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Abstract. In this paper, we propose a method for bounding the prob-
ability that a stochastic differential equation (SDE) system violates a
safety specification over the infinite time horizon. SDEs are mathemat-
ical models of stochastic processes that capture how states evolve con-
tinuously in time. They are widely used in numerous applications such
as engineered systems (e.g., modeling how pedestrians move in an inter-
section), computational finance (e.g., modeling stock option prices), and
ecological processes (e.g., population change over time). Previously the
safety verification problem has been tackled over finite and infinite time
horizons using a diverse set of approaches. The approach in this paper
attempts to connect the two views by first identifying a finite time bound,
beyond which the probability of a safety violation can be bounded by a
negligibly small number. This is achieved by discovering an exponential
barrier certificate that proves exponentially converging bounds on the
probability of safety violations over time. Once the finite time interval is
found, a finite-time verification approach is used to bound the probabil-
ity of violation over this interval. We demonstrate our approach over a
collection of interesting examples from the literature, wherein our app-
roach can be used to find tight bounds on the violation probability of
safety properties over the infinite time horizon.
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1 Introduction

In this paper, we investigate the problem of verifying probabilistic safety proper-
ties for continuous stochastic dynamics modeled by stochastic differential equa-
tions (SDEs). The study of SDEs dates back to the 1900s when, e.g., Einstein
used SDEs to model the phenomenon of Brownian motion [10]. Since then, SDEs
have witnessed numerous applications including models of disturbances in engi-
neered systems ranging from wind forces [37] to pedestrian motion [14]; models
of financial instruments such as options [5]; and models of biological/ecological
processes for instance predator-prey models [25]. In the meantime, SDEs are
hard to reason about: they are defined using ideas from stochastic calculus that
reimagine basic concepts such as integration in order to conform to the basic
laws of probability and stochastic processes [24].

There are many important verification problems for SDEs. Prominent topics
include the safety verification problem which seeks to know the probability that
a given SDE with specified initial conditions will enter an unsafe region (or leave
a safe region) over a given time horizon. Generally, safety verification can be per-
formed over a finite-time horizon setting, wherein the probability is sought over
a finite time interval [0, T]. On the other hand, the infinite-time horizon problem
seeks a bound on the probability of satisfying a safety property over the unbounded
time horizon [0, 00). A handful of methods have been proposed for verifying SDE
systems, such as the barrier certificate-based methods over both the infinite time
horizon [27] and finite time horizons [35], the moment optimization-based method
over finite time horizons [33] and the Hamilton-Jacobi-based method over the infi-
nite time horizon [16]. The novelty of our work lies in the reduction of infinite-time
horizon verification problems to finite time problems.

In this paper, we propose a mnovel reduction-based method to verify
unbounded-time safety properties of stochastic systems modeled as nonlinear
polynomial SDEs. We employ a similar idea as in [11] (for verifying delay dif-
ferential equations) that reduces the safety verification problem over the infinite
time horizon to the one over a finite time interval. This is achieved by comput-
ing an exponential stochastic barrier certificate which witnesses an exponentially
decreasing upper bound on the probability that a target system violates a given
safety specification. Consequently, for any € > 0, we can identify a time instant
T beyond which the violation (a.k.a. failure) probability is smaller than the
negligibly small cutoff €. The reduced bounded-time safety verification problem
over [0,7] can hence be tackled by any of the available methods. We further-
more present an alternative method to address the reduced finite-time hori-
zon verification problem based on the discovery of a time-dependent stochastic
barrier certificate. We show that both the exponential and the time-dependent
stochastic barrier certificate can be synthesized by respectively solving a perti-
nent semidefinite programming (SDP) [38] optimization problem. Experimental
results on some interesting examples taken from the literature demonstrated the
effectiveness of the reduction and that our method often produces tighter bounds
on the failure probability. Our approach has some broad similarities to related
approaches in symbolic execution of probabilistic programs that conclude facts
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about infinitely many behaviors by analyzing finitely many paths in the program
that account for a sufficient probability among all the behaviors [31].

Contributions. The main contributions of this work can be summarized as fol-
lows: (1) We reduce the unbounded-time safety verification of stochastic systems
to a bounded one, based on an exponentially decreasing bound on the failure
probability which guarantees the dominance of the overall failure probability by
the truncated finite time horizon. (2) We show how the obtained bound on the
overall failure probability is tighter than that produced by existing methods for
some interesting SDEs.

Related Work. The use of mathematical models of processes—ranging from
finite state machines to various types of differential equations—has allowed us to
reason about rich behaviors of Cyber-Physical Systems produced by the inter-
action between digital computers and physical plants [29]. In this regard, many
modeling formalisms have been studied including finite state machines, ordinary
differential equations (ODEs), timed automata, hybrid automata, etc. [8], on top
of which a large variety of verification problems have been extensively investi-
gated, e.g., safety verification through reachability analysis and temporal logic
verification [3].

In the existing literature on formal verification, ODEs are often used to
describe the behavior of deterministic continuous-time systems. However, these
models have been shown over-simplistic in many applications that involve time
delays, nondeterministic inputs and stochastic noises. SDEs hence arose as an
important class of models that have been employed in practical domains cover-
ing, among others [24], financial models such as the famous Black-Scholes model
used extensively in the theory of options pricing [5], wind disturbances [37],
human pedestrian motion [14] and ecological models [25].

In what follows, we place our work in the context of formal verification tech-
niques tailored for stochastic differential dynamics modeled as SDEs, and discuss
contributions thereof that are highly related to our approach. Unbounded-time
stochastic safety verification of SDE systems was first studied by Prajna et al.
in [27,28], where a typical supermartingale was employed as a stochastic barrier
certificate followed by computational conditions derived from Doob’s martin-
gale inequality [15]. Thereafter, the stochastic barrier certificate-based method
was extended to cater for bounded-time safety verification by Steinhardt and
Tedrake [35] by leveraging a relaxed formulation called c-martingale for locally
stable systems. The barrier certificate-based method by Prajna et al. (ibid.) for
unbounded-time safety verification often leads to conservative bound on the fail-
ure probability. On the other hand, Steinhardt and Tedrake (ibid.) established
impressive probability bounds but only for finite time horizons. In order to reduce
the conservativeness, we propose a method of reducing the unbounded safety ver-
ification to a bounded one. Although our method in this paper is also based on
the construction of stochastic barrier certificates, the gain of stochastic barrier
certificates only helps to identify a finite time interval such that the violation
probability of interest beyond this time interval is arbitrarily negligibly small.
A time-dependent barrier certificate is further proposed to solve the resulting
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bounded-time safety verification. The Unbounded-time safety verification prob-
lem has also been studied by Koutsoukos and Riley [16], who linked the reachabil-
ity probability to the viscosity solution of certain Hamilton-Jacobi partial differ-
ential equations, under restrictions on bounded state space and non-degenerate
diffusion. Grid-based numerical approaches, e.g., the finite difference method
in [16] and the level set method in [22], are traditionally used to solve these
equations, leading to the fact that the Hamilton-Jacobi reachability method
only scales well to systems of special structures. More recently, a novel con-
straint solving-based method has been proposed in [20] for algebraically over- and
under-approximating the reachability probability, which is nevertheless limited
to bounded-time safety verification. In addition to the abovementioned methods,
we refer the readers to [7] for a Dirichlet form-based method for stochastic hybrid
systems featuring “nice” Markov properties, while to [6,18,39] and [1,17] respec-
tively for related contributions in statistical and discrete/numerical methods for
stochastic verification and control.

Finally, we mention a relation between the ideas in this paper and previously
proposed ideas for (non-stochastic) ODEs due to Sogokon et al. [34]. The key
similarity lies in the use of a non-negative matrix through which a vector of
functions whose derivatives are related to their current value. Whereas Sogokon
et al. explored this idea for ODEs, we do so for SDEs. Another significant dif-
ference, in our work, is that we use the super-martingale functions to identify a
time horizon [0, 7] and bound the probability of safety violation beyond 7.

The reminder of this paper is structured as follows. Section 2 introduces
stochastic differential dynamics modeled by SDEs and the unbounded-time
safety verification problem of interest. Section3 elucidates the reduction of
unbounded safety verification to bounded ones based on the witness of stochastic
barrier certificates. Section 4 presents the SDP formulation for discovering such
barrier certificates over the reduced bounded time interval. After demonstrating
our method on several examples in Sect. 5, we conclude the paper in Sect. 6.

2 Problem Formulation

Notations. Let R be the set of real numbers. For a vector x € R™, x; refers
to its i-th component and |z| denotes the #2-norm. Particularly, 0 and 1 denote
respectively the vector of zeros and ones of appropriate dimension, and the com-
parison between vectors, e.g., x < 0, is component-wise. We define for § > 0,
B(z,0) = {a’ e R" | |2/ — x| < I} as the d-closed ball centered at x. We abuse

the notation |-| for an m x n matrix M as |M| = \/221 Py |M;;|*. The

exponential of a square matrix M € R"*", denoted by eM, is the n x n matrix
given by the power series e = 77/ LM*. For a set X CR", 9X, X and X°
denote respectively the boundary, the closure and the interior of X. Let C* be
the space of functions on R with continuous derivatives up to order k; a function
ft,z): RxR® - Risin C*2(RxR")if f € C' wrt.t € Rand f € C? w.r.t.
z e R".
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Let (£2, F, P) be a probability space, where (2 is a sample space, F C 2 is a
o-algebra on {2, and P: F — [0, 1] is a probability measure on the measurable
space (£2, F). A random variable X defined on the probability space (£2, F, P) is
an F-measurable function X : 2 — R"; its expectation (w.r.t. P) is denoted by
E[X]. Every random variable X induces a probability measure ux: B — [0,1] on
R", defined as px (B) = P(X~1(B)) for Borel sets B in the Borel o-algebra B on
R™. px is called the distribution of X; its support set is supp(pux) = qu(B)>0 B,
which will also be referred to as the support of X.

A (continuous-time) stochastic process is a parametrized collection of random
variables { X; } ;e where the parameter space T is interpreted as, unless explicitly
notated in this paper, the halfline [0, c0). We sometimes further drop the brackets
in {X;} when it is clear from the context. A collection {F; | ¢ > 0} of o-algebras
of sets in F is a filtration if F; C Fyys for t, s € [0, 00). Intuitively, F; carries the
information known to an observer at time ¢. A random variable 7: 2 — [0, 00)
is called a stopping time w.r.t. some filtration {F; | ¢ > 0} of F if {r <t} € F
for all ¢ > 0. A stochastic process {X;} adapted to a filtration {F; | ¢ > 0} is
called a supermartingale if E[X;] < oo for any t > 0 and E[X; | Fs] < X for
all 0 < s <t. That is, the conditional expected value of any future observation,
given all the past observations, is no larger than the most recent observation.

Stochastic Differential Dynamics. We consider a class of dynamical systems
featuring stochastic differential dynamics governed by time-homogeneous SDEs
of the form!

where {X;} is an n-dimensional continuous-time stochastic process, {W;}
denotes an m-dimensional Wiener process (standard Brownian motion),
b: R® — R™ is a vector-valued polynomial flow field (called the drift coeffi-
cient) modeling deterministic evolution of the system, and o: R™ — R™*™ is a
matrix-valued polynomial flow field (called the diffusion coefficient) that encodes
the coupling of the system to Gaussian white noise dW;.

Suppose there exists a Lipschitz constant D s.t. |b(z) —b(y)| + |o(z) —
o(y)] < D |z —y| holds for all z,y € R". Then, given an initial state (a ran-
dom variable) Xy, an SDE of the form (1) has a unique solution which is a
stochastic process X;(w) = X (t,w): [0,00) x 2 — R™ satisfying the stochastic
integral equation (a la Itd’s interpretation)

XtXOJr/Otb(XS) ds+/0ta(XS) dWw,. (2)

The solution {X;} in Eq. (2) is also referred to as an (1t6) diffusion process, and
will be denoted by X? Xo (or simply XtXO), if necessary, to indicate the initial
condition Xy at ¢t = 0.

A great deal of information about a diffusion process can be encoded in a
partial differential operator termed the infinitesimal generator, which generalizes

! The general time-inhomogeneous case with time-dependent b and o can be reduced
to this form (cf. [24, Chap. 10]).



332 S. Feng et al.

the Lie derivative that captures the evolution of a function along the diffusion
process:

Definition 1 (Infinitesimal generator [24]). Let {X:} be a (time-
homogeneous) diffusion process in R™. The infinitesimal generator A of X; is
defined by

Af(s,5) = lim ZLf s+ 8 Xe)] = f(s,2)

i ; , xeR"

The set of functions f: R x R™ — R s.t. the limit exists at (s,x) is denoted by
Da(s,x), while D4 denotes the set of functions for which the limit exists for all
(s,z) e R x R™.

In subsequent sections, the readers may find applications of the operator A
to a vector-valued function in a component-wise manner. The relation between
A and the coefficients b, in SDE (1) is captured by the following result:

Lemma 1 [24]. Let {X;} be a diffusion process defined by Eq. (1). If f €
CY2(R x R™) with compact support, then f € Dy and

>
Af(t @ Jr Z axl Z Jis 89&18%

As a stochastic generalization of the Newton-Leibniz axiom, Dynkin’s formula
gives the expected value of any adequately smooth function of an It6 diffusion
at a stopping time:

Theorem 1 (Dynkin’s formula [9]). Let {X:} be a diffusion process in R™.
Suppose T is a stopping time with E[T] < oo, and f € CH?(R x R™) with compact
support. Then

E"® [f(r, X;)] = f(h,z) + E™ UOT Af (s, Xs) dS] :

In order to specify the behavior of an It6 diffusion across the domain bound-
ary, we introduce the concept of stopped process, which is a stochastic process
that is forced to have the same value after a prescribed (possibly random) time.

Definition 2 (Stopped process [12]). Given a stopping time T and a stochas-
tic process {X:}, the stopped process { X7} is defined by

N X(t,w if t < 7(w),
X (t,w) = Xinr(w) = (t,w) ( )

X(7(w),w) otherwise.
Remark 1. By definition, a stopped process preserves, among others, continuity
and the Markov property, and hence the aforementioned results on a stochastic
process apply also to a stopped process.
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Now consider a stochastic system modeled by an SDE of the form (1) that
evolves “within” a not necessarily bounded set X C R™. Since the solution {X;}
of Eq. (1) may escape from X at any time instant ¢ > 0, due to the unbounded
nature of Gaussian, we define a stopped process X, = Xinry With 7 = inf{t |
X;: ¢ X}. X, hence represents the process that will stop at the boundary of X.
Denote the infinitesimal generator of the stopped process as A. One plausible
property here is that, for all compactly-supported f € C12(R x R"),

o
Af(t,x):{:;ljf(t’x) for x € X°, 3)
Sr(t,x)  for x € OX.

The oo-Safety Problem. Given an SDE of the form (1), a (not necessarily
bounded?) domain set X C R”, an initial set Xy C &, and an unsafe set X, C X.
We aim to bound the failure probability

P(3tef0,00): Xie,),

for any initial state Xy whose support lies within Xj. Accordingly, the T'-safety
problem, with T' < oo, refers to the problem where one aims to bound the failure
probability within the finite time horizon [0, 7.

Remark 2. Roughly speaking, if we denote by ¢ the proposition “X, evolves
within X” and by ¢ the proposition “X; evolves into X,,”, then the above oo-
safety problem asks for a bound on the probability that the LTL formula ¢ Uy
holds.

3 Reducing oco-Safety to T-Safety

We dedicate this section to the reduction of the co-safety problem to its bounded
counterpart. Observe that for any 0 < T < oo,

P(3t>0: X, € X,)<P3Ete[0,T)]: X, € X,) +P(3t>T: X, € X,).

The key idea behind our approach is to first compute an exponentially decreasing
bound on the tail failure probability over [T*,00) (the computation of T* > 0
will be shown later), and then for any constant € > 0, we can identify (out of
the exponentially decreasing bound) a time instant T > T* such that P(3t >
T: X, € X,) < e. The overall bound on the failure probability over [0,00) can
consequently be obtained by solving the truncated T-safety problem.

2 In practice, if we can specify X based on prior knowledge when modeling a physical
system, then the larger X we choose, the greater (bound on) failure probability we
will obtain.
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3.1 Exponentially Decreasing Bound on the Tail Failure Probability

We first state a result that gives conditions when a linear map keeps vector
inequality:

Lemma 2 [4, Chap.4]. For a matriz M € R"*",

-Vz,y e R": v <y = Mz < My iff M is non-negative, i.e., M;; > 0 for
all1 <i4,5 <n.

— The matriz eM?t is non-negative for allt > 0 iff M is essentially non-negative,
i.e., M;; >0 fori#j.

The existence of an exponentially decreasing bound on the tail failure prob-
ability relies on a witness of a supermartingale of the exponential type:

Theorem 2. Suppose there exists an essentially non-negative matric A €
R™>™ " together with an m-dimensional polynomial function (termed expo-
nential stochastic barrier certificate) V(z) = (Vi(z), Va(z),. .., Vin(z))', with
Vi: R® = R for 1 <i<m, satisfying>*

V(z) >0 forzeX, (4)
AV (z) < —AV(z) forx e X, (5)
AV(z) <0 forxz € 0X. (6)

Define a function
F(t,x) = MV (),

then every component of F(t,X't) is a supermartingale.

Proof. For cases with a bounded domain X', one can trivially extend the domain
of F(t,x) s.t. F is compactly-supported, and thus Dynkin’s formula in Theorem 1
applies immediately. For cases where X is unbounded, we introduce a stopping
time

5 = inf{t | F (t,f(t) > %(0,5)},

and denote by Xt(é) = (t A5, Xy Ars ) the corresponding stopped process involving

the timeline, and by A the corresponding infinitesimal generator. Then Xt(é)
evolves within the d-closed ball $8(0, J) and hence boils down to the case with a
bounded domain. Moreover, by Eq. (3), we have

AOF (Xt(‘”) = AOF (t A mf(tw)

0 if T(s(w) <t,
= %(t,Xt) +eMAV(X,) <0 if 75(w) > tATx(w) > t,
9L (t, Xs) <0 if r5(w) > t ATx(w) <t

3 Condition (5) is slightly stronger than the corresponding one used in [27,28], yet will
lead to an exponentially decreasing bound on the tail failure probability in return.

4 Condition (6) is to ensure that when X stops at the boundary of X', we still have
AV (z) < —AV(z) for x € &X. If X = R", however, this condition can be omitted.
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where Ty represents the time instant when escaping from the state space X'. Note
that the second and the third case hold due to the non-negativity of e* (as A is
essentially non-negative), which implies that e* preserves vector inequalities (5)
and (6). Hence by Dynkin’s formula (in a component-wise manner), for fixed
t,h € [0,00), we have

E [F ((t +h)A 7575((t+h)w> | J—'h] - gX” [F (Xt(j-)h)}
= F(x\7) + B% [ /0 A F (x) ds}
< F(x")
—F (h A Tg,th) .

Since F'(t,z) > 0, by Fatou’s lemma, we have
EF(t+nXm) | 7] = F [hérg inf F (¢ +h) A 7o, Kermnes ) | ﬂ}

< liminf E [F ((t +h) AT, X(Hh)m) | fh}

d—00

< liminf (h ATs, X’hw)
<F (h Xh) .
Tt follows consequently that every component of F(¢, X ¢) is a supermartingale. O

We will show in Sect. 4 that the synthesis of the exponential stochastic bar-
rier certificate V' (x) (and thereby the function F(t,x)) boils down to solving a
pertinent SDP optimization problem.

In order to further establish the relation between the exponential super-
martingale F (¢, X;) (and thereby V (z)) and the bound on tail failure probability,
we recall Doob’s maximal inequality for supermartingales, which gives a bound
on the probability that a non-negative supermartingale exceeds some given value
over a given time interval:

Lemma 3 (Doob’s supermartingale inequality [15]). Let {X;}:+~0 be a

right continuous non-negative supermartingale adapted to a filtration {F; | t >
0}. Then for any A > 0,

AP <sup X; > )\> < E[Xy).
t>0
The following theorem claims an intermediate fact that will later reveal the
exponentially decreasing bound on the tail failure probability.

Theorem 3. Suppose the conditions in Theorem 2 are satisfied. Then for any
T > 0 and any positive vector v € R™,

P (supv (1) 2 sup (o) ) < WX /o ™)

t>T t>T
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holds for all i € {1,...,m}.

Proof. Observe the following chain of (in-)equalities:

P (ggv (Xt) > fgg (eAtfy)> <P <3t >T:V (Xt> > e—At,y)

<P (Ht >T: MV (Xt) > "/) [non-negative eAt]
=P (supF (t, Xt) > 'y>
t>T

<P (SUP F; (t7Xt) > ’Yz')

t>T
<FE |:Fz (Ta XT)} /i [Lemma 3]
< EV; (Xo)l /v [Theorem 2]
which holds for any 7 € {1,2,--- ,m}. This completes the proof. O

Now, we are ready to give the exponentially decreasing bound on the tail
failure probability derived from Theorem 3. We start by considering the simple
case where the barrier certificate V() is a scalar function, i.e., with m = 1.

Proposition 1. Suppose there exists a positive constant A € R and a scalar
function V: R™ — R satisfying Theorem 2. Then,

p (supV (Xt) > 7) < ElVXo)] (8)

T AT

holds for any v > 0 and T > 0. Moreover, if there exists | > 0 such that
Vi) >1 forallxze X,

then

E[V(Xo)]

P(3t>T: X ex,) < =5 9)

holds for any T > 0.

Proof. Equation (8) holds since

P (v (%) 27) = P (supv (1) 2" (0172))

t>T 2T
<P (supV (Xt) > sup (e_At (eAT’Y))>
t>T t>T

[monotonicity on #]
E[V(Xo)]

AT [Theorem 3]
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For Eq. (9), it is immediately obvious that

P(3t=7: % €x,) gp(ggv()@) zl> Sw

This completes the proof. O
Now we lift the results to the slightly more involved case with m > 1.

Proposition 2. Suppose there ezists an essentially non-negative matriz A €
R™*™ and an m-dimensional polynomial function V: R™ — R™ satisfying The-
orem 2. If all of the eigenvalues of A have positive real parts, i.e.,

min {R(\;) | A is an eigenvalue of A} > 0,

1<i<m
then for any positive vector v € R™, there exists T* = T*(y,M,A) € R such
that for any T > T*,

5 E[Vi(Xo)]
P{supV (X) > ) < —= 10
(supv () 20) < T35 1o
holds for all i € {1,...,m}. Here, M is an essentially non-negative matriz s.t.

all of the eigenvalues of A— M have positive real parts®. Moreover, if there exists
a positive vector I € R™ such that

V(z) >1 forallx € Xy,
then for any T > T,

E[Vi(Xo)]

>T: X < —
P (Ht >T: X, € Xu) < =, (11)

holds for all i € {1,...,m}.

Proof. By substituting v in Eq. (7) with e™”~, we have that for all T > 0,

L P (sup v () = sup (o407

(eMT’Y)i t>T t>T (12)
=P (supV (Xt) > sup (eA(tT)e(AM)T'y)>
t>T t>T

holds for any v € R™ with v > 0. Observe that

sup (efA(th)ef(AfM)T,Y) ’ _
t>T

Sup (eAte(AM)T,Y)‘
t>0

<

sup (e_/”)

‘e—(A—M)T,y‘
>0

oo

oo

5 Such matrix M always exists, for instance, M = A/2.
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where |-|oo denotes the infinity norm. Moreover, since all of the eigenvalues of
A — M have positive real parts, then by the Lyapunov stability established in
the theory of ODEs, we have

—(A=M)T

lim e v =0.

T—o00

There hence exists T* s.t. for all T' > T,

sup (e_A(t_T)e_(A_M)Tv) <. (13)
t>T

By Combining Eq. (13) and Eq. (12), we obtain Eq. (10). For Eq. (11), it follows
immediately that

P(EitZT: X, eXu) §P<fgv()~g) zl) < m

This completes the proof. a

Remark 3. Proposition 2 argues the existence of T that suffices to “split oft”
the tail failure probability. From a computational perspective, this is algorith-
mically tractable as the matrix exponential involved in Eq. (13) is symbolically
computable (cf., e.g., [23]).

The following theorem states the main result of this section, that is, for
any given constant €, there exists 7' > 0 such that the truncated T-tail failure
probability is bounded by e:

Theorem 4. Suppose the conditions in Proposition 1 and 2 are satisfied. If there
exists a > 0, s.t. Vo € Xp: Vi(z) < « holds for some i € {1,...,m}. Then for
any € > 0, there exists T > 0 such that

P(EItZT:X}eXu)ge.

Proof. Observe that for Eq. (11) in Proposition 2, the assumption Vx €
Xo: Vi(z) < « guarantees an upper bound on the numerator E[V;(X()], while
the essential non-negativity of M (with all its eigenvalues having positive real
parts) ensures that the denominator (e™71); — 400 as T'— oco. An analogous
argument applies to Eq. (9) in Proposition 1. The claim in this theorem then
follows immediately. a

3.2 Bounding the Failure Probability over [0, T]

The reduced T-safety problem can be solved by existing methods tailored
for bounded verification of SDEs, e.g., [32,35]. In what follows, we propose
an alternative method leveraging time-dependent polynomial stochastic bar-
rier certificates. Our method requires constraints (on the barrier certificates)
of simpler form compared to [35]; meanwhile, it yields strictly more expressive



Unbounded-Time Safety Verification of Stochastic Differential Dynamics 339

form of barrier certificates, against the approach on unbounded verification as
in [27,28], thus leading to theoretically non-looser (usually tighter) failure bound.
A detailed argument will be given at the end of this section.

The following theorem states a sufficient condition, i.e., a collection of con-
straints on the time-dependent polynomial stochastic barrier certificates H (¢, ),
under which the failure probability of a stochastic system over a finite time hori-
zon can be explicitly bounded from above.

Theorem 5. Suppose there exists a constant n > 0 and a polynomial function
(termed time-dependent stochastic barrier certificate) H(¢,x): R x R" — R,
satisfying®

H(t,xz) >0 for (t,z) €[0,T] x X, (14)
AH(t2) <0 for (ta) € [0.T] x (X\ X,). (15)
%i[ 0 for (t,z) € [0,T] x X, (16)
H(t,x) >n for (t,x) € [0,T] x X,. (17)

Then,
n

Proof. Assume in the following that the system evolves within a bounded domain
X7. Define a stopping time

T = inf{t|Xt¢X\Xu},

P(Hte 0,7]: X, Xu) <

and denote by X(“) (AT, AT, Xt/\TuAT) the corresponding stopped process,
and by A® the corresponding infinitesimal generator. By Eq. (3), we have

A(“)H(X ) AW | (t/\Tu/\T,Xt/\'ru/\T)

0 ift>TVt>r7,(w),
= AH(t,X;) <0 if t < min{T, 7, (w), 7x(w)},
Y1, X) <0 if t <min{T, 7, (w)} At > Ta(w).

By Dynkin’s formula, for fixed t, h € [0, 7], we have
B | (x5 | 7] = 257 [1 (x5
— p[m (x)] + 2 [ / AWH (X(7) ds }
<E[H(x")].

6 Condition (16) is to ensure that when X, stops at the boundary of X, we still have
AH(t,z) <0 for x € X. If X = R", however, this condition can be dropped.

7 For cases with an unbounded X, the same proof technique of introducing a é-closed
ball as in the proof of Theorem 2 applies.
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Thus H (Xt(u)) is a non-negative supermartingale. Then by Doob’s maximal
inequality in Lemma 3, we have

P(ate 0,7]: X, eXu) -

This completes the proof. a
The following fact is then immediately obvious:

Corollary 1. Suppose the conditions in Theorem 5 hold, and there exists 3 > 0,
s.t. H(0,2) < B for x € Xy. Then,

P(Hte 0,7]: X, eXu> <

S @

Proof. This is a direct consequence of Theorem 5. O

Remarks on Potentially Tighter Bound. There exists already in the lit-
erature a barrier certificate-based method proposed in [27,28] that can deal
with the oco-safety problem. It is worth highlighting, however, that our bound
on the overall failure probability derived from Proposition 1, 2 and Theorem 5
(with appropriate T chosen) is at least as tight as (and usually tighter than, as
can be seen later in the experiments) that in [27,28]. The reasons are twofold:
(1) the reduction to a finite-time horizon T—safety problem substantially “trims
off” verification efforts pertaining to ¢ > T3 (2) our method for the reduced
T-safety problem admits time-dependent barrier certificates, which are strictly
more expressive than those time-independent ones exploited in [27,28], in the
sense that any feasible solution thereof shall also be a feasible solution satisfying
Theorem 5.

Remark 4. Roughly speaking, by setting the diffusion coefficients ¢ in SDEs to
zero, our method applies trivially to ODE dynamics with either a known or an
unknown probability distribution over the initial set of states. For the former,
we can even obtain a tighter bound on the failure probability, since in this case
we do not need to compute a bound on the barrier certificate over all possible
initial distributions.

4 Synthesizing Stochastic Barrier Certificates Using SDP

In this section, we encode the synthesis of the aforementioned exponential and
time-dependent stochastic barrier certificates into semidefinite programming [38]
optimizations, and thus a solution thereof yields an upper bound on the failure
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probability over the infinite-time horizon. Specifically, an SDP problem is for-
mulated, for each of the two barrier certificates, to encode the constraints for
“being an exponential/time-dependent stochastic barrier certificate”, while in
the meantime optimizing the tightness of the failure probability bound.

It is worth noting that SDP is a generalization of the standard linear pro-
gramming in which the element-wise non-negativity constraints are replaced by a
generalized inequality w.r.t. the cone of positive semidefinite matrices. The gen-
eralization preserves convezity, leading to the fact that SDP admits polynomial-
time algorithms, say the well-known interior-point methods, that can efficiently
solve the synthesis problem, albeit numerically. We remark that the numerical
computation employed in off-the-shelf SDP solvers and the use of interior-point
algorithms may potentially lead to erroneous results and thereby unsoundness
in the verification/synthesis results. There have been numerous attempts to val-
idate the results from the solver through a-posteriori numerical verification of
the solution. For more details, we refer the readers to [30] and the references
therein.

Exponential Stochastic Barrier Certificate V(z). To encode the synthesis
problem into an SDP optimization, we first fix the dimension m together with A
satisfying Proposition 1 or 2 (depending on m), and then assume a polynomial
template V?(z) of certain degree k with unknown parameters a, as the barrier
certificate to be discovered. It then suffices to solve the following SDP problem®:

minimize « (19)
subject to V%x) >0 forxze X (20)
AVe(z) < —AV(z) forx e X (21)

AV (z) <0 forxz € 0X (22)

Vi(z) >1 forzxe X, (23)

Ve(r) <al forze X (24)

Here, the constraints (20)—(22) encode the definition of an exponential stochastic
barrier certificate (cf. Theorem 2), while constraint (23) (resp., (24)) corresponds
to the lower (resp., upper) bound of V(z) as in Proposition 1 and 2 (resp.,
Theorem 4)°. Hence, minimizing the upper bound « of (each component of)
Ve (z) gives a tight exponentially decreasing bound on the tail failure probability,
as claimed in Proposition 1 and 2.

Remark 5. If A is chosen as a non-negative matrix, the combination of condi-
tion (20) and (22) will force V*(x) = 0 for x € X, whereof the strict equality

8 SDP problems in this paper refer to those that can be readily translated into the
standard form of SDP, through, e.g., Stengle’s Positivstellensatz [36] and sum-of-
squares decomposition [26].

9 The lower bound I of V(z) in Proposition 1 and 2 is normalized to a vector with all
its components no less than 1, based on the observation that, for any ¢ > 0, V*(z)
is a feasible solution implies ¢V*(z) is also a feasible solution.
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may be violated due to numerical computations in SDP. In practice, however,
this issue can be well addressed by looking for a barrier certificate of the form
g(x)V(z), where g(x) satisfies 0X C {z | g(x) = 0}, namely, an overapproxima-
tion of the boundary of X

Remark 6. The choice of m is arbitrary, while the choices of A and k can be
heuristic: If A; admits no feasible solution, neither will As > A; (point-wise,
with all the rest parameters fixed); similarly, if k; admits no feasible solution,
neither will ky < ki (with all the rest parameters fixed). Therefore, one may
decrease A (say, by a half) or increase k (say, by one) whenever a valid barrier
certificate was not found.

Time-Dependent Stochastic Barrier Certificate H (¢, z). Given the results
established in Sect. 3, the corresponding synthesis problem can be analogously
encoded as the following SDP problem:

minbi%ize 8 (25)
subject to H(t,z) >0 for (t,x) € [0,T] x X (26)
AHb(t,2) <0 for (t,x) € [0,T] x (X \ X,) (27)

887}? <0 for (t,x) €[0,T] x 0X (28)

H(t,z) > 1 for (t,z) €[0,T] x X, (29)

H*0,2) < B forz € X, (30)

Similarly, the constraints (26)—(29) encode the definition of a time-dependent
stochastic barrier certificate (cf. Theorem 5), while constraint (30) corresponds
to the upper bound of H(t,x) as in Corollary 1 (with 7 being normalized to 1,
as in constraint (29)). Consequently, minimizing the upper bound 3 of H®(t,x)
produces a tight bound on the failure probability over the reduced finite-time
horizon, as stated in Corollary 1.

Remark 7. The state-of-the-art interior-point methods solve an SDP problem
up to an error ¢ in time that is polynomial in the program description size
(number of variables) and log(1/¢). The former is exponential in the degree
of V¢ and H?, as it corresponds to the number of monomials in the template
polynomials.

5 Implementation and Experimental Results

To further demonstrate the practical performance of our approach, we have
carried out a prototypical implementation in MATLAB R2019b, with the tool-
box YALMIP [21] and MOSEK [2] equipped for formulating and solving the under-
lying SDP problems. Given an oo-safety problem as input, our implementation
works toward an upper bound on the failure probability over the infinite time
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horizon, leveraging the reduction to a T-safety problem based on a computed
exponentially decreasing bound on the tail failure probability. A collection of
benchmark examples from the literature has been evaluated on a 1.8 GHz Intel
Core-i7 processor with 8 GB RAM running 64-bit Windows 10. Each of the exam-
ples has been successfully tackled within 30s. In what follows, we demonstrate
the applicability of our techniques to SDEs featuring different dimensionalities
and nonlinear dynamics, and show particularly that our approach usually pro-
duces tighter bounds compared to existing methods.

Ezample 1 (Population growth [25]). Consider the stochastic system
dXt = b(Xt) dt + o (Xt) th,

which is a stochastic model of population dynamics subject to random fluctua-
tions that, possibly, can be attributed to extraneous or chance factors such as
the weather, location, and the general environment. Suppose that the state space
is restricted within X = {x | z > 0} with b(X;) = —X; and o(X;) = v2/2X;.
We instantiate the co-safety problem as Xy = {z |z = 1} and X, = {x | x > 2},
namely, we expect that the population does not diverge beyond 2.

Let A = 1 (with m = 1) and set the polynomial template degree of the
exponential stochastic barrier certificate V%(x) to 4, the SDP solver gives

V() = 0.000001474596322 — 0.000044643990040
+ 0.1250233721212222% + 0.0000000014304282>,

which satisfies
V() >1 forx e X, and V% =x)<0.12498 for z € A.

Thus by Proposition 1, we obtain the exponentially decreasing bound

0.12498
ol

P(3t=T: Xiex,)< for all T > 0.

The user then may choose any T' > 0 and solve the reduced T-safety problem.
As depicted in the left of Fig. 1, different choices lead to different bounds on the
failure probability. Nevertheless, one may surely select an appropriate T that
yields a way tighter overall bound on the failure probability than that produced
by the method in [27,28].

Ezample 2 (Harmonic oscillator [13]). Consider a two-dimensional harmonic
oscillator with noisy damping:

0 w 00
dXt = <w k) Xt dt + (0 0_) Xt th,

with constants w = 1,k = 7 and 0 = 2. We instantiate the oco-safety problem
as X = R", Xy = {(z1,22) | -1.2 < 21 < 0.8,-0.6 < 25 < 0.4} and X, =
{(z1,22) [ |z1| > 2}
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Fig. 1. Different choices of T lead to different bounds on the failure probability (with
the time-dependent stochastic barrier certificates of degree 4). Note that ‘o’ = ‘x’ +
‘/\” and ‘e’ depicts the overall bound on the failure probability produced by the method
in [27,28].

0.45 0.1
0.1 0.45
nential stochastic barrier certificate V(z) to 4, the SDP solver produces a two-
dimensional V*(z) (abbreviated for clear presentation) satisfying

Let/l:(

and set the polynomial template degree of the expo-

. 0.19946 . (1000237
Viz) < (0.19946 forz€dy and V(@) 2 1= {1 550935 ) Tor @€ X

0.30.1

According to the proof of Proposition 2, we set M = (O 103

T* > 0 such that for all T > T,
1.000237 1.000237
—At ,—(A=M)T <
b (e ¢ (1.000236)) = (1.000236) ' (31)
Symbolic computation on the matrix exponential gives

“ At — (AT [1.000237 e~ 0-15T(1.0002365e¢ 255 4- 0.0000005¢~0-35¢)
sup (e e ( ) = sup 5
>0 1.000236 +>0 \e~ 0157 (1.0002365e~0-55¢ — 0.0000005¢~0-35¢)
1.0002365¢ 0157
= \1.0002365¢—0-15T | -

>and aim to find

Therefore, T* = 1 satisfies condition (31). Further by Corollary 2, for any 7' >
T* =1, we have

EVi(Xo)] _ 0.19946
(eMT]); = 0.0000005e%-2T + 1.00024e0-4T"

P(thT:f(teXu)g

Analogously, a comparison with existing methods concerning the tightness of
the synthesized failure probability bound (under different choices of T') is shown
in the right of Fig. 1.
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Ezample 8 (Nonlinear drift [27]). We consider in this example a stochastic sys-
tem involving nonlinear dynamics in its drift coefficient:

dzq(t) = zo(t) dt
dao(t) = —21 () — z2(t) — 0.523(t) dt + 0.1 dW;.

As in [27], let X = {(z1,22) | |z1] < 3, |22| < 3,27 + 23 > 0.5}, Xy = {(21,22) |
(r1 +2)% + 23 < 0.1%} and X, = {(z1,72) € X | zo > 2.25}. With A = 1.5
(m = 1), we obtain an exponential stochastic barrier certificate V*(x) of degree
8 satisfying

V(x) <4.00014 for x € Xy and V°(x)>1.05248 for z € X,.

Thus by Corollary 1, we have for any 7" > 0,

3.80070

p(atzT:XteXu>§W

Setting, for instance, "= 6, we have

3.80070

P(3t20: % ex) <P (30 Xier,)+ >

For the reduced T-safety problem with 7" = 6, a time-dependent stochastic barrier
certificate of degree 8 is synthesized, thereby yielding P (Ht €[0,6]: X, € Xu> <
0.196124, thus together we get

P (Ht >0: X, € Xu) < 0.196593,

which is tighter than 0.265388 produced (on the same machine) by the method
in [27] under the same template degree.

6 Conclusion

We proposed a constructive method, based on the synthesis of stochastic barrier
certificates, for computing an exponentially decreasing upper bound, if existent,
on the tail probability that an SDE system violates a given safety specification.
We showed that such an upper bound facilitates a reduction of the verifica-
tion problem over an unbounded temporal horizon to that over a bounded one.
Preliminary experimental results on a set of interesting examples from the liter-
ature demonstrated the effectiveness of the reduction and that our method often
produces tighter bounds on the failure probability.

For future work, we plan to investigate a possible convergence result in the
sense that the derived failure probability bound may converge to the exact one
as increasing the degree of the barrier certificates. Extending our technique to
tackle SDEs with control inputs will also be of interest. Moreover, checking
whether a given parametric (polynomial) formula keeps probabilistic invariance
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plays a central in the verification of SDEs. Several kinds of sufficient conditions
on probabilistic barrier certificates were proposed, including the ones given in
this paper. It consequently deserves to investigate a necessary and sufficient
condition for checking the probabilistic invariance of a given template, like for
ODEs in [19]. Apart from that, we are interested in carrying our results to the
verification of probabilistic programs without conditioning, which can be viewed
as discrete-time stochastic dynamics.
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