PNNs in Section 6 as well.

We analyze population risk landscapes of two-layer PNNs with jointly Gaussian inputs and rectified
linear unit (ReLU) activation functions at hidden neurons. We show that under some modeling
assumptions, most local optima of PNN optimizations are also global optimizers. Moreover, we
characterize the parameter regions where bad local optima (i.e., local optimizers that are not global)
may exist.

Next, we study whether one can approximate an unconstrained (fully-connected) two-layer neural
network function with a PNN whose number of neurons is polynomially-large in dimension. Our
empirical results offer an affirmative answer to this question. For example, suppose the output data is
generated using an unconstrained two-layer neural network with d = 15 inputs and k∗ = 20 hidden
neurons. Using this data, we train a random two-layer PNN with k hidden neurons. We evaluate the
PNN approximation error as the mean-squared error (MSE) normalized by the L2 norm of the output
samples in a two-fold cross validation setup. As depicted in Figure 1-b, by increasing the number of
PNN hidden neurons k, the PNN approximation error decreases. Notably, to obtain a relatively small
approximation error, PNN’s number of hidden neurons does not need to be exponentially large in
dimension. We explain details of this experiment in Section 7.

In Section 6, we study a characterization of the PNN approximation error with respect to the input
dimension and the complexity of the unconstrained neural network function. We show that under
some modeling assumptions, the PNN approximation error can be bounded by the spectral norm of
the generalized Schur complement of a kernel matrix. We analyze this bound for random PNNs in
the high-dimensional regime when the ground-truth data is generated using an unconstrained neural
network with random weights. For the case where the dimension of input and the number of hidden
neurons increase with the same rate, we compute the asymptotic limit. Finally, in Section 8, we
discuss how the proposed PNN framework can potentially be used to explain the success of local
search methods such as gradient descent in solving the unconstrained neural network optimization.

In summary, PNNs provide three main advantageous. The first is that its loss landscape has nice
properties with provably few bad locals. Thus, we can have some guarantees on the performance
of gradient descent. Second, its approximation power is good, i.e. our experimental and theoretical
results suggest that one can approximate unconstrained networks arbitrarily closely with polynomially-
large PNNs. Third, PNN uses fewer parameters than unconstrained neural networks, thus leading
to better generalization and also benefits in terms of storage. Finally, we discuss using the PNN
framework in general deep neural networks in Section 8.

1In this document, we refer to pointers in the supplementary materials using the prefix SM.
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Figure 1: (a) A two-layer Porcupine Neural Network (PNN). In PNN, incoming weight vectors to
neurons are constrained to lie over a fixed set of lines in a d-dimensional space. (b) Approximations
of an unconstrained two-layer neural network with d = 15 inputs and k∗ = 20 hidden neurons using
random two-layer PNNs.

2 Unconstrained Neural Networks

Consider a two-layer neural network with k neurons where the input is in Rd (Figure 1-a). The
weight vector from the input to the i-th neuron is denoted by wi ∈ Rd. For simplicity, we assume
that second layer weights are equal to one. Let

h(x;W) :=

k∑
i=1

φ
(
wt

ix
)
, (1)

where x = (x1, ..., xd)
t and W := (w1,w2, ...,wk) ∈ W ⊆ Rd×k. The activation function at each

neuron is assumed to be φ(z) := ReLU(z) = max(z, 0).

Consider F , the set of all functions f : Rd → R where f can be realized with a neural network
described in (1). In other words,

F :=
{
f : Rd → R; ∃W ∈ W, f(x) = h(x;W), ∀x ∈ Rd

}
. (2)

In a fully connected neural network structure,W = Rd×k. We refer to this case as the unconstrained
neural network. Note that particular network architectures can impose constraints onW .

Let x ∼ N (0, I). We consider the population risk defined as the mean squared error (MSE):

L(W) := E
[
(h(x;W)− y)2

]
, (3)

where y is the output variable. If y is generated by a neural network with the same architecture
described by (1), we have y = h(x;Wtrue).

Understanding the population risk function is an important step towards characterizing the empirical
risk landscape [5]. In this paper, for simplicity, we only focus on the population risk. The neural
network optimization can be written as follows:

min
W

L(W) (4)

W ∈ W.

Let W∗ be a global optimum of this optimization. L(W∗) = 0 means that y can be generated by a
neural network with the same architecture (i.e., Wtrue is a global optimum.). We refer to this case as
matched. Moreover, we refer to the case of L(W∗) > 0 as mismatched. Optimization (4) in general
is non-convex owing to nonlinear activation functions in neurons.

3 Porcupine Neural Networks

Characterizing the landscape of the objective function of optimization (4) is challenging in general.
In this paper, we consider a constrained version of this optimization where weight vectors belong to a
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finite set of lines in a d-dimensional space (Figure 1-a). This constraint may arise either from the
neural network architecture or can be imposed by design.

Mathematically, let L = {L1, ..., Lr} be a set of lines in a d-dimensional space. Let Gi be the set
of neurons whose incoming weight vectors lie over the line Li. Therefore, we have G1 ∪ ... ∪ Gr =
{1, ..., k}. Moreover, we assume Gi 6= ∅ for 1 ≤ i ≤ r; otherwise that line can be removed from the
set L. For every j ∈ Gi, we define the function g(.) such that g(j) = i.

For a given set L and a neuron-to-line mapping G, we define FL,G ⊆ F as the set of all functions
that can be realized with a neural network (1) where wi lies over the line Lg(i). Namely,

FL,G := {f : Rd → R; ∃W = (w1, ...,wk),wi ∈ Lg(i), f(x) = h(x;W), ∀x ∈ Rd}. (5)

We refer to this family of neural networks as Porcupine Neural Networks (PNNs). In general, functions
described by PNNs (i.e., FL,G) can be viewed as angular discretizations of functions described by
unconstrained neural networks (i.e., F). By increasing the size of |L| (i.e., the number of lines),
we can approximate every f ∈ F by some f̂ ∈ FL,G arbitrarily closely. Thus, characterizing the
landscape of the loss function over PNNs can help us to understand the landscape of the unconstrained
loss function.

The PNN optimization can be written as

min
W

L(W) (6)

wi ∈ Lg(i) 1 ≤ i ≤ k.
Matched and mismatched PNN optimizations are defined in a similar manner to the unconstrained
ones.

4 Population Risk Landscapes of Matched PNNs

We say a vector has a positive orientation if its component in the largest non-zero index is positive.
Otherwise, it has a negative orientation. For example, w1 = (−1, 2, 0, 3, 0) has a positive orientation
because w1(4) > 0, while the vector w2 = (−1, 2, 0, 0,−3) has a negative orientation because
w2(5) < 0. Mathematically, let µ(wi) be the largest index of the vector wi with a non-zero entry,
i.e., µ(wi) = argmaxj(wi(j) 6= 0). We define s(wi) = 1 if µ(wi) > 0, otherwise s(wi) = −1.

Let ui be a unit norm vector on the line Li such that s(ui) = 1. Let UL = (u1, ...,ur). Let
AL ∈ Rr×r be a matrix whose (i, j)-component is the angle between linesLi andLj , i.e., AL(i, j) =
θui,uj

. Moreover, let KL = Ut
LUL = cos[AL].

We define

qr :=
∑
i∈Gr

‖wi‖, q∗r :=
∑
i∈Gr

‖w∗i ‖, (7)

where ‖.‖ is the second norm operator. Also, we define q := (q1, ..., qd)
t and q∗ := (q∗1 , ..., q

∗
d)

t.

Define the kernel function ψ : [−1, 1]→ R as

ψ(x) = x+
2

π

(√
1− x2 − x cos−1(x)

)
. (8)

Some properties of this kernel function are explained in SM Section 4. In the following Theorem, we
show that this kernel function plays an important role in characterizing optimizers of optimization (6).
In particular, we show that the objective function of the neural network optimization has a term where
this kernel function is applied (component-wise) to the inner product matrix among vectors u1,...,ur.

Theorem 1 The loss function (3) for a matched PNN can be written as

L(W) =
1

4
‖

k∑
i=1

wi −w∗i ‖2 +
1

4
(q− q∗)tψ[KL](q− q∗), (9)

where ψ(.) is defined as in (8) and q and q∗ are defined as in (7).
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The kernel function ψ(.) has a linear term and a nonlinear term. Note that the inner product matrix
KL is positive semidefinite. Below, we show that applying the kernel function ψ(.) (component-wise)
to KL preserves this property.

Lemma 1 For every L, ψ[KL] is positive semidefinite.

Next, we characterize local optimizers of optimization (6) for a general PNN. Define R(s1, ..., sr) as
the space of W where si is the sign vector of weights wj over the line Li (i.e., j ∈ Gi).

Theorem 2 For a general PNN, in regions R(s1, ..., sr) where at least d of the si’s are not equal to
±(1, 1, ..., 1), every local optimizer of optimization (6) is a global optimizer.

In practice the number of lines r is much larger than the number of inputs d (i.e., r � d). Thus, the
condition of Theorem 2 which requires d out of r variables si not to be equal to ±1 is likely to be
satisfied if we initialize the local search algorithm randomly (SM Section 5).

5 Population Risk Landscapes of Mismatched PNNs

In this section, we characterize the population risk landscape of a mismatched PNN optimization
where the model that generates the data and the model used in the PNN optimization are different.
We assume that the output variable y is generated using a two-layer PNN with k∗ neurons whose
weights lie on the set of lines L∗ with neuron-to-line mapping G∗. That is

y =

k∗∑
i=1

ReLU
(
(w∗i )

t
x
)
, (10)

where w∗i lies on a line in the set L∗ for 1 ≤ i ≤ k∗. The neural network optimization (6) is over
PNNs with k neurons over the set of lines L with the neuron-to-line mapping G. Note that L and G
can be different than L∗ and G∗, respectively.

Let r = |L| and r∗ = |L∗| be the number of lines in L and L∗, respectively. Let u∗i be the unit norm
vector on the line L∗i ∈ L∗ such that s(u∗i ) = 1. Similarly, we define ui as the unit norm vector on
the line Li ∈ L such that s(ui) = 1. Let UL = (u1, ...,ur) and UL∗ = (u∗1, ...,u

∗
r). Suppose the

rank of UL is at least d. Define

KL = Ut
LUL ∈ Rr×r (11)

KL∗ = Ut
L∗UL∗ ∈ Rr∗×r∗

KL,L∗ = Ut
LUL∗ ∈ Rr×r∗ .

Theorem 3 The loss function (3) for a mismatched PNN can be written as

L(W) =
1

4
‖

k∑
i=1

wi −
k∗∑
i=1

w∗i ‖2 +
1

4
qtψ[KL]q+

1

4
(q∗)tψ[KL∗ ]q∗ − 1

2
qtψ[KL,L∗ ]q∗, (12)

where ψ(.) is defined as in (8) and q and q∗ are defined as in (7) using G and G∗, respectively.

Corollary 1 Let

K =

(
KL KL,L∗

Kt
L,L∗ KL∗

)
∈ R(r+r∗)×(r+r∗). (13)

Then, the loss function of a mismatched PNN can be lower bounded as

L(W) ≥ 1

4
‖q∗‖2λmin (ψ[K]/ψ[KL]) (14)

where ψ[K]/ψ[KL] := ψ[KL∗ ]− ψ[KL∗ ]tψ[KL]
†ψ[KL∗ ] is the generalized Schur complement of

the block ψ[KL] in the matrix ψ[K].

Next, we characterize local optimizers of optimization (6) for a mismatched PNN. Similar to the
matched PNN case, we define R(s1, ..., sr) as the space of W where si is the vector of sign variables
of weight vectors over the line Li.

5



Theorem 4 For a mismatched PNN, in regions R(s1, ..., sr) where at least d of the si’s are not equal
to ±(1, 1, ..., 1), every local optimizer of optimization (6) is a global optimizer. Moreover, in those
points we have

L(W∗) =
1

4
(q∗)t (ψ[K]/ψ[KL])q

∗ ≤ 1

4
‖q∗‖2‖ψ[K]/ψ[KL]‖. (15)

When the condition of Theorem 4 holds, the spectral norm of the matrix ‖ψ[K]/ψ[KL]‖ provides
an upper-bound on the loss value at global optimizers of the mismatched PNN. In Section 6, we
study this bound in more detail. Moreover, in SM Section 7, we study the case where the condition
of Theorem 4 does not hold (i.e., the local search method converges to a point in parameter regions
where more than r − d of variables si are equal to ±1). Finally, we study a Minimax analysis of the
naive nearest line approximation approach in SM Section 8.

6 PNN Approximations of Unconstrained Neural Networks

In this section, we study whether an unconstrained two-layer neural network function can be approx-
imated by a PNN. We assume that the unconstrained neural network has d inputs and k∗ hidden
neurons. This neural network function can also be viewed as a PNN whose lines are determined
by input weight vectors to neurons. Thus, in this case r∗ ≤ k∗ where r∗ is the number of lines of
the original network. If weights are generated randomly, with probability one, r∗ = k∗ since the
probability that two random vectors lie on the same line is zero. Note that lines of the ground-truth
PNN (i.e., the unconstrained neural network) are unknowns in the training step. For training, we
use a two-layer PNN with r lines, drawn uniformly at random, and k neurons. Since we have ReLU
activation functions at neurons, without loss of generality, we can assume k = 2r, i.e., for every line
we assign two neurons (one for potential weight vectors with positive orientations on that line and the
other one for potential weight vectors with negative orientations). Since there is a mismatch between
the model generating the data and the model used for training, we will have an approximation error.
In this section, we study this approximation error as a function of parameters d, r and r∗.

Since these lines will be different than L∗, the neural network optimization can be formulated as a
mismatched PNN optimization as studied in Section 5. Moreover, in this section, we assume the
condition of Theorem 4 holds, i.e., the local search algorithm converges to a point in parameter
regions where at least d of variables si are not equal to ±1. The case that violates this condition is
more complicated and is investigated in SM Section 7.

Under the condition of Theorem 4, the PNN approximation error depends on both ‖q∗‖ and
‖ψ[K]/ψ[KL]‖. The former term provides a scaling normalization for the loss function. Thus,
we focus on analyzing the later term.

Since Theorem 4 provides an upper-bound for the mismatched PNN optimization loss using
‖ψ[K]/ψ[KL]‖, intuitively, increasing the number of lines in L should decrease ‖ψ[K]/ψ[KL]‖.
We prove this in the following theorem.

Theorem 5 Let K be defined as in (13). We add a distinct line to the set L, i.e., Lnew = L ∪ Lr+1.
Define

Knew =

(
KLnew KLnew,L∗

Kt
Lnew,L∗ KL∗

)
=

 1 zt1 zt2
z1 KL KL,L∗

z2 Kt
L,L∗ KL∗

 ∈ R(r+r∗+1)×(r+r∗+1). (16)

Then, we have

‖ψ[Knew]/ψ[KLnew ]‖ ≤ ‖ψ[K]/ψ[KL]‖. (17)

More specifically,

ψ[Knew]/ψ[KLnew ] = ψ[K]/ψ[KL]− αvvt, (18)

where α =
(
1−

〈
ψ[z1], ψ[KL]

−1ψ[z1]
〉)−1 ≥ 0, v = ψ[z2]− ψ[KL,L∗ ]tψ[KL]

−1ψ[z1].

Theorem 5 indicates that adding lines to L decreases ‖ψ[K]/ψ[KL]‖. However, it does not charac-
terize the rate of this decrease as a function of r, r∗ and d.
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Figure 2: The spectral norm of ψ[K]/ψ[KL] when d = r. Theoretical limits are described in
Theorem 6. Experiments have been repeated 100 times. Average results are shown.

Next, we characterize the asymptotic behaviour of ‖ψ[K]/ψ[KL]‖ when d, r → ∞. There has
been some recent interest in characterizing spectrum of inner product kernel random matrices
[31, 32, 33, 34]. If the kernel is linear, the distribution of eigenvalues of the covariance matrix follows
the well-known Marcenko-Pastur law. If the kernel is nonlinear, reference [31] shows that in the high
dimensional regime where d, r →∞ and γ = r/d ∈ (0,∞) is fixed, only the linear part of the kernel
function affects the spectrum. Note that the matrix of interest in our problem is the Schur complement
matrix ψ[K]/ψ[KL], not ψ[K]. However, we can use results characterizing the spectrum of ψ[K] to
characterize the spectrum of ψ[K]/ψ[KL].

We consider the regime where r, d→∞ while γ = r/d ∈ (0,∞) is a fixed number. Theorem 2.1 of
reference [31] shows that in this regime and under some mild assumptions on the kernel function
(which our kernel function ψ(.) satisfies), ψ[KL] converges (in probability) to the following matrix:

RL =

(
ψ(0) +

ψ′′(0)

2d

)
11t + ψ′(0)Ut

LUL + (ψ(1)− ψ(0)− ψ′(0)) Ir. (19)

To obtain this formula, one can write the Taylor expansion of the kernel function ψ(.) near 0. It turns
out that in the regime where r, d→∞ while d/r is fixed, it is sufficient for off-diagonal elements of
ψ[KL] to replace ψ(.) with its linear part. However, diagonal elements of ψ[KL] should be adjusted
accordingly (the last term in (19)). For the kernel function of our interest, defined as in (8), we have
ψ′(0) = 0, ψ′′(0) = 2/π, ψ(0) = 2/π and ψ(1) = 1. This simplifies (19) further to:

RL =

(
2

π
+

1

πd

)
11t + (1− 2

π
)Ir. (20)

This matrix has (r − 1) eigenvalues of 1 − 2/π and one eigenvalue of (2/π)r + 1 − 2/π + γ/π.
Using this result, we characterize ‖ψ[K]/ψ[KL]‖ in the following theorem:

Theorem 6 Let L and L∗ have r and r∗ lines in Rd generated uniformly at random, respectively.
Let d, r →∞ while γ = r/d ∈ (0,∞) is fixed. Moreover, r∗/r = O(1). Then,

‖ψ[K]/ψ[KL]‖ →
(
1 +

r∗

r

)(
1− 2

π

)
, (21)

where the convergence is in probability.

Figure 2 shows the spectral norm of ψ[K]/ψ[KL] when d = r. As it is illustrated in this figure,
empirical results match closely to analytical limits of Theorem 6. Note that by increasing the ratio of
r/r∗, ‖ψ[K]/ψ[KL]‖ and therefore the PNN approximation error decreases. If r∗ is constant, the
limit is 1− 2/π ≈ 0.36.

Theorem 6 provides a bound on ‖ψ[K]/ψ[KL]‖ in the asymptotic regime. In the following corollary,
we use this result to bound the PNN approximation error measured as the MSE normalized by the L2

norm of the output variables (i.e., L(W = 0)).
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Figure 3: (a) Gamma curves fit to Histogram of PNN approximation errors for different values of k.
(b) Normalized losses obtained by training unconstrained and PNNs on the MNIST dataset.

Proposition 1 Let W∗ be the global optimizer of the mismatched PNN optimization under the setup
of Theorem 6. Then, with high probability, we have

L(W∗)

L(W = 0)
≤
(
1 +

r∗

r

)(
1− 2

π

)
. (22)

This proposition indicates that in the asymptotic regime with d and r growing with the same rate (i.e.,
r is a constant factor of d), the PNN is able to explain a fraction of the variance of the output variable.
In practice, however, r should grow faster than d in order to obtain a small PNN approximation error.

7 Experiments on Synthetic and MNIST Datasets

In this section, we numerically evaluate the performance of PNNs on synthetic and MNIST datasets.
We use random PNNs as described in Section 5. To enforce the PNN architecture, we project
gradients along the directions of the PNN lines before updating the weights. For more details on
these experiments, see SM Section 9.

In the synthetic data experiments, we generated data using a fully-connected two-layer network with
d = 15 inputs and k∗ = 20 hidden neurons. We generated 10,000 ground-truth training samples
and 10,000 test samples using a set of randomly chosen weights for the network. For PNNs, we
use 10 ≤ k ≤ 100 hidden neurons. For each value of k, we perform 25 trials. We train the PNN
via stochastic gradient descent using batches of size 100, 100 training epochs, no momentum, and a
learning rate of 10−3 which decays every epoch at a rate of 0.95 every 390 epochs. For evaluation, we
compute the normalized MSE (i.e., MSE normalized by the L2 norm of y) in the test set over different
initializations. The results are shown in Figures 1-b and 3. Figure 3-a shows that as k increases, the
PNN approximation gets better, which is consistent to our theoretical results in Section 6.

Next, we evaluate PNNs on MNSIT. We first trained a dense network on a subset of the MNIST
handwritten digits dataset. Of the 10 types of 28x28 MNIST images, we only looked at images of 1’s
and 2’s, assigning them the labels of y = 1 and y = 2, respectively. This resulted in n = 11, 649
training samples and 2, 167 test samples. The network has the structure shown in Figure 1-a except
weight vectors in the first layer are not constrained. Only first-layer weights were updated during
training. The unconstrained network has k∗ = 512 hidden neurons.

We then approximated this trained network using PNNs of similar structures as previously described.
We tested k = 512, 1024, 2048 (recall that each k involves r = k/2 unique lines). Figure 3-b
shows the normalized losses obtained using unconstrained networks and PNNs. As illustrated in this
figure, the PNN approximation error is small even with similar numbers of neurons to that of the
unconstrained network.
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8 Conclusion

In this paper, we introduced a family of constrained neural networks, called Porcupine Neural
Networks (PNNs), whose population risk landscapes have good theoretical properties, i.e., most
local optima of PNN optimizations are global while we have a characterization of parameter regions
where bad local optimizers may exist. We also showed that an unconstrained (fully-connected) neural
network function can be approximated by a polynomially-large PNN. In particular, we provided
approximation bounds at global optima and also bad local optima (under some conditions) of the PNN
optimization. These results may provide a means of explaining the success of local search methods
in solving the unconstrained neural network optimization because every bad local optimum of the
unconstrained problem can be viewed as a local optimum (either good or bad) for a PNN constrained
problem, which has a bounded loss according to our results. We leave further explorations of this
idea for future work.

In Section 6, we used a set of projection lines for PNNs that are generated uniformly randomly. The
choice of the projection lines will affect the kernel matrix and thus can affect the capacity of a PNN.
A more sophisticated design can have a higher density of projection lines along directions with high
variances. Exploring the design of projection lines for PNNs can be an interesting direction for future
work. In addition, it is possible to extend our results to feed-forward neural networks with more than
two layers by constraining weight vectors in every layer, except the last one, to lie on fixed projection
lines. In that case and using the method proposed in [26], we can generalize our analysis by replacing
the kernel function of (8) with a kernel that also depends on the architecture. Finally, other extensions
of PNNs to network architectures with different activation functions than ReLU, and other types of
operations (such as convolutions) are also among interesting directions for future work.

9 Code

We provide code for PNN experiments in the following link:

https://github.com/jessemzhang/porcupine_neural_networks
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